九州大学学術情報リポジトリ Kyushu University Institutional Repository

CaMgSi_20_6-CaAl_2Si0_6系中の準安定Al-透輝石に ついて

進野 勇 九州大学教養部地学教室

https://doi.org/10.15017/4706226

出版情報:九州大学理学部研究報告.地質学之部.9(1), pp.73-84, 1969-03-15.九州大学理学部 バージョン: 権利関係:

CaMgSi₂O₆-CaAl₂SiO₆系中の準安定 Al-透輝石について

進 野

On the metastable Al-diopside in the system $CaMgSi_2O_6$ —CaAl₂SiO₆

勇

By

Isamu Shinno

(Abstract)

Revised equilibrium diagram of the diopside-rich portion of the system $CaMgSi_2O_6$ -CaAl₂SiO₆ is presented in Fig. 2. In the three and four phase regions of this diagram, metastable Al-diopsides which are oversaturated with $CaAl_2SiO_6$ crystallize initially from the glass as one phase. This excess $CaAl_2SiO_6$ gradually resolves into melilite, anorthite and olivine. Then the diffraction angles (2 θ) of 060 and 600 of Al-diopside regularly change just as presented in Figs. 4 & 5. So the regular changes of the 060 reflections against the time are analyzed kinematically on the bases of equation (1), (4) and (5). The results are that the metastable Al-diopside belonging to the same phase area has the same relaxation time and the common order of reaction and activation energies.

The Mg-Al distribution constants in coexisting Al-diopside and melilite are obtained at 1200-1220 °C in assuming both the minerals to be ideal.

- (1) $-df/dt = 1/\tau (f-f_0) + C$
- (4) $-df/dt = K (f-f_0/F-f_0)^n$
- (5) Arrhenius equation
- f: CaAl₂SiO₆ mol % in metastable Al-diopside at fixed temperature
- f₀: CaAl₂SiO₆ mol % in equilibrated Al-diopside
- τ : relaxation time
- F: $CaAl_2SiO_6$ mol % in glass to be used as starting materials
- n: order of reaction
- K: constant of reaction rate
- C: constant

I. は じ め に

一般に天然の輝石中の四配位,六配位を一番多く置 換しているのはアルミニウムイオンであり,しかもそ の置換量が生成条件である温度, 圧力, 化学的環境を 著しく反映しているらしいことは古くから言及され, 実験的にも 多くの 研究がある (Segnit 1953, 1956; SAKATA 1957; KUSHIRO 1960; NEUFVILLE et al. 1961; CLARK et al. 1961; LEBAS 1962)。

日本鉱物学会昭和43年度年会において講演, 1968年8月1日受理 進野勇:九州大学教養部地学教室

Fig. 1 The position of $CaMgSi_2O_6$ - $CaAl_2SiO_6$ system in Al_2O_3 - $CaO-MgO-SiO_2$ tetrahedron. Main rock-forming minerals diopside, olivine, anorthite, and melilite exist in the system. Also the akermanite-gehlenite system is nearly parallel to the system. Sp=spinel, Fo= forsterite, En=enstatite, Pyr=pyrope, Di= diopside, An=anorthite, Tch=Tschermak's molecule, Ge=gehlenite, Gr=grossularite, Ak =akermanite, Wo=wollastonite, La=larnite.

第1図にここで扱う CaMg Si₂O₆—CaAl₂ SiO₆系の 位置を CaO—Al₂O₈—MgO—SiO₂ の正四面体中に 投影して示す。本系には透輝石はもちろん灰長石,黄 長石,かんらん石等のおもな造岩鉱物が出現するので, この四面体中での安定領域を明確にすることは重要で ある。本系はまた Ak-Ge 系と平行的な位置関係にあ り アルカリ 岩中では この両系の Al-透輝石と黄長石 が Mg, Al を一定の関係で分配しているはずであり, この分配律を実験的に明確にすることはアルカリ岩成 因論の一助にもなるであろう。輝石中の Si を特徴的 に Al が置換しているのもアルカリ岩中のものにおい てである (KUSHIRO, 1960)。

しかしこれら四成分系内での合成実験にはむずかし い問題が附随してくることが久城(1967)によっても 指摘されている。すなわち安定領域内の鉱物組合せと 全く異なる相が出現したり、あるいはその内の1つの 相のみが出現するので安定相を得ることがむずかしい のである。したがって Al を含んでいる状態図は必ず しも安定相の状態を示しているとはかぎらない。Al を 含まないものでも今後長期の実験で検討を要する。そ れは多くの従来の状態図が修正されたことでも明らか である。久城(1966)はこれらの数例について紹介し ている。

筆者は CaMgSi₂O₆—CaAl₂SiO₆ 系の中に, 2図 に示すように Diss+Mel+An と Di₇₆ Tch₂₄+Ak₆₀ Ge₄₀+An+Fo の領域に準安定相として過飽和に Al を含む一相の透輝石が存在することを見いだした。こ の輝石の格子定数を示す面指数,060,600の2 θ 値は Tch (CaAl₂SiO₆) と固溶している一相の Diss の 2 θ 値の変化の延長線上に点示される(第3図の黒丸参 照)。SAKATA (1957)はこの準安定相に気づかなかった ので Tch の固溶限界以上の実験結果は"day long" の実験としてしか認められない。

従来平衡に達する時間の解析は経験的に数回の実験 を繰返すことによって決定されたようである。SAKATA (1957)の実験あるいは後述するようにここで扱ってい る系の状態図, NEUFVILLE et al. (1961)が最初に完 成したものであるが、これらにおいて誤りを侵す危険 がある。

したがって本報告では合成実験というものを温度, 化学組成,(圧力)の各パラメーターを強制的に変化さ せ,非平衡なものを安定な相に近づけようとする操作 であり,またその過程を物理化学的に追求するもので あるというように理解してその扱い方を検討する。具 体的には高温で得られたものの急冷生成物であるガラ スや常温で安定な酸化物,炭酸塩の混合物をある高温 に保って合成して新しい相を得る。この相が準安定で あるので時間と温度の関与する活性化過程として扱わ ねばならないことになる。

II. 実 験 方 法

出発物質としてはガラスを用い急冷法で生成物を得 た。ガラスは第1表に示す試薬を所定の割合に配合し 自動めのう乳鉢でよく混合して 1600℃ 1時間で融し 急冷して 60 メッシュ以下の粉末にした。ガラスの均 一性と組成依存性を屈折率の測定から検討した。これ らの資料は第2表ならびに前著(1968)の第2図に与 えられている。またこれらの資料は SEGNIT (1953)の 資料と比較検討して試薬の純度,ガラスの均一性,組 成が確かめられた。著者(1968)は第1表の試薬から 作った透輝石の格子定数を CLARK et al. (1961)のも のと比較して試薬の検討を行った。さらに Al-透輝石 をガラスから晶出させ SAKATA (1957)の実験結果と比 較した。第3図に結果を示している。Tch 20 モル%

Table 1. The assay of reagent used in this experiment

Reagent	Assay	Main impurity
SiO_2	99.8*	water soluble substance 0.2%, alkali 0.08%,
CaCO ₃	99.8	free alkalis 0.01 %, magnesium & alkali 0.4 %
MgO	99. 5**	water soluble substance 0.34 %, sulfate 0.03 %
Al_2O_3	94.0	loss on ignition 5.0 %, $\rm Fe_2O_3$ 0.02 %, $\rm SiO_2$ 0.02 %

* ignition loss at 1100°c, 6 hours. 0.12 %.

** ignition loss at 1100°c, 6 hours. 1.19 %.

Table 2. Refractive index and composition of glass used in this experiment

Sample No.	Index	Composition *
Tch 10	1.604	10
Tch 14.3N**	1.604	14.3+SiO ₂ 2wt %
Tch 16.8N	1.604	16.8+SiO ₂ 2wt %
Tch 21.6N	1.604	21.6+SiO ₂ 2wt %
Tch 21.6	1.605	21.6
Tch 25	1.604	25
Tch 26.8N	1.605	26.8+SiO ₂ 2wt %
Tch 31.3N	1.604	31.3+SiO ₂ 2wt %
Tch 35	1.603	35
Tch 37.6	1.604	37.6

* CaAl₂SiO₆ mol % in diopside.

** contain nonstoichiometrically 2 wt % SiO₂. N=nonstoichiometric.

以上で不一致なのは実験時間の相違による。

電気炉の構造,試料の位置,温度制御機構はすでに 進野(1968)の第1図に与えられているのでここに説 明をはぶくが,準安定なAl-透輝石を温度と時間の函 数として扱うのに適した温度制御方式をとってある。

III. 実験結果と議論

A. Al-透輝石の安定領域

CaMgSi₂O₆—CaAl₂SiO₆ 系の状態図は 一応 NEU-FVILLE et al. (1961) によって完成されたが準安定相 に気づいていないので誤りがある。第2図に Al-透輝 石が安定に存在する領域だけを示す。固溶限界につい ては後述するが透輝石固溶体の固相線の形はまだはっ きりしない。 NEUFVILLE et al. (1961) の状態図の修 正された点は Diss+An+Mel+L の領域(準安定領 域) の消失と Tch 45 モル% 附近の安定領域におけ るかんらん石の出現とである。四相領域では Al-透輝

Fig. 2 Revised equilibrium diagram (Neu-FVILLE et al. 1961) of the diopside-rich portion of the system $CaMgSi_2O_6$ - $CaAl_2SiO_6$. Metastable Al-oversaturated diopsides exist in three or four phase regions.

石も黄長石も一定の組成をもつ。Tch 30 モル%以上 ではもはや Al は輝石構造に入れなくなり灰長石やか んらん石を作るほかに一定の Al, Mg を分配して黄長 石の Ak₆₀ Ge₄₀ を生成するからである。さらに 第 3 図に示すように Al-透輝石の 060, 600 の 2 θ の変化 から検討して Tch を完全に固溶するのは Tch 20 モ ル%位までである。これ以上 Tch が入りこむと構造 的に無理が生じ黄長石と灰長石を作り三相共存の領域 となる。しかし 060, 600 の組成依存率相当量より判 断してやや少なく Tch が入るらしい。高圧下ではこ の系は完全固溶をする。

透輝石中の Mg, Si を置換する Al の挙動はこの状 態図からもわかるように温度や組成に依存して複雑で ある。

B. 準安定 Al-透輝石について

準安定の意味

ここで準安定 Al-透輝石と呼ぶものに2つある。① 第2図において Diss と Diss+L の領域以外でガラ スから初期に晶出する輝石はすべて準安定である。す なわち一相領域ではガラスから瞬間的にガラスの組成 そのままの Diss が晶出する。しかし Tch 20モル%

Fig. 3 2θ angles of 060, 600 of metastable and stable Al-diopside against the same content of CaAl₂SiO₆ in original glass.

以上の ガラス から晶出する輝石は 1000~1220℃ 位 約20分でガラスの組成そのままの Al-透輝石である。 それは第3図に黒丸で示されるように、060、600が一 相領域の Diss のものの延長線上に点示される値をも つことからである。この 20 値は時間と共に第 4~5 図 で示されるような変化をたどる。このような事実を考 えると、準安定な Al-透輝石とはガラス組成、構造に 支配されて一時的に過飽和な Al を含むものをさすこ とになる。②輝石の組成からはずれて非化学量論的に SiO2 を過剰に含むものである。第2表のN をつけた ガラスから晶出する Al-透輝石がこれに当る。①と同 様に第4~5図で示されるように 060, 600 の 20 値 が変化する。 DONNAY (1965) に従えば Al-透輝石と SiO2 が"Hybrid Solid Solution"を作ったためと 考えられる。2番目のこの非化学量論的輝石は故意に 作ったものであって、輝石構造中で Al, Si が再配列 する際の活性化エネルギーの大きさを推定するための ものである。

2. Al-透輝石の 060, 600 の 20 変化

透輝石の Mg, Si を Al で置換しても屈折率にはほ とんど影響のないことが第2表からわかる。しかしそ の影響は格子定数の a, b 軸に著しい。そこで Al-透 輝石の 060, 600 の変化を時間と温度を変えて追求し た。第3図にガラスから最初に晶出した準安定 Al-透 輝石の 060, 600 の 20 値を黒丸と二重丸で示す。十 字印と星印は 1200℃, 1220℃ における安定相の値で ある。第4図に Tch 21.6N と Tch 14.3 N の 1100 ℃, 1200℃ における 20 値の変化を示す。1100℃ の 場合変化がないのは後述するがこの温度では安定相に 移るべき活性化エネルギーを得ることができないため であると考えられる。第5図に粒度の相違が20値の変 化の速度に影響するかどうか検討している。Tch 21.6 N では粒度の影響はない。一般に Tch が多くなると 結晶化が遅く粒度が影響するので 60 メッシュ以下に そろえて実験に供した。

3. 濃度緩和時間の解析

060,600の時間に対する変化が4図のようにある 一定の曲線上に乗ることから考えるとそれは透輝石中

Fig. 4 20 angles of 060, 600 of metastable diopside against the experimental time.

の Tch の規則的変化によるものと考えられる。すな わち過飽和にある Tch あるいは SiO₂ が時間と共に 一定割合で灰長石, 黄長石, かんらん石を作るのであ ろう。 そこで 2 θ の変動率が 0.46 モル Tch % 対 0.01°(2 θ) に当ることを一相領域の Diss から求めて Al 透輝石中の Tch 分子の析出速度を求めた。 Tch の析出速度は次式で与えられる。

$$-df/dt = 1/\tau (f - f_0) + C$$
 (1)

- f: 一定温度,任意の時間における Al-透輝石中 の CaAl₂SiO₆ のモル%。
- f_0 : 平衡に達した Al-透輝石中の CaAl₂SiO₆の モル%。

τ:緩和時間 C:定数

(1) を初期条件 t=0 の時
$$f_{t=0}$$
 として解くと
 $e^{(1/\tau+c)t} = f - f_0/f_{t=0} - f_0$ (2)

この式の意味は $\tau = 1/t(1+c)$ の時の平衡値からのずれ $f - f_0$ が t = 0の平衡値からのずれ $f_{t=0} - f_0$ の 1/e に

当ることを示している。この場合Cは小さいから無視 して考える。したがって第6図のようにf-foとdf/dt を点示すると直線を得るからその勾配から τ を 求 め ることができる。τ は準安定な Al-透輝石から析出さ れるべき Tch の量が 1/e の値になるまでの時間を示 すから種々の Tch を含む準安定 Al-透輝石の平衡に 達する時間の解析に利用できる。第3表に計算例及び 緩和時間解析の資料を載せる。第6図にそれらを点示 すると次のようなことがわかる。一定温度で同じ安定 領域に存在する Al-透輝石は共通の緩和時間をもつ。 1200 ° における1相領域の非化学量論的準安定 Al-透輝石は42時間の緩和時間をもつ。したがってこれを 2.72倍すれば安定相を得る時間になる。同様に3相領 域では τ = 20.8 であるから57時間の実験で安定相を 得ることができる。四相領域にある Tch35 の場合6 図から 著しくはみでるので 点線で示しているが τ は 333 時間が得られた。このように理論的に緩和時間が

CaMgSi₂O₆—CaAl₂SiO₆ 系中の準安定 Al-透輝石について

Fig. 5 The dependence of 2θ variation against the grain size (starting materials) and experimental time.

Fig. 6 Relaxation time analyses based on the equation (2). At constant temperature, the metastable Al-diopside belonging to the same phase area has the same relaxation time.

78

Table 3. The data for the kinetic analyses of metastable Al-diopside

t(min)	060 (2 0)	f (mol %)	f—f ₀	df/dt	log df/dt	$\log \frac{f - f_0}{A - f_0} 100$
A=Tch 14.	3N, 1200°c. K	X=1.86 10 ⁻² , r	u=0.63	and a second		
120	62.69	12.6	3.6	1.53 10-2	-1.82	1.83
240	62.66	11.25	2.25	1.15	-1.94	1.63
360	62.64	10.3	1.3	6.9 10-3	-2.16	1.39
480	62.62	9.4	0.4	3.83	-2.42	0.869
		$f_0 = 9.0$				
A=Tch 14.	3N, 1220°c. K	K=2.51 10 ⁻⁴ , r	n =0.9			
120	62.69	12.6	4.5	$1.22 \ 10^{-2}$	-1.91	1.86
240	62.665	11.4	3.3	8.83 10-3	-2.06	1.73
360	62.643	10.5	2.4	6.50	-2.19	1.59
480	62.63	9.9	1.8	5.33	-2.27	1.47
		f ₀ =8.1				·
A=Tch 16.	8N, 1200°c. F	$K = 1.26 \ 10^{-3}$, 1	n=0.64			
120	62.71	13.5	3.55	1.53 10-2	-1.82	1.71
240	62.67	11.7	1.75	9.58 10-3	-2.02	1.41
360	62.66	11.25	1.30	7.67	-2.12	1.28
480	62.65	10.75	0.80	5.75	-2.24	1.07
		f ₀ =9.95				
A = Tch 21.	6N, 1200°c, H	K=1.32 10 ⁻⁴ , 1	n=1.03			
120	62.88	21.3	5.1	$1.53 \ 10^{-2}$	-1.82	1.98
240	62.85	19.8	3.6	9.58 10-3	-2.02	1.82
360	62.83	19.0	2.8	7.67	-2.12	1.72
480	62.82	18.5	2.3	5,75	-2.24	1.63
600	62.81	18.0	1.8	5.00	-2.30	1.52
720	61.80	17.5	1.3	3.83	-2.42	1.38
		f ₀ =16.2				
A=Tch 21.	6N, 1150°c. I	K=2.82 10 ⁻⁴ , 1	n = 0.90	ι¥.		
120	62.873	20.9	3.15	$1.42 \ 10^{-2}$	-1.85	1.91
240	62.858	20.2	2.45	1.08	-1.97	1.80
360	62.845	19.7	1.95	1.00	-2.00	1.70
480	62.836	19.2	1.45	8.33 10-3	-2.08	1.58
		$f_0 = 17.75$				
A = Tch 21.	6N, 1220°c. I	$X = 4.57 \ 10^{-4}, z$	n =1.06			
120	62.775	16.5	1.6	1.34 10-2	-1.87	1.38
240	62.755	15.75	0.85	6.5 10-3	-2.19	1.11
360	62.743	15.0	0.1	3.08	-2.51	0.23
480	62.74	14.9	0	1.17	-2.93	-0.7

Table 3.	n na star ann ann an stàr Tha tha tha tha tha tha tha tha tha tha t	1. J. 1. 1.				(continued)
t(min)	060 (2 <i>t</i>)	f (mol %)	f—f ₀	df/dt	log df/dt	$\log \frac{f-f_0}{A-f_0} 100$
A=Tch 21.	6, 1200°c. K=	=2.69 10 ⁻⁴ , n	=0.54			
240	62.89	21.6	3.8	3.46 10-3	-2.46	2.0
480	62,874	20.8	3.0	2.88	-2.54	1.9
720	62.86	20.3	2.5	2.50	-2.60	1.82
960	62.846	19.7	1.9	2.29	-2.64	1.70
1200	62.835	19.1	1.3	1.92	-2.72	1.53
		f ₀ =17.8				
A=Tch 25.	0, 1200°c. K=	=2.04 10 ⁻⁵ , n	=1.16			
240	62,956	24.7	3.95	3.63 10-3	-2.44	1.97
480	62.940	23.8	3.05	3.09	-2.51	1.86
720	62.926	23.2	2.45	2.50	-2.60	1.76
960	62.916	22.8	2.05	1.92	-2.72	1.68
1200	62.908	22.4	1.65	1.17	-2.93	1.65
		f ₀ =20.75				
A=Tch 25,	1220°c. K=9	$.34 10^{-5}, n=1$	1.04			
120	62,938	23.75	3.95	7.67 10-3	-2.12	1.88
240	62.917	22.8	3.0	6.5	-2.19	1.76
360	62.902	22.2	2.4	5.33	-2.27	1.66
480	62.89	21.6	1.8	3.83	-2.42	1.54
		$f_0 = 19.8$				
A - Tch 26	8N 1200°c K	5=1 51 10 ⁻⁵	n = 1.18			2
240	63.003	26.8	3.80	$3.46 \ 10^{-3}$	-2.46	2.0
480	62.987	26.0	3.0	2.50	-2.60	1.9
720	62.975	25.3	2.3	2.29	-2.64	1.78
960	62,966	25.0	2.0	1.71	-2.77	1.72
1200	62.957	24.7	1.7	1,17	-2.93	1.65
		$f_0 = 23.0$				
A = Tch 26.	8N, 1220°c. K	$X = 3.63 \ 10^{-5},$	n = 1.25			···· •
120	62,985	25.9	3.0	7.67 10-3	-2.11	1.89
240	62,967	25.0	2.1	5.75	-2.24	1.73
360	62,955	24.6	1.7	3.83	-2.42	1.64
480	62,946	24.2	1.3	2.33	-2.63	1.52
		f ₀ =22.9				
A=Tch 35,	1220°c. K=4	.78 10 ⁻⁵ , $n = 1$	1.0			•
10(hou:	r) 63.178	34.7	11.7	1.63 10-3	-2.79	1.99
20	63.16	33.8	10.8	1.50	-2.82	1.95
30	63.144	33.2	10.2	1.42	-2.85	1.93
40	63,127	32.4	9.4	1.31	-2.88	1.89
		$f_0 = 23.0$				

.

Fig. 7 Kinetic analyses based on the equation (4). Nonstichiometric metastable Al-diopside may have resolved the melilite by 0.6 order reaction. The other metastable Al-diopside may have resolved the melilite, anorthite and olivine by 1st order reaction. Symbols refer to Fig. 6.

求まれば経験的に安定相を得るやり方に附随する危険 をなくすることができるであろう。著者(1968)はこ の方法をシリカを過剰に含む透輝石混成固溶体にも適 用している。なお 1100℃ では変化量がないので解析 できない。このような場合他の方法と結びつけて検討 しなくてはならないだろう。

4. 反応速度論的考察

緩和時間解析と同様に 20 の変化を Tch の濃度変 化に換算してその反応速度を考察する。この場合過剰 に含まれる Tch が時間と共に反応して灰長石, 黄長 石等を作ると考える。今三相領域の場合であると次の ような反応が考えられる。

 $CaMgSi_2O_6(f_t+f_0)CaAl_2SiO_6 \longrightarrow f'_t Ca_2(MgAl)$

 $(SiAl)_2O_7 + f_t'' CaAl_2Si_2O_8$ (3)準安定 Al-透輝石の過剰 Tch 量 ft が析出される 反 応速度式は次のように示される。

$$-df/dt = K(f - f_0/F - f_0)^n$$
(4)

K: 反応速度定数 n: 反応次数

- F: ガラスから 晶出した 最初の 準安定輝石中の $CaAl_2SiO_6$ モル% (ガラスの組成)。
- f₀: 平衡に達した Al-透輝石中の CaAl₂SiO₆

モル%。

両辺を対数に取って第7図に点示すると直線を得る。 これより非化学量論的準安定透輝石の Tch 析出反応 は0.6次の反応であることがわかる。他の3~4相領 域の準安定 Al-透輝石は1次の反応でかんらん石, 黄 長石,灰長石を析出することがわかる。

一方反応速度定数には次の関係がある。	
K = A exp - E/RT	

(5)

E:	活性化エネルギー	A:	頻度因子

R:	ガス定数	Т:	絶対温度

第7図より直線とたて 軸の交点より K が求まるの でその対数と元のガラスの組成を点示すると8図を得 る。この図より一定温度では反応速度定数とガラスの 組成との間に 一次の 関係が あるらしいことがわかる (特に3相領域で)。次にこのような一定の関係がある のでデータは少ないが (5) 式に基づいてアレニュウス 点示をすると9図を得る。この直線の勾配は一定で22 Kcal/mol という活性化エネルギーを得る。したがっ て反応速度定数とガラスの組成が1次の関係にあると いうことは頻度因子とガラスの組成が1次の関係にあ るといっても良い。頻度因子の解釈については気体の

Fig. 8 The logarithm of constant of reaction velocity against the content of $CaAl_2SiO_6$ in original glass. Symboles refer to Fig. 6.

Fig. 9 Arrhenius plot based on the data from Fig. 7 and Fig. 8. Activation energies 22Kcal/mol by which the oversatrated metastable Al-diopsides change to stable phase assemblage are obtained. Symboles refer to Fig. 6.

場合衝突する分子の数を示すと言われる。この事から 考えて準安定輝石中の Tch 分子数が頻度因子と結び つき一応(5)式の現象論的把握ができる。水溶液内ある いは気体の反応速度論をこの固相反応に適用するには 問題もある。1150℃の場合は上述の考察に合っていな い。一般にアレニュウスの関係式が成立するのは限ら れた温度範囲である。ここでは 1200~1220℃ でこの 関係が成立するものと考えられる。活性化エネルギー の意味は準安定 Al-透輝石中で,あるエネルギー水準 にある 過剰の Tch 分子が一定の 確率(速度)で 22 Kcal/mol のエネルギーの山を越えてよりエネルギー の低い水準に移り黄長石,灰長石を作って安定な鉱物 集合体になることである。

C. 共存する Al-透輝石と黄長石系の Mg, Al の 分配

第2図の状態図によれば2つの領域でAl-透輝石と 黄長石が共存している。この両鉱物はその四配位,六 配位にAl, Mgをもち次式のような交換反応を行って いる。

$$\begin{array}{l} CaMgSi_{2}O_{6}+Ca_{2}Al_{2}SiO_{7}\ =\ CaAl_{2}SiO_{6}\ +\\ Ca_{2}MgSi_{2}O_{7} \end{array} \tag{6}$$

したがって分配定数(平衡定数)は次式になる。

$$\begin{split} \mathbf{K}(\mathbf{t}) &= \frac{\gamma_{AK} \ \mathbf{X}_{AK}}{\gamma_{Ge} \ \mathbf{X}_{Ge}} \cdot \frac{\gamma_{Tch} \ \mathbf{X}_{Tch}}{\gamma_{Di} \ \mathbf{X}_{Di}} \\ &= \exp \ -\Delta \mathbf{G}^{\circ} / \mathbf{RT} \end{split}$$
(7)

Xはおのおの添字の鉱物組成のモル%。γはおのおの 添字に当る鉱物の活動度係数。

輝石中の Tch 分子のモル%は第3図の060の変化から求められる。 黄長石については NEUVONEN (1952)の実験結果を基にして次式から組成を知ることができる。

Ge
$$\neq \mathcal{W} = 3.57 \ (2.875 - d_{211}) \cdot 10^3$$
 (8)

すなわち合成された試料のX線回折を行うと黄長石の 最強線(211)が現われるのでその面間隔から黄長石中 のゲーレナイトのモル%が求められる。理想的交換反 応が起るとするなら1200℃の分配定数は0.52±0.03 となる。ただし Tch 25 の1200℃ での値は著しくか け離れているので除外してある。1220℃ でもほぼ同 一の値である。NEUFVILLE et al.(1961)の値と比較 すると大きくかけ離れているがこれは彼らが平衡な相 を扱っていないからである(第10図)。

Fig. 10 The Mg-Al distribution in coexisting Al-diopside and melilite. If both the minerals are ideal solid solution, the distribution constant based on equation (7) are 0.53 at 1200-1220°c.

まとめ

CaMgSi₂O₆-CaAl₂SiO₆ 系で Al-透輝石の 安定に 存在する領域を第2図に与えた。この中の3相領域, 4 相領域に CaAl₂SiO₆ を過飽和に含む準安定 Al-透 輝石が 初期 に 1 相として 現われる。 この 準安定相 は 第 4 ~ 5 図で 示されるように過飽和にある Ca Al₂ SiO₆ をかんらん石, 灰長石, 黄長石として 析出する ので輝石の 060, 600 の 20 値が著しく変動する。こ の変動を(1)式で解析した。その結果一定温度におい て同じ安定領域内に達すべき準安定 Al-透輝石は同一 緩和時間で安定相に近づくことがわかった。同様に060 の 20 値の変動を濃度の変数に換算して(4) 式によっ て反応速度を検討した。その結果1相領域の非化学量 論的 Al-透輝石は 0.6 次の反応でその他の反応は 1 次 反応であることがわかった。さらに反応速度定数は一 定温度でガラスの組成と一次の関係を示していること がわかった(第8図)。(5)式に基いてアレニュウス 点示から活性化エネルギー22Kcal/mol を得た。これ らの結果を総合的に解釈すると、準安定 Al-透輝石は 0.6 次あるいは1次の反応で 22Kcal/mol のエネルギ ー障壁を越えて 過飽和にある シリカ や CaAl₂SiO₆ を黄長石, 灰長石, かんらん石として析出し安定な鉱 物組合せとなるものと考えられる。従来準安定相に気 づかず実験が行なわれていたが以上のような緩和時間 解析あるいは反応速度論的考察を行えば安定相の決定 において誤りを少なくさせることができるだろう。

Al-透輝石と黄長石の Mg, Al の分配定数は両鉱物 とも理想的固溶体として 1200~1220℃ で 0.53 であ る。

謝辞

本研究の大半は九州大学大学院理学研究科在学中に 行なわれた。終始有益なご助言を与えられ,いろい ろとお世話いただいた種子田定勝先生に厚くお礼申し 上げます。また白水晴雄教授,桃井斉助教授,島田允 尭氏には有益なご討論と合成物の検討に赤外吸収スペ クトルの測定をお許しいただいた。深く感謝する次第 である。

引用文献

- CLARK, P. (1961): Phase relations in the system CaMgSi₂O₆-CaAl₂SiO₆-SiO₂ at low and high pressure. *Carnegie Inst., Year Book*, **61**, 59-61.
- DONNAY, G. (1965): Hybrid solid solution. Acta Cryst., 19, 283-284.
- KUSHIRO, I. (1960): Si-Al relation in clinopyroxenes from igneous rocks. Amer. Jour. Sci., 258, 548-554.
- 久城 育夫 (1966): 改訂されたケイ酸塩の相平衡 一主として Bowen の古典的実験について−. 科学, 36, (11), 625-627.
- ------(1967):輝石合成の諸問題. 鉱物雑, 8, (3), 129–143.
- LEBAS, M. J. (1962): The role of aluminium in igneous clinopyroxenes with relation to their parentage. *Amer. Jour. Sci.*, 260, 267-288.
- NEUVONEN, K. J. (1952): Thermochemical investigation of the akermanite-gehlenite series.

Bull. Comm. Geol. Finlande, 26, (158), 1-28.

- NEUFVILLE, J. D. & SCHAIRER, J. F. (1961): The join diopside-Ca Tschermak's molecule at atomospheric pressure. *Carnegie Inst.*, *Year Book*, **61**, 56-59.
- SARATA, Y. (1957): Unit cell dimensions of synthetic aluminian diopsides. Jap. Jour. Geol. Geogra., 28, 161-168.
- SEGNIT, E. R. (1953): Some data on synthetic aluminous and other pyroxenes. *Min. Mag.*, 30, 218-226.
- 進野 勇 (1968): (Ca Mg) SiO₂ ~SiO₂ 系中の透輝 石 "*Hybrid Solid Solution*" について. 九大教養 地研報, **15**, 7-17.