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Abstract: In this paper, a detailed analysis of the impact of a day-ahead residential demand response model on the winter 

season of Jordan’s power sector is presented and discussed. The model used is based on a deep neural network that was 

trained on four years of Jordan’s electrical demand data and a profit-based day-ahead demand response optimization. The 

day-ahead demand response model was established based on the predicted day-ahead demand and a demand response 

model conducted by Jordan’s Grid operator (GO) being NEPCO to reduce its energy costs from the power Generator (PGs) 

by applying a day-ahead peak period pricing scheme on the service providers (SPs). The results of applying the DR model 

on the winter season showed that a potential peak reduction of 4.49% to 8.19% could be achieved as well as a cost reduction 

of 64,263$ to 265,411$ per day.  
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1. INTRODUCTION AND REVIEW 

 

With the fast growth of the global population and 

economies, especially in developing countries, the 

energy demand that needs to be supplied is growing fast 

at 1% and 5% for both developed and developing 

countries, respectively[1]. As Jordan’s energy demand is 

facing an annual growth rate of 3%, the recent big surge 

of refugees from Syria, and heavy reliance on imported 

energy resources, the Jordanian government has 

committed to undergoing reforms to its electrical power 

sector[2][3]. The government initiated the National 

Energy Efficiency Action Plan (NEEAP) in 2013 to 

reach an energy-saving level of 20% and a 10% of 

renewable energy share in the power mix by 2025 and the  

Automatic Electricity Tariff Adjustment Mechanism 

(AETAM) to reduce the losses and heavy loans caused 

by the expensive imported fuels[4]. Due to the 

government’s dedication to growing its renewable sector, 

decrease reliance on energy imports, and increase its 

energy self-sufficiency rate, renewable energy reached 

1470 MW in power capacity by 2019, which accounted 

for almost one-quarter of the total capacity of energy 

generation in Jordan with around 75% being solar energy. 

Although, the large increase in renewable energy 

characterized by stochasticity and being non-

dispatchable has raised the burden and complexity of 

optimizing demand-supply and unit commitment 

scheduling for the GO[5][6]. Fig. 1 shows the hourly 

power demand for a day in December-2019 with the 

renewable generation of wind and solar. It can be 

depicted from the figure that there is a rapid decrease of 

solar energy between 15:00 and 17:00, while at the same 

time, a fast ramping of the evening peak demand between 

15:00 and 18:00. Hence, the GO needs to compensate for 

approximately 992 MW of power in 3 hours which 

accounts for 44% of the average load of that day. This is 

done by using very costly and fast ramping energy 

generators, where a reduction in the peak demand can 

highly reduce the economic burden on the GO in the peak 

time.  

 

 

 

 
Fig.  1 Power demand and renewable generation on the 

12th of December 2019 

 

To achieve a reduction in peak demand and influence 

consumers to shift their demand outside of the peak 

period, a demand response (DR) system was proposed[7].    

DR systems allow the participation of different types of 

electrical demand end consumers to contribute to the 

power market and balancing the electrical demand-

supply. The GOs and SPs influence the participation of 

end consumers by either dynamically changing the price 

of electrical energy at different hours of the day or by 

providing different forms of incentives to the consumers 

to shift their demands away from peak periods and 

towards periods of lower demand. Hence, DR systems 

can increase the GO’s flexibility in balancing the supply-

demand at different hours of the day, especially in 

mitigating the impact of the high ramping demand at 

peak periods under high renewable penetration, thus, 

enabling more optimized Grid management [8][9][10]. 

The Jordanian power sector has already implemented a 

DR pilot project to the principal consumer of the GO 

being mainly large industries which resulted in 6 million 

$ of cost-saving for the GO in terms of direct gains, with 

the indirect benefits of a more optimal power grid 

operation. The project report recommended future 

expansion to the residential sector, which is now more  

prevalent under the rapid installments of smart meters in 

Jordan that can enable DR systems.  

Both building and residential energy demand hold a 

substantial share of the total energy demand 

worldwide[11][12]. Domestic and governmental 
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buildings accounted for almost 46.12% of the electrical 

demand in Jordan in 2019[13]. Hence, a DR system that 

targets the residential sector can be a great asset and 

opportunity for the GO to optimize the daily demand 

curve and achieve more optimal grid operation, 

especially at peak periods by reducing peak demand.   

Tawalbeh et al. investigated the use of Time of Use (TOU) 

pricing in Jordan’s residential sector and showed that a 

peak demand energy of 3.5kWh could be achieved [14].  

Jarad and Ashhab showed that a cost saving of 20% and 

energy consumption reduction of 15% could be achieved 

through better energy efficiency measures for residential 

consumers in Jordan[15].  

 

Recently, many studies investigated the development of 

residential DR programs. Cosmo et al. investigated the 

coupling of ToU DR with in-home information display 

units on 5000 residential households in Ireland, where 

they showed its significant potential in achieving energy 

demand reduction, especially in peak electrical demand 

periods[16]. Wang et al. simulated and compared ToU 

and incentive-based DR on 100 residential households. 

Their results showed that under the participation of 60% 

of the households in the ToU DR, a 24% in energy 

generation cost can be attained. However, at higher 

participation rates, the ToU DR showed less performance 

than the incentive-based DR[17]. Mengelkamp et al. 

applied a price-based dynamic DR on a simulated 

residential energy market of 100 households. Their 

model showed that the DR program can improve the local 

self-sufficiency by 16% and achieve a peak reduction of 

40%[18]. Yoon et al. presented a simulation for 2 

residential buildings in Texas, USA, under two different 

real-time DR pricing schemes that target HVAC usage. 

Their results depicted that energy costs can be reduced 

by 10.8%, and an annual reduction of peak load and 

HVAC energy consumption at 24.7% and 4.3%, 

respectively, can be achieved[19].  Dupont et al. analyzed 

the impact of DR on the residential sector of Belgian 

based on a two-stage modeling approach combining both 

a real-time hourly simulation and day-ahead unit 

commitment under two alternative generation 

technology scenarios. Their results present a general 

reduction in power generation cost due to peak and mid-

peak power plants usage, increased system reliability, 

and reduced emission levels.  

 

In our previous work, a detailed day-ahead DR model 

was developed for the residential sector of Jordan’s 

power sector, where a precise day-ahead demand 

prediction using a deep neural network was introduced, 

and a detailed day-ahead demand response model was 

discussed[7]. In this work, we present a detailed analysis 

of the impact of the proposed model on the winter month 

of December 2019 as follows:  

 

1. A detailed analysis of the days with the highest 

demand and the potential of DR on reducing 

their peak demand. 

2. The daily impacts of demand response for 

December are analyzed based on the best- and 

worst-case scenarios of applying the proposed 

demand response from the preceptive of: Peak 

demand reduction, load factor improvement, 

and generation cost saving.  

3. The impact of high-performing day-ahead 

demand prediction on forecasting the DR policy 

implications on the following day's demand.  

 

The rest of the paper is depicted as follows: Section 2 

introduces the material and methods used in terms of DR 

modeling, Power Sector’s optimization model, day-

ahead prediction modeling, power plant dispatch 

scenario, and the price elasticity of demand (PEMD) 

analysis. Section 3 discusses the application of the model 

in the month of December-2019 with extensive 

numerical results related to different performance 

metrics of DR. Section 4 presents a discussion of the 

results and Section 5 concludes the paper.  

 

2. Material and Methods 

 

Jordan’s electrical sector is depicted in Fig. 2, which 

shows the PSs, GO represented by the national electric 

power company (NEPCO), the SPs (EDCO, IDECO, and 

JEPCO), principal consumer (PCs), and end consumers. 

The Ministry of Energy and Mineral Resources (MEMR) 

governs the long-term strategy of the electricity sector, 

while the Energy and Mineral Regulatory Commission 

(EMRC) provides licenses and regulations, and 

establishes laws and tariffs to the electricity sector[20]. 

Under a residential DR, the GO applies optimized 

dynamic pricing schemes on the SPs, which translates 

into their end consumers in a way that influences their 

demand patterns, especially at peak periods.

 

 

 

Fig.  1 Electricity Sector of Jordan – 2019 [7] 
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Fig.  3 Day-ahead Residential Demand Response Scheme[7] 

 

2.1 Day-ahead Residential Demand Response 

modeling 

 

The proposed day-ahead residential demand model can 

be seen in Fig. 3. The GO first predicts the hourly day-

ahead electrical demand of the residential sector, collects 

the day-ahead scheduled unit commitment data and 

renewable energy generation predictions. Then by using 

the PEMD and optimizing different price schemes for the 

peak period, the DR impact is predicted in terms of 

different operating targets, such as peak demand 

reduction, generation cost savings, load factor 

improvements, and profit expected to increase. Once the 

optimal prices are calculated, they are announced to the 

Service providers at the start of the next day and the 

expected impact of the DR on the day-ahead demand is 

used to further optimize the day-ahead unit commitment 

scheduling. The profit optimization model used by the 

GO, considering its energy purchased from the PSs and 

energy sold to the SPs, is depicted as follows[7]:  

 

𝑀𝑎𝑥      ∑ ∑ (∑𝐼𝑐,ℎ(𝑠𝑝𝑐,ℎ, 𝑑𝑠𝑐,ℎ)

𝐶

𝑐=1

𝐻

ℎ=1 

𝐷

𝑑=1

− ∑ 𝐶𝑝𝑠,ℎ(𝑏𝑝𝑝𝑠,ℎ, 𝑑𝑝𝑝𝑠,ℎ)

𝑃𝑆

𝑝𝑠=1

)

+   ∑𝑃𝐶𝐼𝐶

𝐶

𝑐=1

(𝑑𝑝𝑐 , 𝑑𝑝𝑝𝑐)  

(1) 

 

The model represents the monthly profit of the GO, 

where 𝐼𝑐,ℎ  depicts the income from each of the bulk 

consumer 𝑐 at each hour ℎ, which depends on the amount 

of demand sold 𝑑𝑠𝑐,ℎ  for each bulk consumer at each 

hour and the selling price 𝑠𝑝𝑐,ℎ . The second part 

represents the liability of the hourly cost of purchasing 

energy 𝐶𝑝𝑠,ℎ from each power supplier 𝑝𝑠 based on the 

buying price 𝑏𝑝𝑝𝑠,ℎ  and demand purchased 𝑑𝑝𝑝𝑠,ℎ . The 

last part, which is not considered in the proposed model, 

depicts the monthly peak cost-income 𝑃𝐶𝐼𝐶  from each 

bulk consumer, which is a function of the monthly 

demand peak 𝑑𝑝𝑐at specified peak times and the demand 

peak pricing 𝑑𝑝𝑝𝑐. The GO through DR can impact the 

day-ahead hourly demand per bulk consumer 𝒅𝒔𝒄,𝒉  by 

changing the hourly selling price 𝒔𝒑𝒄,𝒉  in a way that 

reduces the peak demand as follows[7]:  

𝑑𝑠𝑐,ℎ = 𝑑𝑠𝑐,ℎ
0 [1 + 𝜀ℎ

 
𝑠𝑝𝑐,ℎ−𝑠𝑝𝑐,ℎ

0
 

𝑠𝑝𝑐,ℎ
0 + ∑  

24

ℎ=1, 

𝜀ℎ
′
𝑠𝑝𝑐,ℎ−𝑠𝑝𝑐,ℎ

0
 

𝑠𝑝𝑐,ℎ
0 ] (2) 

𝑠𝑝𝑝𝑐,ℎ,𝑀𝑖𝑛 ≥ 𝑠𝑝𝑐,ℎ ≥ 𝑠𝑝𝑝𝑐,ℎ ,𝑀𝑎𝑥  (3) 

 

Equation 2 represents the impact on the original demand 

𝑑𝑠𝑐,ℎ
0 , of the new selling price 𝑠𝑝𝑐,ℎ for bulk consumer c 

at an hour ℎ  relative to the original price 𝑠𝑝𝑐,ℎ
0  of that 

hour as well as the change in price in other hours of the 

day. 𝜀ℎ
  represents the self-elasticity which related the 

change in price at a certain hour to the demand change of 

that hour, while 𝜀ℎ
′

 represents the cross-elasticity that 

captures the effect of a change in the price of other hours 

of the day on that hour. Equation 3 depicts the selected 

minimum and maximum range of the new price. The self 

and cross elasticates represent the core of DR analysis and is 

related to the PEMD which is formulated as follows [21]:  

 

  

(4) 

 

The PEMD represented by the 𝜀  matrix related the 

change of the price in every hour of the day to the change 

of demand at every hour, where the diagonal reprinted by 

𝜀𝑖,𝑖  depicts the self-elasticity and the off-diagonals 

represent the cross-elasticates.  
 
2.2 Day-ahead demand prediction modeling  

 

To run the day-ahead DR model, the day-ahead hourly 

demands should be obtained. In this work and relating to 

our previous work[7],  a deep neural network (DNN) was 

trained on four years of the hourly electrical demand of 

Jordan’s power sector was used. Fig. 4 shows the typical 

[
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structure of a neural network consisting of the input layer 

representing the input features correlated to the predicted 

output, the hidden layers made on neurons, and the output 

layer consisting of the variable to be predicted[21]. 

Neural networks (NNs) are powerful machine learning 

algorithms that contain neurons depicted by weights, 

biases, and non-linear activation functions. Their 

complex interconnections can model complex non-linear 

relations between an output variable and its correlated 

feature variables[22].  

 

 
Fig.  4 Neural Network 

 

Based on a systematic feature analysis and engineering, 

Table 1 shows the selected input feature variables to the  

DNN to predict the day-ahead hourly electrical demand 

at any selected hour.  

 

Table 1 Selected input feature variables to the DNN [7] 

Type  Input Range 

Exogenous input 

features related to 

demand at the hour to 

be predicted 

1 

Morning Peak-

Load Temperature 

℃ 

4 - 42 

2 

Evening Peak-

Load 

Temperature ℃ 

2 - 37 

3 
Minimum Load- 

Temperature ℃ 
-1 - 34 

4 Hour of the day 1 - 24 

 5 Day of the Year 1 - 366 

 6 Week of the Year 1- 53 

 7 Normal Day [0,1] 

8 National Holiday [0,1] 

9 Ramadan [0,1] 

10 Sunday [0,1] 

 . [0,1] 

16 Saturday [0,1] 

Endogenous input 

features related to the 

demand at previous 

hours (Lagged Demands 

(LD)) 

17  LD (-24 hours) 
1195 - 

3380 

18  LD (-25 hours)  

19  LD (-26 hours)  

20  LD (-48 hours)  

21 LD (-49hours)  

22  LD (-50 hours)  

23    LD (-168 hours)  

 24    LD (-169 hours)  

 25    LD (-170 hours)  

 26    LD (-192 hours)  

 27   LD (-193hours)  

 28   LD (-194hours)  

 

The initial data was split into approximately 90% training 

data, to train the model, 5% validation data to tune the 

model, 5% testing data, and the last month of 2019 to test 

the model generalization. The tunning process resulted in 

a DNN with 4 hidden layers with 1024, 512, 256, and 128 

neurons, respectively, from the first to last layer. The elu 

was selected as the activation function, and adam was 

used as the optimization algorithm of the neural network. 

Generalization of the network was achieved by applying 

a dropout probability of 0.1 to the first two layers and a 

0.18 L2 regularization for all the layers coupled with 

early stopping[7]. As a result, the model achieved a very 

low mean absolute percentage error (MAPE) of 1.205%, 

1.356%, and 1.411% on the training, validation, and 

testing datasets, respectively, and 2.03% on the final 

month of 2019. 

 

2.3 Power dispatch modeling 

 

The dispatch model depicts the available power plants 

based on a unit-commitment analysis conducted daily 

by the GO. For this research, Table 2 shows a selected 

power plants mix based on a real scenario provided by 

NEPCO on the available power plants on Sunday, the 

8th of December 2019[13].  

 

Table 2 Dispatch Scenario of the 8th of December 

2019[7] 

 

Unit Name 
Cost 

(JD/M) 

Min. 

Demand 

(MW) 

Max. 

Demand 

(MW) 

1 Risha 0 33 33 

2 AES CC 59.85 210 410 

3 
ACWA 

CC 
60.09 210 360 

4 
SAMRA 

4 CC 
61.06 127.5 220 

5 
SAMRA 

3 CC 
61.06 192.5 420 

6 
SAMRA 

1 CC 
61.06 210 310 

7 QPC CC 64.89 210 424 

8 Wind 72.79 0 - 

9 PV 79.94 0 - 

10 Egypt 52.79 0 150 

11 IPP4  121.17 0 240 

12 IPP3  231.04 0 570 

 

 

 Units 1-7 are assumed to be operating at combined cycle 

(CC) and have lower costs, whereas both IPP3 and IPP4 

are the most expensive power plants, where are 

composed of fast starting small generators of 15 MW that 

are mainly used in peak times, where demand rises fast. 

Hence the main objective of the demand response is to 

reduce the usage of their units, thus reducing their cost 

liability on the GO.  The dispatch model is based on 

Table 3 and selects power plants based on their minimum 

and maximum power based on the lowest cost. The 

Egyptian interconnection has lower priority as it is used 

as a backup to the main power plants, and renewable 

energy is based on availability.  
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2.4 Peak Period PEMD policy modeling  

 

As previously discussed, the PEMD is at the core of DR 

systems that correlates the change of electricity prices to 

the respective change in electrical demand. A constant 

price policy was proposed in the peak period that was 

selected from 4 PM to 8 PM. The base self-elasticity was 

approximated by the short-term price elasticity of 

Jordan’s residential sector based on recent research at  

-0.0575[23]. The residential PEMD base scenario can be 

seen in Table 3, where the base self-elasticity is -0.0575 

and each cross-elasticity level at 25% of the self-

elasticity represents the energy re-located from each hour 

in the peak period to the closest 4 hours outside of the 

peak period. The cross-elasticities in the peak period are 

all zeroes, as the price is constant in the peak period. 

Hence there is no incentive to re-locate energy 

consumption to hours within the peak period. All values 

of the elasticity matrix outside of the Matrix seen in Table 

3 are assumed to be zero, as the prices don’t change in 

those periods under this price policy.   

 

Table 3 Base Scenario of the Residential PEMD of 

Jordan [7] 

Time* 16:00 17:00 18:00 19:00 20:00 

12:00 +0.0144 0  0 0 0 

13:00 +0.0144 +0.0144 0 0 0 

14:00 +0.0144 +0.0144 +0.0144 0 0 

15:00 +0.0144 +0.0144 +0.0144 +0.0144 0 

16:00 -0.0575 0 0 0 0 

17:00 0 -0.0575 0 0 0 

18:00 0 0 -0.0575 0 0 

19:00 0 0 0 -0.0575 0 

20:00 0 0 0 0 -0.0575 

21:00 0 +0.0144 +0.0144 +0.0144 +0.0144 

22:00 0 0 +0.0144 +0.0144 +0.0144 

23:00 0 0 0 +0.0144 +0.0144 

 

Eight case scenarios are depicted in Table 4 based on 

Table 3 to capture different scenarios related to the self-

elasticity and cross-elasticity behaviors of the residential 

sector.  

[C5 -C8] have double the self-elasticity of [C1- C4], [C1, 

C2, C5, C6] assume the 100% of the energy from hours 

in the peak period is relocated to other hours, while their 

counterparts assume a 75% shift scenario. In [C2, C4, C6, 

C8], the two hours furthest away of the 4 hours closest to 

the hour in the peak period have half the cross-elasticity 

value of the 2 hours nearest. More details on the 

establishment of the PEMD in Tables 3 and 4 can be 

found in the previous research[7]. 

 

Table 4 PEMD Case Scenarios[7] 

Case 

Scenarios 

Self-

Elasticity 

Cross Elasticity—

L1 
Cross Elasticity—L2 

C1 

−0.0575 

−(−0.0575/4) - 

C2 −(−0.0575/6) −2×(−0.0575/6) 

C3 −(0.75×(−0.0575))/4 - 

C4 −(0.75×(−0.0575))/6 −2×(0.75×(−0.0575))/6) 

C5 −0.115 −(−0.115/4) - 

C6 −(−0.115/6) −2×(−0.115/6) 

C7 −(0.75×(−0.115))/4 - 

C8 −(0.75×(−0.115))/6 −2×(0.75×(−0.115))/6) 

 

 

3 Results and Discussion 

 

The presented model has been applied for the winter 

month of December 2019 to show the impact of the 

proposed DR model for each day in the month. The bulk-

supply day and night prices for each distribution 

company (JEPCO, IDECO, and EDCO) are based on 

NEPCO’s annual report [13], and their day-ahead 

residential demand is estimated at 32.4%, 5.08%, and 

9.98% of the total predicted demand respectively[7]. 

 

Prediction performance for days with highest peak 

demand 

 

Fig. 5 -7 shows the performance of the day-ahead hourly 

prediction model for the days with the highest peak 

demand. It can be noticed from the figure that the model 

has very low MAPE errors between 1.68% - 2.04% and 

that the peaks occur at 5 PM, which is captured by the 

peak period pricing policy.  

 

 
Fig.  5 Friday (27-12-2019) prediction performance 

 

 
Fig.  6 Saturday (28-12-2019) prediction performance 
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Fig.  7 Sunday (29-12-2019) prediction performance 

 

 
Fig.  8 DR-model output under different case scenarios (28-12-2019)

3.2 Residential DR model analysis for the day with 

the highest peak demand.  

 

The results of applying the DR model to the day with the 

highest peak-demand being Saturday the 28th of 

December is shown in Fig. 8. The figure shows the results 

based on the predicted demand of all the scenarios shown 

in Table 4 under 3 different maximum peak pricing 

ranges. The profit maximization model always selects the 

maximum price for the peak period up to a 300% increase 

in price. [C1-C4] showed lower peak reduction as they 

had lower self-elasticity than [C5-C8], although their 

new peaks created around the peak period were lower 

since less demand was shifted. Hence, the more demand 

shifted, the higher the chance of new peak forming, such 

as the case of C6 at 300% peak period price, where the 

new peak formed was higher than the original peak. It 

can 

also be noticed that with the increase in price, while the 

peak reduction increases, the chances for the new peak to 

form also increase; hence, careful selection of the 

maximum peak period pricing should be carried out to 

find the achieves the optimal demand curve as per 

operational goals. Fig. 9 shows the ranges of peak 

demand reduction for each case scenario of the PEMD  

and the peak period pricing, where it can be noticed that 

a minimum peak reduction of 4.217% from all the case 

scenarios and the best peak reduction being 5.458%. 

Hence, even in the worst-case scenario being C6, where 

the self-elasticity is highest, 100% of the reduced demand 

is shifted, and the shifted demand has double the weight 

for the two hours closest to the peak period, by selecting 

the correct price range, a good peak reduction can be 

achieved.  

 

 
Fig.  9 Peak Reduction ranges (28-12-2019) 

 

Fig. 10 shows the ranges of cost savings that can be 

achieved when the demand shifted from the peak periods 

results in lower purchasing power from IPP3 and IPP4 

that are expensive. It can be observed that C7 and C8 had 

the highest cost-saving potential, with C7 being 220,581$ 

and the minimum cost saving was observed at 43,774$ 

for C2. C7 showed the most elevated cost saving due to 

the fact that it is a high self-elasticity scenario, where 

more peak demand is reduced, only 75% of the demand 

reduced is shifted with equal weights; hence, more 

demand can be reduced without creating higher peaks 

surrounding the peak period. It can also be noticed for C7 

in Fig. 9 and 10 that at 300% of the price, even if the peak 

reduction was lower than at 200%, more cost-saving was 

achieved. This is due to the fact that the demand shifted 

from the peak period had more weight in terms of cost-

saving, even if less peak reduction was achieved.   
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Fig.  10 Energy Cost Saving (28-12-2019) 

 
3.3 Day-ahead Residential DR model analysis for 

December 2019 

 

The results for applying the DR model for the whole 

month of December are shown in Fig. 11 -13 in terms of 

peak reduction, load factor improvement and cost-

saving, with the vertical lines indicating the weekends.  

 
Fig.  11 Peak Reduction for December 2019 

 
Fig.  12 Load factor improvement for December 2019 

 
Fig.  13 Cost saving for December 2019 

The “best” indicates that case scenario that had the very 

highest result such as (C7-300%) in Fig. 10, while “Min” 

depicts the minimum achievable result out of all the case 

scenarios such as (C2-300%) from the same figure, but 

not the very worst result. In terms of peak reduction 

observed in Fig. 11, the best results had a maximum 

potential of 8.19% with an average of 6.04%, while the 

minimum results had a maximum of 5.46% and an 

average of 4.49%. It could also be noticed that there were 

only 4 days in the month where the model and peak 

period price policy showed low performance in terms of 

the minimum achievable results, which is due to the 

demand curve behavior in those days. The load factor 

improvement results shown in Fig. 12 had an average of 

0.05 and 0.034 for the best and minimum results, 

respectively, and followed the same trend as Fig.11. The 

load factors are calculated by dividing the average 

demand of the day by its peak, where the closer they are 

to each other the better, approaching 1.   As for the cost-

saving results depicted by Fig. 13, the average for the best 

and minimum results were 154,890 $ and 64,263 $, 

respectively. The highest best cost-saving was observed 

at 265,411$ Saturday the 21st, where it can be observed 

that most Saturdays on the 7th, 14th, 21st, and 28th showed 

high-cost saving potential consistently, especially in 

relevance to Fridays that showed the lowest cost-saving 

potential.  
 

3.4 Predicted DR model impact vs. Real impact 

 

As the model results are based on the predicted day-

ahead demands, which are very close to the real demands 

as shown in section 3.1, the real impacts of the DR vs the 

predicted impacts for the cost savings are shown in Fig 

14.  

 

 
Fig.  14 Real vs Predicted DR impacts 

The difference in the results is based on the accuracy of 

the prediction, which shows the importance of having an 

accurate model with high prediction performance to 

correctly predict the day-ahead demand and provide an 

accurate prediction to the selected day-ahead peak-

prices.  

 

4. Conclusion  

 

This research presented a detailed analysis of the impacts 

of a day-ahead DR model on Jordan’s residential sector 

in the winter season, depicting the highest demands. The 

model results showed that for December 2019, the 

average minimum peak reduction and cost savings 
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predicted by the model were 4.49% and 64,263 $ per day, 

respectively, with the highest potential peak reduction 

predicted at 8.19% and cost-saving of 265,411 $. The 

results indicate the significant opportunity to apply 

residential DR for the Jordanian power sector to mitigate 

the effects of the high ramping peak demands and 

achieve cost reduction for the GO. The results also 

showed the importance of having accurate predictions for 

the day-ahead demand, to achieve an optimal DR system. 
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