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Abstract 

The Green function of the diffraction-radiation theory of time-harmonic waves under a moderate water depth is 

considered. The paper presents a newly developed enhanced algorithm based on Endo’s approach, which employs a 

direct Gauss-Laguerre quadrature in the calculation of the principal value integrations. This methodology was firstly 

originated from Endo (1983), and had been subsequently improved by Liu et al. (2008) and Shan et al. (2018). 

Unfortunately, the latest version of Endo’s approach still has two fatal problems with (1) incredibly large or small values 

at some “weird frequencies”, and (2) nonsense values in the high-frequency region under a large depth. The present 

algorithm proposes special techniques for the removal of the singularities at these “weird frequencies”, and provides 

special treatments to avoid exceeding hardware’s limitation when the input parameter     is overlarge. The developed 

algorithm is thereafter tested against a variety of sea conditions, via a comparison with Newman’s polynomial algorithm 

(Newman, 1985), certifying its good accuracy in various circumstances. By carrying out a benchmark test on the 

DeepCwind semisubmersible, through a comparison with Shan’s algorithm (Shan et al., 2018) and the commericial 

software Hydrostar®, the cause of the occurrence of the “weird frequencies” is found, in association with other 

important findings. The computations demonstrate that the present enhanced algorithm is thoroughly free from the 

preceding problems and is sufficiently accurate to compute wave loads in practice. 

Keywords: free-surface Green’s function; finite water depth; Gauss-Laguerre quadrature; diffraction-radiation theory; 

weird frequencies; ocean engineering; wave-structure interaction. 

1. Introduction 

Computational marine hydrodynamics has always been a good alternative to solve problems in ocean 

engineering that are overspent or not feasible to conduct laboratory experiments or onsite field tests. In recent 

years, marine structures (either floating or submarine) have been designed, planned and constructed towards 

an increasingly large scale owing to the rapid development of modern technologies. So far, wave interaction 

with such large structures over a wide-ranged selective sea states still needs to be analyzed using the 

boundary integral equation method (BIEM) based on the Laplacian equation, in association with some of the 
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detailed investigations of the fluid field to be performed by a variety of computational fluid dynamics (CFD) 

methods based on the Navier-Stokes equations, due to the limitation of hardware’s capabilities at present. The 

reason why BIEM is still being used widely is that it yields quite realistic and useful predictions. That is 

because all its unknowns are distributed solely on restricted specified boundaries, enabling the computational 

burden to be greatly reduced. At the meantime, BIEM can have a satisfactory accuracy for large-diameter 

structures in comparison to the wave lengths. In BIEM, the boundary integral equations are established based 

on Green’s theorem within a confined or unconfined space (Mei et al., 2005), and are numerically solved by 

discretizing the boundaries into a large number of grids. In such a process, one of the most time-consuming 

parts is the evaluation of free-surface Green’s function and its partial derivatives, the computation time of 

which increases quadratically with the number of unknowns on boundary surfaces, especially for structures 

with complex geometries. Generally speaking, a floating oil platform, an offshore wind turbine floating 

foundation, a submerged floating tunnel, or a large container vessel, consisting of O(10
3
) ~ O(10

4
) number of 

panels, needs evaluations of the free-surface Green function and its partial derivatives in a number of O(10
6
) 

~ O(10
8
) times per wave frequency to compute linear wave loads. In case of computing second-order wave 

loads, mesh grids have to be even finer and therefore increase dramatically the times of evaluations of the 

Green function to an incredible number. 

Computational techniques related to free-surface Green’s function in infinite water depth have been well 

established by many scholars. Important works have been undertaken in developing rigorous formulations, 

effective algorithms & computer codes (e.g., Newman 1985, 1992; Telste and Noblesse, 1986; Ponizy et al., 

1994; Chen 1993, 2004; Peter and Meylan, 2004; Clement, 2013; Wu et al., 2017; Shan and Wu, 2018; etc.). 

Worth noting is that, the idea originated from Noblesse (1982), focusing on a decomposition of the pulsating 

source into a wave component and a non-oscillatory local flow component, have turned into an open-source 

code published firstly by Telste and Noblesse (1986), improved by Ponizy et al. (1994), and later verified by 

Chakrabarti (2001). This work has been further simplified by Wu et al. (2017) recently, involving simply 

elementary functions for the local flow component, and does not require a division of the computational 

domain into multiple sub-domains. The algorithm of Wu et al. (2017) was validated subsequently by Liang et 

al. (2018) and improved further by Wu et al. (2018). A systematic description and comparison for the merits 

and the demerits of various numerical algorithms of the deep-water free-surface Green function have been 

recently given in Xie et al. (2018). Interested readers are referred to it for the more detailed information.  

As been pointed out by Liu et al. (2018a), for some marine structures such as the substructures of marine 

renewble energy devices, since the designed water depths are of a moderate/intermediate scale ranging from 

approximately 20 meters to around 200 meters, considering the safety of the offshore structures, it is 

advisable and reasonable to use the finite-depth wave theory (Bayati et al., 2015) instead of assuming the 

installation water depth to be of infinity. However, the evaluation of free-surface Green’s function in a finite 

depth is rather troublesome than that in an infinite depth due to the more complex singular nature of its 
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oscillating integrand. In general, the calculation strategies for such a finite-depth Green’s function can be 

categorized into three types: (1) Extracting slow-varying components from the Green function and using a 

Chebyshev or multi-dimensional polynomial method to approximate them (e.g., Newman 1985, 1992; Chen 

1993, 2004; etc.); (2) Applying asymptotic or power series expansions, such as eigenfunction expansions, 

rapid convergent series, or a combination with other numerical acceleration algorithms in different subregions 

(e.g., Pidcock, 1985; Linton, 1999; Liu et al., 2015, 2018a; etc.); (3) Decomposing the principal-value 

integral into two parts by subtracting a special term from the integrand and applying a direct Gauss-Laguerre 

quadrature to the numerical integration (e.g., Endo, 1983, 1987; Liu et al., 2008; Shan et al., 2019; etc.). The 

first two types of methods have been well established so far, while the third-type method which was firstly 

originated from Endo (1983) is still under development. This method was later applied by Li (2001) to 

interactions between two ships in waves. Thereafter, Liu et al. (2008) significantly improved Endo’s approach 

by introducing a reduction of fraction and removing the singularity with the aid of infinite-depth Green’s 

function and the exponential integral. Most recently, Shan et al. (2019) further improved Liu et al. (2008)’s 

method and summarized the algorithm in a systematical manner. 

However, the latest version of Endo’s approach, i.e., Shan’s algorithm (Shan et al., 2019), still has fatal 

problems in application to the wave-structure interaction analysis. One problem is that, at some special 

frequencies, the computed wave hydrodynamic loads are surprisingly larger or smaller than those in the 

neighborhood, within a very limited frequency band, as shown in the following sections. This phenomenon is 

quite different from the known issue of “irregular frequencies” which is owing to the lack of a rigid lid on the 

waterplane area of a floating structure. Indeed, it is attributed to the inaccurate evaluation of the free-surface 

Green function by using a numerical integration method. For this reason, we name these special frequencies 

as “weird frequencies”. This problem exists inherently in Endo’s approach (Endo, 1987), which remains 

unsolved to date. Another problem is that in the circumstance of a large water depth or a high incident wave 

frequency, the computation results are always of NaN (Not a Number) values. To overcome these hurdles, the 

present work seeks a problem-shooting solution which can enhance Endo’s approach. The remaining part of 

the paper is organized into the following sections: The background theory of wave-structure interactions is 

introduced in Section 2. The mathematical formulation of the enhanced algorithm involving special 

treatments are introduced in detail in Section 3. Verifications of the algorithm for a variety of sea conditions 

are given in Section 4.1. Application of the present algorithm to marine hydrodynamics of a complex floating 

structure is carried out in Section 4.2 where the cause of the occurrence of the “weird frequencies” is found. 

Conclusions are drawn in Section 5 based on the preceding analysis.  

2. Theory of Wave-Structure Interactions Based on Boundary Integral Equations 

Wave diffraction and radiation of an arbitrary-geometric three-dimensional floating structure can be 

solved by the boundary integral equation method. The method is based on the assumption that the fluid is 
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inviscid, incompressible, and with an irrotational motion. The fluid flow can be described by an ideal velocity 

potential satisfying the Laplace equation. By the use of Green’s second identity, the following integral 

equation can be obtained: 

                 
       

   
     

                 
                   , (1) 

where   and   represent the field point and the source point, respectively;      is referred to as "solid angle", 

whose value depends on the local geometric shape; G(ξ; x) is the free-surface Green function. The boundary 

condition on the immersed body surface    is impermeable and can be further represented by 

       
               

 
      

   
       

 , (2) 

where       stands for the normal derivatives on the geometrical surface and       stands for (i) the incident 

wave potential when j =0, (ii) the radiation potentials when j =1~6, and (iii) the diffraction potential when j 

=7.  

In Eq. (1), the free-surface Green’s function G(ξ; x), or source potential, is usually defined as the velocity 

potential at the point (x, y, z) due to a point source of strength −4π located at the point (, , ), as shown in 

Fig. 1. Mathematically, it satisfies the following equation in the fluid domain, 

  
  

   
 

  

   
 

  

   
                                  (3) 

subjecting to the corresponding boundary conditions 

  

  

  
            

  

  
            

           
  

  
                  

 
 

 
 

, (4) 

where   is the Dirac delta function,  =ω2
/g is the wave number in deep water, and R is the horizontal 

distance between the source and the field points. The last boundary condition in Eq. (4), referred to as the 

Sommerfeld radiation condition, shows that the pulsating potential decays with the horizontal distance and 

eventually vanishes in the far field. A rigorous theoretical solution to Eq. (3) and Eq. (4) has been found by 

John (1950), which can be expressed in the following form 

   
 

 
 

 

  
    

                          

               
            , (5) 

where the path of the contour integral in Eq. (5) passes below the pole at     , in which    is the positive 

real root of the water-wave dispersion equation; h is the water depth; r is the distance between the source and 

the field points, and    is the distance between the field point and the image of the source point with respect 
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to the sea bottom. A Fortran subroutine (named ‘Dispersion’) has been recently developed in the open-source 

package FinGreen3D to obtain the accurate numerical solution of the dispersion equation (Liu et al., 2018a), 

using a higher-order iterative procedure as suggested by Newman (1990). 

 

Fig. 1. Definition of the coordinate system in the three-dimensional space. Q denotes the pulsating source and P denotes 

the field point. Q1 and Q2 are the image points of Q with respect to the mean sea level and the seabed, respectively. (This 

figure is reproduced from Liu et al. (2018a)) 

3. An Improved Endo’s Approach for Evaluation of Free-Surface Green’s Function 

3.1 Decomposition of Rankine sources and the wave term 

Based on Eq. (5), the free-surface Green function can be expressed by 

   
 

 
 

 

  
        , (6) 

where     represents the real part (principal value) of the complex integral at the right-hand side of Eq. (5) 

and     represents the imaginary part. Following the works of Endo (1987), Liu et al. (2008) and Shan et al. 

(2019),     can be further decomposed into a summation of two terms 
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                                               . (10) 

Taking advantage of the following identity 

               
 

 
 

 

      
, (11) 

   can be simplified as a summation of four Rankine sources. Combining with the other two in Eq. (6), all 

the Rankine sources can be summarized into one single term, i.e., 

                                                                               

                                     ,   (13) 

and Eq. (6) can be further expressed by 

                  . (14) 

A good advantage of the above decomposition is that a majority of    -like weak singularities have been 

subtracted from the integral at the right-hand side of Eq.(5) and can therefore simplify the calculation of    . 

Worth noting is that, in the constant panel method, these Rankine sources need to be integrated separately 

over each panel in the vicinity of that panel using an analytical algorithm (Newman, 1986), and numerically 

at some distance away using a Gaussian quadrature rule. 

3.2 Numerical evaluation of the four integrations G1i (i=1~4) 

Let the denominator of the integrand in Eq. (9) be 

                          , (16) 

     can be expanded using the Taylor expansion at the neighborhood of     , thereby keeps merely the 

linear approximation 

                   
                              

                 . (17) 

The linear Taylor expansion is employed to subtract the singular integral kernel in the subsequent 

computations. Separating out each exponential function in Eq. (10) and combining them with Eq. (9),    can 

be decomposed into four terms 

                   . (18) 

According to Shan et al. (2019), due to the numerical distortion that is induced by Endo’s formulation, it is 

better to arrange the right-hand side of Eq. (16) into two types of integrations, i.e.,     and     (i=2,3,4), 

which can be expressed as 

           
      

    
 

       

       
     

                  
 

 
    

       

       
     

               
 

 
, (19) 
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where 

                     , (20) 

and 

           
          

    
 

           

       
     

   
 

 
    

            
   

       
     

  
 

 
, (i=2,3,4), (21) 

where 

                                   . (22) 

The two types of formulations, i.e., Eq. (19) and Eq. (21), are quite different from each other mainly because 

of the principle-value integrations at their right-hand sides. In Eq. (19), the principle-value integration is 

finally deduced in terms of a special function        which relates with the deep-water Green’s function 

(Newman, 1985; Telste and Noblesse, 1986; Wu et al., 2017; etc.), while in Eq. (21), the principle-value 

integration is finally deduced in terms of the exponential integral      . Applying a Gauss-Laguerre 

quadrature rule to the equations, Eq. (19) can be written as 

      
  

 
 
       

     
 

       

        
     

                  
 
          

       

      
, (23) 

where          and    is the p-th abscissa of the n-node Gauss-Laguerre quadrature rule, i.e., the p-th root 

of the n-th order Laguerre polynomial Ln(x);                 , and 

           
 

   
            

 

 
. (24) 

Eq. (21) can be written as 

      
  

 
 
           

     
 

           

        
     

  
                

           

      
, (i=2,3,4). (25) 

Note that one should take care in the evaluation of the partial derivatives concerning the spatial coordinates R 

and z, which are therefore listed in detail in the Appendix. 

3.3 Handling of the singularities for special-frequency incident waves 

A numerical distortion occurs when the abscissa    approaches closely the positive real root    of the 

dispersion equation, in Eq. (23) and Eq. (25). In such a case, the denominators of the two fractions in the 

square brackets are close to zeros, resulting in strong singularities. Take Eq. (23) for an example, that is to say, 

when      , there exist relationships of               
′      . Each fraction is therefore a ratio of 

two infinite small values. Certainly, the exact value of each fraction can be obtained via the L'Hôpital's rule, 

by differentiating simultaneously the nominator and the denominator with respect to k. An efficient simpler 

way is to set a conditional judgment that when            , apply the following approximation: 
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, (26) 

where     represents the tolerance, for which a value of 10
-2

 is recommended. An alternative way to do that is 

to apply an interpolation in between the narrow band of the singular region. Taking the linear interpolation for 

example, let 

       
          

    
 

           

       
     

,  (i=1,2,3,4), (27) 

and denote that the narrow band of the singular region is  , by calculating the values of       at the two 

bounds of the narrow band, the function value inside the singular region can be approximated by the linear 

interpolation 

                                              ,  (i=1, 2,3,4). (28) 

Using the above techniques, a large portion of weird points in the calculation results can be eliminated. 

3.4 Special-treatment of the exponential integral for large parameters 

In Eq. (25), the exponential integral       is defined by 

          
  

 
  

 

  
, (29) 

in which the input parameter x is a positive real number. The integral in Eq. (29) should be understood in 

terms of the Cauchy principal value due to the singularity of the integrand at zero. Press et al. (2007) suggest 

a good algorithm to compute its principal value. Their strategy is to use the power series for small x and the 

asymptotic series for large x. When x is relatively small, the following power series can be applied: 

               
  

    
  

   , (30) 

where γ is Euler’s constant. Indeed, Eq. (30) converges for any x > 0. However, when x is a large number, the 

power series converges very slow. To gain higher computational efficiency, an asymptotic expansion is 

recommended to use, with a form of 

       
  

 
   

  

  
    

      
  

     
  , (31) 

where the second term in the square brackets represents the truncation error. A numerical problem occurs 

when x (the product of wave number and water depth) is too large for the exponential function   , leading to 

NaN values in a usual desktop or workstation computer. In such a case, a good solution is to calculate the 

exponential integral simultaneously with the exponential function              which appears in Eq. (25), 

formulated by 

          
 

 
  

  

  
    

   . (32) 
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Through a combination usage of Eqs. (30) ~ (32), the numerical result concerning the exponential integral 

will no longer turn to be of nonsense values. 

3.5 Improvements in calculating the hyperbolic functions in the high-frequency region 

Except leading to nonsense values in the exponential integral, an overlarge value of     (caused by either 

a large wave number or water depth), will result in another numerical distortion as well. It frequently happens 

in the high-frequency region of the computed hydrodynamic forces. The reason is similar to that of Eq. (31), 

because in calculating the incident wave potential and its derivatives, the value of the exponential function 

   exceeds hardware’s limitation when the input parameter x is too large. Mathematically, the incident wave 

potential can be expressed as 

     
   

 

             

         
                 , (33) 

where   is the wave heading angle. When     is sufficiently large, since       is extremely small, Eq. (33) 

can be simplified as 

     
   

 
                     , (34) 

leading to a similar formulation to that of the infinite water depth except for the different wave number. Eq. 

(34) is no longer numerically unstable in computations and can, therefore, be used without any difficulty.  

Similarly, this problem also occurs in the calculation of the imaginary part of Green’s function. The 

imaginary part normally reads 

     
 

  
                                 , (35) 

where the denominator    is defined as 

    
 

 
   

        

    
 . (36) 

An alternative expression for the factor      can be derived as 

 
 

  
 

   

           
. (37) 

However, when     is sufficiently large, Eq. (35) is necessarily to be substituted by 

     
       

         
               . (38) 

Derivatives of the incident potential and the imaginary part of Green’s function can apply the same technique 

and are omitted here for brevity. 

3.6 Tricks for speeding up the computation 
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Since the free-surface Green function needs to be evaluated in millions of times, any small improvement 

in the computational efficiency can help reduce the total time of the BIEM computation adequately. In the 

present algorithm, the codes are further optimized based on the following two principles: 

(1) Minimize the number of times of evaluating the same functions. For instance, the exponential function 

       with frequent occurrences in the computation needs to be evaluated only once and stored in a variable, 

e.g., named emk0h. Thereafter, many other closely-related functions (e.g.,          ,               and   , 

etc.) can be evaluated in terms of it, e.g., emk0fh=exp(-k0*zf)*emk0h, ck0fh=(1.d0-emk0fh**2)/ 

(2.d0*emk0fh)+emk0fh, and n0=h/2.d0*(1.d0+(1.d0-em4k0h)/(4.d0*k0*h*em2k0h)), etc., in which         

and        are again evaluated from emk0h, via em2k0h=(emk0h)**2.d0, em4k0h=(em2k0h)**2.d0. Another 

example is that, since the right-hand side of Eq. (20) is frequently calculated, a basic function can be defined 

as 

                  .  (39) 

The function only needs to be evaluated once and stored for calculation of other functions like       , (i=1~4), 

etc., to reduce the computation effort. 

(2) Use polynomials and simple arithmetic operations in the calculation of some complicated special 

functions, e.g., the Bessel functions, exponential integral functions, etc. These special functions can be 

evaluated using specialized algorithms, e.g., those from the book of Zhang and Jin (1996)  based on simple 

continued fractions. In this way, all the calculations in the code contain only arithmetic operations, which 

therefore greatly speeds up the computation. 

4. Results and Discussions 

4.1 Verifications of the present algorithm 

Comparison between the present algorithm, Shan’s algorithm (Shan et al., 2019)  and Newman’s 

algorithm (Newman, 1985) are made, as shown in Figs. 2 ~ 4, in the calculation of the Green function’s value 

and derivatives. The pulsating source point and the fluid field point are chosen to be located in various places, 

at the free surface or underneath. The water depth varies from a small value, e.g., 2m, to a large value over 

200m. The horizontal radius R also varies from the neighborhood of the source point to a far field where the 

local disturbance of waves diminishes. It is shown that, under various conditions, perfect agreements can 

always be achieved between the present results and those applying Newman’s algorithm. However, the results 

produced by Shan’s algorithm (Shan et al., 2019) have discrepancies between those from Newman’s 

algorithm and the present. At some critical frequencies, results of Shan’s algorithm (Shan et al., 2019)  show 

rather strange values, having either sharp leaps or declines, within a very short frequency band. For brevity, 
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these frequencies are named as “weird frequencies” in the following sections. The reason for the occurrence 

of these frequencies will be further elucidated in the subsequent analysis. 

 

 

    

Fig. 2. Comparisons of free-surface Green’s function   and its partial gradient   , as a function of wave angular 

frequency , when both of the field point and the source point are located at the free surface: (a)   = 5.0 m,   = 1.0 m,   

= 0.0 m,   = 0.0 m; (b)   = 30.0 m,   = 40.0 m,   = 0.0 m,   = 0.0 m; (c)   = 200.0 m,   = 50.0 m,   = 0.0 m,   = 0.0 m. 

The red solid-circle line stands for results evaluated using Newman (1985)’s polynomial approximation; the green dash-

dotted line stands for those evaluated using Shan et al. (2019)’s method; the black solid line stands for the present 

results. 
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Fig. 3. Comparisons of free-surface Green’s function   and its partial gradient   , as a function of wave angular 

frequency , when either the field point or the source point is located at the free surface: (a)   = 2.0 m,   = 5.0 m,   = -

0.8 m,   = 0.0 m; (b)   = 40.0 m,   = 35.0 m,   = 0.0 m,   = -10.0 m; (c)   = 120.0 m,   = 60.0 m,   = -20.0 m,   = 0.0 

m. Description of the line types is given in Fig. 2. 
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Fig. 4. Comparisons of free-surface Green’s function   and its partial gradient   , as a function of wave angular 

frequency , when both of the field point and the source point are located on the immersed body surface: (a)   = 8.0 m, 

  = 6.0 m,   = -2.0 m,   = -3.0 m; (b)   = 60.0 m,   = 150.0 m,   = -10.0 m,   = -20.0 m; (c)   = 210.0 m,   = 250.0 m, 

  = -20.0 m,   = -40.0 m. Description of the line types is given in Fig. 2. 

4.2 Convergence tests against the quadrature order 

As one may note, the first integral at the right-hand side of Eq. (19) involves an exponential term        , 

which vanishes when      , i.e., both of the source point and the field point are located at the free 

surface. In such a case, taking consideration of the asymptotic form of the Bessel function, the integrand of 

the first integral in Eq. (19) is of order          when k tends to infinity, and the integrand of the space 
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derivatives of G11 in Eqs. (A4) and (A5) are of order         . Although the Gauss-Laguerre quadrature 

may still apply (Wikipedia, 2020), it is better to check the numerical stability of the integral. Therefore, a 

convergence test is performed against the quadrature order in calculation of the term G11, as shown in Fig. 5. 

The quadrature rules of 8, 15, 30, 40 and 100 points are respectively chosen to evaluate the Green function 

and the spatial derivatives at the free surface over a wide range of water depths and horizontal distances. 

Good agreements between the results are found showing that Gauss-Laguerre quadrature does converge with 

respect to the quadrature order. In addition, it is shown that even a small number of quadrature points, i.e., an 

8-node Gauss-Laguerre rule is sufficient for the calculation. 
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Fig. 5. Convergence test for the present algoritm against the quadrature order in calculation of the term G11, as a 

function of wave angular frequency , when both of the field point and the source point are located at the free surface: 

(a)   = 6.0 m,   = 8.0 m,   = 0.0 m,   = 0.0 m; (b)   = 50.0 m,   = 60.0 m,   = 0.0 m,   = 0.0 m; (c)   = 150.0 m,   = 

100.0 m,   = 0.0 m,   = 0.0 m. 

4.3 Computation efficiency of the present algorithm 

Fig. 6 shows the CPU time (unit: s) of per evaluation of the Green’s function and its derivatives using 

the present algorithm and the open-source code FinGreen3D (Liu et al., 2018a), on a desktop machine with 

an Intel(R) Xeon(R) E5-2620 v3 CPU of 2.40 GHz. The computations are performed sequentially on one 

single thread and the CPU times are obtained based on the average time of 0.2 billion evaluations of each 

code at each point distance R/h. Fig. 6 shows that one implementation of the present algorithm, i.e., per 

evaluation of the Green function and its derivatives consumes approximately 1.8~2.7 s. Note that the 

computation time of the open-source code FinGreen3D (Liu et al., 2018a) varies significantly over R/h, while 

the present algorithm is less affected by the parameter R/h. In the lower R/h region, the present algorithm is 

superior to FinGreen3D (Liu et al., 2018a) and vice versa in the higher R/h region. A good way to improve 

the computational efficiency of the present algorithm in the higher R/h region is to apply a combination with 

the eigenfunction expansion method. An appropriate threshold value for the parameter R/h is 1.8, unlike 0.5 

that has been suggested by Newman (1985), based on the comparison shown in Fig. 6. With such a 

combination, the computation time can be substantially reduced throughout the entire region of R/h. 
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Fig. 6. Computation time for per implementation of the open-source code FinGreen3D (Liu et al., 2018a), the present 

algorithm and its combination with the eigenfunction expansion method, as a function of the normalized point distance 

R/h. The figure is obtained based on the averaged CPU time of 1 million evaluations of the codes respectively for each 

point distance R/h.  

4.3 Application to Waves-Structure Interactions 

The present algorithm and Shan’s algorithm (Shan et al., 2019) are therefore programmed into computer 

subroutines and successfully interfaced to a wave-structure-interaction panel code HAMS (Hydrodynamic 

Analysis of Marine Structures) (Liu et al., 2016; Liu, 2019), respectively. In the subsequent computations, the 

computer codes are compiled by the Intel® Fortran Compiler (IFORT) Version 18.0.5.274.  

To illustrate the capabilities of the present algorithm and its advantages over the previous algorithm in the 

wave-structure interaction analysis, a complex semisubmersible platform is presented as a numerical test for 

the validation. The platform is the floating foundation of the OC4 DeepCwind semisubmersible floating wind 

turbine, as shown in Fig. 7. The platform consists of a central column, three outer offset columns and a host 

of slender bracings to connect between the columns making the floating structure sufficient stiff. Geometrical 

specifications of the DeepCwind semi-submersible are listed in Table 1. More details can be found in 

Robertson et al. (2014). 
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Fig. 7. Floating foundation of the OC4 DeepCwind semisubmersible floating wind turbine (Robertson et al., 

2014; Benitz et al., 2015). 

Table 1. Geometrical specifications of the DeepCwind semisubmersible platform (Robertson et al., 2014; Liu 

et al., 2018b).  

Platform Properties Value 

Platform draft 20.0 m 

Centerline spacing between offset columns 50.0 m 

Length of upper columns 26.0 m 

Length of base columns 6.0 m 

Diameter of main column 6.5 m 

Diameter of offset (upper) columns 12.0 m 

Diameter of base columns 24.0 m 

Diameter of pontoons and cross braces 1.6 m 

Hydrodynamic mesh is generated only for the immersed part of the platform, and the waterplane at the 

cross-sections of the columns intersecting the mean sea surface. Based on a convergence test, around 3000 

panels are chosen as an appropriate number of panels for the subsequent computations, as displayed in Fig. 8. 

Each of the three footings is discretized into 38×8×4 constant panels (38 in circumferential, 8 in radial and 

4 in vertical directions) of a quadrilateral or triangular element type. Each of the three outer offset columns 

and the central column are discretized into 20×5×8 panels and 12×3×12 panels, respectively. The 

bracings are meshed by sufficient dense panels as well. A symmetry plane x-z is applied to reduce remarkably 

the computation time. Computation results using the same hydrodynamic mesh from a well-recognized 

commercial software Hydrostar® are also given to validate the present numerical results.  
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Fig. 8. The hydrodynamic mesh (visualized by the commercial software Rhinoceros® Version 5) of the immersed part of 

the DeepCwind semisubmersible, as an input to Hydrostar® and HAMS (Liu, 2019) in the computation.  

4.3.1 Effect of the quadrature order of the Gauss–Laguerre rule in the evaluation of integrations 
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Fig. 9. Added mass of the DeepCwind semisubmersible, as a function of the wave angular frequency  : (a) surge added 

mass, (b) heave added mass and (c) pitch added mass. In this figure, 8 Gauss–Laguerre nodes are used in evaluating the 

integrals of Green’s function, in both of Shan’s algorithm (Shan et al., 2019) and the present. The results denoted as 

“Hydrostar” are computed using the commercial software Hydrostar®. 

 

 

Fig. 10. Added mass of the DeepCwind semisubmersible, as a function of the wave angular frequency  : (a) surge 

added mass, (b) heave added mass and (c) pitch added mass. In this figure, 15 Gauss–Laguerre nodes are used in 

evaluating the integrals of Green’s function, in both of Shan’s algorithm (Shan et al., 2019) and the present. The results 

denoted as “Hydrostar” are computed using the commercial software Hydrostar®. 

Fig. 9 and 10 show the computation results of the added mass of a floating body (the DeepCwind 

semisubmersible) by HAMS (Liu, 2019), where the free-surface Green function is calculated respectively by 

Shan’s algorithm (Shan et al., 2019) and the present. As a comparison, results computed by Hydrostar® are 

displayed as well. 8–node and 15–node Gauss–Laguerre quadrature rules have been applied respectively in 

the calculation of the four types of integrations G1i (i =1~4) in Fig. 9 and 10. The abscissas of the 8–node and 

15–node Gauss–Laguerre quadrature rules are displayed respectively in Table 2 and 3, in association with the 

wave numbers and the wave angular frequencies in correspondence. It appears that the weird frequencies 
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found in Fig. 9 and 10 due to the use of Shan’s algorithm (Shan et al., 2019) are rather close to some of the 

frequency abscissas in Table 2 and 3, respectively. At these weird frequencies, the computation results by 

Shan’s algorithm (Shan et al., 2019)  show abnormal peaks, while those from the present algorithm are free 

from such a problem. The reason of the unstable results by Shan’s algorithm (Shan et al., 2019) is that, when 

the wave frequency gets close to the real positive root    of the dispersion equation, the denominators of the 

two fractions in the square brackets of Eq. (19) become strongly singular. It is noted that, the loci of the weird 

frequencies vary with the order of the quadrature rule. These conclusions hold for the radiation damping and 

the wave excitation force as well. The singularities in the denominator of the integrands of Eq. (23) and Eq. 

(25) are shown in Table 2 and 3. 

Table 2. Abscissas of the 8-node Gauss-Laguerre quadrature in the calculation of the integrations G1i (i =1~4) 

p                             

1 0.170280 0.003406 0.075063 

2 0.903702 0.018074 0.356823 

3 2.251087 0.045022 0.657251 

4 4.266700 0.085334 0.914766 

5 7.045905 0.140918 1.175757 

6 10.758516 0.215170 1.452866 

7 15.740679 0.314814 1.757362 

8 22.863132 0.457263 2.117958 

Table 3. Abscissas of the 15-node Gauss-Laguerre quadrature in the calculation of the integrations G1i (i 

=1~4) 

p                             

1 0.093308 0.001866 0.041270 

2 0.492692 0.009854 0.210032 

3 1.215595 0.024312 0.447154 

4 2.269950 0.045399 0.660270 

5 3.667623 0.073352 0.847732 

6 5.425337 0.108507 1.031702 

7 7.565916 0.151318 1.218373 

8 10.120229 0.202405 1.409109 

9 13.130282 0.262606 1.605042 

10 16.654408 0.333088 1.807649 

11 20.776479 0.415530 2.018996 

12 25.623894 0.512478 2.242188 

13 31.407519 0.628150 2.482369 

14 38.530683 0.770614 2.749495 

15 48.026086 0.960522 3.069645 
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4.3.2 Effect of the frequency step size in the computation using boundary element method  

 

 

Fig. 11. Radiation damping of the DeepCwind semisubmersible, as a function of the wave angular frequency  : (a) 

sway radiation damping, (b) roll radiation damping and (c) yaw radiation damping. In this figure, the frequency step is 

              , in both of Shan’s algorithm (Shan et al., 2019) and the present. The results denoted as “Hydrostar” 

are computed using the commercial software Hydrostar®. 
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Fig. 12. Radiation damping of the DeepCwind semisubmersible, as a function of the wave angular frequency  : (a) 

sway radiation damping, (b) roll radiation damping and (c) yaw radiation damping. In this figure, the frequency step is 

             , in both of Shan’s algorithm (Shan et al., 2019) and the present. The results denoted as “Hydrostar” 

are computed using the commercial software Hydrostar®. 

Fig. 11 and 12 show the computation results of the radiation damping of the DeepCwind semisubmersible 

by HAMS (Liu, 2019), applying respectively Shan’s algorithm (Shan et al., 2019) and the present in 

evaluating the Green function. In the computations, a frequency step of Δω=0.005 rad⁄s has been applied in 

Fig. 11 and Δω=0.05 rad⁄s in Fig. 12, respectively. It is found that the computational results are quite sensitive 

to the size of the frequency step. The contaminated frequency band in the computed wave loads is 

substantially affected by the frequency step. Applying a relatively large frequency step can (though may not 

completely) help to avoid the occurrence of the weird frequencies inherent in Shan’s algorithm (Shan et al., 

2019). On the other way, a small frequency is helpful to identify the loci of these weird frequencies. These 

conclusions hold for the added mass and the wave excitation force as well. 

4.3.3 Effect of large parameters in the high-frequency region of wave hydrodynamics 
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Fig. 13. Contour plots of the wave excitation force/moment (modulus) acting on the DeepCwind semisubmersible 

floater as a function of the wave angular frequency and the wave heading under a water depth of 50m: (a) surge wave 

excitation force, (b) heave wave excitation force and (c) pitch wave excitation moment. In the title of each subplot, 

‘Hams_Present’, ‘Hams_Shan et al’ and ‘Hydrostar’ refer to the three computation methods aforementioned in Section 

4.3.1 and 4.3.2, whilst the subscript after ‘Excitation’ stands for the DOF (degree of freedom) of the platform motion. 

The data are visualized using the commercial software StarViewer®.  
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Fig. 14. Contour plots of the wave excitation force/moment (modulus) acting on the DeepCwind semisubmersible 

floater as a function of the wave angular frequency and the wave heading under a water depth of 200m: (a) surge wave 

excitation force, (b) heave wave excitation force and (c) pitch wave excitation moment. The data are visualized using the 

commercial software StarViewer®. Description of the subplot titles is given in Fig. 13. 

Fig. 13 and Fig. 14 show contour plots of the wave excitation force/moment (modulus) acting on the 

DeepCwind semisubmersible floater, as a function of the wave angular frequency and the wave heading, 

under a water depth of 50m and 200m, respectively. First of all, the two figures clearly illustrate that by using 

Shan’s algorithm (Shan et al., 2019), weird frequencies occur in the computed wave loads due to the 

problematic Green function’s calculation. At these weird frequencies, the value of the wave excitation 

force/moment is surprisingly larger or smaller than its neighborhood within a quite limited frequency band. 

Secondly, under a large water depth (200 m in the present example), the computed wave loads show NaN 

values in a high-frequency region while it may not be the case for a small/mediate water depth. This can be 

attributed to the following two reasons: (1) a large water depth causes an overlarge parameter     for the 

exponential integral        , as indicated by Eq. (25) and described in Section 3.4; (2) an overlarge 

parameter     exceeds the hardware’s limitation in calculating hyperbolic functions such as          , 

              and         , etc., existing in the expressions of the incident wave. Thanks to the present 

algorithm for evaluation of the Green function, the present numerical results are free from these problems, 

and good agreements are found in comparison to Hydrostar®’s results. 
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5. Conclusions 

A newly-developed enhanced numerical algorithm for an accurate evaluation of the zero-forward speed 

free-surface Green function under a finite water depth has been presented, via a disposal of the singularities 

for incident waves of certain specific frequencies, a special treatment of the exponential integral with large 

para-meters and the elimination of nonsenses values in the high-frequency region. Comparison with 

Newman’s polynomial algorithm in a variety of sea states confirms the accuracy of the present algorithm. By 

performing a benchmark test of the DeepCwind semisubmersible, through a comparison with Shan’s 

algorithm (Shan et al., 2019) and the commercial software Hydrostar®, important findings can be 

summarized into the following aspects: 

(1) Green’s function and its partial derivatives calculated by Shan’s algorithm (Shan et al., 2019) give 

incorrect values at some weird frequencies, in the circumstance when the abscissas of the Gauss-Laguerre 

quadrature occur closely near the singularities of the integrand. 

(2) The loci of these weird frequencies depend on the n-node Gauss–Laguerre quadrature (n is selective) 

to be used. In other words, it solely relies on the loci of the roots of the n-node Laguerre polynomial Ln(x). 

When a Gauss–Laguerre rule with a different order is applied, the loci of weird frequencies change. 

(3) The contaminated frequency band of the computed wave loads near the weird frequencies is greatly 

affected by the size of the frequency step. Applying a relatively large frequency step can (though not 

completely) help to avoid the occurrence of the weird frequencies inherent in the original Endo’s approach 

(Endo, 1987). 

(4) Under a large water depth, the computed wave loads show NaN values in a high-frequency region, 

owing to the reason that the parameter     is overlarge for the exponential integral         and exceeds the 

hardware’s limitation in calculating hyperbolic functions in the incident wave kinematics. 

(5) The present algorithm is free from all the preceding problems, based on comparisons with Newman’s 

polynomial algorithm and Hydrostar®’s computation results. 

These findings are valuable to the subsequent researchers and the resultant new enhanced algorithm can 

contribute to consummate Endo’s approach. 
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Appendix. Partial derivatives of the Green’s function 

A.1 The Rankine sources (
 

 
 

 

  
   ) 

In some higher-order BIEMs, the Rankine part is usually integrated with the wave term, using some special 

strategies for singular and near singular integrals (Sun et al. [37]). For this reason, it may also be necessary to 

calculate the Rankine sources, which can be treated in a single subroutine with a consistence form 
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where 

             ,                     ,        ,         . 

A.2 Partial derivatives of the integral     

Note that the function                        is independent of the spatial coordinates R and z, 

therefore the two derivatives of     can be expressed by 
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where 
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A.3 Partial derivatives of the integrals    ,    ,     

The two derivatives of               can be expressed by 
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where 
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