Iron Redox Transformation by the Thermo-Acidophilic Archaea from the Genus Sulfolobus

Masaki, Yusei Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University

Tsutsumi, Katsutoshi Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University

Okibe, Naoko Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University

https://hdl.handle.net/2324/4737397

出版情報:Geomicrobiology Journal. 35 (9), pp.757-767, 2018-06-23. Taylor and Francis バージョン: 権利関係:

1 Geomicrobiology Journal

2	Title:
3	Iron redox transformation by the thermo-acidophilic archaea from the genus
4	Sulfolobus
5	(Running title: Iron redox transformation by the genus Sulfolobus)
6	
7	Yusei MASAKI, Katsutoshi TSUTSUMI, Naoko OKIBE*
8	
9	Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University,
10	744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
11	
12	*Corresponding author.
13	Tel. and Fax: + 81 92 802 3312
14	E-mail address: okibe@mine.kyushu-u.ac.jp (Naoko Okibe)
15	
16	Keywords: Iron redox transformation, Chromium reduction, Sulfolobus, Acidophilic
17	archaea

18 Abstract

19	Iron redox transformations by five representative Sulfolobus strains (S. metallicus Kra23;
20	S. tokodaii 7; S. acidocaldarius 98-3; S. solfataricus P1; S. shibatae B12) were studied to
21	clarify the general trend of Fe metabolism across different species of the genus Sulfolobus.
22	Negligible to major Fe(II) oxidation was detected in cell-suspensions of the strains.
23	Fe(III)-reducing ability was differently expressed in each strain with dependence on the
24	oxygen level and growth status: Growth-uncoupled cell-suspensions of all strains reduced
25	Fe(III) under either anaerobic or micro-aerobic conditions, or under both conditions. A
26	linear correlation between cell growth and Fe(III) reduction was also found in S. tokodaii
27	7, S. solfataricus P1 and S. shibatae B12. In addition to Fe redox behaviors, the strains
28	were also tested for reduction of highly-toxic Cr(VI) to less toxic and soluble Cr(III), as
29	an application possibility: The trend in degree of Cr(V) reduction did not necessarily
30	correspond to that of Fe(III) reduction, suggesting the involvement of different reduction
31	mechanisms.

32 Introduction

33	The genus Sulfolobus is generally recognized as a group of aerobic, thermo-
34	acidophilic sulfur-oxidizing archaea. They naturally occur in a number of sulfur-rich
35	acidic geothermal environments (Brock et al. 1972; Huber and Stetter 1991; Jan et al.
36	1999; Zillig et al. 1993). Consequently, utilization of S^0 (either autotrophically or
37	heterotrophically) is widely seen in known Sulfolobus spp. (S. tokodaii, Suzuki et al.
38	2002; S. metallicus, Huber and Stetter 1991; S. yangmingensis, Jan et al. 1999; S. shibatae,
39	Grogan et al. 1990; S. tengchongensis, Xiang et al. 2003), although with an exception of
40	non-sulfur oxidizing Sulfolobus sp. GA1, as was recently reported (Masaki et al. 2016).
41	Given that microbial Fe(II) oxidation plays a major role in the geochemical Fe
42	cycle of highly acidic environments, and that a number of Sulfolobus species are widely
43	distributed in such environments, there are yet only limited studies evaluating Fe(II)
44	oxidation ability in this genus (S. metallicus, S. tokodaii; Bathe and Norris 2007). Owing
45	to its both Fe(II)- and S ⁰ -oxidizing metabolisms, S. metallicus has been employed to apply
46	for high-temperature bioleaching (oxidative dissolution) of sulfide minerals such as pyrite
47	and chalcopyrite (Sandström et al. 2005; Gautier et al. 2008; Vilcáez et al. 2008; Zhu et
48	al. 2011). A comprehensive search for Fe(II)-oxidizing ability among different Sulfolobus
49	species would therefore lead to better understandings of the role of this genus in natural

50 Fe cycles, as well as in possible utilities of the genus for application purposes.

51	So far, Fe(III)-reducing ability in the genus <i>Sulfolobus</i> is even less clear than its
52	Fe(II)-oxidizing ability: S. acidocaldarius was reported to reduce soluble Fe(III) to Fe(II)
53	under aerobic conditions in the presence of elemental sulfur or glutamate as electron
54	donor (Brock and Gustafson 1976), although it was controversially pointed out that this
55	archaeon does not grow autotrophically (Johnson et al. 2012). Our previous study
56	detected the Fe(III)-reducing ability during growth under micro-aerobic conditions in
57	recently isolated Sulfolobus sp. GA1 (Masaki et al. 2016). This observation thus further
58	motivated us to investigate general trend of Fe(III)-reducing ability across different
59	representative species of the genus Sulfolobus.
60	The possible importance of sulfur- and iron-oxidizing acidophiles in the natural
61	geochemical Fe cycle by means of not only Fe(II) oxidation but also Fe(III) reduction
62	was first pointed out by Brock and Gustafson (1976), by showing Fe(III)-reducing ability
63	in Acidithiobacillus thiooxians, At. ferrooxidans and S. acidocaldarius. Later studies in
64	fact revealed a variety of acidophiles involved in microbial Fe(III) reduction: Anaerobic
65	growth via Fe(III) respiration using S^0 (or other reduced inorganic sulfur compounds) as
66	electron donor was reported for At. ferrooxidans (Ohmura et al. 2002), At. ferrivorans
67	(Hallberg et al. 2010), and Acidiferrobacter thiooxydans (Hallberg et al. 2011b). The

68	ability to use Fe(III) as sole electron acceptor during heterotrophic growth was reported
69	in Sulfobacillus (Sb.) acidophilus, Sb. thermosulfidooxidans, Acidimicrobium
70	ferrooxidans (Bridge and Johnson 1998) and Acidicaldus organivorus (Johnson et al.
71	2006). Reductive dissolution of Fe(III) minerals was observed in micro-aerobic cultures
72	of heterotrophs, Acidiphilium spp. (Johnson and Mcginness 1991; Johnson and Bridge
73	2002; Coupland and Johnson 2008), Acidocella spp. and Acidobacterium spp. (Coupland
74	and Johnson 2008). Based on the above biodiversity found so far, it would be reasonable
75	to expect that Fe(III)-reducing abilities could also exist across different Sulfolobus spp.
76	coupled with growth on S ⁰ and/or organic substrates.
76 77	coupled with growth on S ⁰ and/or organic substrates. In the viewpoint of biochemical Fe(II) oxidation mechanism, the responsible
77	In the viewpoint of biochemical Fe(II) oxidation mechanism, the responsible
77 78	In the viewpoint of biochemical Fe(II) oxidation mechanism, the responsible molecular complexes often seem quite versatile in different acidophiles: In the well-
77 78 79	In the viewpoint of biochemical Fe(II) oxidation mechanism, the responsible molecular complexes often seem quite versatile in different acidophiles: In the well-studied mesophilic Fe-oxidizing bacterium, <i>At. ferrooxidans</i> , electrons transfer from
77 78 79 80	In the viewpoint of biochemical Fe(II) oxidation mechanism, the responsible molecular complexes often seem quite versatile in different acidophiles: In the well-studied mesophilic Fe-oxidizing bacterium, <i>At. ferrooxidans</i> , electrons transfer from Fe(II) via cytochromes <i>c</i> and rusticyanin (Rus; a periplasmic blue copper protein),
77 78 79 80 81	In the viewpoint of biochemical Fe(II) oxidation mechanism, the responsible molecular complexes often seem quite versatile in different acidophiles: In the well-studied mesophilic Fe-oxidizing bacterium, <i>At. ferrooxidans</i> , electrons transfer from Fe(II) via cytochromes <i>c</i> and rusticyanin (Rus; a periplasmic blue copper protein), followed by the "downhill" and "uphill" pathways using a cytochrome <i>c</i> oxidase (Cox

84

Also, a blue copper protein, sulfocyanin, may be serving as the branch point like 85

terminal oxidase combines cytochrome c oxidase-like and bc_1 complex-like components.

86	rusticyanin between downhill and uphill electron flows (Bonnefoy and Holmes, 2012). In
87	the case of iron-oxidizing thermophilic archaea, such as <i>Sulfolobus</i> spp. (She et al., 2001;
88	Kawarabayashi et al., 2001; Hiller et al., 2003; Chen et al., 2005; Bathe and Norris, 2007),
89	Metallosphaera sedula (Auernik et al., 2008) and Acidanus cophhuensis (Urbieta et al.,
90	2017), again their genomic sequences have no evidence for cytorhrome c , but the fox gene
91	cluster (encoding FoxA/FoxB with identity to cytochrome c oxidase subunits,
92	FoxC/FoxD with identity to cytochrome $b_{558/566}$ subunits (CbsA-like) and others) was
93	found, which may have an analogous role to the rus operon of At. ferrooxidans (Johnson
94	et al., 2012). Likewise to Ferroplasma sp., sulfocyanin genes (soxE) were found in
95	genomes of these thermophiles (cf. in the case of A. cophhuensis, an additional
96	rusticyanin-like gene was also detected; Urbieta et al., 2017).
97	Whilst Fe(III) reduction widely takes place among acidophilic prokaryotes, its
98	biochemical mechanism is yet largely unknown, compared to the Fe(II) oxidation
99	mechanism. So far most of the work focused on neutrophilic and mesophilic bacteria such
100	as Geobacter sp. and Shewanella sp., and found that cytochromes c were responsible for
101	their Fe(III) respiration (Lovely et al., 2011; Fredrickson et al., 2008). Compared to the
102	neutrophilic counterparts, even fewer studies are available with acidophiles. In At.
103	<i>ferrooxidans</i> , it was suggested that electrons travel from S^0 to Fe(III) via a respiratory

104	chain containing bc_1 complex and cytochrome c (Osorio et al., 2013). In thermo-
105	acidophilic archaea, the involvement of cytochrome c proteins seems to vary: Whilst a
106	number of other species have few to no cytochrome c genes, Ferroglobus placidus and
107	Geoglobus ahangari contained numerous cytochromes c. The importance of several
108	genes was suggested in Fe(III) respiration by F. placidus (i.e. three multiheme
109	cytochromes c , a menaquinol oxidoreductase Cbc4 complex, and a unique periplasmic
110	cytochrome c fused to a cytochrome b_5 -type heme/steroid binding domain (CbcZ); Smith
111	et al., 2015).

112 From the viewpoint of biohydrometallurgical application, search for microbial Fe(III)-reducing abilities would benefit the development of bio-processes such as 113 bioremediation of toxic metals (e.g., hexavalent chromium; Masaki et al. 2015; 114 Cummings et al. 2007) and reductive bioleaching of Fe(III)-minerals (e.g., nickel laterites 115 where Ni is associated with goethite; Hallberg et al. 2011a; Johnson 2012; Johnson et al. 116 2013; Ñancucheo et al. 2014). 117

With the aim to clarify the roles of Sulfolobus spp. in natural geochemical Fe 118 cycles, as well as to further explore their potentials in biohydrometallurgical applications, 119 120 this study has chosen representative strains; S. metallicus Kra23, S. tokodaii 7, S. acidocaldarius 98-3, S. solfataricus P1 and S. shibatae B12, to test and compare their Fe 121

- 122 redox transformation capabilities as well as to search for a genetic clue to support their
- 123 Fe transformation behaviors by analyzing the available genome sequences. Additionally,
- their abilities in Cr(VI) reduction were also investigated to compare with those in Fe(III)
- 125 reduction.

126 Materials and Methods

127 Microorganisms

128	S. metallicus Kra 23^{T} (DSM 6482), S. tokodaii 7^{T} (DSM 16993), S.
129	acidocaldarius 98-3 ^T (DSM 639), S. solfataricus $P1^{T}$ (DSM 1616) and S. shibatae $B12^{T}$
130	(DSM 5389) were purchased from the National Institute of Technology and Evaluation
131	(Tokyo, Japan).
132	S. tokodaii 7 and S. shibatae B12 were maintained and pre-grown in 300 mL
133	Erlenmeyer flasks containing 150 mL of heterotrophic basal salts (HBS) medium (pH
134	2.0 with H_2SO_4 ; Masaki et al. 2015) supplemented with 10 mM glucose and 0.01%
135	(w/v) yeast extract. Elemental sulfur (S ^{0} ; 0.1% (w/v)), instead of glucose, was added to
136	HBS medium (pH 2.5 with H ₂ SO ₄) for <i>S. metallicus</i> Kra23, <i>S. acidocaldarius</i> 98-3 and
137	S. solfataricus P1. Cultures were incubated at 70°C, shaken at 120 rpm.
138	In all below experiments, water evaporation was compensated with sterile
139	deionized water before each sampling. All of the experiments were conducted in
140	duplicates.
141	
142	Fe(II) oxidation test using growth-uncoupled cell-suspensions under aerobic
143	conditions

144	Each of the five strains was pre-grown as described in the previous section except
145	that 500 mL flasks containing 200 mL medium were used. The cultures were harvested
146	at the late exponential phase by centrifugation (12,000 g, 10 min), washed twice, and
147	finally re-suspended in 200 mL of fresh HBS medium (in 500 mL flasks; pH 2.0)
148	containing 10 mM Fe(II) (as FeSO4·7H2O): Densities of the resultant cell-suspensions
149	were approx. 5×10^8 cells mL ⁻¹ for <i>S. tokodaii</i> 7 and <i>S. shibatae</i> B12, and 2×10^8 cells mL ⁻
150	¹ for S. metallicus Kra23, S. acidocaldarius 98-3 and S. solfataricus P1. Cell-suspensions
151	were incubated shaken (70°C, 120 rpm) and samples were regularly taken to monitor the
152	concentrations of Fe(II) and total soluble Fe.
153	The Fe(II) oxidation rates (mg-Fe h ⁻¹ ; for comparison between abiotic and biotic
154	Fe(II) oxidations) and specific Fe(II) oxidation rates (mg-Fe h ⁻¹ cell ⁻¹ ; for comparison
155	between Sulfolobus strains) were calculated.
156	
157	Fe(III) reduction test using growth-uncoupled cell-suspensions under anaerobic /
157 158	Fe(III) reduction test using growth-uncoupled cell-suspensions under anaerobic / micro-aerobic conditions
158	micro-aerobic conditions
158 159	micro-aerobic conditions Anaerobic experiments: Each of the five strains was pre-grown, harvested,

162	rubber stoppers; pH 2.0) containing 10 mM Fe(III) (as Fe ₂ (SO ₄) ₃ • nH ₂ O). One millimolar
163	glucose (N ₂ -purged) and 0.01% S ^{0} were tested as electron donor (except for the case of <i>S</i> .
164	metallicus Kra23, where only S ⁰ was used). All solutions used for anaerobic experiments
165	were N ₂ -purged until the DO (dissolved oxygen) level reached $< 0.1 \text{ mg L}^{-1}$ (DO-14P;
166	TOA-DKK). After that, all media preparations were conducted in the anaerobic chamber
167	(Coy laboratory products). Sealed serum bottles were taken out of the anaerobic chamber
168	and incubated (unshaken, 70°C).
169	Micro-aerobic experiments: Each of the five strains was pre-grown, harvested,
170	washed, and finally re-suspended (to a final cell density of 1×10^9 cells mL ⁻¹) in 15 mL of
171	HBS medium (in 15 mL Falcon tubes to allow little headspace for aeration; pH 2.0)
172	containing 10 mM Fe(III) (as Fe ₂ (SO ₄) ₃ · nH ₂ O). Reagents were not N ₂ -purged. One
173	millimolar glucose was used as electron donor (except that 0.01% S^{0} was used for
174	autotrophic S. metallicus Kra23). The Falcon tubes were incubated unshaken at 70°C.
175	Samples were regularly taken (using syringe needles for anaerobic experiments)
176	to monitor concentrations of Fe(II) and total soluble Fe. All of the experiments were
177	conducted in duplicates.
178	The specific Fe(III) reduction rates (mg-Fe h ⁻¹ $(1 \times 10^{10} \text{ cells})^{-1}$ for anaerobic
179	experiments; mg-Fe h ⁻¹ $(1.5 \times 10^{10} \text{ cells})^{-1}$ for micro-aerobic experiments) were calculated.

chamber, phase contrast microscope) and concentrations of Fe(II) and total soluble Fewere regularly monitored from duplicate flasks.

200

201

202 Cr(VI) reduction test using growth-uncoupled cell-suspensions under micro-aerobic conditions 203 Cell-suspensions (1×10⁹ cells mL⁻¹; in 50 mL HBS medium (pH 2.0) in 50 mL Falcon 204 tubes) were prepared for each strain as described in previous sections. One millimolar 205 glucose (or 0.01% S⁰ in the case of S. metallicus Kra23) and 0.2 mM Cr(VI) (as 206 Na₂CrO₄·4H₂O) were added to the cell-suspensions, which were then incubated at 70°C 207 without shaking. Samples were regularly taken to monitor concentrations of Cr(VI) and 208 total soluble Cr. All of the experiments were carried out in duplicates. 209 210 Solution analysis 211 Liquid samples were filtered using 0.20-µm cartridge filters to determine concentrations 212 of Fe(II) and total soluble Fe (o-phenanthroline method; Caldwell and Adams 1946, using 213

- ascorbic acid as a reducing agent), Cr(VI) (diphenylcarbazide method; Noroozifar and
- 215 Khorasani-Motlagh 2003), and total soluble Cr (ICP-OES; SEIKO Vista-MPX).

216 **Results and Discussion**

217 Comparison of Fe(II) oxidation by five *Sulfolobus* strains in growth-uncoupled cell-

- 218 suspensions under aerobic condition
- Fe(II) oxidation in cell-suspensions of five *Sulfolobus* strains are compared in Figure 1. No further cell growth was observed in cell-suspensions during the experiments by cell counting (data not shown). A decrease in total Fe concentrations in cellsuspensions during Fe(II) oxidation experiments was attributed to Fe(III) precipitation (data not shown), rather than Fe sorption on cell surfaces. Thus, any decline in Fe(II) was attributed to oxidation of Fe(II) to Fe(III).
- The Fe(II) oxidation rates (mg-Fe h⁻¹ for comparison between abiotic and biotic 225 Fe(II) oxidations) and specific Fe(II) oxidation rates (mg-Fe h⁻¹ cell⁻¹ for comparison 226 227 between Sulfolobus strains) were calculated (using the data points from designated hours in Figure 1) and listed in Table 1. S. solfataricus P1 and S. shibatae B12 showed only 228 negligible Fe(II) oxidation, compared with the abiotic counterpart. The most effective 229 Fe(II) oxidation was observed in cell-suspensions of S. metallicus Kra23, followed by S. 230 tokodaii 7 (Figure 1). It should be noted that the final cell density regularly achieved in 231 232 pre-grown cultures (for preparation of cell-suspensions) of strictly autotrophic S. metallicus Kra23 (approx. 2×108 cells mL⁻¹) was much lower than that of heterotrophic 233

234	S. tokodaii 7 (approx. 5×10^8 cells mL ⁻¹). Therefore, the specific Fe(II) oxidation rate (mg-
235	Fe h ⁻¹ cell ⁻¹) was over 4 times greater with <i>S. metallicus</i> Kra23 than with <i>S. tokodaii</i> 7
236	(Table 1). S. acidocaldarius 98-3 was less effective Fe(II) oxidizer than S. metallicus
237	Kra23 and <i>S. tokodaii</i> 7, but marginally more effective than the rest (Figure 1; Table 1).
238	Theoretical conversion from per cell to per g-protein (Table 1) found that the specific
239	Fe(II) oxidation rate (mg-Fe h ⁻¹ g-protein ⁻¹) of <i>S. metallicus</i> Kra23 is still much smaller
240	than those of Fe(II) oxidizing bacteria (Johnson et al., 2012), although a simultaneous
241	comparison test would be needed to confirm this observation. Bathe and Norris (2007)
242	reported that S. tokodaii readily oxidized Fe(II) during heterotrophic growth on yeast
243	extract, but its autotrophic Fe(II) oxidation was much weaker than that by <i>S. metallicus</i> .
244	Our results demonstrated that S. metallicus Kra23 and S. tokodaii 7 oxidize Fe(II) much
245	more readily than the others tested. Since S. metallicus is the only known strictly
246	autotrophic type strain in the genus (Huber and Stetter 1991), it is reasonable that this
247	species oxidizes Fe(II) much more effectively than all the others to support its growth.
248	Putative genes possibly involved in Fe(II) oxidation / Fe(III) reduction in
249	Sulfolobus spp. were summarized in Supplemental Table 1. Based on the available
250	genomic sequences, a series of sox, cbs and ods genes (likely involved in the respiratory
251	chains) were evident in Sulfolobus spp. including both Fe(II)-oxidizing (S. tokodaii) and

252	non- or minor-Fe(II) oxidizing (S. solfataricus or S. acidocaldarius, respectively) strains.
253	A clear difference was the presence of the fox gene cluster solely in Fe(II)-oxidizing
254	strains (S. metallicus and S. tokodaii), as was previously suggested by Bathe and Norris
255	(2007). Whether or not Sox, Cbs, Ods and/or proteins with some homology to Fe(II)-
256	upregulated genes of At. ferrooxidans (Quairini et al., 2009; Supplemental Table 1) are
257	possibly responsible for any minor Fe(II) oxidation (e.g., by S. acidocardarius) is yet
258	unclear.

260 **Comparison of Fe(III) reduction by five** *Sulfolobus* strains in growth-uncoupled cell-

261 suspensions under anaerobic / micro-aerobic conditions

262	Among the five Sulfolobus strains tested, only S. metallicus Kra23 is known to
263	grow autotrophically on S^0 as energy source (Huber and Stetter 1991). Other five strains
264	grow heterotrophically on glucose as sole electron donor (Grogan 1989; Grogan et al.
265	1990; Suzuki et al. 2002; Masaki et al. 2016). The following Fe(III) reduction
266	experiments therefore used S ⁰ and glucose as electron donor for <i>S. metallicus</i> Kra23 and
267	the rest, respectively.

Fe(III) reduction in cell-suspensions of five *Sulfolobus* strains under anaerobic and micro-aerobic conditions are compared in Figure 2 and 3, respectively. No further cell growth was seen in cell-suspensions during the experiments by cell counting (data not shown). The rates of Fe(III) reduction (mg-Fe h⁻¹) and specific Fe(III) reduction (mg-Fe h⁻¹ cell⁻¹) were calculated (using the data points from designated hours in Figure 2 and 3) and listed in Table 2.

S. metallicus Kra23, the strongest Fe(II) oxidizer among the five strains, was shown to be also the most effective Fe(III) reducer under anaerobic conditions (Figure 276 2a; Table 2). When tested micro-aerobically, however, its Fe(III)-reducing ability was 277 almost totally suppressed (Figure 3a; Table 2).

S. tokodaii 7 readily reduced Fe(III) under anaerobic conditions with both S⁰ and 278 glucose as electron donor (Figure 2b; Table 2). Under micro-aerobic conditions, however, 279 Fe(III) reduction started off to build up Fe(II) for the first 20 hours, but later switching to 280 an apparent Fe(II) oxidation phase (20-65 hours), which was finally followed solely by 281 steady Fe(III) reduction (Figure 3b). The Fe(II) hump between 0-65 hours in glucose-free 282 controls mimicked (but about half) that with glucose addition (Figure 3b). This is likely 283 due to the presence of residual intracellular electron carriers, such as NADH, accumulated 284 during pre-growth (Magnuson et al. 2000; Okibe et al., 2017). Therefore, this observation 285 286 may be explained by a gradual and steady depletion of oxygen in the system as follows: During 0-20 hours, electrons (deriving from externally added glucose plus residual 287

intracellular NADH) were supposedly accepted by both oxygen and some Fe(III). Buildup of a certain amount of the resultant Fe(II) may have triggered Fe(II) oxidation with the
residual oxygen (20-65 hours). Eventually, the oxygen was consumed to support steady
Fe(III) reduction (after 65 hours).

S. solfataricus P1 also displayed fairly strong Fe(III)-reducing ability (more readily with glucose than S^0 as electron donor) under anaerobic conditions (Figure 2d; Table 2), which was slightly negatively affected by the presence of residual oxygen when glucose was used as electron donor (Figure 3d; Table 2).

S. acidocaldarius 98-3 and S. shibatae B12 showed the least Fe(III) reduction 296 among the five strains under anaerobic conditions (glucose was the better electron donor 297 than S⁰ for Fe(III) reduction in both strains) (Figure 2c, e; Table 2). However, Fe(III) 298 reduction by the two strains were greatly facilitated under micro-aerobic conditions, 299 showing the most effective Fe(III) reduction among the five strains (Figure 3c, e; Table 300 2). Again, this was not caused by a cell number increase in the presence of residual oxygen, 301 since there was no further cell growth in cell-suspensions during the experiment (by cell 302 counting; data not shown). A similar observation was reported with Fe(III) reduction by 303 304 Acidiphilium spp.: Whilst most strains do not grow under strictly anoxic conditions in the presence of Fe(III), growth-coupled Fe(III) reduction was most readily observed under 305

306	micro-aerobic conditions (Johnson and McGinness, 1991; Bridge and Johnson, 2000).
307	Fe(III) reduction was constitutive in A. cryptum SJH but was inducible in A. acidophilum
308	and low oxygen concentrations, rather than Fe(III) was suggested to induce a putative
309	"iron reductase" in the latter (Bridge and Johnson, 2000; Johnson et al., 2012). This could
310	possibly be the case also for some Sulfolobus spp Relatively high standard redox
311	potential of Fe(III)/Fe(II) (+0.76V; pH 2.0), comparable to that of $1/2O_2/H_2O$ (+0.82V),
312	makes iron favorable alternative electron acceptor for acidophiles (Madigan and Martinko
313	2006). The results suggested that this is also applicable to Sulfolobus spp. under
314	both/either microaerobic and/or anaerobic condition.
314315	both/either microaerobic and/or anaerobic condition. Theoretical conversion of the specific Fe(III) reduction rate from per cell to per
315	Theoretical conversion of the specific Fe(III) reduction rate from per cell to per
315 316	Theoretical conversion of the specific Fe(III) reduction rate from per cell to per g-protein (Table 2) indicated that Fe(III) reduction by <i>S. metallicus</i> Kra23 (anaerobic
315316317	Theoretical conversion of the specific Fe(III) reduction rate from per cell to per g-protein (Table 2) indicated that Fe(III) reduction by <i>S. metallicus</i> Kra23 (anaerobic condition) is comparable to that reported in other bacterial counterparts (Johnson et al.,
315316317318	Theoretical conversion of the specific Fe(III) reduction rate from per cell to per g-protein (Table 2) indicated that Fe(III) reduction by <i>S. metallicus</i> Kra23 (anaerobic condition) is comparable to that reported in other bacterial counterparts (Johnson et al., 2012). However, again, a simultaneous comparison is necessary to verify this (Johnson et

322 anaerobic conditions

323 Linear correlations between cell densities and the amounts of Fe(III) reduced

were observed in *S. tokodaii* 7 (Figure 4b), *S. solfataricus* P1 (Figure 4d) and *S. shibatae*B12 (Figure 4e) (Figure 4f), indicating that cell growth of these three strains is supported
by Fe(III) reduction using glucose as electron donor.

In the case of other two strains, S. metallicus Kra23 and S. acidocaldarius 98-3, 327 Fe(III) reduction did occur by the existing cells, but no correlation between cell growth 328 and Fe(III) reduction was found (Figure 4a, c). Interestingly, the microbial capability of 329 growth-coupled Fe(III) respiration (Figure 4) did not necessarily correspond to efficient 330 Fe(III) reduction in its growth-uncoupled cell suspensions (Figures 2, 3). The results from 331 a series of Fe(III) reduction experiments using cell-suspensions (Figure 2, 3) revealed that 332 all tested Sulfolobus spp. showed major Fe(III) reduction compared to sterile controls, 333 either/both under anaerobic (Figure 2) or/and micro-aerobic (Figure 3) conditions, as 334 335 summarized as follows:

(i) *S. metallicus* Kra23 (Figures 2-4a): Strong Fe(III) reducer under anaerobic
conditions, though incapable of anaerobic growth using S⁰ and Fe(III) as sole electron
donor and acceptor, respectively; residual oxygen significantly suppresses its Fe(III)
reduction. (ii) *S. tokodaii* 7 (Figures 2-4b): Readily reduces Fe(III) under anaerobic
conditions; its Fe(II) oxidation can overtake Fe(III) reduction in the presence of residual
oxygen, exhibiting apparent alternate switch on/off of Fe(III) reduction and Fe(II)

342	oxidation; anaerobic cell growth coupled with Fe(III) reduction using glucose as sole
343	electron donor. (iii) S. solfataricus P1 (Figures 2-4d): Readily reduces Fe(III) under both
344	anaerobic and micro-aerobic conditions; anaerobic cell growth likely coupled with Fe(III)
345	reduction using glucose and Fe(III) as sole electron donor and acceptor, respectively. (iv)
346	S. acidocaldarius 98-3 (Figures 2-4c): No clear evidence for anaerobic Fe(III) reduction,
347	whilst micro-aerobic conditions significantly facilitate its Fe(III)-reducing ability; no
348	anaerobic growth observed using glucose and Fe(III) as sole electron donor and acceptor,
349	respectively. (v) (Figures 2-4e) S. shibatae B12: Anaerobic Fe(III) reduction is negligible,
350	whilst micro-aerobic conditions significantly accelerate its Fe(III)-reducing ability;
351	capable of anaerobic growth using Fe(III) as sole electron acceptor (glucose as electron
352	donor).
353	Since genomes of <i>Sulfolobus</i> spp. do not possess cytochromes c , their Fe(III)
354	reduction mechanisms seem to take place differently from that of F. placidus
355	(Supplemental Table 1; Smith et al., 2015). However, genomic sequence analysis detected
356	Ferp_1268 (4Fe-4S ferredoxin iron-sulfur binding domain protein) and Ferp_1269 (NrfD;
357	polysulphide reductase)-like proteins in S. tokodaii, S. acidocaldarius and S. solfataricus
358	(Supplemental Table 1). By utilizing different cytochrome systems (e.g., cytochrome
359	<i>b</i> 558/566, as was suggested in Fe(II) oxidation mechanism) it may still be possible that 4Fe-

360	4S ferredoxin and/or polysulphide reductase-type protein are involved in the Fe(III)
361	reduction mechanism of Sulfolobus spp Nonetheless, such hypothesis requires detailed
362	biochemical studies to be clarified.
363	
364	Comparison of Cr(VI) reduction by five <i>Sulfolobus</i> strains in growth-uncoupled cell-
365	suspensions under micro-aerobic condition
366	Following the previous observation that Fe(III)-reducing Sulfolobus sp. GA1 is
367	also capable of Cr(VI) reduction to Cr(III) (Masaki et al. 2016), this study tested five
368	Sulfolobus strains to investigate whether or not Cr(VI)-reducing ability is also widely
369	found across different representative Sulfolobus species.
370	No further cell growth was observed in cell-suspensions during the experiments
371	(by cell counting; data not shown). Since no changes in total soluble Cr concentration
372	were observed throughout the experiment (data not shown), Cr(VI) reduced by Sulfolobus
373	strains remained soluble mostly in the form of Cr(III). Liquid media were free of any
374	trace of iron and no noticeable abiotic reduction of Cr(VI) was observed in sterile controls
375	(Figure 5).
376	All five strains were found to reduce Cr(VI), though to a different extent (Figure
377	5) and with different specific Cr(VI) reduction rates (Table 3). Interestingly, the trend in

degree of Fe(III) reduction by five strains (under the same micro-aerobic conditions) did
not necessarily correspond to that of Cr(VI) reduction: e.g., *S. acidocaldarius* 98-3 and *S. shibatae* B12 showed the highest Fe(III) reduction under micro-aerobic conditions
(Figure 3c, e, respectively). Nonetheless, the former was the least effective Cr(VI) reducer
while the latter was the most effective among the five strains.

Oxido-reduction of metal species is often mediated by cytochromes in electron 383 transport chains: In the case of acidophilic bacteria, cytochromes c in cell membranes 384 were found to be involved in anaerobic Fe(III) reduction by At. ferrooxidans (Ohmura et 385 al. 2002). Cr(VI) reduction by Fe(III)-respiring acidophile A. cryptum was also reported 386 to involve cytochromes c (Magnuson et al. 2010). In the case of Fe(III)-reducing 387 neutrophiles, cytochromes c were found to function in Fe(III) reduction by Geobacter 388 389 sulfurreducens (Magnuson et al. 2000) and both Fe(III) and Cr(VI) reduction by Shewanella putrefaciens (Beliaev et al. 2001). In the latter bacterium, Cr(VI) reductase 390 was reported to be distinct from Fe(III) reductase, and was not irreversibly inhibited by 391 oxygen (Myers et al. 2000). The fact that the trend in Fe(III) reduction by five Sulfolobus 392 strains does not always match that in Cr(VI) reduction implies that different mechanisms 393 394 may be involved in microbial reduction of the two metals in Sulfolobus spp., as was the case with Shewanella putrefaciens (Beliaev et al. 2001). 395

397 **Conclusions**

This study clarified the presence and the degree of Fe oxido-reduction abilities in five 398 399 representative Sulfolobus strains (S. metallicus Kra23; S. tokodaii 7; S. acidocaldarius 98-3; S. solfataricus P1; S. shibatae B12). The degree of Fe(II)-oxidizing abilities were 400 found to differ largely between the strains. Three strains (S. tokodaii 7, S. solfataricus P1 401 and S. shibatae B12) were capable of growth via Fe(III) respiration. All five strains 402 displayed Fe(III)-reducing abilities in growth-uncoupled cell-suspensions: Nonetheless, 403 Fe(III)-reducing ability in each strain responded significantly differently to the oxygen 404 level. Highly-toxic Cr(VI) was also reduced in growth-uncoupled cell-suspensions of all 405 strains, though to a varying degree. The trend of Fe(III) reduction in five strains did not 406 correspond to that of Cr(VI), suggesting different mechanisms being involved in Fe(III) 407 and Cr(VI) reduction in Sulfolobus spp. For being a major member in the acidophile 408 community, Fe redox transformation in the genus Sulfolobus remained so far largely 409 ambiguous. The results of this study provide comprehensive understandings over the 410 genus Sulfolobus on its Fe redox transformation capabilities and the potential utility of 411 412 the Sulfolobus spp. for biohydrometallugical applications.

414	Acknowledgments
-----	-----------------

415 Y.M. is thankful to financial support provided by the Kyushu University Advanced416 Graduate Program in Global Strategy for Green Asia.

417

418 **References**

- 419 Auernik KS, Maezato Y, Blum PH, Kelly RM. 2008. The genome sequence of the metal-
- 420 mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides
- 421 insights into bioleaching-associated metabolism. Appl Environ Microbiol 74: 682-692.

422

- 423 Bathe S, Norris PR. 2007. Ferrous iron- and sulfur-induced genes in *Sulfolobus metallicus*.
- 424 Appl Environ Microbiol 73:2491-2497.

425

426	Beliaev AS, Saffarini D.	A, McLaughlin JL	, Hunnicutt D. 2001	. MtrC, an outer membrane
-----	--------------------------	------------------	---------------------	---------------------------

- 427 decahaem *c* cytochrome required for metal reduction in *Shewanella putrefaciens* MR-1.
- 428 Mol Microbiol 39:722-730.

- 430 Bonnefoy V, Holmes DS. 2012. Genomic insights into microbial iron oxidation and iron
- 431 uptake strategies in extremely acidic environments. Environ Microbiol 14:1597-1611.

433	Bridge TAM, Johnson DB. 1998. Reduction of soluble iron and reductive dissolution of
434	ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl
435	Environ Microbiol 64:2181-2186.
436	
437	Brock TD, Brock KM, Belly RT, Weiss RL. 1972. Sulfolobus: A new genus of sulfur-
438	oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54-68.
439	
440	Brock TD, Cook S, Petersen S, Mosser JL. 1976. Biogeochemistry and bacteriology of
441	ferrous iron oxidation in geothermal habitats. Geochim Cosmochim Ac 40:493-500.
442	
443	Brock TD, Gustafson J. 1976. Ferric iron reduction by sulfur- and iron-oxidizing bacteria.
444	Appl Environ Microbiol 32:567-571.
445	
446	Caldwell DH, Adams RB. 1946. Colorimetric determination of iron in water with o-
447	phenanthroline. J Am Water Works Ass 38:727-730.
448	

449	Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M,
450	Zibat A, Klenk HP, Garrett RA. 2005. The genome of Sulfolobus acidocaldarius, a model
451	organism of the Crenarchaeota. J Bacteriol 187:4992-4999.
452	
453	Coupland K, Johnson DB. 2008. Evidence that the potential for dissimilatory ferric iron
454	reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiol Lett
455	279:30-35.
456	
457	Cummings DE, Fendorf S, Singh N, Sani RK, Peyton BM, Magnuson TS. 2007.
458	Reduction of Cr(VI) under acidic conditions by the facultative Fe(III)-reducing bacterium
459	Acidiphilium cryptum. Environ Sci Technol 41:146-152.
460	
461	Dean JA. 1999. Lange's Handbook of Chemistry 15th edn, New York:McGraw-Hill.
462	Gautier V, Escobar B, Vargas T. 2008. Cooperative action of attached and planktonic
463	cells during bioleaching of chalcopyrite with Sulfolobus metallicus at 70°C.
464	Hydrometallurgy 94:121-126.
465	

466	Fredrickson LK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS,
467	Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JLM,
468	Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM. 2008. Towards
469	environmental systems biology of Shewanella. Nature Rev Microbiol 6:592-603.
470	
471	Grogan D, Palm P, Zillig W. 1990. Isolate B12, which harbours a virus-like element,
472	represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp.
473	nov. Arch Microbiol 154:594-599.
474	
475	Grogan DW. 1989. Phenotypic characterization of the archaebacterial genus Sulfolobus:
476	comparison of five wild-type strains. J Bacteriol 171:6710-6719.
477	
478	Hallberg KB, Grail BM, du Plessis CA, Johnson DB. 2011a. Reductive dissolution of
479	ferric iron minerals: A new approach for bio-processing nickel laterites. Miner Eng
480	24:620-624.

482	Hallberg KB, Hedrich S, Johnson DB. 2011b. Acidiferrobacter thiooxydans, gen. nov. sp.
483	nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of
484	the family <i>Ectothiorhodospiraceae</i> . Extremophiles 15:271-279.
485	
486	Hallberg KB, Toril EG, Johnson DB. 2010. Acidithiobacillus ferrivorans, sp. nov.;
487	facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated
488	from metal mine-impacted environments. Extremophiles 14:9-19.
489	
490	Hiller A, Henninger T, Schäfer G, Schmidt CL. 2003. New genes encoding subunits of a
491	cytochrome bc_1 -analogous complex in the respiratory chain of the
492	hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius. J Bioenerg Biomembr
493	35:121-131.
494	
495	Huber G, Stetter KO. 1991. Sulfolobus metallicus, sp. nov., a novel strictly

chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. Syst Appl 496 Microbiol 14:372-378. 497

Jan RL, Wu J, Chaw SM, Tsai CW, Tsen SD. 1999. A novel species of thermoacidophilic 498

archaeon, Sulfolobus yangmingensis sp. nov. Int J Syst Bacteriol 49:1809-1816. 499

501	Johnson DB, Bridge TAM. 2002. Reduction of ferric iron by acidophilic heterotrophic
502	bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp. J
503	Appl Microbiol 92:315-321.
504	
505	Johnson DB, Grail BM, Hallberg KB. 2013. A new direction for biomining: Extraction
506	of metals by reductive dissolution of oxidized ores. Minerals 3:49-58.
507	
508	Johnson DB, Kanao T, Hedrich S. 2012. Redox transformations of iron at extremely low
509	pH: fundamental and applied aspects. Front Microbiol 3:1-13.
510	
511	Johnson DB, McGinness S. 1991. Ferric iron reduction by acidophilic heterotrophic
512	bacteria. Appl Environ Microbiol 57:207-211.
513	
514	Johnson DB, Stallwood B, Kimura S, Hallberg KB. 2006. Isolation and characterization
515	of Acidicaldus organivorus, gen. nov., sp. nov.: a novel sulfur-oxidizing, ferric iron-
516	reducing thermo-acidophilic heterotrophic Proteobacterium. Arch Microbiol 185:212-
517	221.

Johnson DB. 2012. Reductive dissolution of minerals and selective recovery of metals 519 using acidophilic iron- and sulfate-reducing acidophiles. Hydrometallurgy 127-128:172-520 177. 521 522 **X7 TT** V T-1-1-1: M C-1-• • - - -.... **.**... **.**... M Dak

523	Kawarabayasi Y, Hino Y, Horikawa H, Jin-no K, Takanashi M, Sekine M, Baba
524	S, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Otsuka
525	R, Nakazawa H, Takamiya M, Kato Y, Yoshizawa T, Tanaka T, Kudoh Y, Yamazaki
526	J, Kushida N, Oguchi A, Aoki K, Masuda S, Yanagii M, Nishimura M, Yamagishi
527	A, Oshima T, Kikuchi H. 2001. Complete genome sequence of an aerobic
528	thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res 8:123-140.
529	
530	Loferer-Krößbacher M, Klima J, Psenner R. 1998. Determination of bacterial cell dry
531	mass by transmission electron microscopy and densitometric image analysis. Appl

Environ Microbiol 64:688-694. 532

533

Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar 534 M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso 535

536	C, Nevin KP. 2011. Geobacter: The microbe electric's physiology, ecology, and practical
537	applications. Adv Microb Physiol 59:1-100.

Madigan MT, Martinko JM. 2006. Brock Biology of Microorganisms 11th edn, NewJersey:Pearson.

541

538

542 Madigan MT, Martinko JM, Clark DP, Stahl DA. 201. Brock Biology of Microorganisms

543 13th edn, Benjamin-Cummings Publishing Company.

544

- 545 Magnuson TS, Hodges-Myerson AL, Lovley DR. 2000. Characterization of a membrane-
- bound NADH-dependent Fe^{3+} reductase from the dissimilatory Fe^{3+} -reducing bacterium

547 *Geobacter sulfurreducens*. FEMS Microbiol Lett 185:205-211.

548

```
549 Magnuson TS, Swenson MW, Paszczynski AJ, Deobald LA, Kerk D, Cummings DE.
```

550 2010. Proteogenomic and functional analysis of chromate reduction in Acidiphilium

cryptum JF-5, an Fe(III)-respiring acidophile. Biometals 23:1129-1138.

553	Masaki Y, Hirajima T, Sasaki K, Okibe, N. 2015. Bioreduction and immobilization of
554	hexavalent chromium by the extremely acidophilic Fe(III)-reducing bacterium Acidocella
555	aromatica strain PFBC. Extremophiles 19:495-503.
556	
557	Masaki Y, Tsutsumi K, Hirano S, Okibe N. 2016. Microbial community profiling of
558	Chinoike Jigoku ("Blood Pond Hell") hot spring in Beppu, Japan and isolation and
559	characterization of Fe(III)-reducing Sulfolobus sp. strain GA1. Res Microbiol 167:595-
560	603.

562	Myers CR, Carstens BP, Antholine WE, Myers JM. 2000. Chromium(VI) reductase
563	activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella
564	putrefaciens MR-1. J Appl Microbiol 88:98-106.
565	

568 Microbiol Biotechnol 98:6297-6305.

⁵⁶⁶ Ñancucheo I, Grail BM, Hilario F, du Plessis C, Johnson DB. 2014. Extraction of copper

⁵⁶⁷ from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution. Appl

570	Neidhardt FC, Ingraham JL, Schaechter M. 1990. Physiology of the bacterial cell: a
571	molecular approach. Sinauer Associates, Sunderland, Mass.
572	
573	Noroozifar M, Khorasani-Motlagh M. 2003. Specific extraction of chromium as
574	tetrabutylammonium-chromate and spectrophotometric determination by
575	diphenylcarbazide: speciation of chromium in effluent streams. Anal Sci 19:705-708.
576	
577	Ohmura N, Sasaki K, Matsumoto N, Saiki H. 2002. Anaerobic respiration using Fe ³⁺ , S ⁰ ,
578	and H_2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J
579	Bacteriol 184:2081-2087.
580	
581	Osorio H, Mangold S, Denis Y, Ñancucheo I, Esparza M, Johnson DB, Bonnefoy V,
582	Dopson M, Holmes DS. 2013. Anaerobic sulfur metabolism coupled to dissimilatory iron
583	reduction in the extremophile Acidithiobacillus ferrooxidans. Appl Environ Microbiol
584	79:2172-2181.

586	Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V. 2009.
587	Extending the models for iron and sulfur oxidation in the extreme acidophile
588	Acidithiobacillus ferrooxidans. BMC Genomics 10:394.
589	
590	Sandström Å, Shchukarev A, Paul J. 2005. XPS characterisation of chalcopyrite
591	chemically and bio-leached at high and low redox potential. Miner Eng 18:505-515.
592	
593	She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC,
594	Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de
595	Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME,
596	Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett
597	RA, Ragan MA, Sensen CW, Van der Oost J. 2001. The complete genome of the
598	crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835-7840.
599	Smith JA, Aklujkar M, Risso C, Leang C, Giloteaux L, Holmes DE. 2015. Mechanisms
600	involved in Fe(III) respiration by the hyperthermophilic archaeon Ferroglobus placidus.
601	Appl Environ Microbiol 81:2735-2744.
602	

603	Suzuki T, Iwasaki T, Uzawa T, Hara K, Nemoto N, Kon T, Ueki T, Yamagishi A, Oshima
604	T. 2002. Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the
605	genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6:39-44.
606	
607	Urbieta MS, Rascovan N, Vázquez MP, Donati E. 2017. Genome analysis of the
608	thermoacidophilic archaeon Acidianus copahuensis focusing on the metabolisms
609	associated to biomining activities. BMC Genomics 18: 445.
610	
611	Vilcáez J, Suto K, Inoue C. 2008. Bioleaching of chalcopyrite with thermophiles:
612	Temperature-pH-ORP dependence. Int J Miner Process 88:37-44.
613	
614	Xiang X, Dong X, Huang L. 2003. Sulfolobus tengchongensis sp. nov., a novel
615	thermoacidophilic archaeon isolated from a hot spring in Tengchong, China.
616	Extremophiles 7:493-498.
617	
618	Zhu W, Xia J, Yang Y, Nie ZY, Zheng L, Ma CY, Zhang RY, Peng AA, Tang L, Qui GZ.
619	2011. Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in
620	bioleaching of chalcopyrite. Bioresour Technol 102:3877-3882.

- 622 Zillig W, Kletzin A, Schleper C, Holz I, Janekovic D, Hain J, Lanzendörfer M,
- 623 Kristjansson JK. 1993. Screening for Sulfolobales, their plasmids and their viruses in
- 624 Icelandic solfataras. Syst Appl Microbiol 16:609-628.
- 625

627 Figure 1.

- 628 Growth-uncoupled Fe(II) oxidation in cell-suspensions of five *Sulfolobus* strains (pH 2.0,
- 629 70°C, aerobic conditions): S. metallicus Kra23 (\blacktriangle , \triangle); S. tokodaii 7 (\blacksquare , \Box); S.
- acidocaldarius 98-3 (\blacklozenge , \diamondsuit); *S. solfataricus* P1 (\blacktriangledown , \bigtriangledown); *S. shibatae* B12 (\blacklozenge , \bigcirc); sterile
- $(4, \times)$ (duplicate data are individually plotted). The initial cell densities of cell-
- 632 suspensions (naturally achieved after pre-growing each strain) were 2×10^8 cells mL⁻¹ (*S*.
- 633 metallicus Kra23; S. acidocaldarius 98-3; S. solfataricus P1) and 5×10^8 cells mL⁻¹ (S.
- 634 tokodaii 7; S. shibatae B12).
- 635

```
636 Figure 2.
```

Growth-uncoupled Fe(III) reduction in cell-suspensions of five *Sulfolobus* strains (pH 2.0,
70°C, anaerobic conditions): (a) *S. metallicus* Kra23, (b) *S. tokodaii* 7, (c) *S. acidocaldarius* 98-3, (d) *S. solfataricus* P1, (e) *S. shibatae* B12, (f) sterile controls.
Glucose (●, ○) or elemental sulfur (▲, △) was used as electron donor. Solid or broken
lines indicate concentrations of total soluble Fe or Fe(II), respectively. Duplicate data are
individually plotted.

644 **Figure 3**.

645	Growth-uncoupled	Fe(III) reduction in cell-s	uspensions of five	Sulfolobus strains (pH 2.0.

- 646 70°C, micro-aerobic conditions): (a) S. metallicus Kra23 (0-25 h), (b) S. tokodaii 7 (0-25
- 647 h), (c) S. acidocaldarius 98-3 (0-100 h), (d) S. solfataricus P1 (0-25 h), (e) S. shibatae
- B12 (0-100 h), (f) sterile controls (0-100 h). Glucose (\bigcirc , \bigcirc) or elemental sulfur (\blacktriangle ,
- 649 \triangle) was used as electron donor. Electron-donor-free controls (\blacksquare , \Box) were also prepared.
- 650 Solid or broken lines indicate concentrations of total soluble Fe or Fe(II), respectively.
- 651 Duplicate data are individually plotted.

652

653 **Figure 4**.

Correlation between anaerobic cell growth and the amount of Fe(III) reduced by five *Sulfolobus* strains (pH 2.0, 70°C): (a) *S. metallicus* Kra23, (b) *S. tokodaii* 7, (c) *S. acidocaldarius* 98-3, (d) *S. solfataricus* P1, (e) *S. shibatae* B12. The initial Fe(III) concentration used were 0 ($\mathbf{\nabla}$), 5 ($\mathbf{\Theta}$), 10 ($\mathbf{\square}$), or 15 ($\mathbf{\Delta}$) mM. The number indicated for each plot indicates the time for sampling. Data points are the average of two measurements from duplicate flasks (error bars show the average difference in the two values).

1 Igui Co	662	Figure	5.
-----------	-----	--------	----

663	Cr(VI) reduction in cell-suspensions of five Sulfolobus strains (pH 2.0, 70°C, micro-
664	aerobic conditions): S. metallicus Kra23 (\blacktriangle , \triangle); S. tokodaii 7 (\blacksquare , \Box); S. acidocaldarius
665	98-3 (\blacklozenge , \diamondsuit); <i>S. solfataricus</i> P1 (\blacktriangledown , \bigtriangledown); <i>S. shibatae</i> B12 (\blacklozenge , \bigcirc); sterile controls with
666	glucose (+, ×) or elemental sulfur (\nearrow , \searrow) as electron donor. Duplicate data are
667	individually plotted.

Table 1.

670 Fe(II) oxidation rates and specific Fe(II) oxidation rates determined for five Sulfolobus

671 strains in growth-uncoupled cell suspensions.

Table 2.

Fe(III) reduction rates and specific Fe(III) reduction rates determined for five *Sulfolobus*strains in growth-uncoupled cells suspensions under anaerobic or micro-aerobic
conditions.

Table 3.

679 Cr(VI) reduction rates and specific Cr(VI) reduction rates determined for five *Sulfolobus*

680 strains in growth-uncoupled cell suspensions under micro-aerobic condition.

681

682 Supplemental Table 1.

- 683 Putative genes possibly involved in Fe(II) oxidation / Fe(III) reduction in *Sulfolobus* spp.
- searched using the KEGG (Kyoto Encyclopedia of Genes and Genomes) database.