九州大学学術情報リポジトリ Kyushu University Institutional Repository

2.45GHz LHCDシステム用移相器の高電力試験

中島, 壽年 九州大学応用力学研究所

花田, 和明 九州大学応用力学研究所

川崎, 昌二 九州大学応用力学研究所: 技官

牧野, 賢一 九州大学応用力学研究所

他

https://doi.org/10.15017/4744059

出版情報:應用力學研究所所報.85, pp.43-46, 1999-02. 九州大学応用力学研究所 バージョン: 権利関係:

2.45 GHz LHCD システム用移相器の高電力試験

中 年*1 明*1 﨑 __*1 島 薵 花 田 和 Ш 昌 牧 野 E 瀧 恵里子*1 坂 本 瑞 樹*1 子 鴌 樹*1 中 村 男*1 汊 智 之*1 佐 藤 浩之助*1 伊 藤

High Power Tests of Phase Shifters for 2.45 GHz LHCD System

Hisatoshi NAKASHIMA, Kazuaki HANADA, Shoji KAWASAKI, Ken-ichi MAKINO, Eriko JOTAKI, Mizuki SAKAMOTO, Hideki ZUSHI, Kazuo NAKAMURA, Kohnosuke SATO and Satoshi ITOH

Abstract

High power tests of new phase shifters for 2.45 GHz lower hybrid current drive (LHCD) system installed on the superconducting tokamak, TRIAM-1M are carried out. The values of phase difference at the entrance of the launcher of 2.45 GHz LHCD system measured with a network-analyzer agree with the design value of the phase shifter. The phase shifters can make the power of radio-frequency (RF) with 45 kW, that is close to the maximum power of 2.45 GHz LHCD system, pass through for 1 minute. These experimental results indicate that the new phase shifters have the sufficient performance for the incorporation to the 2.45 GHz LHCD system.

Key words : Phase shifter, Lower hybrid current drive, Tokamak plasma, Current profile control

1. はじめに

応用力学研究所附属炉心理工学研究センターでは核 融合炉の実現を目指し、『超伝導強磁場トカマク装置 TRIAM-1M』を用いて超長時間のトカマクプラズマ 維持とプラズマの高性能化の実験を推進している^{1) 2)}。 その一環としてプラズマ中に高周波(以下 RF と記す) をランチヤーと呼ばれる導波管列を用いて入射し、プ ラズマ電流を駆動することでトカマクプラズマを長時 間維持する実験を行っている。最近は隣接する導波管 間の位相差を調整することによりプラズマ電流の径方 向分布を制御する実験が大きな研究テーマの一つとな っている。

これまでは隣接する導波管間の位相差の調整、変更 は、導波管の途中にスペーサを挟み、導波管内を通過 する RF の光路長を変えて行ってきた。しかし、この方 法では位相変更に時間を要するため効率良く実験する ことが困難であった。今回、既設の2.45GHz LHCD シ ステムに手動式移相器を導入し、簡便に位相の調整、

Fig. 1 Schematic view of a new phase shifter. The unit of the number in the figure is mm.

	1998年10月30日	受理
1	九州大学応用力	学研究所

変更が行えるように改良を行った。本報告では新規に 導入した移相器の高電力試験の結果について述べる。

2. 移相器の概要

移相器の外観を図1に示す。本移相器はショートプ ランジャ方式を用いた光路長変更型の移相器である。 この他には誘電体を用いたものや導波管内に窓や棒を 設置することで位相差を生じさせるものもある。以下 にショートプランジャ方式を用いた光路長変更型の移 相器の原理を示す。図2において移相器に入射する RFをW0で示す。入射波W0は導波管結合部

(waveguide coupler) にて W1 と W2 に分波される。 導波管結合部は W1 と W2 が正確に同じ電力に分波 されるように調整されている。導波管結合部を通じて 隣の導波管に入った RF は位相が 90° ずれるように調 整されているため W2 は W1 に対して位相が 90° ずれ ている。W1 はプランジャで反射されて再び導波管結 合部に戻って来るが、プランジャを移動することで光 路長が変わり、入射波に対する位相を変更することが できる。プランジャの移動によって生じる位相差の詳 細については後ほど述べる。プランジャで反射されて 再び導波管結合部に戻った RF は W1-1 と W1-2 に 分波される。一方 W2 も同様にプランジャで反射され て2列導波管結合部に戻り、W2-1とW2-2に分波さ れる。ここで2つの導波管のプランジャは連動してい るのでプランジャの移動によって生じる位相差はどち らの導波管でも同じである。また、W1-2とW2-2はど ちらも2列導波管結合部で90°だけ位相が変化してい る。W1-2 と W2-2 は位相が完全に一致し、両者は強め 合う。一方、W1-1は2列導波管結合部での位相変化を 受けておらず、W2-1は90°の位相変化を2度受けて いるため両者には180°の位相差が生じている。2列導 波管結合部では高周波の電力を正確に1:1に分波し ているため W1-1 と W2-1 は完全に打ち消し合う。こ の結果、移相器による反射は生じず、RF は出口方向へ のみ進行する。

本移相器によって生じる位相差 $\Delta \phi$ は、プランジャ の移動距離を d とすると

$$\Delta\phi = 4\pi \frac{d}{\lambda_{g}} \tag{1}$$

Fig. 2 The principle of the phase shifter

と表わすことができる。ここで λ_g は導波管内波長である。導波管内波長は、

$$\lambda_g = \frac{\lambda}{\sqrt{1 - (\lambda/\lambda_c)^2}} \tag{2}$$

とかける³⁾。ここで λ は真空波長、 λ_c は導波管の遮断波 長である。本移相器に使用している導波管は WRJ-2 で長辺、a=109.22mm、短辺、b=54.61mm の矩形導 波管である。伝送モードは TE₁₀ モードを使用してい るので遮断波長は、

$$\lambda_c = 2a = 21.844 \,(\mathrm{cm}) \tag{3}$$

となる。使用する RF の周波数、2.45GHz を用いて導 波管内波長を計算すると

$$\lambda_g = 14.771 \,(\mathrm{cm}) \tag{4}$$

となる。従って、本移相器によって生じる位相差は

Fig. 3 Schematic view of experimental assembly for high power test of the phase shifters

 $\Delta \phi = 48.74 \,(\text{deg/cm}) \,d \tag{5}$

と表わすことができる。

3. 試験方法と結果

本移相器で生じる位相差を測定し、式(5)の結果と比 較する試験を行った。低電力試験(コールドテスト) は納入前に実施したので、高電力試験(ホットテスト) のみを実施した。実験システムの概要を図3に示す。 基準発振器(Oscillator)、クライストロン増幅管 (Klystron Amplifier)、導波管(Waveguide)、方向 性結合器(Directional Coupler)は現有の2.45GHz LHCDシステムを利用している。RFの負荷として水 負荷(Water Load)を使用し、TRIAM-1M本体とは 切り離して試験を行った。移相器の水負荷側に設置さ れた方向性結合器の出力と基準発振器の出力の位相差 をネットワークアナライザ(HP製8410B)で測定し た。結果を図4に示す。パワーメータ(HP製EPM-441 A+EPM-440)で測定した RFの出力電力は約20kW である。図中に示された実線は式(5)で予想されている 位相差を表わしている。実験結果は式(5)の予想と良く 一致している。この結果はコールドテストの結果とも 良い一致をしめしており、20kW程度のホットテスト では本移相器は大電力通過によって生じる熱や電場に よるアークなどの影響がまったくないことを示してい る。移相器に設置された移動距離モニタの精度は0.1 mm なので設定精度は±0.5°である。この値は実際に

Fig. 4 Phase Differences between No. 2-4 waveguide and No. 1 are plotted as the function of the distance of movement of plunger.

プラズマ負荷で使用する際の精度としては問題ない。 本移相器のプランジャの移動距離は 0~85mm で、こ れは 0~414°の位相変化に対応する。実用上は 360°以 上の位相変化を生じさせることができれば充分である。 また、2.45GHz LHCD システムで使用する電力の最 大値に近い 45kW の出力で 1 分間の耐久試験を実施 したが、アーク、熱による位相の変化等の問題を全く 生じなかった。

4. 結論

これらの試験結果から、本移相器は2.45GHz LHCDシステムに組み込んで使用することのできる 性能を有していることがわかった。高電力試験により 確認できた装置の性能は以下の通りである。

- 1) 位相変更範囲 0~414°
- 2) 設定精度 ±0.5°
- 3) 最大入射電力 45kW、1分間以上

参考文献

- S. Itoh et al.: Ultra Long Tokamak Discharge by Lower Hybrid Current Drive on TRIAM-1M; Proc. 16th International Conference on Fusion Energy organized by the IAEA, Vol. 3, pp. 351-359.
- E. Jotaki, S. Itoh and K. Nakamura : Impurity Accumulation in a Nb₃Sn Superconducting Magnet System on the High-Field Tokamak TRIAM-1M; Fusion Engineering and Design, Vol. 36, pp. 289-297.
- 3) 岩片秀雄他;マイクロ波工学,コロナ社.