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A B S T R A C T   

The interaction theory presented by Kagemoto and Yue (1986) significantly reduces the computational burden in 
the wave interaction problem of multiple surface-piercing bodies, particularly arrays of wave energy converters 
in recent years. Two essential operators of the theory are the so-called Diffraction Transfer Matrix and Radiation 
Characteristics. Many subsequent researchers (Goo and Yoshida, 1990; Flavià et al., 2018) have implemented the 
theory using the source distribution method in evaluating the two linear operators of a single unique geometry. 
However, nowadays, a great majority of boundary element method codes have been written by virtue of the 
hybrid source-dipole distribution method on account of its high accuracy. In this regard, the present work aims to 
introduce a full set of mathematical formulations, as well as a complete derivation process of evaluating the two 
operators based on the hybrid source-dipole distribution method. The proposed formulations are then applied to 
two benchmark geometries, as given by McNatt et al. (2015) and Flavià et al. (2018). Good agreement is found 
between the present results and those from the literature. Moreover, two alternative approaches to solve the 
diffraction problem have been compared to assess both their accuracy and efficiency. It is found that the two 
methods present similar levels of accuracy but very different computational burden.   

1. Introduction 

Wave loads are of primary concern during the lifetime of a marine 
structure in the real sea environment. On the one hand, wave interaction 
with marine structures has been a continuous interest to the researchers 
and engineers of the ocean and offshore engineering community. On the 
other hand, along with the development of computational technology, 
great progress has been witnessed in the prediction of wave loads on 
multiple bodies, such as the interconnected multi-moduled floating 
offshore structure (Chakrabarti, 2001), ice-floes in the marginal ice zone 
(Peter and Meylan, 2004b; Bennetts and Squire, 2009), and very-large 
floating structures (Kashiwagi, 2000; 2001; 2017), etc. In particular, a 
broad interest has been focused on arrays of wave energy converters or 
wave farms in recent years (Göteman et al., 2015; Sun et al., 2016; 
Göteman, 2017; Zhong and Yeung, 2019; Zheng et al., 2018; Zheng 
et al., 2020), in which analytical approaches or semi-analytical ap
proaches applying the multiple-scattering interaction theory have been 
extensively used. 

The multiple-scattering interaction theory was first brought into the 
water-wave problem by Ohkusu (1974), who extended it from the 
acoustic radiation analysis of arrays of two-dimensional circular cylin
ders by Twersky (1952). Kagemoto and Yue (1986) combined it with the 
Direct Matrix Method (Spring and Monkmeyer, 1974; Simon, 1982; 
McIver and Evans, 1984; McIver, 1984), and developed an exact inter
action theory, and applied it to axisymmetric bodies. Goo and Yoshida 
(1990) enabled the method of Kagemoto and Yue (1986) for computa
tion of arbitrary geometrical bodies by taking advantage of the source 
distribution panel method and the Green function in polar coordinates 
(Black, 1975; Fenton, 1978; Hulme, 1983). Thereafter, the improved 
Direct Matrix Method has been widely applied to offshore and marine 
applications. Meanwhile, further extensions were successfully made by 
Peter and Meylan (2004b) to the interaction theory in infinite-depth 
water, and Kashiwagi (2000) to hierarchical interaction theory in mul
tiple layers. In the recent decade, the interaction theory was used for the 
wave energy converters in arrays (Child and Venugopal, 2010; Göteman 
et al., 2015; McNatt et al., 2015), as well as for multi-body WECs 
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composed of a large number of floats (Flavià et al., 2017), in which the 
majority of geometries are regular and having analytical solutions. Due 
to the reason that method of Goo and Yoshida (1990) requires the 
modification of a BEM solver for the body boundary conditions, it is not 
possible to do that without access to the source code of the BEM solver. 
McNatt et al. (2015), therefore, developed an alternative method that 
can derive the Diffraction Transfer Matrix (DTM) and the Radiation 
Characteristics (RC) from the standard output of wave potentials (indeed 
wave dynamic pressures and elevations) of a BEM solver, with only the 
progressive mode but without the evanescent modes. Later, Flavià et al. 
(2018) implemented the method of Goo and Yoshida (1990) on the 
open-source BEM code Nemoh (Babarit and Delhommeau, 2015) and 
also derived general identities to water-wave multiple-scattering prob
lems (Flavià and Meylan, 2019). 

From a mathematical point of view, the multiple-scattering interac
tion theory is primarily based on a mathematical theorem, i.e., Graf’s 
addition theorem (Abramowitz and Stegun, 1964), which is a special 
case of a general addition theorem called Neumann’s addition theorem 
(Meylan, 2007 (accessed on Oct. 12, 2020). With the aid of Grafs 
addition theorem for Bessel functions, influence between two spatial 
points can be translated onto those involving a third spatial point. 
Thanks to this characteristic, the wave potentials (including the source 
potential, i.e., the free-surface Green function) are possible to be 
expressed in polar coordinates as an expansion of the Fourier series. The 
source potential expressed in this form is usually referred to as the ‘ring 
source’ (Hulme, 1983), which has been extensively applied in calcu
lating higher-order waves loads on offshore structures (Chau, 1989; Kim 
and Yue, 1989; Cong et al., 2012; Teng and Cong, 2017, etc.). 

It is worth mentioning that, so far, many conventional applications of 
the multiple-scattering interaction theory in a BEM (Goo and Yoshida, 
1990; Chakrabarti, 2001; Peter and Meylan, 2004a; Flavià et al., 2018) 
have been based on the source distribution method (i.e., the source 
formulation). The source formulation has the advantage of easy evalu
ation of the fluid velocity. However, it was proved to be less accurate 
than the hybrid source-dipole distribution method (i.e., the potential 
formulation) in evaluating the wave potentials (Dai and Duan, 2008). 
Besides, the potential formulation may be more versatile, particularly in 
representing thin plates or shell structures with elements (Lee and 
Newman, 2005). Due to these reasons, quite a few BEM solvers have 
been developed based on the potential formulation, such as WAMIT 
(Lee, 1995), DIFFRACT (Eatock Taylor and Chau, 1992), WAFDUT 
(Teng and Eatock Taylor, 1995), HAMS (Liu, 2019), etc. Unfortunately, 
rare work has covered the topic of numerical implementation of the two 
essential operators for the potential formulation up to date. In addition 
to that, by using the potential formulation, one can choose to solve the 
scattering potential using the conventional method and then obtain the 
diffraction potential, or solve directly the diffraction potential by 
applying the incident-wave potential as the forcing term on the 
right-hand side of the boundary integral equation. The two ways are 
basically similar in wave analysis with a single body (Lee and Newman, 
2005) in accuracy, but the latter one runs a bit faster than the first 
because there is no need to evaluate the normal derivative and its 
integration over the wetted surface. However, when being applied to a 
multi-body problem, since the right-hand side of the boundary integral 
equation needs to be evaluated for hundreds and thousands of times, the 
difference of computation time can be increased substantially. In this 
regard, it is necessary to check how this difference could be, such that 
the equivalence of the two alternative approaches may need to be 
reappraised. 

The present work aims to systematically introduce the implementa
tion details of the method by Kagemoto and Yue (1986) in evaluating the 
DTM and RC, when a BEM solver based on the potential formulation is to 
be used. The remaining part of the paper is therefore organized into the 
following sections: The mathematical theory and numerical modeling 
are introduced in Section 2. The full set of derivations are given for DTM 
and RC, which can be evaluated using alternative methods, in 

association with the removal of irregular frequencies encountered in the 
numerical implementation. The overall computation process is intro
duced in Section 3. Verifications of the present method and the 
comparative studies are given in Section 4. Conclusions are drawn in 
Section 5 based on the preceding analysis. 

2. Mathematical theory and numerical modeling 

2.1. Hybrid source-dipole boundary integral equation 

Wave radiation and diffraction of an arbitrary-geometric three- 
dimensional floating structure can be solved by the boundary integral 
equation method. Based on the assumption that the fluid is inviscid, 
incompressible, and with an irrotational motion, the fluid flow can be 
described by an ideal velocity potential satisfying the Laplace equation. 
In a steady state, the velocity potential is written as ϕ(x, t) =

Re[φ(x)e− iωt ], where ω denotes the angular frequency of oscillation, and 
t is time. Applying Green’s second identity, a Fredholm integral equation 
of the second kind can be constructed: 

(1)  

where x = (x, y, z) and ξ = (ξ, η, ζ) represent the field point and the 
source point, respectively; C(x) is referred to as ‘solid angle coefficient’, 
whose value depends on the local geometric shape; G(x, ξ) is the free- 
surface Green function. Neumann boundary conditions prescribe the 
normal velocity of the fluid on the immersed, impermeable body surface 
SB which can be represented by 

V(ξ) =

⎧
⎪⎨

⎪⎩

nk(ξ) k = 1 ∼ 6,

−
∂φ0(ξ)

∂nξ
k = 7,

(2)  

where nk(ξ) denotes the normals on the geometrical surface and φk(ξ)
stands for (i) the known incident wave potential when k = 0, (ii) the 
radiation potentials when k = 1 ∼ 6, and (iii) the scattering potential 
when k = 7. As Eq. (1) consists of both source and dipole, it is dubbed 
hybrid source-dipole formulation to distinguish from the source-only 
formulation. 

2.2. Green’s function in polar coordinates 

It is well-known that the free-surface Green function in Eq. (1) has an 
eigenfunction expansion (John, 1950) 

G = 2πiC0coshk(z+ h)coshk(ζ + h)H(1)
0 (kL) + 4

×
∑∞

n=1
Cncoskn(z+ h)coskn(ζ+ h)K0(knL), (3)  

where H(1)
0 (⋅) is the zeroth-order Hankel function of the first kind; K0(⋅) is 

the zeroth-order modified Bessel function of the second kind; L is the 
horizontal distance between x and ξ; the expansion coefficients can be 
subsequently evaluated as 

C0 =
1
2

[ ∫ 0

− h
cosh2k(z + h)dz

]− 1

=
k2 − K2

(
k2 − K2

)
h + K

=
2k

2kh + sinh2kh
, (4)  

Cn =
1
2

[ ∫ 0

− h
cos2kn(z + h)dz

]− 1

=
k2

n + K2
(
k2

n + K2
)
h − K

=
2kn

2knh + sin2knh
, (5)  

where K = ω2/g, and kn (n = 0, 1, 2…) are the roots of the wave 
dispersion equation in finite-depth water (see Appendix A). 

Eq. (3) can be expressed in polar coordinates in terms of x = (x, y, z)
= (rcosθ, rsinθ, z) and ξ = (ξ, η, ζ) = (RcosΘ,RsinΘ, ζ) following Black 
(1975), Fenton (1978), and Hulme (1983), in the form of 
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G = 2πiC0coshk(z + h)coshk(ζ + h)
∑∞

m=− ∞

{
Jm(kR)H(1)

m (kr)
H(1)

m (kR)Jm(kr)

}

eim(θ− Θ)

+4
∑∞

n=1
Cncoskn(z + h)coskn(ζ + h)

∑∞

m=− ∞

{
Im(knR)Km(knr)
Km(knR)Im(knr)

}

eim(θ− Θ).

(6)  

The upper terms in the curly braces are used when r ≥ R (the region 
outside of a circular cylinder that circumscribes the body or bodies) and 
the lower terms when r < R. The detailed procedure of derivation is 
attached as well in Appendix A. The Green function in Eq. (6) was 
referred to as ‘ring source’ by Hulme (1983). 

2.3. Partial waves in cylindrical harmonics 

In a finite-sized array of floating bodies, it is convenient to express 
the velocity potentials as the scalar product between a vector of complex 
coefficients and a vector of partial cylindrical wave component (McNatt 
et al., 2013, Flavià et al., 2018): 

ϕI
j =

{
AI

j

}T{
φI

j

}
, ϕS

j =
{

AS
j

}T{
φS

j

}
, ϕR,k

j =
{

AR,k
j
}T{

φR,k
j
}
, (7)  

where the superscript T represents the matrix transpose operator, the 
curly brace {⋅} stands for a vector and the subscript j denotes the jth 
body. {AI

j}, {AS
j } and {AR,k

j } are the complex incident, scattered and 
radiated vectors of partial wave coefficients. Following the notations of 
Flavià et al. (2018), indexes (l, q) are associated with incident waves and 
(n,m) with outgoing waves. The vectors of the incident and scattered 
cylindrical functions are respectively expressed as 

{
φI

j

}

lq
=

⎧
⎪⎨

⎪⎩

coshk
(
zj + h

)

coshkh
Jq
(
krj

)
eiqθj l = 0,

coskl
(
zj + h

)
Iq
(
klrj

)
eiqθj l ≥ 1,

(8)  

{
φS

j

}

nm
=

{
φR,k

j
}

nm =

⎧
⎪⎨

⎪⎩

coshk
(
zj + h

)

coshkh
H(1)

m

(
krj

)
eimθj n = 0,

coskn
(
zj + h

)
Km

(
knrj

)
eimθj n ≥ 1.

(9)  

It is noted that the first terms of the incident and scattered cylindrical 
functions represent the propagating mode, while the rest terms are 
associated with evanescent modes. 

2.4. Derivation of diffraction transfer matrix 

Derivation of the DTM of a specific floating body can be started from 
considering the wave diffraction by a single body. The scattering po
tential of a single floating body in a partial incident wave of mode (l, q)
without the presence of other bodies can be expressed as 

[
φS

j

(
rj, θj, zj

)]

lq
=

coshk
(
zj + h

)

coshkh

∑∞

m=− ∞
Dj,lq

0m H(1)
m

(
krj

)
eimθj

+
∑∞

n=1
coskn

(
zj + h

) ∑∞

m=− ∞
Dj,lq

nm Km
(
knrj

)
eimθj ,

(10)  

where Dj,lq
0m and Dj,lq

nm are scattered complex coefficients. On the other 
hand, the scattering potential at a field point in the fluid domain (other 
than the body surface) can be determined by the following equation 

[
φS

j

(
rj, θj, zj

)]

lq
= −

1
4π

⎧
⎪⎪⎨

⎪⎪⎩

∫ ∫

Sj
B

[
φS

j

(
Rj,Θj, ζj

)]

lq

∂G
(
rj, θj, zj;Rj,Θj, ζj

)

∂nξ
dS

+
∫ ∫

Sj
B

G
(
rj, θj, zj;Rj,Θj, ζj

) ∂
[
φI

j

(
Rj,Θj, ζj

)]

lq

∂nξ
dS

⎫
⎪⎪⎬

⎪⎪⎭

(11)  

Substituting Eq. (6) into Eq. (11) and comparing Eq. (10) with Eq. (11) 
yields 

Dj,lq
0m =−

i
2
C0coshkh

∫ ∫

Sj
B

[
(

φS
j

)

lq

∂
∂n

+

∂
(

φI
j

)

lq

∂n

]
[
Jm
(
kRj

)
coshk

(
ζj+h

)
e− imΘj

]
dS,

(12)  

Dj,lq
nm = −

1
πCn

∫ ∫

Sj
B

[
(

φS
j

)

lq

∂
∂n

+

∂
(

φI
j

)

lq

∂n

]
[
Im
(
knRj

)
coshkn

(
ζj + h

)
e− imΘj

]
dS,

(13)  

where Dj,lq
0m and Dj,lq

nm are exactly the elements of DTM. The only unknown 
in Eqs. (12) and (13) is (φS

j )lq, which can be solved by the following 
boundary integral equation 

2π
[
φS

j

(
rj, θj, zj

)]

lq
+

∫ ∫

Sj
B

[
φS

j

(
Rj,Θj, ζj

)]

lq

∂G(rj ,θj ,zj ;Rj ,Θj ,ζj)
∂nξ

dS

= −

∫ ∫

Sj
B

∂
[
φI

j

(
Rj,Θj, ζj

)]

lq

∂nξ
G
(
rj, θj, zj;Rj,Θj, ζj

)
dS.

(14)  

For convenience, the method of Eqs. (11) – (14) is denoted as ‘Method I’ 
hereafter. 

A second way of evaluating the DTM elements is to consider the 
following boundary integral equation, which was first proposed by 
(Kashiwagi and Kohjo, 1995) and later presented in (Kashiwagi, 2000): 

C
(
rj, θj, zj

)[
φD

j

(
rj, θj, zj

)]

lq
+

∫ ∫

Sj
B

[
φD

j

(
Rj,Θj, ζj

)]

lq

×
∂G

(
rj, θj, zj;Rj,Θj, ζj

)

∂nξ
dS = 4π

[
φI

j

(
rj, θj, zj

)]

lq
,

(15)  

where (φD
j )lq is the total diffraction potential in correspondence to the 

partial incident wave of mode (l, q). At an arbitrary field point in the 
fluid domain, the ‘solid angle coefficient’ C(rj, θj, zj) is equal to 4π. Hence 
the scattering potential can be evaluated as 
[
φS

j

(
rj, θj, zj

)]

lq
=

[
φD

j

(
rj, θj, zj

)]

lq
−
[
φI

j

(
rj, θj, zj

)]

lq

= −
1

4π

∫ ∫

Sj
B

[
φD

j

(
Rj,Θj, ζj

)]

lq

∂G
(
rj, θj, zj;Rj,Θj, ζj

)

∂nξ
dS,

(16)  

Detailed derivations of Eq. (15) are summarized in Appendix B. Using 
Eq. (6) in Eq. (16) and comparing Eq. (10) with Eq. (16) yields 

Dj,lq
0m =−

i
2
C0coshkh

∫ ∫

Sj
B

[(
φS

j

)

lq
+
(

φI
j

)

lq

] ∂
∂n

[
Jm
(
kRj

)
coshk

(
ζj+h

)
e− imΘj

]
dS,

(17) 
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Dj,lq
nm = −

1
πCn

∫ ∫

Sj
B

[(
φS

j

)

lq
+
(

φI
j

)

lq

] ∂
∂n

[
Im
(
knRj

)
coshkn

(
ζj + h

)
e− imΘj

]
dS,

(18)  

Although the only unknown (φS
j )lq in Eqs. (17) and (19) can be solved by 

either Eq. (14) or Eq. (15), the latter is more computationally efficient. 
The method of Eqs. (15) – (18) is denoted as ‘Method II’ hereafter. 

2.5. Derivation of radiation characteristics 

The radiation potential of a single floating body of mode (n,m)

without the influence of other bodies can be expressed as 

[
φR,k

j
(
rj, θj, zj

)]

nm =
coshk

(
zj + h

)

coshkh
∑∞

m=− ∞
Rj,k

0mH(1)
m

(
krj

)
eimθj

+
∑∞

n=1
coskn

(
zj + h

) ∑∞

m=− ∞
Rj,k

nmKm
(
knrj

)
eimθj ,

(19)  

where Rj,k
0m and Rj,k

nm are radiated complex coefficients in a kth rigid mode 
of motion (k = 1 ∼ 6). On the other hand, the radiation potential at a 
field point in the fluid domain (other than the body surface) can be 
determined by the following equation 

[
φR,k

j
(
rj, θj, zj

)]

lq = −
1

4π

⎧
⎨

⎩

∫ ∫

Sj
B

[
φR,k

j
(
Rj,Θj, ζj

)]

lq

∂G
(
rj, θj, zj;Rj,Θj, ζj

)

∂nξ
dS

−
∫ ∫

Sj
B

nj,kG
(
rj, θj, zj;Rj,Θj, ζj

)
dS

⎫
⎪⎪⎬

⎪⎪⎭

.

(20)  

Using Eq. (6) in Eq. (20), and comparing Eq. (19) with Eq. (20), leads to 

Rj,k
0m = −

i
2
C0coshkh

∫ ∫

Sj
B

(

φR,k
j

∂
∂n

− nj,k

)
[
Jm
(
kRj

)
coshk

(
ζj + h

)
e− imΘj

]
dS,

(21)  

Rj,k
nm = −

1
πCn

∫ ∫

Sj
B

(

φR,k
j

∂
∂n

− nj,k

)
[
Im
(
knRj

)
coshkn

(
ζj + h

)
e− imΘj

]
dS, (22)  

where Rj,k
0m and Rj,k

nm are exactly the elements of RC. The only unknown in 
Eqs. (21) and (22) is φR,k

j , which can be solved by the following boundary 
integral equation 

2πφR,k
j
(
rj, θj, zj

)
+

∫ ∫

Sj
B

φR,k
j
(
Rj,Θj, ζj

) ∂G
(
rj, θj, zj;Rj,Θj, ζj

)

∂nξ
dS

=
∫ ∫

Sj
B

nj,kG
(
rj, θj, zj;Rj,Θj, ζj

)
dS.

(23)  

2.6. Removal of irregular frequencies 

Directly solving Eq. (14), Eq. (15), or Eq. (23) can lead to some 

unphysical numerical distortions in the computation results around the 
eigen-frequencies of the eigen modes associated with Dirichlet-type 
boundary condition inside the floating body, which is normally called 
as the ‘irregular frequencies’ phenomenon. Most recently, Liang et al. 
(2020) compared the two most-effective methods for removal of these 
‘irregular frequencies’ and concluded that using the ‘overdetermined 
integral equations’ can be a superior option rather than using the 
‘extended integral equations’. Hence the former method (see also: 
Ohmatsu, 1983; Lau and Hearn, 1989; Liu, 2019) is adopted in the 
present study. The supplemental boundary integral equations for Eq. 
(14), Eq. (15), and Eq. (23) are respectively written as (the details are 
given in Appendix C) 
∫ ∫

Sj
B

[
φS

j

(
Rj,Θj, ζj

)]

lq

∂G
(
rj, θj, zj;Rj,Θj, ζj

)

∂nξ
dS

= −

∫ ∫

Sj
B

∂
[
φI

j

(
Rj,Θj, ζj

)]

lq

∂nξ
G
(
rj, θj, zj;Rj,Θj, ζj

)
dS, (24)  

∫ ∫

Sj
B

[
φD

j

(
Rj,Θj, ζj

)]

lq

∂G
(
rj, θj, zj;Rj,Θj, ζj

)

∂nξ
dS = 4π

[
φI

j

(
rj, θj, zj

)]

lq
, (25)  

∫ ∫

Sj
B

φR,k
j
(
Rj,Θj, ζj

) ∂G
(
rj, θj, zj;Rj,Θj, ζj

)

∂nξ
dS

=

∫ ∫

Sj
B

nj,kG
(
rj, θj, zj;Rj,Θj, ζj

)
dS. (26) 

It should be noted that Eqs. (24), (25), and (26) must be implemented 
on the waterplane, i.e., the field point (rj, θj, zj) is taken from some 
discrete points on the interior waterplane area while the source point 
(Rj,Θj, ζj) locates on the immersed body surface. Since the field point 
and the source point can never coincide with each other, the diagonal 
terms associated with the solid angle coefficient vanish in Eqs. (24), 
(25), and (26). In addition, since the constant panel method (Liu, 2019) 
rather than higher-order boundary element methods is applied, evalu
ation of the influence between points lying on the waterline is avoided. 
By coupling each of these three equations with the corresponding inte
gral equation on the immersed body surface, the ‘irregular frequencies’ 
can be effectively removed. 

2.7. Other numerical aspects of the modeling 

Computation of the DTM and RC can be facilitated, taking advantage 
of the notation in Eq. (8). Simultaneously, denoting (φC

j )nm as the 
following functions of a mode pair (n,m)

(
φC

j

)

0m
=

coshk
(
ζj + h

)

coshkh
Jm
(
kRj

)
e− imΘj with n = 0, (27)  

(
φC

j

)

nm
= coskn

(
ζj + h

)
Im
(
knRj

)
e− imΘj with n ≥ 1, (28)  

and hence Eqs. (12) and (13) can be rearranged as 

Dj,lq
nm = Pn

∫ ∫

Sj
B

[
(

φS
j

)

lq

∂
(

φC
j

)

nm

∂n
+
(

φC
j

)

nm

∂
(

φI
j

)

lq

∂n

]

dS, with n, l ∈ Z* and m, q ∈ Z, (29)   
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where Z* represents positive integers and Z represents integers, the co
efficient Pn is written as 

Pn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
i
2
C0cosh2kh n = 0,

−
1
πCn n ≥ 1.

(30)  

Similarly, Eqs. (17) and (18) can be rearranged as 

Dj,lq
nm =Pn

∫ ∫

Sj
B

[(
φS

j

)

lq
+
(

φI
j

)

lq

]∂
(

φC
j

)

nm

∂n
dS, with n,l∈Z* and m,q∈Z, (31)  

and Eqs. (21) and (22) can be rearranged as 

Rj,lq
nm =Pn

∫ ∫

Sj
B

[

φR,k
j

∂
(

φC
j

)

nm

∂n
−
(

φC
j

)

nm
nj,k

]

dS, with n∈Z* and m∈Z.

(32) 

One should take care that (φC
j )nm differs from (φI

j)lq in the sign of the 
power of the exponential function. Besides, since m, q∈Z, in order to 
calculate the Bessel functions with a negative integral order, the 
following relations can be applied (Abramowitz and Stegun, 1964) 

J− m(Z ) = ( − 1)mJm(Z ), (33)  

I− m(Z ) = Im(Z ), (34)  

in which Z is on the complex plane. Moreover, denoting a partial cy
lindrical wave function as f , the following equation can be used to 
evaluate its normal derivative 

∂f
∂n

=

(
∂f
∂R

cosΘ −
∂f
∂Θ

sinΘ
R

)

nξ +

(
∂f
∂R

sinΘ+
∂f
∂Θ

cosΘ
R

)

nη +
∂f
∂ζ

nζ. (35)  

The detailed derivation of Eq. (35) can be found in Appendix D. 

Fig. 1. Flow chart of the computation process of DTM and RC.  

Fig. 2. Mesh grids of the verifications: (a) circular cross-section cylinder; (b) square cross-section cylinder.  
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3. The computation process 

Computation of the DTM and the RC can be implemented based on a 
BEM solver (e.g., Liu et al., 2018; Liu, 2019). The computation process is 
illustrated in Fig. 1. Given the floater geometry and the wave frequencies 
& headings, the computation can be finalized via two loops. One loop is 
associated with the wave frequencies, and the other is related to the 
wave headings. The first loop solves radiation problems in which the 
body boundary conditions are expressed by the body surface normal 
vectors, as defined by Eq. (23). The second loop solves diffraction 
problems corresponding to a set of partial incident wave potentials, as 
defined by Eq. (11) or Eq. (15). In solving each radiation or diffraction 
problem, the left-hand side matrix and the right-hand side matrix of the 
linear algebraic system are assembled separately. Note that the left-hand 
side matrix needs to be constructed only once for all the radiation and 
diffraction problems at each wave frequency since it is always the same 
as long as the wave frequency does not change. The calculation of 

Green’s function can be further decomposed into calculations of the 
Rankine part and the wave part. The former can be done prior to the two 
computational loops since it is completely frequency-independent, 
which can save a fairly large portion of computation time. 

4. Results and discussions 

4.1. Verification of the present method 

In order to verify the present method based on the hybrid source- 
dipole boundary integral equation, numerical computations are per
formed against two benchmark problems given in Flavià et al. (2016) 
and Flavià et al. (2018) (the former giving more details of the compu
tation). The two geometries are a floating truncated circular cylinder 
and a floating square cylinder as illustrated in Fig. 2, which are common 
elements in ocean renewable energy applications. The circular cylinder 
has a dimension of 3 m radius and 6 m draft, in the water of 10m depth. 

Fig. 3. DTM progressive terms for a circular cylinder of 3 m radius, 6 m draft in a 10 m water depth: (a) real part; (b) imaginary part.  

Fig. 4. DTM progressive terms for a cube box of 6 m side, 6 m draft in a 10 m water depth: (a) real part; (b) imaginary part.  
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One-quarter of it is meshed by 322 constant panels on the submerged 
body surface and 128 panels on the waterplane. The square cylinder has 
a side length of 6 m and 6 m draft, in the water of 10 m depth. 
One-quarter of it is meshed by 720 panels on the submerged body sur
face and 144 panels on the waterplane. It is possible that the discrete 
points on the interior waterplane area can be fewer, according to the 
study of Liang et al. (2020). In Figs. 3 – 8, ‘Present’ stands for the nu
merical results generated using ‘Method I’, as the results determined by 
‘Method I’ and ‘Method II’ are indistinguishable. The accuracy of the 
two methods will be further discussed in Section 4.2. 

The real and imaginary parts of the DTM terms of the two geometries 
are shown in Figs. 3 and 4. The numerical results of McNatt et al. (2015) 
and Flavià et al. (2016) are also given as a comparison. For brevity, only 
progressive (n = 0, l = 0) and non-negligible diagonal terms (q = m) are 

shown with their respective (q,m) indexes annotated. In general, a good 
agreement is found between results computed by the methods of McNatt 
et al. (2015) and Flavià et al. (2016), respectively. Exceptions occur with 
Flavià et al. (2016) at some specific frequencies, e.g., ka = 2.39,2.57,
2.75 for the circular cylinder and ka = 2.22,2.40,2.56 for the square 
cylinder. This should be attributed to the ‘irregular frequencies’ phe
nomenon, as Flavià et al. (2016) was using the open-source BEM code 
Nemoh (Babarit and Delhommeau, 2015), which at that time did not 
have the ‘irregular frequencies removal’ functionality (Penalba et al., 
2017). Nevertheless, the agreement between the present results and 
those of McNatt et al. (2015) is pretty good with respect to all the fre
quencies, as the latter was using WAMIT (Lee, 1995) with the ‘irregular 
frequencies’ being removed. In addition, it is found that the requisite 
number of DTM terms for the expansion in Eq. (10) depends on both the 

Fig. 6. RC progressive terms for a cube box of 6 m side, 6 m draft moving in surge in a 10 m water depth: (a) real part; (b) imaginary part.  

Fig. 5. RC progressive terms for a circular cylinder of 3 m radius, 6 m draft moving in surge in a 10 m water depth: (a) real part; (b) imaginary part.  
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geometry and the frequency. The square cylinder with fewer symmetries 
needs more DTM terms to finalize the series expansion of a diffraction 
potential. 

The real and imaginary parts of the RC terms of the two geometries 
are shown in Figs. 5 and 6 for the surge motion and Figs. 7 and 8 for the 
heave motion. As to the surge motion, it is found that there are some 
slight discrepancies with the results of Flavià et al. (2016) regarding the 
circular cylinder in Fig. 5. Whereas, as to the heave motion, the dis
crepancies with Flavià et al. (2016) are not negligible. In addition to the 
abnormal places at ‘irregular frequencies’ as previously mentioned, 
there are appreciable differences between the present method with 
Flavià et al. (2016) in the frequency band of 0.75–2.70 rad/s, which may 
be attributed to the indirect BEM being used by Nemoh (Flavià et al., 
2016). Nevertheless, the agreement between the present results and 
those of McNatt et al. (2015) is again rather good with respect to all the 
frequencies, as that in DTM terms. Besides, it is noted that only one 

mode (m = 0) is necessary for heave motion representing an isotropic 
wave (McNatt et al., 2013) while more terms are nonzero for surge 
motion. This is due to the high degree of symmetry when a body with at 
least two planes of symmetry undergoing an axisymmetric heave oscil
lating motion, and that the degree of symmetry reduces in the asym
metric surge motion. 

4.2. Removal of irregular frequencies and the condition number 

Fig. 9 gives an example of the effect of irregular frequencies, showing 
a comparison of the first diagonal term of DTM, i.e., D00

00, calculated 
before and after the removal of irregular frequencies using the method 
described in Section 2.6. It is found that the irregular frequencies affect 
the numerical result of the DTM term in the entire frequency band. 
Whilst the ‘true solution’ behaves like sinusoidal, the ‘fake solution’ 
seems a sum of sinusoidal relations against ka, and its peak values are of 

Fig. 7. RC progressive terms for a circular cylinder of 3 m radius, 6 m draft moving in heave in a 10 m water depth: (a) real part; (b) imaginary part.  

Fig. 8. RC progressive terms for a cube box of 6 m side, 6 m draft moving in heave in a 10 m water depth: (a) real part; (b) imaginary part.  
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a larger order of magnitude. Fig. 10 gives the reason for the effect of 
irregular frequencies, showing the reciprocal condition number of a left- 
hand side sub-matrix of Eqs. (14), (15), and (23). Downward spikes can 
be witnessed in the result without the removal of irregular frequencies, 
indicating large condition numbers at some frequencies where the co
efficient matrix is difficult to be solved numerically. By applying the 
method in Section 2.6, the resultant relation of the reciprocal condition 
number against ka becomes rather smooth over these irregular fre
quencies indicating that they have been effectively removed. 

To check the effect of irregular frequencies on wave forces, the 
interaction theory is applied to an array of four circular cylinders (Sid
dorn and Taylor, 2008). Excitation forces on each of the cylinders are 
calculated, as shown in Fig. 11. It is found that while the results of the 
irregular frequencies being removed match with those from the direct 
boundary element method, the results without removing the irregular 
frequencies differ much from the other two. Indeed, several large peaks 
can be found (e.g., ka = 0.747 and ka = 1.179 in Fig. 11) that are similar 
to the traditional irregular frequencies phenomenon. In addition to that, 

without adding any constraint on the waterplane, results (without 
removing the irregular frequencies) at other frequencies are neither 
accurate, as indicated in the calculation of DTM. This illustrates that 
removing the irregular frequencies is particularly important in the 
present method for the calculation of multiple surface-piercing bodies. 

4.3. Comparison of the computational accuracy between ‘method I’ and 
‘method II’ 

The difference of numerical results between the two methods in the 
computation of the DTM of the circular cylinder is compared in Table 1 – 
3. For brevity, the first two diagonal terms with q = 0, m = 0 and q = 1, 
m = 1 (i.e., D00

00 and D01
01) are compared since they are the largest terms of 

the DTM, according to Fig. 3. The real parts and the imaginary parts are 
given separately in Table 1 – 3. The relative errors are calculated using 
the results of Method II as the base. In addition to the mesh (Mesh 1) in 
Fig. 2(a), a denser mesh with 617 panels (Mesh 2) over the immersed 
cylinder surface is used as well to check the dependency of the difference 

Fig. 9. Comparison of the first diagonal term of DTM of the circular cylinder calculated before and after the removal of irregular frequencies: (a) the real part; (b) the 
imaginary part. 

Fig. 10. Reciprocal condition number of a left-hand side sub-matrix of the circular cylinder before and after the removal of irregular frequencies.  
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on the mesh density. 
It is found that, in general, the absolute values of the results of 

Method I are less than those of Method II. The absolute value of the 
relative error between the two methods increases with the increase of 
the wave number ka but is still acceptable around ka = 3.0 (ω = 3.132 

rad/s). As it is known that the upper limit (at which the spectrum ap
proaches zero) of a typical wave spectrum can normally be below ω =

2.5 rad/s, a small relative error of the DTM terms means that using either 
of the two methods can be fine for the calculation. Besides, it is found 
that the wave heading does not influence the DTM terms since the 

Table 1 
Computation based on Mesh 1 of the cylinder, in 0 ∘ heading waves.   

Re q = 0, m = 0  Im q = 0, m = 0  Re q = 1, m = 1  Im q = 1, m = 1  

ka  Method I Method II Error Method I Method II Error Method I Method II Error Method I Method II Error 

0.6 − 0.04962 − 0.04970 − 0.16% − 0.21695 − 0.21735 − 0.18% − 0.03837 − 0.03847 − 0.28% 0.19179 0.19244 − 0.34% 
1.2 − 0.38950 − 0.39203 − 0.65% − 0.48501 − 0.48828 − 0.67% − 0.10278 − 0.10371 − 0.90% 0.30207 0.30505 − 0.98% 
1.8 − 0.85964 − 0.87068 − 1.27% − 0.33147 − 0.33583 − 1.30% − 0.00085 − 0.00086 − 1.14% 0.028881 0.029438 − 1.89% 
2.4 − 0.94447 − 0.96528 − 2.16% 0.17974 0.18373 − 2.17% − 0.16808 − 0.17278 − 2.72% − 0.36769 − 0.37817 − 2.77% 
3.0 − 0.50805 − 0.52609 − 3.43% 0.4822 0.49947 − 3.46% − 0.63456 − 0.65919 − 3.74% − 0.45638 − 0.47438 − 3.79%  

Table 2 
Computation based on Mesh 1 of the cylinder, in 90 ∘ heading waves.   

Re q = 0, m = 0  Im q = 0, m = 0  Re q = 1, m = 1  Im q = 1, m = 1  

ka  Method I Method II Error Method I Method II Error Method I Method II Error Method I Method II Error 

0.6 − 0.04962 − 0.04970 − 0.16% − 0.21695 − 0.21735 − 0.18% − 0.03837 − 0.03847 − 0.28% 0.19179 0.19244 − 0.34% 
1.2 − 0.3895 − 0.39203 − 0.65% − 0.48501 − 0.48828 − 0.67% − 0.10278 − 0.10371 − 0.90% 0.30207 0.30505 − 0.98% 
1.8 − 0.85964 − 0.87068 − 1.27% − 0.33147 − 0.33583 − 1.30% − 0.00085 − 0.00086 − 1.14% 0.028881 0.029438 − 1.89% 
2.4 − 0.94447 − 0.96528 − 2.16% 0.17974 0.18373 − 2.17% − 0.16808 − 0.17278 − 2.72% − 0.36769 − 0.37817 − 2.77% 
3.0 − 0.50805 − 0.52609 − 3.43% 0.4822 0.49947 − 3.46% − 0.63456 − 0.65919 − 3.74% − 0.45638 − 0.47438 − 3.79%  

Table 3 
Computation based on Mesh 2 of the cylinder, in 0 ∘ heading waves.   

Re q = 0, m = 0  Im q = 0, m = 0  Re q = 1, m = 1  Im q = 1, m = 1  

ka  Method I Method II Error Method I Method II Error Method I Method II Error Method I Method II Error 

0.6 − 0.04968 − 0.04972 − 0.06% − 0.21722 − 0.21736 − 0.06% − 0.03813 − 0.03816 − 0.08% 0.19142 0.19158 − 0.08% 
1.2 − 0.39099 − 0.39197 − 0.25% − 0.48696 − 0.48819 − 0.25% − 0.10227 − 0.10251 − 0.23% 0.30260 0.30333 − 0.24% 
1.8 − 0.86636 − 0.87072 − 0.50% − 0.33384 − 0.33553 − 0.50% − 0.00082 − 0.00082 − 0.49% 0.028486 0.028642 − 0.54% 
2.4 − 0.95666 − 0.96453 − 0.82% 0.18351 0.18502 − 0.82% − 0.17048 − 0.17212 − 0.95% − 0.37388 − 0.37750 − 0.96% 
3.0 − 0.51702 − 0.52365 − 1.27% 0.49312 0.49945 − 1.27% − 0.6481 − 0.65744 − 1.42% − 0.46784 − 0.47460 − 1.42%  

Fig. 11. Surge excitation force on Cylinder 1 of an array of 4 truncated vertical cylinders with radius a, draught T = 2a, in a water depth of h = 4a with neighboring 
cylinders separated bv a distance of 4a for an incident wave heading angle of β = π/4. 
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partial wave components (Eqs. (8) and (9)) do not involve the wave 
heading information. Furthermore, it is reasonable that the two methods 
have some minor differences. The difference comes from the different 
imposing conditions at the right-hand side of the boundary integral 
equation, say, Eqs. (14) and (15). Since in Method II the right-hand side 
is simply a wave incident potential at a single field point, while in 
Method I, it is a complex surface integral of the product of the de
rivatives of incident potential and Greens function, Method II is ex
pected to be more accurate than Method I. In other words, the accuracy 

of Method I depends more heavily on the geometrical discretization 
(because of the surface integral in Eq. (14) over the body). Therefore, 
when using Method I, the mesh needs to be denser in the higher fre
quency region than in the lower frequency region to achieve equivalent 
accuracy in both regions. However, for Method II, this restriction is 
weaker than Method I. Nevertheless, increasing the mesh density can 
reduce the difference between the two methods, as shown in Table 1 and 
3. 

Fig. 12. Time cost of per-frequency computation for the diffraction problem: (a) the elasped computation time, (b) the percentages of the time cost in the entire 
computation process using two different methods. 
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4.4. Comparison of the computational efficiency between ‘method I’ and 
‘method II’ 

Fig. 12 shows the CPU time (unit: s) of per evaluation of the DTM of 
the floating square cylinder at different stages, on a desktop machine 
with an Intel(R) Xeon(R) E5-2620 v3 CPU of 2.40 GHz. The 

computations are performed with the aid of OpenMP parallelism on 
eight threads of cores, and the CPU times are obtained based on wave 
diffraction computations with respect to 36 wave headings. Each wave 
diffraction computation consists of five stages. In order to show clearly 
the differences, the logarithmic scale is used for the ‘Elasped Time’-axis. 
In Fig. 12, Eq. (10) has been truncated with a maximum depth mode of 

Table 4 
Increase of the time cost of per-frequency (e.g., ka = 0.921) DTM computation against the maximum truncation mode: the 2nd and 3rd columns give the total CPU 
times using Method I and II; the rest 4th–7th columns give the percentage of the time cost in the total CPU times at different stages using the two methods.  

lMax, 
qMax  

CPU Time 
Method I 

CPU Time 
Method II 

Assembling right-hand side matrix 
Method I 

Assembling right-hand side matrix 
Method II 

Calculating DTM 
Method I 

Calculating DTM 
Method II 

0 23.12 (s) 12.31 (s) 39.53% 1.39% 15.29% 13.75% 
1 70.75 (s) 15.10 (s) 77.50% 6.78% 5.00% 11.21% 
2 156.48 (s) 20.12 (s) 87.60% 12.71% 2.26% 8.41% 
3 280.32 (s) 27.37 (s) 91.28% 17.44% 1.26% 6.18% 
4 442.26 (s) 36.85 (s) 92.99% 20.82% 0.80% 4.59% 
5 642.31 (s) 48.57 (s) 93.90% 23.17% 0.55% 3.48% 
10 2214.10 (s) 140.60 (s) 95.35% 28.01% 0.16% 1.20%  

Fig. 13. Comparison of the DTM terms with q = 0, m = 0 of the cube box at different water depth: (a) l = 0, n = 0; (b) l = 1, n = 1; (c) l = 2, n = 2.  
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NMax = 5 and a maximum angular mode of MMax = 5, which means that 
the number of diffraction problems to be solved at each frequency is 
(NMax +1)(2MMax +1)NWaveHeadings = 2376 and the number of the 
diffraction transfer matrices to be calculated is NWaveHeadings = 36. It is 
found that assembling the right-hand side matrix takes up most of the 
time (93.90% of the overall computation time) in Method I, while 
solving the linear algebraic system costs the most in Method II. Note that 
herein ‘assembling the right-hand side matrix’ involves the calculation 
of the right-hand side of Eq. (14) or Eq. (15), as well as the construction 
of the right-hand side of the overdetermined integral equations 
encountered in the least-squares problem (Liu, 2019; Liang et al., 2020). 
Furthermore results regarding the time cost at a certain frequency are 
given in Table 4. It is found that the total CPU time and the percentage of 
‘assembling the right-hand side matrix’ increase rapidly in Method I 
with respect to the truncation mode (for brevity NMax = MMax is taken 
here, but it is not always necessarily). While the total CPU time of 
Method I is twice that of Method II when NMax = 0, it increases 

significantly to 15.75 times that of Method II when NMax = 10. It is 
worth mentioning that for Method I, the percentage of ‘assembling the 
right-hand side matrix’ quickly increases to above 90% as the truncation 
mode increases merely to 3. Both of these results show that, Method I is 
much more computationally expensive due to the more complex 
right-hand side of the boundary integral equation (i.e., Eq. (1)). On the 
other hand, ‘calculating Diffraction Transfer Matrix’ seems to have 
occupied a much smaller portion of the computational resource in 
contrast to the largest part, regardless of which method is being used. 

4.5. Water-depth dependance of the diffraction transfer matrix 

The DTM and RC are dependent on the water depth. Herein, we take 
DTM of the cube box for example. Fig. 13 and Fig. 14 show respectively 
the real part of its DTM terms of q = 0, m = 0 and q = 1, m = 1 at 
different water depth. It is found that for the first term (when the depth 
mode l of the partial incident waves and n of the outgoing waves are both 

Fig. 14. Comparison of the DTM terms with q = 1, m = 1 of the cube box at different water depth: (a) l = 0, n = 0; (b) l = 1, n = 1; (c) l = 2, n = 2.  
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zero), the value of DTM terms has little dependance on the water depth 
h, while the value of the rest DTM terms decreases substantially with the 
increase of h. This can be explained from Eq. (4), Eq. (5) and Eqs. (27) – 
(30). Whereas the terms (φI

j)lq, (φS
j )lq and (φC

j )nm inside the integration 
are almost independent of h from the definitions, a straightforward 
asymptotic analysis can give the dominant order of the expansion co
efficient Pn: 

Pn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
i
2

k n = 0,

−
1

πh
n ≥ 1.

(36)  

Eq. (36) illustrates mathematically that the DTM terms of n ≥ 1 are 
inversely proportional to h while the first term of n = 0 is independent of 
h. In addition, it is noted that this inversely proportional relationship 
still holds in case if the normalization is taken as well for the evanescent 
modes as for the propagating mode in Eqs. (8) and  (9). 

5. Conclusions 

An alternative method of evaluating the DTM and the RC encoun
tered in wave interactions with multiple bodies is presented. The com
plete derivation process and the resultant mathematical formulations 
are given in detail. Good agreement is achieved with the conventional 
source-distribution-based method, which has been used by Goo and 
Yoshida (1990) and Flavià et al. (2018), etc. The irregular frequencies 
are removed by the overdetermined integral equations proposed firstly 
by Ohmatsu (1983) and summarized recently in Liang et al. (2020). Two 

alternative ways of computing the DTM are compared, i.e., one in
tegrates the distributions of the normal derivative of partial incident 
wave potentials over the submerged body surface, and the other simply 
evaluates the partial incident wave potentials at a field point as firstly 
applied by Kashiwagi (2000). The comparative study shows that while 
the accuracy of the two approaches does not differ much, the compu
tation cost can be substantially saved using the latter approach. More
over, it is found that when more terms of DTM need to be calculated, the 
increase of the truncation mode can lead to a significant increase of the 
overall CPU time as well as the percentage of assembling the right-hand 
side matrix, for which issue applying the first approach can be no longer 
acceptable. The present study may provide appropriate options for the 
subsequent researchers to choose from, especially when they are using a 
numerical method based on the hybrid source-dipole boundary integral 
equations. 
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Appendix A. Derivation of the Green function in polar coordinates 

Introducing the cylindrical coordinate transformation 

(x, y) = r(cosθ, sinθ) and (ξ, η) = R(cosΘ, sinΘ) (A.1)  

It is noted from Fig. Appendix A.1 that L2 = R2 + r2 − 2Rrcos(θ − Θ). Applying Graf’s addition theorem (Watson, 1995), it is straightforward to obtain 

J0(kL) =
∑∞

m=− ∞
Jm(kR)Jm(kr)eim(θ− Θ), (A.2)  

Y0(kL) =
∑∞

m=− ∞

{
Jm(kR)Ym(kr)
Ym(kR)Jm(kr)

}

eim(θ− Θ), (A.3)  

K0(knL) =
∑∞

m=− ∞

{
Im(knR)Km(knr)
Km(knR)Im(knr)

}

eim(θ− Θ). (A.4) 

Fig. Appendix A.1. Schematic of the plane view of Graf’s addition theorem and the reference system.  
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Considering H(1)
m = Jm + iYm, we can further obtain 

H(1)
0 (kL) =

∑∞

m=− ∞

{
Jm(kR)H(1)

m (kr)
H(1)

m (kR)Jm(kr)

}

eim(θ− Θ). (A.5) 

Note that in Eqs. (Appendix A.3), (Appendix A.4) and (Appendix A.5), the upper terms in the curly braces are valid provided r ≥ R and the lower 
terms are valid provided r < R. In contrast, Eq. (Appendix A.2) is valid for all values of R and r. Substituting the Eqs. (Appendix A.4) and 
(Appendix A.5) into Eq. (3), the free-surface Green function can be expressed as a series of cylindrical harmonics, i.e., 

G = 2πiC0coshk(z + h)coshk(ζ + h)
∑∞

m=− ∞

{
Jm(kR)H(1)

m (kr)
H(1)

m (kR)Jm(kr)

}

eim(θ− Θ)

+4
∑∞

n=1
Cncoskn(z + h)coskn(ζ + h)

∑∞

m=− ∞

{
Im(knR)Km(knr)
Km(knR)Im(knr)

}

eim(θ− Θ),

(A.6) 

In essence, Eq. (Appendix A.6) transfers the influence between the field point x and the source point ξ to those respectively with respect to the 
origin O, as illustrated by Fig. Appendix A.1. Note that the wavenumber k is the positive root of the water wave dispersion equation 

ktanhkh = K, (A.7)  

and kn (n = 0,1,2…) satisfies the following equation 

kntanknh = − K, (A.8)  

where k0 is imaginary, k0 = − ik (i is the imaginary unit), and kn (n = 1,2,…) are positive, characterizing the evanescent modes of the eigenfunction 
expansion. 

Appendix B. Derivation of the integral equation of solving the total diffraction potential 

The following derivation involves two alternative approaches. The first approach was first proposed by Lee (1995) and the detailed derivation can 
be found in Teng (2016). It is known to all that for the scattering potential ϕS, when the field point locates on the body surface, Eq. (1) reads 

2πφS(x) +
∫ ∫

SBφS(ξ)
∂G(x, ξ)

∂nξ
dS =

∫ ∫

SB

G(x, ξ)
∂φS(ξ)

∂nξ
dS. (B.1) 

Consider the incident potential φI in the presence of a body (or bodies). Because φI does not satisfy the far-field radiation condition, the next 
boundary integral equation can be constructed in the fluid domain enclosed by the body surface and a far-field control surface: 

2πφI(x) +
∫ ∫

SB + S∞φI(ξ)
∂G(x, ξ)

∂nξ
dS =

∫ ∫

SB+S∞

G(x, ξ)
∂φI(ξ)

∂nξ
dS. (B.2)  

In the case that there is no body in place, Eq. (Appendix B.2) becomes 

4πφI(x) +
∫ ∫

S∞

φI(ξ)
∂G(x, ξ)

∂nξ
dS =

∫ ∫

S∞

G(x, ξ)
∂φI(ξ)

∂nξ
dS. (B.3)  

Note that in Eq. (Appendix B.3), C(x) = 4π, since there exists only fluid. Subtracting Eq. (Appendix B.3) from Eq. (Appendix B.2) yields 

− 2πφI(x) +
∫ ∫

SBφI(ξ)
∂G(x, ξ)

∂nξ
dS =

∫ ∫

SB

G(x, ξ)
∂φI(ξ)

∂nξ
dS. (B.4)  

Combining Eqs. (Appendix B.1) and (Appendix B.4), we obtain 

2πφD(x) − 4πφI(x) +
∫ ∫

SBφD(ξ)
∂G(x, ξ)

∂nξ
dS =

∫ ∫

SB

G(x, ξ)
∂φD(ξ)

∂nξ
dS, (B.5)  

where φD(x) = φI(x)+ φS(x). φD is termed as diffraction potential. Further, since on the immersed body boundary surface φD satisfies the impermeable 
condition, the right-hand side of Eq. (Appendix B.5) is zero. This finally leads to 

2πφD(x) +
∫ ∫

SBφD(ξ)
∂G(x, ξ)

∂nξ
dS = 4πφI(x) (B.6) 

The second approach can be more straightforward. Let us consider a virtual incident wave potential inside of the body. Because the inner domain is 
encompassed by the body surface and the interior free surface, Eq. (Appendix B.4) can be directly obtained. This approach has been mentioned in 
Kashiwagi (2003). However, one should note that the ‘solid angle coefficient’ in this case is negative 2π, which is attributed to the normal direction as 
it has been defined initially outward the body surface (i.e., directing into the fluid domain). Then, a combination of Eqs. (Appendix B.1) and 
(Appendix B.4) gives rise to Eq. (Appendix B.6). 
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Appendix C. Derivation of the overdetermined integral equations 

Consider a field point locating on the interior waterplane surface. The free term (associated with the ‘solid angle coefficient’) at the left-hand side of 
Eq. (Appendix B.1) vanishes due to the fact that there is no longer any Cauchy-type singularity caused by the coincidence of the field point and the 
source point. Thereby, we obtain an integral equation to be satisfied on the waterplane 
∫ ∫

SB

φS(ξ)
∂G(x, ξ)

∂nξ
dS =

∫ ∫

SB

G(x, ξ)
∂φS(ξ)

∂nξ
dS. (C.1) 

The combination of Eqs. (Appendix B.1) and (Appendix C.1) leads to an overdetermined system of the scattering wave potential. Worthy mentions 
are that Eq. (Appendix C.1) can be obtained as well by considering a degenerated form of the extended integral equations (Liang et al., 2020) as the 
dipole strengths over the interior waterplane surface are zero and can be neglected. Secondly, applying a similar procedure, it is straightforward to 
obtain from Eq. (Appendix B.6) the 
∫ ∫

SB

φD(ξ)
∂G(x, ξ)

∂nξ
dS = 4πφI(x), (C.2)  

is satisfied on the waterplane. The combination of Eqs. (Appendix B.6) and (Appendix C.2) leads to another overdetermined system regarding the total 
diffraction potential. 

Alternatively, Eq. (Appendix C.2) can also be obtained by considering a virtual incident wave potential in the inner domain enclosed by the body 
surface and interior free surface, which reads 

− 4πφI(x) +
∫ ∫

SB

φI(ξ)
∂G(x, ξ)

∂nξ
dS =

∫ ∫

SB

G(x, ξ)
∂φI(ξ)

∂nξ
dS. (C.3) 

The ‘solid angle coefficient’ − 4π is due to the opposite normal direction together with the vanishing of any boundary in the neighborhood of the 
field point. A combination of Eq. (Appendix C.1) and Eq. (Appendix C.3) yields a supplemental integral equation free of irregular frequencies, which is 
precisely Eq. (Appendix C.2). 

Appendix D. Derivation of the normal derivative of a cylindrical function 

Denote f to be a function of the polar coordinates (R,Θ,ζ), it is straightforward to derive the following relationship 

∂f
∂n

=
∂f
∂ξ

∂ξ
∂n

+
∂f
∂η

∂η
∂n

+
∂f
∂ζ

∂ζ
∂n

=
∂f
∂ξ

nξ +
∂f
∂ηnη +

∂f
∂ζ

nζ, (C.1)  

∂f
∂ξ

=
∂f
∂R

∂R
∂ξ

+
∂f
∂Θ

∂Θ
∂ξ

=
∂f
∂R

cosΘ −
∂f
∂Θ

sinΘ
R

, (C.2)  

∂f
∂η =

∂f
∂R

∂R
∂η +

∂f
∂Θ

∂Θ
∂η =

∂f
∂R

sinΘ +
∂f
∂Θ

cosΘ
R

, (C.3)  

where n = (nξ, nη, nζ) is the normal derivative of a panel centered at a source point ξ = (ξ,η,ζ) = (RcosΘ,RsinΘ, ζ). Summarizing all the above, the 
normal derivative of the function f can be finally written as 

∂f
∂n

=

(
∂f
∂R

cosΘ −
∂f
∂Θ

sinΘ
R

)

nξ +

(
∂f
∂R

sinΘ+
∂f
∂Θ

cosΘ
R

)

nη +
∂f
∂ζ

nζ. (C.4)  
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