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FIRST ORDER SEMI-LOCAL INVARIANTS OF STABLE MAPS OF 
3-MANIFOLDS INTO THE PLANE 

MINORU YAMAMOTO 

ABSTRACT. In the late 1980's, Vassiliev introduced new graded numerical invariants 

of knots, which are now called Vassiliev invariants or finite~type invariants. Since his 

definition, many people have been trying to construct Vassiliev type invariants for various 

mapping, spaces. In the early 1990's, Arnold and Goryunov introduced the notion of first 

order (local) invariants of stable maps. 

In this paper, we define and study first order semi-lor;:al invariants of stable maps and 

those of stable fold maps of a closed orientable 3-dimensional manifold into the plane. 

Here, a stable fold map is a stable map with only fold singular points and a first order 

semi-local invariant is an isotopy invariant which is constructed by looking at the singular 

value set locally and the singular fibers semi-locally. We show that there are essentially 

seven first order semi-local invariants. For a stable map, six of them count the number 

of singular fibers of a given type which appear discretely (there are exactly six types of 

such singular fibers), and the other one is the rotation number of the singular value set. 

Besides these invariants, for stable fold maps, the Bennequin invariant of the singular 

value set corresponding to definite fold points is also a first order semi-local invariant. 

Our study of codimension 1 unstable fold maps provides invariants for the connected 

components of the set of all fold maps. 

1. Introduction 

1.1. History 

1.2. Purpose 

1.3. Organization of the paper 

1.4. Acknowledgment 

2. Classification of mulh-germs 

2.1. A-equivalence of multi-germs 

2.2. Classification of multi-germs 

CONTENTS 

3. Stable maps and unstable maps of codimensions one and two 

3.1. Stable maps 

3.2. Unstable maps of codimensions one and two 

2000 Mathematics Subject Classification. Primary 57R45; Secondary 32S20, 58Kl5. 

The author has been supported by JSPS R esearch Fellowships for Young Scientists. 
1 

2 

2 

3 

4 

6 

6 

6 

7 

9 

9 

11 



2 

.,; 

MINORU YAMAMOTO 

3.3. Bifurcation diagrams 14 

4. Classification of singular fibers 17 

4.1. Definition of an equivalence of fibers 17 

4.2. Classification of singular fibers of stable maps 19 

4.3. Classification of unstable maps of ·codim_ensions one and two 22 

4.4. Coorientations of codimensiori one strata 24 

5. The Vassiliev cochain complex for the weak equivalence 25 

6. First order semi-local invariants 27 

6.1. Semi-local invariants 27 

6.2. First order semi-local invariants 28 

7. First order semi-local invariants of stable maps 30 

7.1. Computation of the coboundary operator 30 

7.2. Geometric interpretations of the 1-cocycles 31 

7.3. Surgical rotation number 32 

7.4. Proof of Theorem 7.3(7) 33 

7.5. Linear independence of the first order semi-local invariants 33 

8. A non-local first order invariant of stable maps 36 
9. First order semi-local invariants of stable fold maps 40 

9.1. Computation of the Vassiliev quotient cochain complex for fold maps 40 

9.2. Geometric interpretations of the 1-cocycles in Ker( JF) . 42 

9.3. Bennequin invariant 43 

9.4. Proof pf Theorem 9.4 (7) 44 

10. Invariants of the connected components of the space of fold maps 47 

References 50 

1. INTRODUCTION 

1.1. History. Vassiliev [50] introduced a wonderful method to define graded numerical 

invariants of knots, which are now called Vassiliev invariants or finite-type invariants. He 

constructed these invariants by carefully studying a certain stratification of the mapping 

space C00 (S1 ) R3
) . Since his definition, many people ha~e been trying to construct Vas­

siliev type invariants for various mapping spaces. Arnold [4] introduced "basic invariants" 

(we call them Arnold invariants) for stable immersions of S1 into R2 , which brought a 

new insight to the classical subject of the topology/geometry of plane curves. Arnold 

invariants are regarded as a special kind of first order Vassiliev type invariants, which 

are objects of great interest by themselves. Arnold invariants of plane curves (and those 

of wavefronts) were studied by many authors, for example, Aicardi [2], Goryunov [17L · 
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Tchernov [46, 47], etc. The construction of this kind of order one invariants may work 

for stable maps of manifolds whose dimensions are greater than 1. In fact, as a kind of a 

generalization of the ]±-invariants (not involving the strangeness invariant St), Goryunov 

[16] introduced and studied first order local invariants of stable maps of an oriented closed 

surface into R3 . Aicardi and Ohmoto [3] worked on first order local invariants of stable 

maps of a closed surface into R 2 (see also [391). It should be remar~ed that in both cases) 

these first order "locaP' invariants are determined by numerical invariants of discrete criti­

cal sets and a certain Bennequin invariant of the critical value set (note that this is related 

to the J+-theory of plane curves). See Remark 6.5 for the other results about Vassiliev 

(finite) type invariants. In these works, almost all invariants are essentially reduced to 

order one invariants. 

1.2. Purpose. In this paper, we consider the case where the source manifolds are closed 

orientable 3-dimensional manifolds and the target manifold is the plane. In all the cases 

mentioned in the previous subsection, the dimensions of the target manifolds are greater 

than or equal to those of the source manifolds. Thus for any point in the target manifold 1 

the inverse image of this point consists of a finite number of points, provided that the map 

is proper and generic enough. Hence, in order to study first order (local) invariants of such 

stable maps, we have only to consider multi-germs along zero dimensional sets. However, 

if the dimension of the source manifold is strictly greater than that of the target manifold, 

then the inverse image of a point (or the fiber over a point) is no longer a discrete set. 

In general, this forms a complex of.positive dimension. Hence, if we consider multi-germs 

orily along singular points in a fiber to study first order invariants of stable maps, then it 

is expected that little information about stable maps appears in these invariants. Thus, 

to get much information about stable maps from first order invariants, we need to .study 

map germs along a whole fiber of positive dimension. 

We define and study first order semi:.local invariants of such stable maps. A first 

order semi-local invariant is a special kind of a first order invariant: when a homotopy 

in the mapping space crosses a codimension 1 stratum transversely at a codimension 1 

unstable map, the jump of the invari:ant is determined by the homeomorphism type of 

the loca l deformation of the singular value set near the .codimension 1 singular value 

and by the diffeomorphism types of associated singular fibers. Note that the notion of a 

diffeomorphism of singular fibers modulo regular components was first used implicitly by 

Kushner, Levine and Porto [26, 29]. After that Saeki [45] gave a precise definition of this 

notion (including regular components). 

This is the first study of first order invariants when the dimension of the source manifold 

is strictly greater than that of the target manifold) as long as the author knows. 
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1.3. Organization of the paper. The paper is organized as follows. 

In Section 2> we review the classification of multi-germs (R 3, S) -+ (R 2 , y) up to A­
equivalence (i.e., C 00 right-left equivalence)) where S is a set of finitely many isolated 

points. We list the A-equivalence classes of miniversal unfoldings of such multi-germs 

whose parameter spaces have dimensions 0, 1 or 2. They were studied by Rieger-Ruas [41], 

Gibson-Hobbs [14], Nabarro [35] and Rieger [40], and we use their results in this paper. 

We have to add two exceptional A-equivalence classes of miniversal unfoldings of multi­

germs which correspond to D; or a quadruplefold. The reason is as follows. Miniversal 

unfoldings of these multi-germs have parameter spaces of dimension 3. However, their 

A-modalities are all equal to 1. On the parameter space R3 of their miniversal unfoldings, 

one coordinate t of the coordinates (a, b, t) E R3 corresponds to the A-modality. Thus Dt 

and a quadruplefold ai:e considered to be 1-parameter families of A-equivalence classes. 

To obtain first order invariants, we have to consider each such 1-parameter family to 

constitute a stratum, and the codimension of each such stratum is equal to 2. For details, 

see [40] and Subsection 2.2. 

In Section 3, we define stable maps and unstable maps of codimensions 1 and 2. By 

using the classification of miniversal unfoldings of Section 2, we study local deformations 

of singular value sets and the associated local singular fibers near singular points. 

In Section 4, we first define the notion of the weak equivalence for singular fibers (preim­

ages of singular values). This equivalence relation reflects homeomorphis·m types of (local 

deformations of) singular value sets and diffeomorphism types of the associated semi-local 

singular fibers. This equivalence relation is related to the C 00 equivalence for map germs · 

along singular fibers. See [45] for the definition of the 0 00 equivalence. Since our equiv­

alence is weaker than the C 00 equivalence, we use the term "weak" for our equivalence 

relation. We classify singular fibers of stable maps and unstable maps of codimensions 1 

and 2 up to this equivalence relation (see Theorems 4.4, 4.7 and 4.8). For a stable map, 

there are exactly six weak equivalence classes of singular fibers which appear discretely. 

Then, we define the equivalence relation, which we also call weak equivalence for simplic­

ity, for unstable maps of codimensions 1 and 2 and classify them up to this equivalence.· 

relation. We then define the coorientation of each weak equivalence class of codimension 

1 unstable maps by looking at the local deformation of its singular value set and the 

associated (semi-local) singular fibers. 

In Section 5, we construct the Vassiliev cochain complex for the weak equivalence classes 

of unstable maps of codimensions 1 and 2. (As general references about the Vassiliev 

co chain complex, see [23, 49].) 
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In Section 6, we define.first order semi-local invariants of stable maps. These invariants 

are constructed from the cocycles of the Vassiliev cochain complex mentioned above and 

they are isotopy invariants of stable maps. 

In Section 7, we determine the first order semi-local invariants of stable maps by using 

the Vassiliev cochain complex constructed in Section 5 (see Theorem 7.2). More precisely, 

we show that there are essentially seven first order semi-local invariants of stable maps. 

By a careful study of homotopies which intersect co dimension 1 strata ( the hypersurface 

in the mapping space which consists of the co dimension 1 unstable maps) transversely, 

we give geometric interpretations of all the invariants. It turns out that for a stable map, 

six of them count the number of singular fibers of a given weak equivalence class which 

appear discretely (there are exactly six such weak equivalence classes by Theorem 4.4) 

and the other one is the "rotation number" of the singular value set (see Theorem 7.3). 

Then we construct several explicit examples of stable maps f : S3 
--t R 2

• By using these 

examples, we show that the above seven first order semi-local invariants together with 

a (non-zero) constant invariant are linearly independent for stable· maps of an arbitrary 

closed orientable 3-dimensional manifold. 

Note that these types of results would be impossible if we used the multi-germ of a 

given map only along the singular points in a fiber instead of considering the map germ 

along a whole singular fiber. · 

In Section 8, we subdivide the weak equivalence classes of unstable maps of codimen­

sions 1 and 2 by using a global property of such maps. To subdivide them, we look at 

their singular value sets globally. By using such a finer classification> we give an additional 

first order invariant of stable maps 1 which is a non-local invariant, and give a geometric 

interpretation of this invariant (see Propositions 8.1 and 8.2). 

In Section 9, we consider the space of all fold maps. A fold map is a smooth map with 

only fold singular points. By using the Vassiliev cochain complex for the weak equivalence 

classes of unstable fold maps of codimensions 1 and 2, we determine the first order semi­

local invariants of stable fold maps and give geometric interpretations of all the invariants 

(see Theorems 9.3 and 9.4). 

By combining our results with other results about first order invariants which are al­

ready known, we may conjecture that first order invariants can give information only 

about the 0-dimensional strata of the critical value set, endowed with the topology of the 

associated fibers, or the topology of the critical value set ( e.g. the rotation number or the 

Bennequin invariant). 

In Section 10, we give several invariants for the connected components of the space of 

all fold maps. These invariants are obtained by a careful study of codimension 1 unstable 

fold maps carried out in the previous sections. 
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Throughout the paper, all manifolds and maps are differentiable of class C00
• 

1.4. Acknowledgment. The author would like to express his sincere gratitude to Prof. 

Osamu Saeki, Prof. Toru Ohmoto, Prof. Joachim Rieger and Prof. Maria Ruas for their 

invaluable comments and encouragement. 

2. CLASSIFICATION OF MULTI-GERMS . 

In this section, we quickly review the classification of multi-germs by A-equivalence 

( that is, C00 right-left equivalence). 

2.1. A-equivalence of multi-germs. In this subsection, we review some fundamental 

concepts and results from singularity theory. For details, see [5, 10, 39, 51]. 

Let f : (M, S) ----+ (R2
, y) be a multi-germ at finitely many isolated points S of J-1(y), 

where M is a 3-dimensional manifold. When S consists exactly of one point, we also say 

that f is a mono-germ. An unfolding of such a multi-germ f : ( M, S) ----+ (R2 , y) with 

parameter space Rs centered at t0 E Rs means a multi-germ F: (M x R5, S x {t0 })---+ 

(R2
, y) such that F(x, to)= f (x). 

Let Mi be 3-dimensional manifolds (i = 1, 2). Let Ji : (Mi, Si) ---+ -(R2, Yi) be multi­

germs and Fi : (Mi x Rs, Si x {ti}) ----+ (R2
, Yi) unfoldings of fi with parameter space 

R.8 centered at ti ( i = 1, 2). We say that F1 and F2 are A- equivalent if there exist a 

diffeomorphism germ ip: (R8,t1)---+ (RS,t2), and unfoldings R: (M1 x R 8,S1 x {t1})---+ 
(M2 , S2) and L : (R2 x RS, (y1 , t 1)) ---+ (R2 , y2 ) of diffeomorphism germs R: (M1 , S1) ---+ 

(M2, S2) and L : (R2
, Y1) ---+ (R\ y2 ) respectively, such that the following diagram is 

commutative: 

(M1 X RS, S1 X { t1}) F1 
(R2 x Rs, (Y1,t1)) 1r 

(RS, t1 ) --+ --'----+ 

(R,'P) 1 (L,,p) 1 'Pl 
(M2 X R5,S2 X {t2}) F1 (R2 x Rs, (Y2,t2)) 1r (R8,t2). --+ --+ 

Here, 1r is the projection to the secon~ factor, ( R, 'P) ( or (L, cp)) is defined by ( R, 'P) (x, t) ~ 
(R(x, t), rp(t)) (resp. by (L, i.p)(y, t) = (L(y, t), cp(t))), and the map Fi, i = 1, 2, is defined - . 
by Fi(x, t) = (F;(x, t); t). 

Two unfoldings Fi and F2 of f : ( M, S) ---+ (R 2 , y) with the same parameter space Rs 

are said to be !-isomorphic if Fr and F2 are A-equivalent with Rand L being the identity 

multi-germs idM and idR2 respectively. 

Let F: (M x Rsi,s x {t1 }) - (R2,y) be an unfolding off: (M,S) ----+ (R2,y) 
and g : (R5 2

, t9 ) ---+ (R81
, t f) a smooth map germ. We define the induced unfolding 

g* F: (M X R 52, S x { t9 }) ---+ (R2, y) by g* F(x, w) = F(x , g(w)), which is also an unfolding 
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of f. An unfolding F of f is called a universal unfolding if any unfolding G of f is !­
isomorphic to an unfolding induced from F. A universal unfolding of a multi-germ f is 

called a miniversal unfolding if the parameter space has the minimal dimension among 

all universal unfoldings of f. 
For a multi-germ f: (M) S)--+ (R2

, y)> let B(f)s denote the set of c= vector fields along 

f. That is, it is the set of multi-gerrr.is ( : (M, S) --+ TR2 such that ((x) E TRJ(x) (x E M). 

We set (}(M)s = B(idM )s and (}(R2)y = B(idR2 )y·· The two maps tf: ~(M)s--+ B(f)s and 

wf : B(R2)y --+ B(f)s are defined by tf(,;) = dj o,; and wf(r,) = r, of respectively. The 

extended tangent space T Aef is defined by 

T Ae! = tf (e(M)s) + w f (B(R2)y) c B(f)s 

and the dimension of the quotient vector space 8(!)3 /T Aef is called the Ae-codimension 

off. 

Note that. if the Ae-codimension of f is finite, then it admits a universal unfolding and 

the Ae-codimension coincides with the dimension of the parameter space of a miniversal 

unfolding off (see [39, 51]). A multi-germ f : (M, S) --+ (R2
, y) is said to be Ae-finite 

if the Ae-codimension of f is finite. It should be noted that every Ae-finite multi-germ 

is finitely determined. That is, its A-equivalence class is determined by its ~et of finite 

order, and hence it is represented by a polynomial multi-germ (see [51]). 

2.2. Classification of multi-germs. Let us consider the classification of those A-finite 

multi-germs whose Ae-codimension minus A-modality is strictly less than three. In the 

following, let·mA(f) E Z denote the value of (Ae-codimension)- (A-modality) for f. The 

modality is defined as follows. Suppose that a Lie group G acts on a variety V, then a 

theorem of Rosenlicht [42] implies that V has a uniquely determined finite stratification 

S such that the action of G on each stratum S defines a fibration S --+ S/G. If a point 

p E V is in a stratum S such that dim S/ G = m, then we say that the modality of p E V 

is equal to m E Z2:o, where Z2:o is the set -of non-negative integers. The A-modality of 

an Ae-finite mono-germ/: (R3
, x)--+ (R2, y) is the modality of an A-sufficient jet jk fin 

Jk(3, 2)x,y under the action of the Lie group Ak of k-jets of elements of A. If f is not a 

mono-germ, then we can define the A-modality similarly. For details, see [40, 52] . 

Let f : (R3
, S) --+ (R2, 0) be an Ae-finite multi-germ, where S ~s a set of finitely many 

isolated points of J-1(0). To determine first order invariants of stable maps, we may 

assume that mA (f) is equal to 0, 1 or 2. 

For f with mA (!) = 0, 1 or 2, the A-equivalence classification of mono-germs an1 their 

miniversal unfoldings has been obtained by Nabarro [35], Rieger [40], and Rieger-Ruas 

[41]. The A-equivalence classification of multi-germs and their miniversal unfoldings has­

been studied by Gibson-Hobbs [14]. In fact , they considered multi-germs f : (R2, S) --+ 
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(R2) 0) and classified them by A-equivalence. We can use similar arguments for multi­

germs f : (R3, S) --..:., (R2 ) 0) and obtain the required A-equivalence classification. 

Let f : (R3, S) - (R2, 0) be a multi-germ .. We put S(f) = {q E R 3 I rank dfq < 2} 

and call it the singular set germ of f. Furthermore, we call f (S(J)) the singular value 

·set germ off, 

Let f : (R3, S) --+ (R2; 0) be a multi-germ such that S C S(f) and mA(f) :::; 2. Then 

we have S = { q1 , ... , qk}, 1 :::; k :::; 4, and there exist local coordinates (xi) Yi, zi) and 

(X, Y) around qi E R 3 , 1 :::; i:::; k, and f (qi) = 0 E R 2 respectively such that a miniversal 

unfolding of f is expressed by one of the polynomials listed in Tables 1-5 with respect to 

the local coordinates. 

I Table 111 Table 2 I I Table 3 I ITable 4 I I Table 5 ! 

We remark that by [14, 35, 40, 41], Tables 1-5 give the complete list of A-equivalence 

classes of multi-germs f : (R3
, S) --+ (R2, 0) such that SC S(f) and mA(f) :::; 2. In our 

situation, the Ae-codimensions of D; and a quadruJ)lefold are equal to 3 and their A­
modalities are equal to 1. For the miniversal unfoldings for these cases t is the parameter 

· of modality in Tables 3 and 5. For the other classes, their A-modalities are equal to 0. 

Let f : (R3, S) -> (R2, 0) be a stable germ in Table 1. Then using the local normal 

forms in Table 1, we see that the singular value set germ f(S(f)) around O is as depicted 

in Figure 1, where (1) corresponds to a fold point, (2) corresponds to a cusp point, and 

(3) corresponds to a nodefold. 

I Figure 11 
Let G : (R3 x R, S x {O}) -> (R2 , 0) be a I-parameter unfolding in Table 2. We define 

9t: R3
---+ R2 by 9t(q) = G(q)t). Suppose that OE g0 (S(g0)) and SC S(g0 ). Then using 

the local normal forms in Table 2, we see that the deformations of the singular value set 

germ 9t(S(gt)) around O are as depicted in Figure 2> where (1) corresponds to lips, (2) 

corresponds to beaks, (3) corresponds to a swallowtail) ( 4) corresponds to a cusp-plus-fold, 

(5) corresponds to a tacnodefold and (6) corresponds to a triplefold. 

I Figure 2 j 

Let H ·: (R3 x R2 , S x {(O, O)}) ---+ (R2 , 0) be a 2-parameter unfolding in Tables 3 or 

4 other than Df. We define ha,b : R 3 -> R 2 by ha,b(q) = H(q) a, b). Suppose that O E 

ho,o(S(ho,o)) and_S C S(ho,0). Then using the local normal forms in Tables 3 or 4, we see 

that the deformations of the singular value set germ ha,b(S(ha,b)) around O are as depicted 

ih Figure 3. Let H: (R3 X R 3 ,S X {(0,0)0)})--+ (R2,0) be a 3-parameter unfolding in 

Tables 3 or 5 which corresp·onds to Dt or a quadruplefold. We fix t = Jo E R in the 

corresponding local normal form and define ha,b : R 3 ---+ R 2 by ha,b(q) - H(q, a, b, t0). 

Suppose that O E h0,0 (S(ho,o)) and S C S(h0,0). Then using t he local normal forms, 
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we see that the deformations of the singular value set germ ha,b(S(ha,b)) around O are 

as depicted in Figure 3. In Figure 3, (1) corresponds to a goose, (2) corresponds to a 

butterfly, (3) corresponds to gulls, ( 4) corresponds to Dt, (5) corresponds to D4, (6) 

corresponds to a lips-plus-fold, (7) corresponds to a beaks-plus-fold, (8) corresponds to a 

swallowtail-plus-fold, (9) corresponds to a cusp-plus-cusp, (10) corresponds to a cusp-plus­

fold tangency, (11) corresponds to a flecnodefold, (12) corresponds t<;, a nodefold-plus-cusp, 

(13) corresponds to a tacnodefold-plus-fold, and (14) corresponds to a quadruplefold. 

I Figure 3 I 
In Figure 3, on each 2-dimensional region R of the parameter space, we have depicted 

ha,b(S(ha,b)) C R 2 for (a, b) E R. Some parameter spaces in Figure 3 may not strictly 

coincide with the corresponding (a, b)-plane for Hin Tables 3-5. For each of these cases, 

we need to compose an orientation preserving homeomorphism on the (a, b)-plane to 

obtain the corresponding parameter space in Figure 3. 

3. STABLE MAPS AND UNSTABLE MAPS OF CODIMENSIONS ONE AND TWO 

In this section, we define stable maps and unstable maps of codimensions 1 and 2 by 

using the A:..equivalence classification of multi-germs as in Tables 1-5. We also study local 

behaviors of their singular value sets and their singular fibers . 

Let f : M --+ R 2 be a smooth map. We set S(f) = {q E M I rank dfq < .2} and 

call it the singular set off. Furthermore, we call f(S(f)) the singular value set off. 

When y E R 2 is in the singular value set off : M--+ R 2
, we call J- 1(y) a singular fiber; 

otherwise, a regular fiber. 

3.1. Stable maps. Let M be a closed 3-dimensional manifold and f : M ---+ R 2 a smooth 

map. We denote the set of such maps by C00(M, R2) which is equipped with the Whitney 

C00 -topology. A smooth map f is said to_be stable if in C00 (M, R2
), there exists an open 

neighborhood U of f such that for any g E U, g is C00 right-left equivalent t o f, that is , 

there exist two diffeomorphisms <l> : M --+ M and cp : R 2 ---+ R 2 such that the following 

diagram is commutative: 

'P -
It is known that the set of stable maps is open and dense in C 00 (M, R2

) (see [32]). Note 

that fo.r a stable map f : M --+ R2 , S(f) is a compact 1-dimensional submanifold of 

M . The following characterization of stable maps is well-known (see [15, 26, 29, 53] and 

Table 1). 
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Proposition 3.1. A smooth map f : M ---+ R 2 of a closed 3-dimensional manifold into 

the plane is stable if and only if the following conditions are satisfied. 

(i) For every q E M 1 there exist local coordinates (x, y, z) and (X, Y) around q E M 

and f (q) E R2 respectively such that one of the following holds: 

(X of, Yo f) = 

(x) y), 

(x, y2 + zz), 

(x, y2 - zz), 

q :regular point, 

q :definite fold point, 

q:indefinite fold point, 

(x, y 3 + xy + z2
), q:cusp point. 

(ii) For every y E f(S{1)) 7 J-1 (y) nS(f) consists of at most two points and the multi­

germ (f!S(f), 1-1(y) n S(f)) is right-left equivalent to one of the three multi­

germs as depicted in. Figure 1: (1) represents a single immersion germ which 

corresponds to a fold point1 (2) corresponds to a cusp point1 and (3) represents a 

normal crossing of two immersion germs each of which corresponds to a fold point. 

Suppose that for a stable map f : M -> R 2, there are distinct singular points q1 and 

q2 in S(f). such that y = f (q1) = f (q2) E R2 ·holds. In this case, we call y a nodefold off 

or a node off (S(f)). Note that S(f) is a closed 1-dimensional submanifold of M> that 

the number of nodefolds of f is finite and that the number of cusps on each component 

of S(f) is even (see [27]). 

Definition 3.2 ([45)). Let Mi be manifolds and Ai C Mi subsets, i = 0, 1. A continuous 

map g : Ao ---+ A1 is said to be smooth if for every point q E A 0 , there exists a smooth 

map g: V---+ M1 defined on a neighborhood V of q in Mo such that glV nAo = g\V n Ao . 

Furthermore, a smooth map g : Ao ---+ A1 is a diffeomorphism if it is a homeomorphism 

and its inverse is also smooth. 

Let q be a singular point of a stable map f : M ---+ R 2
. Then) using the local normal 

forms in Table 1, we. can easily describe the diffeomorphism type of a neighborhood of q 

in J-1 (f (q)). That is, we easily get the following local characterization of singular fibers. 

Lemma 3.3. Let f : M -> R 2 be a stable map of a closed 3-dimensional manifold 

into the plane. Every singular point q of f has one of the following neighborhoods in its 

corresponding singular fiber ( see Figure 4): 

(1) isolated point diffeomorphic to {(y, z ) E R2 I y2 + z2 = 0}1 if q is a definite fold 

point1 

(2) union of two transverse arcs diffeomorphic to {(y,z) E R2 I y2 
- , z2 = O}i if q i s 

an indefinite fold point, 

(3) 3/2-cuspidal arc diffeomorphic to {(y )z) E R 2 l y 3 +z2 = O}, if q is a cusp point . 
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!Figure 4 j 

For the local nearby fibers, we have the following. 

Lemma 3.4. Let f: M--+ R 2 be a stable map. Suppose that q E S(f) is a singular point 

such that J-1 (f(q))nS(f) = {q} or that q1 and q2 E S(f) are distinct singular points with 

f (q1) = f (q2) and 1-1 (f(q1)) n S(f) = {q1 , q2 }. Then the local fibers near q or the pair . 

q1 , q2 are as described in Figure 5
1 

where D means "definiten and I means "indefinite''. 

In Figure 5, each 0- or I-dimensional object except f(S(f)) C R2 represents a portion of 

the fiber over the corresponding point in the plane. They are drawn with thin lines and 

f(S(f)) is drawn with thick lines. 

I Figure 5 \ 

In Figure 5, some of the edges of f(S(J)) are oriented. For the definition of the 

orientation on f (S(f)), see Remark 4.6. 

3.2. Unstable maps of codimensions one and two. Let M be a closed 3-dimensional 

manifold. In this subsection we define and study unstable maps of codimensions 1 and 2. 

Definition .3.5. If for a singular value y E R 2 of a smooth map f : M--+ R 2
, the multi­

germ f: (M, 1-1(y) n S(f))--+ (R2, y) is A-equivalent to a stable multi~germ in Table 1, 

then we call y a stable singular value of f and 1-1 (y) a stable singular fiber of f. 

Definition 3.6. Let f : M--+ R2 be a smooth map. Suppose that for a singular value 

y E R2 , J-1 (y) n S(f) is a finite set and that the multi-germ f : (M, J-1 (y) n S(f)) -+ 

(R2
, y) is not A-equivalent to any stable multi-germs in Table l. 

(1) Ifthereexistsal-parameterunfoldingG: (MxR, (f-1(y)nS(f)) x{O})--+ (R2 ,y) 
off : (M, J- 1(y) nS(f)) --+ (R2

, y) which is A-equivalent to one of the I-parameter 

unfoldings in Table 2, then we call ya codimension 1 singula~ value off and 1-1 (y) 

a codimension 1 singular fiber of f. 

(2) If there exists a 2-parameter unfolding H : (M X R 2, u-1(y) n S(f)) X {O}) -t 

(R2,y) off: (M,J-1 (y) n S(f))-+ (R2,y) which is A-equivalent to on~ of the 

2-parameter unfoldings in Tab_les 3-5, other than those for Dt or a quadruplefold, 

or if there exists a 3-parameter unfolding H: (M x R 3 , (f-1(y) n S(f)) x {O}) --+ 

(R2
, y) of f : (M, 1-1 (y) n S(f)) --+ (R2

, y) which is A-equivalent to the 3-

parameter unfolding of D; or a quadruplefold in Tables 3 or 5 around the pa­

rameter (0, 0, t0 ) for some t0 , then we call y a codimension 2 singular value off 

and 1-1 (y) a codimension 2 singular fiber of f. 

Note that we use the term "codimension i singular fiber of a smooth map" in a sense 

different from the term ,ico dimension i singular fiber of a stable map" used in [45] (i = 
1, 2). 
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Definition 3.7. A smooth map f: M --+ R 2 is said to be a codimension 1 (resp. 2) 

unstable map if there exists a unique codimension 1 (resp. 2) singular value off and the 

other singular values are all stable singular values off. 

Remark 3.8. Let f : M --+ R2 be a smooth map. Suppose that f has exactly two 

codimension I singular values and that the other singular values are all stable singular 

values off. We can regard such an f as a codimension 2 unstable map in C 00 (M) R 2
) 

in a natural sense. However, for the study of first order semi-local invariants of stable 

maps, we can ignore such kind of maps. We will explain the reason in Remark 5.2. For 

the study of first order non-local invariants of stable maps) we have to consider such kind 

of maps (see Section 8). 

Definition 3.9. Let f and g : M --+ R 2 be two stable maps of a closed 3-dimensional 

manifold M into the plane and J C R a closed interval such that f)J = { a) b} and a < b. 

Let T: I--+ 0 00(M,R2
) be a continuous map which connects f and g, i.e., T(a) = f and 

r(b) = g. We call T a continuous path between f and g. 

For a coqtinuous path T, we define the associated continuous map F : M x I --+ R2 by 

F(x, t) = r(t)(x) (x E M, t E J). Note that ft is ·a smooth map for each t E J, fa= fand 

A= g, where ft : M--+ R2 is defined by ft(x) --:-- F(x, t). By an approximation theorem, 

there exists a smooth map G : M x I --+ R2 which is an approximation of F such that 

9a = f and 9b = g, where 9t is defined by 9t(x) = G(x, t) (see [34]). We call G a smooth 

homotopy between f and g. To choose a suitable smooth homotopy, we use the following 

parameterized multi-transversality theorem. 

Let N, Q and P be manifolds and F : N x Q - P a smooth map. For each q E Q, 

the smooth map Fq : N--+ Pis defined by Fq(x) = F(x, q). We denote by N(k) the set of 

all (x1 , ... , xk) E Nk such that x1 , ... , xk are distinct points in N. Let Jr(N, P) be the 

r-jet space and f Fq(x) the r-jet of Fq at x E N. We define kJr(N, P) by kJ,,.(N, P). = 
(1rt)-1N(k)) where 7rN: Jr(N,P)--+ N is the projection. 

We define the parameterized jet extension kjr F: N(k) X Qk--+ kJr(N, P) X Qk by 

Then we have the following proposition. 

Proposition 3.10 (Parameterized multi-transversality theorem). Let W1 , W2 , ... be count­

ably many submanifolds in kJr (N, P) x Qk. Then) the set 

T ={FE C00 (N x Q,P) I kf Fis transverse to every W 1 , W2 , ... } 

is a residual subset and is dense in c = (N x Q, P) . 
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The above proposition follows from the (ordinary) multi-transversality theorem proved 

in [30; 31] (see [20] for details). For the case of k = l, see [1, 9]. 

By the above proposition, we may assume that the smooth homotopy G : M x I -+ R2 

approximating the continuous map F : M x I .- R2 associated with a continuous path 

T: ] -t C00 (M, R 2) satisfies the following: 

(1) there is a finite set of parameter values a< t1 < t 2 < · · · < t, < b (possibly empty) 

in the open interval Intl = ( a, b) such that the following holds. 

(1-1) For any t E J\ {t1 , ... , tz}, the map 9t: M-+ R2 is stable,·where 9t is defined 

by 9t ( x) = _ G ( x, t). 
(1-2) For each ti (i = 1, ... ,Z), 9ti is a codimension 1 unstable map. 

(1-3) Let Yi E R 2 be the codimension 1 singular value of 9ti (i = 1, ... , Z). Then 

is A-equivalent to one of the I-parameter unfoldings in Table 2, where c is a 

sufficiently small positive real number. 

We call such a G a generic homotopy between f and g and call each ti (1 :::; i :::; l) a 

codimension l bifurcation value of G. If there is no codimension 1 bifurcation value of G 

in I, then we call Gan isotopy between f and g, and if there exist~ an isotopy between 

f and g, then we say that f and g are isotopic. We say that J is the initial stable map 

.of G and g is the terminal stable map of G. For a generic homotopy, if the initial stable 

map and the terminal one are the same, then we call it a generic loop. 

Let p: W ~ C00 (M, R2) be a continuous map such that for the associated continuous 

map F : M x W -+ R 2
, the restriction FJM x aW is a generic loop. Here, W c R2 

is a closed disk and Fis defined by F(x,w) = p(w)(x). By an approximation theorem, 

there exists a smooth map G : M x W -+ R2 which is an approximation of F such that 

FJM x aw= GIM x 8W. By Proposition 3.10, we may assume that the smooth map G 

satisfies the following conditions. 

(2) The closed disk W is stratified into finitely many 2-, 1- and 0-dimensional strata 

and 8W is a union of finitely many 1- and 0-dimensional strata. They satisfy the 

following. 

(2-1) For any point win each 2-dimensional_stratum; 9w is a stable map, where 9w 

is defined by 9w(x) = G(x, w). 
(2-2) For any point w in each I-dimensional stratum contained in Int W, 9w is a 

codimension 1 unstable map. Let y E R 2 be the codimension 1 singular vaJue 

of 9w and Iw C IntW a small open arc passing through w which is transverse 

to the 1-dimensional stratum of w. Then 

GIM X Iw '. (M X Iw, (g:;1(y)'n S(gw)) X {w})-+ (R2 )y) 
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is A-equivalent to one of the I-parameter unfoldings in Table 2. 

(2-3) For each 0-dimensional stratum Wj in IntW (j ~ 1, ... , m), 9wj is a codimen­

sion 2 unstable map. Let Yj E R 2 be the codimension 2 singular value of 9wr 

Then, either 

(2-3a) 

(3.2) 

is A-equivalent to one of the 2-parameter unfoldings in Tables 3 or 4 

other than those for Dt, or 

(2-3b) there exists a t0 E R such that (3.2) is A-equivalent to the unfolding of 

Df or a quadruplefold in Tables 3 or 5 with t · t0 . 

We call such a G a generic 2-parameter family and we call each wi (1 ::::; j ::::; m) a 

codimension 2 bifurcation value of G in W. 

Let F : M x I --t R2 be a generic homotopy such that a closed interval I contains · 

O and O is the unique codimension 1 bifurcation value in J. Then, the open interval 

Intl = ( a, b) C R is stratified into two 1-dimensional strata and one 0-dimensional stratum 

(i.e., the origin). We call such a stratified open interval Intl a codim ension 1 bifurcation 

' diagram of f0 . Here, ft: M--+ R2 is defined by ft(x) = F(x , t). 
Let G : M x W --t R2 be a generic 2-parameter family such that. 0 is the unique 

codimension 2 bifurcation value in the closed disk W. Then, the open disk IntW C R2 

is naturally stratified into several 2-dimensional strata, several I-dimensional strata and 

one 0-dimensional stratum (i.e. , the origin). We call such a stratified open disk lntW 

a codimension 2 bifurcation diagram of g0 • Here, 9w : M -+ R2 is defined by 9w(x) = 
G(x, w) (see Figure 3). 

For a bifurcation diagram) we usually consider that each stratum contains some extra 

information on the stable (or codimension 1 or 2 unstable) maps corresp onding to the 

stratum, such as their singular value sets, their singular fibers, etc. (see Figures 2 and 3). 

Remark 3.11. Let Gi : M X wi --t R 2 be two generic 2-parameter families such that for 

each Ci, 0 E Wi is the unique codirhension 2 bifurcation value ( i = 1, 2). Suppose that 

both Gi are A-equivalent to the unfolding of Dt or a quadruplefold in Tables 3 or 5 with 

_t = ti (t1 # t2) (see (2-3b) above). By using the normal form of Dt or a quadruplefold 

in Tables 3 or 5, we see that there exists a homeomorphism r.p : Int W1 --t Int W2 which 

preserves the codimension 2 bifurcation diagrams of IntW1 and IntW2 (see Figure 3). 

3.3. Bifurcation diagrams. In this subsection, we study bifurcation diagrams of un­

stable m aps of codimensions 1 and 2, and clarify t he deformations of their singular value 

sets and their singular fibers locally. 
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Let M be a closed 3-dimensional manifold and F : M x I ---, R 2 a generic homotopy 

such that I is a closed interval and OE Intl is the unique codimension 1 bifurcation value 

of F. Suppose that y E R2 is the codimension 1 singular value of f 0 , where ft is defined 

by ft(x) = F(x, t). We call such an F a generic homotopy around f 0 • The deformation 

of the singular value set ft(S(ft)) around y is as depicted in Figure 2. 

Let f : M -+ R 2 be a codimension 1 unstable map and y E R 2 the codimension 1 

singular value off. Suppose. that q E J-1(y) n S(f) is a, singular point in J- 1 (y). Using 

the local normal forms in Table 2, we can easily describe the diffeomorphism type of a 

neighborhood of q in J-1(y). If 1-1(y) n S(f) has two or more points, then q has one 

of the neighborhoods as listed in Lemma 3.3 in its corresponding singular fiber. In the 

following lemma, we describe the local characterization of codimension 1 singular fibers 

when { q} = J- 1(y) n S(f) holds. 

Lemma 3.12. Let f: M---, R 2 be a codimension 1 unstable map of a closed 3-dimensional 

manifold into the plane and y E R2 the codimension 1 · singular value of f. Suppose 

that r-1(y) n S(f) consists of a single point, say q. Then q has one of the following 

neighborhoods in its corresponding singular fiber ( see Figure 6): 

(1) 3/2-cuspidal arc diffeomorphic to { (y, i) E R 2 I y 3 + z2 = O}i if q corresponds to 

lips or beaks1 

(2) isolated point diffeomorphic to {(y, z) E R 2 I y4 + z2 ..:... O}, if q is a definite 

swallowtail, 

(3) union of two tangent arcs diffeomorphic to {(y, z) E R 2 ] y4 - z2 = O}, if q is an 

indefinite swallowtail. 

j Figure 6 j 

Note that in Figure 6, the black square (2) represents an isolated point. However, we 

do not use th: black dot as in Figure 4 (1) in order to distinguish the fiber corresponding 

to a definite fold from that corresponding to a definite swallowtail. 

For the local nearby fibers of stable maps appearing in a generic homotopy around a 

codimension 1 unstable map, we have·the following. 

Lemma 3.13. Let f : M ___, R 2 be a codimension l unstable map of a closed 3-dimensional 

manifold into the plane and y0 E R2 the codimension l singular value off. Suppose that 

F: M x [-1, 1] -+ R 2 is a generic homotopy around f, and define ft by ft(x) = F(x, t). 
Then the local fibers of ft near f0-

1 (y0 ) n S(10 ) are as depicted in Figure 7 1 where -we 

replace t by -t for ft if necessary. In. Figure 7, each 0- or l-dimensional object except 

ft(S(ft) ) C R2 represents a portion of the fiber over the corresponding point in the plane. 

They are drawn with thin lines and ft ( S Ut)) is drawn with thick lines. 
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I Figure 71 
In Figure 7, some of the edges of ft(S(ft)) are oriented. For the definition of the 

orientation on ft(S(ft)), see Remark 4.6. Note that the figures in Figure 7 are in one-to­

one correspondence with the normal forms in Table 2 and these figures do not depend on 

the choice of a generic homotopy F up to diffeomorphism. 

Let us now study co dimension 2 unstable maps. Let F : M x W - R 2 be a generic 

2-parameter family such that O is the unique codimension 2 bifurcation value in the closed 

disk W. Suppose that y E R2 is the codimension 2 singular value of f0 , where fw is defined 

by f w(x) = F(x; w). We call such an F a generic 2-parameter family around f 0• Then 

the deformation of the singular value set fw(S(fw)) around y is as depicted in Figure 3. 

Let f : M - R 2 be a codimension 2 unstable map and y E R 2 the codimension 

2 singular value of f. Let q E J-1(y) n S(f) be a singular point in J-1(y). Using 

the normal forms in Tables 3-5, we can easily describe the diffeomorphism type of a 

neighborhood of q in J-1 (y). If 1-1(y) n S(f) has two or more points, then q has one 

of the neighborhoods as listed in Lemmas 3.3 or 3.12 in its corresponding singular fiber. 

In the following lemma, we describe the local characterization of codimensi6n 2 singular 

fibers when { q} = J-1 (y) n S(f) holds. 

Lemma 3.14. Let f: M - R 2 be a codimension 2 unstable map of a closed 3-d-imensional 

manifold into the plane and y E R2 the codimension 2 singular value of f. Suppose 

that f...., 1(y) n S(f) consists of a single point, say q. Then q has one of the following 

neighborhoods in its corresponding singular fiber ( see Figure 8): 

(1) 3/2-cuspidal arc diffeomorphic to {(y, z) E R2 I y 3 + z2 = O}, if q is a goose, 

(2) 5/2-cuspidal arc diffeomorphic to { (y, z) E R2 ! y5 +y7 +z2 = O}, if q is a butterfly, 

(3) i solated point diffeomorphic to {(y1 z) E R2 I y 4 + y 5 + z2 = O}, if q corresponds 

to definite gulls, 

(4) union of two tangent arcs diffeomorphic to {(y,z) E R 2 I y 4 + y5 - z2 = O}, if q 

corresponds to indefinite gulls, 

(5) union of an arc and an isolated point diffeomorphic to {(y, z) E R2 I y 3 + y2z + 
z3 + z 5 = O}, if q is a Dt point, 

(6) union of three arcs meeting at a point with distinct tangents diffeomorphic to 

{(y, z) E R2 I y3 - 2y2z + z 3 + z5 = O}, if q is a D4 point. 

JFigure 8 I 
By [35, 40], if q is a Dt point (resp. D4 p oint), the normal form H(x,y,z,O;O,t) 

in Table 3 is C 00 K-equivalent to the map of the form h(x, y, z) = (x, ;ey + y2z + z3
) 

(resp. h(x,y ,z ) = (x,xy - y2z+ z3
)). Because of the definition of C 00 .K:°-equivalence, a 

neighborhood of q in its corresponding singular fiber is diffeomorphic to a neighborhood of 
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(0) 0, 0) E R3 in h-1 (0, 0). Therefore, q has a neighborhood in its corresponding singular 

fiber diffeomorphic to { (y, z) E R 2 j ± y2 z + z 3 = 0} and we have the figures depicted as 

in Figure 8 (5) and (6). 
Note that in Figure 8 (2), the "shape of Y)), (3) the black square, and (5) the union 

of an arc and an isolated point represent a 5 /2-cuspidal arc, an isolated point and a line 

respectively. We use these symbols to distinguish a 3/2-cuspidal arc and (2), a black dot 

and (3) (see the paragraph just after Lemma 3.12), and a regular arc (without singular 

points) and (5). 

For the local nearby fibers of a co dimension 2 unstable map, we have the following. 

Lemma 3.15. Let f : M -+ R 2 be a codimension 2 unstable map of a closed 3-dimensional 

manifold into the plane and y 0 E R 2 the codimension 2 singular value of f. Then the 

local fibers' off near 1-1 (y0 ) n S(f) are as depicted in Figure 9. In Figure 91 each 0-
or 1-dimensional object except f (S(f)) C R2 represents a portion of the fiber over the 

corresponding point in the plane. They are drawn with thin lines and f ( S (f)) are drawn 

with thick lines. 

I Figure 9 I . 
In Figure 9, some of the edges of f (S(f)) are oriented. For the definition of the 

orientation on f'(S(f)), see Remark 4.6. Note that Figure 9 has one-to-one c;orrespondence 

with Tables 3-5. 
Note that for a generic 2-parameter family F around a codimension 2 unstable map f, 

we can depict figures similar to those given in Lemma 3.13. But the statement and the 

figures would be so complicated that we do not write them down here. 

4. CLASSIFICATION OF SINGULAR FIBERS 

In this section, we first give a precise definition of the weak equivalence for singular 

fibers. We classify singular fibers of stable maps and unstable maps of codimensions 1 

and 2 up to this equivalence relation. Then we define an equivalence relation for unstable 

maps of codimensions 1 and 2, which is based on the weak equivalence of singular fibers 

of codimensions 1 and 2. We also call this equivalence the weak equivalence for simplicity, 

for unstable maps of codimensions 1 and 2. We classify unstable maps of codimensions 1 

and 2 up to this equivalence relation. · 

4.1. Definition of an equivalence of fibers. Let f and g : M -+ R2 be two smooth 

maps of a closed manifold Minto the plane. For Y! and y9 E R2, we say that the fiber of 

f over Y! and that of g over y9 are diffeomorphic to each other if f- 1(y1) and g- 1(y9 ) are 

diffeomorphic in the sense of Definition 3.2. Let 1r: S1 x IntD2 -+ IntD2 be the projection 

to the second factor. Since 1r is a submersion, t he fiber 1r-
1 (0) is a .regular fiber and is 
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diffeomorphic to S 1
• We denote by Uf=1 Sl the disjoint union of 0: copies of S1 ( QI ~ 1) 

and by 1fc, : (Uf=1sn X IntD2-+ IntD 2 the projection to the second factor. 

Definition 4.1. Let f and g : M-+ R 2 be two smooth maps of a closed 3-dimensional 

manifold M, and J-1 (YJ) and g- 1 (y9 ) two singular fibers off and g over YJ and y9 E R2 

respectively. Suppose that U1 (resp. U9 ) is a small open disk neighborhood of Yt (resp. 

yg)• 

(1) Suppose that both f and g are stable maps. We say that the two singular fibers 

J-1 (y1) and g-1(y9 ) are weakly equivalent if there exist a homeomorphism <p : 

(U1, y1)-+ (U9 , y9 ) and non-negative integers a and /3 such that tp(Utnf(S(f))) = 
U9 n g(S(g)) and for each y E UJ, the disjoint union 1-1 (y) U (1r;1 (0)) is diffeo­

morphic to the disjoint union g-1(tp(y)) U (1rt(o)). 

(2) Suppose that both f and g are codimension 1 unstable maps and that Y! E R2 

(resp. y9 ) is the unique codimension 1 singular value of f (resp. g). Let F : M x 

11-+ R 2 (resp. G: M x 19 -+ R 2 ) be a generic homotopy around f (resp. g) such 

that Jo = f (resp. g0 = g) holds, where 11 and 19 C Rare small closed intervals 

containing O and ft (resp. 9t) is defined by ft(x) = F(x , t) (resp. 9t (x) = G(x, t)). 
The two singular fibers J- 1(y1) and g- 1(y9 ) are weakly equivalent if their exist a 

homeomorphism <p: I1 x U1 -+ I9 x U9 of the form <p(t, y) = ('1/J(t) , lf!t(Y)) and non­

negative integers a: and /3 such that 1P(O) = O> rpo(YJ) = y9 and <pt(U1nft(S(ft))) = 
U9 n 9,;.,(t)(S(91/J(t))) for all t E 11 and that for each y E U1 > the disjoint union 

ft-1 (y) U (7!',;- 1 (0)) is diffeomorphic to the disjoint union g;i)(<f!t(Y)) U (1r,e"1 (0)) for 

alltEJ1. 

(3) Suppose that both f and g are codimension 2 unstable m aps and that Yi E R2 

(resp. y9 ) is the unique codimension 2 singular value of f (resp. g). Let F : 

M x W1 -+ R 2 (resp. G : M x W 9 --+ R 2
) be a generic 2-parameter family around 

f (resp. g) such that Jo = f (resp. g0 = g) holds , where W1 and Wg C R2 are 

sufficiently small closed disks containing the origin and f w (resp. 9w) is defined 

by fw(x) = F(x,w) (resp. 9w(x) = G(x,w)). The.two singular fibers J- 1(y1) and 

g- 1 (y9 ) are weakly equivalent if there exist a homeomorphism <p : W 1 x U1 -+ 

W9 x U9 of the form <p(w, y) = ('1/J(w), <pw(Y)) and non-negative integers QI and /3 
such that '1/J(O) = 0, cpo(Y1) - y9 and <f!w(U1 n fw(S(fw))) = U9 n 9,;.,(~}(S(g,;_,(w))) 

for all w E W1 and that for each y E Uf> the disjoint union J;;;1(y) U (1r; 1(0)) is 

diffeomorphic to the disjoint union g;(~/'Pw(Y)) U (1r,e"1 (0)). 

Note that the non-negative integers a and /3 should not depend on y E U1 or t or w . 
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We remark that Definition 4.1 (2) and (3) do not depend on the choices of F and G 

respectively. We can prove this by using an argument similar to that in the proof of 

Theorem 4. 7 in Subsection 4.3. 

Remark 4.2. We can define another equivalence relation for singular fibers of unstable 

maps of codimensions 1 and 2 by ignoring the unfoldings as follows. Suppose that both f 
and g: M--+ R2 are codimension 1 (or 2) unstable maps of a closed manifold and that YJ 

and y9 E R2 are codimension 1 (resp. 2) singular values off and g respectively. The two 

singular fibers 1-1 (Y1) and g-1 (y9 ) are coarsely equivalent if there exist a homeomorphism 

r.p: (UJ,YJ)--+ (U9 ,y9 ) and non-negative integers a and /3 such that r.p(UJ n f(S(f))) = 
U9 n g( S (g)) and for each y E U 1 , the disjoint union 1-1 (y) U ( 1r~ 

1 ( 0)) is diffeomorphic to 

the disjoint union g-1 (r.p(y)) U (7ri1(0)). We will see later that this equivalence is strictly 

weaker than the weak equivalence. For example, in Theorem 4. 7 of Subsection 4.3, III~ and 

III! are not weakly equivalent but are coarsely equivalent (see Figure 12 in Section 4.3), 

and in Theorem 4.8 of Subsection 4.3, IVi, IV~ and IV~ are not weakly equivalent to each 

other but are all coarsely equivalent (see Figure 13 (p) in Section :4.3). 

Remark 4.3. We have several equivalence relations for stable, co dimension 1 or co dimen­

sion 2 singular fibers. They are "diffeomorphism up to regular S1 -components" ( consid­

ered implicitly in [26)), "coarse equivalence", "weak equivalence" and "C:i0 equivalence 

up to regular S1-components" (originally defined in [45)). Let us write "A" =}- "B" by 

using an arrow if the equivalence A implies the equivalence B. Then, we see easily that 

"C00 equivalence up to regular S1-components" =}- "weak equivalence" 
(a) 

~ "coarse equivalence" =}- <'diffeomorphism up· to regular S1-components''. 
(b) (c) 

The converse of (a) does not hold. This follows from the fact that D; and the quadruple­

fold have positive A-modalities. That is, for Df or the quadruplefold, we have infinitely 

many C 00 equivalence classes of multi..:germs. By Remark 4.2, the converse of (b) does not 

hold. Figures 4 (1) and 6 (2) show that the converse of (c) does not hold (see Lemma 3.12 

in Subsection 3.3). 

4.2. Classification of singular fibers of stable maps.' In what follows, let M be a 

closed orientable 3-dimensional manifold. In this subsection, we get a classification of 

stable singular fibers up to weak equivalence. 

We have the following theorem which was implicitly proved in [26, 29]. 

Theorem 4.4. Let f : M --+ R 2 be a stable map of a closed orientable 3-dimensional 

manifold into the plane. Then, every singular fiber of f is weakly equivalent to one of the 

fibers as in Figure 101 and no two fibers in Figure 10 are weakly eqV,ivalent. In Figure 10, 
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we have described the deformation of singular fibers around each stable singular fiber to 

clarify the weak equivalence class. 

\ Figure 10 I 
In Figure 10, I* and II* mean the names ofthe corresponding weak equivalence classes of 

singular fibers. Note that we have named the fibers so that each connected singular fiber 

has its own digit or letter and a disconnected fiber has the name consisting of the digits 

or letters of its connected components containing singular points. Hence, the number 

of digits in the superscript coincides with the number of connected components which 

contain singular points. In this figure, singular value sets are drawn with thick lines and 

the orientations on the singular value sets correspond to those defined in Remark 4.6. 

Note that Figure 5 ( 1) can be rega~ded as the deformation of the singular fiber of type I0
. 

Proof of Theorem 4.4. The proof is simpler than that of [45) Theorems 3.1, 4.5 and 4.15}. 

For completeness, we give a detailed proof here. 

Let us take a point r E f(S(f)). If r corresponds to Figure 1 (1), then J-1 (r) contains 

exactly one singular point q E M, which is a fold point. If q' is a definite fold point, 

then the component of the singular fiber containing q is diffeomorphic to one point ( the 

singular fiber of type 1° in Figure 10) by Lemma 3.3. 

Suppose that q is an indefinite fold point and f(q) = r E R2
. By Proposition 3.1, the 

germ off at q is A-equivalent to the germ of fi(x,y,z) = (x,y2 - z2
) (= (u ,v)) at the 

origin: i.e., there exist diffeomorphisms 01 : V---+ Vi and ip1 : (R2 ,f(q))---+ (R2
, (0,0)) 

such that 'cp1(q) = (0, 0, 0), ip1(f (q)) = (0, 0) 1;1,nd ip11 o Ji o 01 = f on V, where V is a 

sufficiently small open neighborhood of q in M and Vi is an open neighborhood of the 

origin in R 3 of the form 

V1 = {(x,y, z) E R3 I x2 + y2 + z 2 < c, llf1(x,y, z))I < 8} 

for 1 » c » 8 >'0. Let U0 C R 2 be a small open interval defined by u = 0 and ]v! < 8 

with respect to the above coordinates (u , v). Then V1 n f11(U0) is a surface as depicted 

in Figure 11 (1) (see also Figure 5 (2)) . Note that the map 

frl8(Vi n J;\Uo)) : 8(\/i n t;1 (Uo))---+ Uo 

is a proper submersion. S~nce the map Ji li!i n f11 (Uo) : Vin f11(U0 ) ---+ Uo is a Morse 

function and a Morse function is a submersion outside of the critical p oints, 1-1 (r) \ V 

in M is a compact I-dimensional smooth manifold which is diffeomorphic t o the disjoint 

union of two arcs and some circles. Therefore, 1-1 (r) is diffeomorphic t o the disjoint 

union of a "figure eight'' type singular fiber ( a singular fiber of type I1 in Figure 10) or 

t he complex as depicted in Figure 11 (2), and some circles. If a fiber as in Figure 11 

(2) appears, t hen M must contain a punctured Mobius band t imes [- 1, lJ, and hence is 
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non-orientable. Since we have assumed that Mis orientable, this does not occur. Hence, 

we see that the singular fiber J- 1 ( r) is diff eomorphic to the disjoint union of a "figure 

eight" type singular fiber and a finite number of non-singular circles. 

j Figure 11 j 

If r corresponds to Figure 1 (3), then J-1(r) contains exactly two singular points, say 

q1 and q2 , which are fold points. Since they have neighborhoods as in Lemma 3.3 (1) 

or (2) in J- 1(r)., and since f is a submersion outside of the singular points, we see that 

there are only a finite number of possibilities for the diffeomorphism type of the union 

of the components of J- 1(r) containing q1 and q2 : for example, if both q1 and q2 are 

indefinite folds, then it is obtained from two copies of the figure as in Figure 4 (2) by 

connecting their end points by four arcs. Then we can use Lemma 3.4 to obtain the 

nearby fibers of each possible singular fiber: for example, see Figure 10, II1•1 , II:2 and II3 . 

Excluding the possibilities such that a singular fiber as in Figure 11 (2) appears as a 

nearby fiber, we get the singular fibers and corresponding nearby fibers as depicted in 

Figure 10 II0
•
0 II0

•
1 II111 II2 and II3 

) ) ) ) . 
By a similar argument, we see that if r corresponds to Figure 1 (2), then we obtain the 

singular fiber of type na. 
Thus we have proved that every singular fiber is diffeomorphic to the union of one of 

the fibers listed in the theorem and a finite number of non-singular circles. 

In order to complete the proof i we have only to show that if two singular fibers in the list 

are diffeomorphic after omitting all non-singular circles, then they are weakly equivalent. 

Let f and g : M --+ R2 be stable maps of a closed orientable 3-dimensional manifold M 

into the plane. Let 1ra: : (Uf~1Sl) x IntD2 --+ IntD2 and 'lf/3 : (uf~1S;) x IntD2 --+ IntD2 

be the projections to the second factors, where a and /3 are non-negative integers, and Sf 
and SJ are copies of S1

• Let us take r1 E f(S(J)) C R2 and r9 E g(S(g)) c R2. Suppose 

that the disjoint union 1-1(r1) U (1r~ 1(0)) and the disjoint union g-1 (r9 ) U (1r/(O)) are 

diffeomorphic to each other. 

If the singular fibers over r I and r 9 .are both of type I0
, then there exist neighborhoods 

U1 of r1 and U9 of r9 such that the sets U1 n f (S(f)) and. U
9 
n g(S(g)) are as depicted 

in Figure 1 (1). In particular, there exists a homeomorphism <p: (U1, r1) --+ (U9 ) r9 ) such 

that <p(U1 n f(S(J))) = U9 n g(S(g)). Note that we can describe the degeneration of 

fibers off over U1 and that of g over U9 using Lemma 3.4 and Figure 5. Then we see 

that the homeomorphism <p can be chosen so that J-1(r) U (1r;- 1(0)) is diffeomorphic·to 

g-1(<p(r)) U (1rj1(0)) for all r E U1. Thus, the two fibers 1-1 (r1) and g- 1(r9 ) are weakly 

equivalent. 

Similar arguments work also in the cases 11, II\ rr0 ,0 , n°,1, n1,1, H2 and II3 . 
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This completes the proof of Theorem 4.4.· D 

Remark 4.5. The list of fibers given in Figure 10 was already obtained by Kushner> Levine 

and Porto [26, 29] > although they did not describe explicitly the equivalence relation for 

their classification. 

Remark 4.6 ([29]). Let f : M--+ R2 be a stable map or an unstable map of codimension 

1 or 2, where M is a closed orientable 3-dimensional manifold. By the singular value set 

f(S(f)) c R\ R 2 is naturally stratified into 2-, 1- and 0-dimensional strata. Note that 

the union of 1- and 0-dimensional strata forms f(S(f)). On each I-dimensional stratum 

of f (S(f)), we can define an orientation as follows. We fix the canonical orientation on 

R 2 . Let n be a connected component of R 2 \ f(S(f)). We associate ton a non-negative 

integer n1(D.), which is the number of connected components of the fiber -of f over any 

point of n. Every l-'dimensional stratum in f(S(f)) is adjacent to exactly two connected 

components of R 2 
\ f(S(f)). Since these two components have distinct n1(D.):-values (see 

Figure 10), we can orient each I-dimensional stratum in f (S(f)) so that the region with 

the larger n1(D}value is on its left. In Figures 5> 7, 9 and 10, we have oriented some 

edges of f(S(f)) by this rule. 

4.3. Classification of unstable maps of co dimensions one and two. In this subsec­

tion, we will classify codimension i singular fibers by the weak equivalence. Then we will 

classify unstable maps of codimensions 1 and 2 by using the weak equivalence of singular 

fibers . 

We get the following classification of codimension 1 singular fibers. 

Theorem 4. 7. Let f : M -4 R 2 be a codimension 1 unstable map of a closed orientable 

3-dimensional manifold into the plane and y E R 2 the codimension 1 singular value of 

f. Then, the codimension 1 singular fiber J-1 (y) of f is weakly equivalent to one of the 

codimension l singular fibers as depicted in Figure 12, and no two fibers in Figure 12 are 

weakly equivalent. (In Figure 12, we have described the deformation of singular fibers on 

f(S(f)) around each codimension 1 singular fiber. We can describe the regular fibers on 

each 2 -dimensional region around y·E R2 as well, although we have not included them in 

the figures. For the deformations of singular fibers of stable maps appearing in a generic 

homotopy around f, we can describe them by combining Figures 7 and 12.) 

. I Figure 12 I 
In Figure 12) rn: means the name of the weak equivalence class of the corresponding 

codimension 1 singular fiber. Each symbol III* represents one diffeomorphism class (up 

to regular S1-components) of a codimension 1 singular fib er. Note that IIIa(l) and IIIa(b) 

correspond t o lips and beaks respect ively. T he subscript * in rn: or the letter * in Illa(*) 
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means that we have two or more weak equivalence classes of codimension 1 singular fibers 

in the corresponding diffeomorphism class. In this figure, singular value sets are drawn 

with thick lines and the orientations on the singular value sets correspond to those defined 

in Remark 4.6. 

Note that in Figure 12 (b), Illi and III~ are not weakly equivalent. We can distinguish 

them by looking at their generic homotopies and the deformatio11-s of singular fibers of 

stable maps appearing in these generic homotopies. By the same reason, IIIi and III! are 

not weakly equivalent, either. 

Let f : M --+ R 2 be an unstable map of codimension 1 and y E R 2 the codimension 

1 singular value off. If the codimension 1 singular fiber 1-1(y) belongs to rrr:, then we 

call it a codimension 1 singular fiber of type In:. 

Proof of Theorem 4.7 (sketch). To prove the theorem, we can use almost the same argu­

ment as in the proof of Theorem 4.4 (see also [45)). 

Let us take a point y E f(S(f)). By an argument similar to that in the proof of 

Theorem 4.4> we can show that the union of the components of J-1(y) containing singular 

points is diffeomorphic to one of the fibers of type III* listed in Figure 12. 

In order to complete the proof, we have only t o classify the singular fibers in each 

diffeomorphism class by the weak equivalence . 

. Let f : M--+ R2 be a codimension 1 unstable map such that y E R2 is the codimension 

1 singular value of f and that J-1 (y) is diffeomorphic to a singular fiber of type III*. 

Let F : M x [-1, l] ---+ R 2 be a generic homotopy around f. We define ft : M --+ R 2 

by ft(x) = F(x , t) . The singular value set ft(S(ft)) around y is as depicted in one 

of the figures of Figure 2 that corresponds to the type III*. Then we can describe all 

the possibilities for the degeneration of fibers of ft arQund y by using Lemma 3.13 and 

Figure 7. We classify these degenerations of fibers by the "weak equivalence" in a sense 

as in Definition 4.1 and obtain all the weak equivalence classes. To prove that no two 

fibers in Figure 12 are weakly equivalent, we can easily show that there does not exist a 

homeomorphism <p in a sense as in Definition 4.1. 

This completes the proof of Theorem 4. 7. D 

Similarly, we get the following classification of codimension 2 singular fibers. 

Theorem 4.8. Let f : M --+ R 2 be a codimension 2 unstable map of a closed orientable 

3-dimensional manifold into the plane and y E R2 the codimension 2 singular value of 

f. Then1 the codimension 2 singular fiber 1-1 (y) off is weakly equivalent to one of the 

codimension 2 singular fibers as depicted in Figure 131 and no two fibers in Figure 13 

are weakly equivalent. (In Figure 13 1 we have described the deformation of singular fibers 

on f (S(f)) around each codimension 2 singular fiber . We can describe the regular fibers 
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on each 2-dimensional region around y E R 2 as well1 although we have not included 

them in the figures. For the deformations of singular fibers of stable and codimension 1 

unstable maps appearing in a generic 2-parameter family around f I we can describe them 

by combining Figures 3 and 91 Tables 3- 5 and Theorems 4.4 and 4.7.) 

jFigure 13 I 
The proof of this theorem is similar to that of Theorems 4.4 and 4.7 (see also [45]), and 

is left to the reader. 

In Figure 13, rv: means the name of the weak equivalence class of the corresponding 

co dimension 2 singular fiber. Each symbol IV* represents one diffeomorphism class ( up 

to regular S 1-components) of a codimension 2 singular fiber. Note that the subscript * 
in IV; or the letter * in IV* ( *) means that we have two or more weak equivalence classes 

of codimension 2 singular fibers in the corresponding diffeomorphism class. Furthermore, 

we use the convention as in Figure 8 for drawing the singular fibers in Figure· 13. In this 

figure) singular value sets are drawn with thick lines and the orientations on the singular 

value sets correspond to those defined in Remark 4.6. 

We remark that for example, IVi, IV~ and IV~ are not weakly equivalent. We can 

distinguish them by looking at their generic 2-parameter families and the deformations of 

singular fibers of stable maps appearing in these generic 2-parameter families. 

Definition 4.9. Let M be a closed orientable 3-dimensional manifold. Let fi: M ~ R 2 ) 

i = 1, 2, be unstable maps of the same codimension k (= 1 or 2), and Yi E R2 the 

codimension k singular value of k We say that f 1 and f2 are weakly equivalent if f11(y1 ) 

and f21 (y2) are weakly equivalent in the sense of Definition 4.1. 

We use the same expression "weakly equivalent') for the equivalence relation of singular 

fibers and that of unstable maps for simplicity. 

We can classify codimension 1 (resp. 2) unstable maps by the weak equivalence by using 

Theorem 4. 7 (resp. Theorem 4.8). By abuse of notation we use the symbol III; (resp. IV;) 

for the weak equivalence class of maps inf 1 (resp. f 2) which have exactly one singular 

fiber of type rn: (resp. IV;). Note that these classes rn: and IV; are considered to be 

strata of the set of all unstable maps r in C(X)(M, R 2
). Note that each stratum rn: or 

IV; may not necessarily be connected. 

4.4. Coorientations of codimension one strata. Let M be a closed orientable 3-

dimensional manifold and f 1 the set of all codimension 1 unstable maps in C(X)(M,R2). 

In this subsection, we define a coorientation for each weak equivalence class off 1. · 

Let F : M x [-1, 1] - R2 be a generic homotopy around a codimension, 1 unstable 

map Jo, where ft: M - R2 is defined by F(x) t) = ft(x) (x EM, t E [-1, 1])~ Then we 

say that F crosses I' 1 positively at Jo if one of the following holds. 
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(1) When fo E III°(Z), IIIa(b), Illb,IIIc or llld, the number of cusps of Ji is greater 

than that off-I· 

(2) When f,0 E III0,a III1·a Ille III°·0 III0•1 III1•1 III2 or III3 the number of nodefolds * ) * ' *' * ) * ) * ) * *' 
of Ji is greater than that of f-I · 

(3) When Jo E III~·0•
0

, III~·0
•
1

, II1~'1'
1

, III;•1
•
1

, III~·2
, III!·2

, III~·3
, III!·3

, III!, III;, III!, rn: 
or Il18

, the number of connected components of the regular fiber over a point in the 

new-born triangle of f 1 is greater than that over a point in the vanishing triarigle 

off-I· 

If a generic homotopy F does not satisfy the above property, then we say that F 

crosses r 1 negatively at f O. By the above definition, all weak equivalence classes of maps 

inf 1 c C 00(M, R2
) are cooriented. 

5. THE VASSILIEV COCHAIN COMPLEX FOR THE WEAK EQUIVALENCE 

In this section we construct the Vassiliev cochain complex for the weak equivalence 

classes of unstable maps of codimensions 1 and 2. 

Let M be a closed orientable 3-dimensional manifold. In the following, we set M = 
c=(M, R2). Let ri be the set of all codimension i unstable maps in M (i = 1, 2). 

Let f : M --+ R2 be a codimension 1 unstable map and g : M --+ R2 a codimension 2 

unstable map. Suppose that F: M x [-1, 1)--+ R2 is a generic homotopy·around Jo= f, 
where F has the form F(x, t) ...:.... ft(x) (x E M, t E [- 1, ll). Let W C R2 be a small 

closed disk neighborhood of the origin in R 2 and G: M x W--+ R 2 a generic 2-parameter 

family around g = g0 , where G has the form G(x, w) = 9w(x) (x E M, w E W). We fix 

an orientation of the parameter space W of G (for details, see below), while we assume 

that F crosses r 1 positively at Jo in the sense of Subsection 4.4. 

Let [f]w (resp. [g ]w) be the co oriented weak equivalence class in r 1 ( resp. r 2) of f 
(resp. g), where the coorientation of [flw (resp. [g]w) is defined by the orientation of the 

parameter space of F (resp. G). If we change the orientation of the parameter space of F 

(resp. G), then the corresponding weak equivalence class is considered to be -[f]w (resp. 

-[g]w)-
Let us denote by Ci(W(M); Z) the (finitely generated) fr~e Z-module generated by the 

cooriented weak equivalence classes of ri, i = 1, 2. The rank of C 1 (W(M); Z) is equal to 

56, while the rank of C2 (W(M); Z) is equal to 389 (see Figures 12 and 13). Furthermore, 

we set C0 (W(M); Z) = C3 (W(M); Z) = 0. By Subsection 4.4, any weak equivalence 

class rn; in r 1 is considered to be an element of C 1 (W(M); Z), and any weak equivalence 

class rv; in r2 with a fixed coorientation is considered to be an element of C 2 (W(M); Z). 

We adopt the convent ion that the coorientation of each IV; is defined by the canonical 

orientation of R2 in Figure 3. 
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To define the co boundary operator o : C 1 (W(M); Z) ---+ C 2(W(M); Z), we define the 

incidence coefficient [8 : 3] E Z for every pair of generators 8 of C 1(W(M); Z) and 3 of 

C2 (W(M); Z) as follows. 

Let W(S) c R2 be a small closed disk neighborhood of the origin in R2 and G : 

M x W(3) ---+ R2 a generic 2-parameter family around g = g0 , where G has the form 

G(x,w) = 9w(x) (x E M,w E W(3)) and [g}w = 3 E C 2 (W(M);Z). We denote by 

8(3) the subset of W(S) consisting of all points w such that 9w is an element of 8. If 

8(3) is empty, then we define [8 : 2] to be zero. Otherwise, near the origin of W(S), 

the closure of 8(3) is a union of curves in W(S) containing the origin as an end point. 

Take a sufficiently small circle around the origin which is transverse to 8 (3). The circle 

is oriented by the orientation of W (3), while the orientation of the normal bundle of 

8(3) is induced from the coorientation of 8. Thus the intersection number of the small 

circle and 8(3) is well-defined, and we define the incidence coefficient [8 : 3] E Z as this 

intersection number. 

The oriented open neighborhood IntW(S) C R2 of the origin in the parameter space of 

a generic 2-parameter family around a representative of 3 is stratified by the subsets 8(3) 

for various 8. By the definition of the weak equivalence relation (Definition 4.1 (2) and 

. (3))) this stratification of IntW(3) by 8(3) does not depend on the choice of a generic 

2-parameter family G around g or a representative g of 3 up to orientation preserving 

homeomorphisms. Therefore, the incidence coefficient [8 : BJ is well-defined. This open 

disk IntW(B) is stratified into several 2-dimensional strata, several I-dimensional strata 

8(2) and one 0-dimensional stratum 2 (i.e., the origin). We call this stratified parameter 

space IntW(S) with the local stable singular value set 9w(S(gw)) n U C R 2 on each 

2-dimensional stratum the bifurcation diagram of 3, where w is an element of each 2-

dimensional stratum oflntW(B) (see the definition of a codimension 2 bifurcation diagram 

in Subsection 3.2 and the paragraph just before Remark 3.11 as well). Here, U is a 
small open disk neighborhood around the codimension 2 singular value of go. For each 

co oriented co dimension 2 weak equivalence class 3, the bifurcation diagram Int W (3) of 

3 is as depicted in Figure 14. We adopt the convention that the coorientation of each rv: 
is defined by the canonical orientati'on of R 2 in Figure 14. 

!Figure 141 

Note that for each weak equivalence class of codimension 2, there exists an orienta­

tion preserving homeomorphism between the corresponding parameter space of Figure 14 

and the canonical parameter space given by Tables 3- 5 such that the horizontal axis 

corresponds to a and the vertical one corresponds to b. 
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By using the incidence coefficients defined above, we define the homomorphism 

o: C1(W(M); Z) - C2 (W(M); z) by 6(8) = I)e: 212, 

where 8 is an arbitrary generator of C 1(W(M); Z) and the summation runs over all the 

generators 3 of C2(W(M); Z). We call the cochain complex 

0 - C1(W(M); Z) ~ C2(W(M); Z) - 0 

the Vassiliev c.ochain complex of the weak equivalence classes. 

Definition 5.1. We call a non-trivial element of Ker(6) a Vassiliev l-cocycle for the 

Vassiliev cochain complex of the weak equivalence classes. 

Remark 5.2. Let g: M---+ R2 be a smooth map with exactly two codimension 1 singular 

values such that the other points in R 2 are either a regular value or a stable singular 

value. We can naturally define a generic 2-parameter family G around g and a weak 

equivalence relation for such maps by using a definition similar to that for codimension 2 

unstable maps. We could consider the weak equivalence class 3 = [9]w of gas an element 

of 02(W(M); Z) by fixing a coorientation (see Remark 3.8). By the definition of the 

incidence coefficient, we see that for such a 3, [8 : 3] is always zero for any cooriented 

weak equivalence class 8 E C1 (W(M); Z). Therefore) in order to determine the Vassiliev 

1-cocycles and the associated first order semi-local invariants of stable maps, which will 

be defined in Subsection 6.2 , we can omit such a 3 from C2 (W(M); Z) . 

6. FIRST ORDER SEMI-LOCAL INVARIANTS 

In this section, we define first order (semi-local) invariants of stable maps. These 

invariants are constructed from the cocycles of the Vassiliev cochain complex which has 

been constructed in the previous section. These invariants are isotopy invariants of stable 

maps. 

6.1. Semi-local invariants. Let M be a closed orientable 3-dimensional manifold and 

r the set of all unstable maps in the .mapping space M = c=(M, R2). The set M \ r 
consists of all stable maps and we are interested in finding_ numerical invariants of path­

connected components of M \ r. 
Let r 1 be the set of all codimension 1 unstable maps and 8 one of the co oriented weak 

equivalence classes in r 1. For any generic homotopy F: M x [-1, 1] - R2, we can count 

the algebraic intersection number of F with 8. We denote by 8(F) E Z this intersection 

number. That is, let { t1 , ... , tk} ·be the set of all co dimension 1 bifurcation values ti of 

F such that A : M - R2 is in the weak equivalence class 8, where A is defined by 

F(x,ti) = A(x) . If F crosses r 1 positively at ft., then we define the sign of ti to be 
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+l; otherwise -1. Then we define the integer 8(F) to be the sum of signs ±1 over all 

codimension 1 bifurcation values ti E (-1, 1) of type 8 (1 ~ i S k). 

Any formal sum C = Lj ajej E C 1 (W(M); Z) such that aj E Z and ~ach ej is a 

co oriented weak equivalence class in r 1, defines an integer valued function on the set of 

all generic homotopies as follows: 

. c: {generic homotopies} - Z, c(F) = I:: aj8j(F). 
j 

Definition 6.1. We say that a formal sum c = I: aj8j defines a semi-local invariant of 

stable maps if for any generic homotopy F, the value c(F) depends only on the isotopy 

classes of the stable maps f _1 and fi, where f- 1 is the initial stable map of F and Ji is 

the terminal one . 

. In fact, given such a c, taking a distinguished map g EM \rand a constant a 0 E Z, we 

can define the semi-local invariant Le : M \ r - Z of stable maps by Le(!)= c(F) + ao. 

Here, F is any generic homotopy between g and f. Note that Le is an isotopy invariant 

of stable maps and Le(9) = ao, 

Remark 6.2. "Semi-local" means the following. ·The increment of the value c(F) at ej is 

determined by the coorientation of ej. The weak equivalence class 8j and its coorienta­

tion can be recognized only by looking at the homeomorphism type of the local deforma­

tion of the singular value set and the diffeomorphism types of the associated semi-local 

singular fibers. For these :fibers1 we consider the diffeomorphism type of a whole fiber 

instead of the multi-germ at the singular points contained in a fiber. Therefore, we say 

that Le is a "semi.local 11 invariant. 

6.2. First order semi~local invariants. Let M be a closed orientable 3-dimensional 

manifold and M = C 00 (M> R2) the mapping space. Since Mis contractible, we have the 

following. 

Proposition 6.3. Let c be a non-zero element in C1 (W(M ); Z). Then c is a Vassiliev 

l-cocycle if and only if c induces a semi-local invariant Le of isotopy classes of stable 

maps. 

In view of Proposition 6.3, we say that each Vassiliev 1-cocycle c induces a first order 

semi-local invariant of stable maps. In general meaning of Remark 6.4 stated below, an 

isotopy invariant L : M \ r - Z is said to be of first order if L can be extend~d to 

L : M - Z satisfying the following conditions: 

(1) Lis constant on each connected component of r1 , 

(2) L is constantly zero over r \ r 1 , 
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(3) for each co oriented stratum 8 of r 1 and for any generic homotopy F : M x 

[-1, l] --.- R2 around Jo such that_ F(x, t) = ft(x) and F crosses 8 positively at 

Jo, it holds that L(fo) = L(fi) - L(f _1). Here, each stratum 8 of r1 and its 

coorientation is the general meaning of Remark 6.4 stated below. 

Therefore, if c induces a semi-local invariant Le of isotopy classes of stable maps, then Le 

is a first order invariant. 

Proof of Proposition 6.3. Let c = I: aj8j be any Vassiliev 1-cocycle of C1 (W(M); Z) and 

F : M x S1 ---+ R2 a generic loop in M in the sense of the definition just before (2) in 

Subsection 3.2. In order to prove that c defines a semi-local invariant of isotopy classes 

of stable maps, we have only to show that c(F) = 0 holds. Since M is contractible, 

there exists a generic 2-parameter family G: M x D 2 ---+ R 2 such that G!M x 8D2 = F 

(see Proposition 3.10 and (2) in Subsection 3.2). We fix an orientation of D 2
• By the 

definition of a generic 2-parameter family, D 2 is stratified into finitely many strata. This 

stratification is the same as that of W C R 2 constructed in (2) of Subsection 3.2. 

Let p1 , ..• ,Pk be the 0-dimensional strata in IntD2
• We take small disjoint k disks 

D(pi) (1 :'.S i :'.S k) centered at Pi in IntD2
. We may assume that each EJD(Pi) intersects 

the 1-dimensional strata of D 2 transversely. The orientation of D(pi) is induced from that 

of D 2• For each Pi; let Bi be the cooriented weak equivalence class of 9pn where gPi is 

defined by 9p; (x) = G(x, Pi). The orientations of 8D2 and ffD(pi) are induced from those 

of D 2 and D(pi) respectively. Note that 8D2 is homologous to I::=1 oD(Pi) in D 2
. 

We define the generic loop Fi ; M x oD(pi) ---+ R2 by ~ = GIM x 8D(Pi) (1 :'.S 

i :'.S k). It is easy to see that the intersection number c(F) = 1:j aiGi(F) is equal to 

I:7=1 (Lj ajGj(Fi)). By the definition of the incidence coefficient, we have ej(Fi) = [ej : 
Bi] for each i and j. Since c = I:3 aiej is a Vassiliev 1-:-cocycle) we have 

L a3 [83 : Bil = 0 
j 

for each i ( 1 :'.S i :'.S k). Therefore, c( F) = 0 holds. 

Conversely, suppose that for a non-zero element c E C1(W(M); Z) , we have c(F) = 0 

for any generic loop F : M x S1 -..:+ R 2 . For each element B E C2 (W(M); Z), we 

take a generic 2-parameter family G: M x W --:+ R2 around a representative of 2. Then 

c( GI M x EJW) = 0 holds by our assumption. Since c( G.I M x 8W) is equal to the coefficient 

of 2 for o(c), we have o(c) = 0 and c is a Vassiliev 1-cocycle. 

This completes the proof. D 

, Remark 6.4. If we define another equivalence relation on f 1 and r 2, and if we have a well­

defined coboundary operator, then we can construct another Vassiliev cochain complex. 

This means that a first order invariant depends on the equivalence relations on r 1 and 
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f 2 , and on the definition of the co orientation on each equivalence class off 1 (see [45], for. 

example). 

Remark 6.5. In [6], Birman and Lin reformulated order i Vassiliev invariants of knots in 

S3 in terms of a skein relation ( i 2 1). If we can define a suitable "skein relation>' for 

generic maps M - N between manifolds, then we can construct higher order finite-type 

invariants for these generic maps. In [11, 12, 13], Ekholm determined the higher order 

finite-type invariants for immersions Sk ct-+ R 2k-l (k 2 3) and Sk ct-+ R2k-2 (k 2 3). In 

[22], Kamada determined the higher order finite-type invariants for immersions M 2 ct-+ R4 

of an oriented closed connected surface M 2
• In [21], Januszkiewicz and Swi~tkowski 

determined the higher order finite-type invariants for immersions Mn ct-+ R2
n of a closed 

connected n-dimensional manifold Mn. In [18], Habiro, Kanenobu and Shima determined 

the higher order finite-type invariants for ribbon 2-knots S2 
'---+ R4

. Nowik determined 

the higher order finite-type invariants of immersions M 2 't-+ R 3 of a closed surface M 2 in 

[36] and those of immersions M 2 't-t R 3 of a closed orientable surface M 2 in [37, 38]. 

But unfortunately, these higher order finite-type invariants are obtained as polynomials 

of first order finite-type invariants (see [11, 12, 13, 21, 22, 36, 37, 38]) or derivatives of 

the Alexander polynomial (see [18]). These results mean that we have not yet obtained 

essential second or higher order invariants when the dimension of the source manifold is 

strictly greater than one. 

Remark 6.6. In this paper, we use the Vassiliev cochain complex to find first order in­

variants for stable maps. Kazarian [24, 25} used the Vassiliev cochain complex to study 

the characteristic classes of circle bundles. In this case, the Vassiliev cochain complex is 

constructed by considering fiberwise smooth functions on a total space. This is another 

application of the Vassiliev cochain complex. 

7. FIRST ORDER SEMI-LOCAL INVARIANTS OF STABLE MAPS 

In this section, we determine the first order semi-local invariants of. stable maps and 

clarify the geometric meanings of all the invariants. 

7.1. Computation of the co boundary operator. In this subsection, we determine 

the coboundary operator and all Vassiliev 1-cocycles for the Vassiliev cochain complex of 

the weak equivalence classes which has been defined in Section 5. 

By looking at each bifurcation diagram IntW(B) in Figure 14, we obtain the follo_wing. 

Proposition 7.1. The coboundary operator 

o: C1 (W(M); Z) - C2 (W(M ); Z) 
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of the Vassiliev cochain complex of the weak, equivalence classes is represented by the fol­

lowing block matrix with respect to the natural bases of C1(W(M); Z) and C2 (W(M); Z): 

A= 

Here, the natural (ordered) bases of C1(W(M); Z) (resp. C2 (W(M); Z)) corresponds to 

the weak equivalence classes as depicted in Figure 12 (resp. Figure 13). The non-zero 

blocks Ai,j are given in Tables 6-37. The other blocks which are not in Tables 6-37 are 

the zero blocks. Note that A is a 389 x 56 matrix. 

jTables 6, · · ·, 37J 

By a direct calculation, we get the following. 

Theorem 7.2. The rank ofKer(o) is equal to seven and the following cochains c1, c2, ... , c7 

constitute a basis of Ker(5): 

(1) c1 = III0 (l) + III0 (b) + IIIb +Ille+ Hid, 

(2) C2 = IIIb + rn°,a + 2III0
•
0

' 

(3) C3 = III0
•
0 + III1

•
0 + rne + 2III0

•
1

, 

(4) c4 = III1
•
0 + 2IIl1

•
1 + IIIf - III~+ IIIt 

(5) C5 = rnc +Ille+ 2III2 
- III1 + III~ - lllj + 3IIII + III~, 

(6) C6 = IIId + 2III3 
- 3Illi - III~, 

(7) C7 = 2III~ - 21III + III8
• 

For III* = III0
•
0 III1•

0 Ille III0
•
0 III0

,1 III1
•
1 III2 and III3 we have set III* = " III* 

' ' ' ' ' ' ' L .... '* *" 

The above proposition means that any Vassiliev 1-cocycle for the Vassiliev cochain 

complex of the weak equivalence classes is a linear combination of c1 , c2 , . • . , C7. 

7.2. Geometric interpretations of the 1-cocycles. In this subsection, we give a geo­

metric interpretation of each Vassiliev 1-cocycle Ci E Ker(5) (1 :S i :S 7) given in Theo­

rem 7:2. 

Theorem 7 .3. Let f and g : M -t R 2 be two stable maps of a closed orientable 3-

dimensional manifold into the plane and F : M x [-1, 1] -t R 2 a generic homotopy such 

that the initial stable map of F is g and the terminal one is f. Then we have the following 

for each ci(F) E Z (1 :S i :S 7). 

(1) The value c1(F) E Z is equal to (ttII0 (f) - HII0 (g))/2. 
(2) The value· c2 (F) E Z is equal to ttII0

•
0 (J) - ttn°,0 (g) . 

(3) The value c3(F) E Z is equal to ~n°,1 (J) - ttII0 ·1(g) . 
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( 4) The value c4( F) E Z is equal to ttII111 (!) - ~Il1•1 (g). 

(5) The value cs(F) E Z is equal to ijlf2(f) - UII2 (g). 

(6) The value c6(F) E Z is equal to ijII3(f) - UII3 (g). 

(7) The value c7 (F) E Z is equal to (rot(!) - rot(g))/2. 

Here} we denote by UII*(f) the number of II* -type singular fibers off and by rot(!) the 

surgical rotation number of f(S(f)). 

By observing Figures 7 and 12 carefully, we can prove (1)-(6). Thus, the proof of (1)­

(6) is easy and is left to the reader. To .understand and prove (7), we first have to define 

the surgical rotation number of a singular value set. In the next subsection, we define the 

surgical rotation number, and after that we prove item (7) of Theorem 7.3. 

7.3. Surgical rotation number. Let M be a closed orientable 3-dimensional,manifold 

and f: M--+ R2 a stable map. The definition of the surgical rotation number of J(S(f)) 

is given as follows. 

By the rule mentioned in Remark 4.6, the family of curves f(S(f)), except for its nodes 

and cusp points, is oriented. Let N1 (Il3
) be the set of those nodes y of f (S(f)) such 

that 1-1 (y) is weakly equivalent to the II3-type singular fiber. Then we can define the 

smoothing operation on f(S(f)) at y E N1(II3
) as follows. 

The node y is adjacent to four regions, say ni, 1 s; i s; 4, of R 2 \ f(S(f)), although 

there might be a repetition. We may assume that nf (01) = n1(02) = a and n1(!1s) = 
n1(04) = a+ I for some a~ 1 (see Remark 4.6 and Figure 10, II3

) . Let us consider the 

smoothing operation which connects !11 and 0 2 as in Figure 15. 

I Figure 15 I 
After the smoothing operation at each node in N1(Il3

), we obtain oriented plane curves 

with cusps j : US1 -+ R 2 . We define the generalized rotation number of j as the total 

degree of the tangent line map (})' : US1 -+ RP1 associated with j (for details, see 

below). Then we call the generalized rotation number of J the surgical rotation number 

of f(S(f)), and we denote it by rot(!). 

The generalized rotation number ~s defined as follows. Let h : US1 --), R 2 be oriented 

smooth curves such that each singular point x E US1 is a cusp point. That is, around x 

and h(x), we can choose local coordinates t and (u, v) r;spectively such that u oh= t2 

and v oh = t3 h.old. We set S(h) = {x E US1 I rank dhx = O} and call it the singular 

set of h. Fix the standard orientation on R 2 and take the unit circle in R 2 with the 

counterclockwise orientation. Orient the space of lines through the origin in R 2 r i.e. 

RP1
, . so that its double covering by the unit circle, which coincides with the ·· space of 

directions, is orientation preserving. For the smooth curve h, we define the smooth map 

h' : US1 
-+ RP1 as follows . If x ~ S(h), then h'(x) is the derivative of h at x, that is, 
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h' ( x) is the line through the origin in R 2 parallel to the tangent line of h at h( x). It is · 

easy to see that the map h' : US1 \ S(h) -+ RP1 has a unique smooth extension to all 

of US1 , which we denote by the same symbol h'. The generalized rotation number of h 

is defined to be I:deg(h'IS1) , where the summation runs over all the components S 1 of 

US1, the source of h', and deg(h'IS 1
) is the degree of h'IS1 . For more details , see [28J . 

7.4. Proof of Theorem 7.3 (7) . In this subsection, we prove Theorem 7.3 (7). 

Let F : M x [-1 , 1] ·-+ R2 be a generic homotopy between two stable maps f_1 

and Ji such that O is the unique codimension 1 bifurcation value, where ft is defined by 

F(x , t) = ft(x). We suppose that F crosses f 1 positively at fo. To prove Theorem 7.3 (7), 

we have only to check that c7 (F) = (rot(f1) - rot(f _1))/2 holds. 

(1) When fo E Int 
As is seen in Figure 16 (1), J1 has exactly two additional nodefolds of type II3 

when compared with f _1. Then, looking at Figure 16 (1) , we see easily that 

rot(/1)-'- rot(f _1 ) = 4. On the other hand, c7(F) = 2 holds. Therefore, we have 

c1(F) = (rot(f1) - rot(/-1))/ 2. 

(2) When fo E IIIi-
As is seen in Figure 16 (2) ,-the number of nodefolds of type II3 for fr is smaller 

than that for f _1 by three. Then, looking at Figure 16 (2), we see easily that 

rot(f1) - rot(f _1) = -4. On the other hand, c7(F) = -2 holds . . Therefore, we 

.. have c7(F) = (rot(/1 ) - rot(f _1)) /2. 

(3) When Jo E III8
• 

As is seen in Figure 16 (3) , the number of nodefold.s of type II3 for Ji is equal to t hat 

for /_1 . But, looking at Figure 16 (3) , we see easily that rot (fi) - rot(f _1) = 2. 

On the other hand, c7 (F) = 1 holds. Therefore, we have c7(F) = (rot(fi) -

rot (f _1)) / 2. 

For t he case of the other weak equivalence classes, we see easily that rot(f1) -rot(f _1) = 

0 holds. This completes the proof. D 

i Figure 16 J 

Remark 7.4. For a stable map f: M """7 R2 of a closed orientable 3-dimensional manifold, 

we have the quotient space W1 , where we identify points in the same connected component 

of each fiber off. This space W1 is called Stein factorization off (see [26, 29, 33 , 43, 44, 

45]). It is known that W1 is a compact 2-dimensional polyhedron. It is easy to see that 

rot(f)/2 = x(W1) holds for a stable map f, where x(W1) is the Euler characteristic of 

W1 . Therefore, we have c7(F) = x(W1i) - x(W,_1 )_ in Theorem 7.3 (7). 

7.5. Linear independence of the first order semi-local invariants. Let M be a 

closed orientable 3-dimensional manifold, M = C00(M, R2) the mapping space and r C 
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M the set of all unstable maps. It is easy to see that the following eight invariants 

Li : M \ r -+ Z (0 :S i :S 7) are isotopy invariants of stable maps: 

(0) Lo(!) = 1) 

(3) L3(f) = ttII0
•
1(!)) 

(6) L6(f) = ttII3(f)) 

(1) L1(f) = ~Ila(j)/2) 

(4) L4 (f} = ~Il1
'
1 (f) , 

(7) L7(f) = rot(f)/2. 

(2) L2(!) = ttII010(f), 

(5) L5(f) = ttir2(f), 

Here, we denote by ttII*(f) the number of II*-type singular fibers off. By (481, Ulla(!) 

. is always even for any stable map f : M -+ R 2 (see also [27]). Furthermore, by using 

this property and the definition of the generalized rotation number of J(S(f)), we see 

that rot(!) is also always even. Therefore, both L1 and L7 are integer valued invariants. 

By Theorems 7.2 and 7.3) the seven invariants L1 , L2, ... ) L7 are first order semi-local 

invariants and we have Li(!) = ci(F) + Li(g) 1 where g E M \ r is a distinguished stable 

map and F : M x [-1, l] -+ R2 is a generic homotopy between g and f. 
In this subsection) we show that the eight isotopy invariants L0 , L1i ... , L1 are lin­

early independent for all M. To provffthis, we construct eight examples of stable maps 

f1, h, ... , fs : S3 -+ R2 such that the determinant of the matrix (Lj(fi))15:i5:s,05:j5:7 is 

equal to 1. 

If we can construct such examples for M = S 3 , then we can prove the linear inde­

pendence of Lo, L1 , ... , L7 for an arbitrary M as follows. Let f : S 3 -+ R2 be a stable 

map of the 3-dimensional sphere and g : M -+ R2 a stable map of a dosed orientable 

3-dimensional manifold. Then we can construct a stable map JUg : S3ttM -+ R2 such 

that Lo(f~g) = 1, Li(fttg) =Li(!)+ Li(g) (1 :Si s; 6) and L1(f~g) = L1(f) + L1(g) - 1) 

where ij means connected sum of maps or manifolds. For a definition of the stable map 

f~g : S3~M-+ R2 , see [43, Lemma 5.4]. 

For any closed orientable 3-dimensional manifold M, let us define the isotopy invariant 

of stable maps L : 0 00 (M, R2) \ r -+ Z8 by L = (Lo , L1 ) ... , L7 ). For stable maps 

fi : S3 -+ R2 (1 :S is; 8), suppose that the determinant of the 8 x 8 matrix 

. . (L(f1)) 
L(f, , J,, -. -, !s) = {i,;j 

is non-zero. Then, we see that the determinant of L(fi~g, h~g, ... , fg~g) is equal to the 

determinant of L(f1 ) h , .. . ·, fs) for the stable maps fi~g: M-+ R 2 , where g: M -r R 2 is 

any stable map. Therefore, for all M , Lo, L1 , . • . , L7 are linearly independent. 

Set S3 = {(x1 , x2, x3 , x4) E R 4 j Xi+ x~ + x~ + x~ = l} , and let 7r : R 4 -+ R 2
. be 

the standard projection defined by 1r(x1 , x2 , x 3 , x4) = (x1 , x2) . Then we can construct the 

following examples: 
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(1) stable map Ji = 1rj53 : 5 3 - R 2 whose singular value set and associated fibers 

are as depicted in Figure 17 (1) with L(fi) = (1,0,0,0,0,0,0, 1), 

(2) stable map fz : 5 3 
- R2 whose singular value set and associated fibers are as 

depicted in Figure 17 (2) with L(fz) = (1, 1,0,0,0,0)0, 1), 

(3) stable map h : 5 3 
- R2 whose singular value set and associated fibers are as 

depicted in Figure 17 (3) with L(h) = (1, 1, 1, 0,0,0, 0, 1), 

( 4) stable map h : 53 
- R 2 whose singular value set and as.sociated fibers are as 

depicted in Figure 17 (4) with L(f4) = (1, 1, 1, 1,0,0,0, I), 

(5) stable map fs : 53 ---+ R2 whose singular value set and associated fibers are as 

depicted in Figure 17 (5) with L(J5) = (1, 1, 0, 1, 1, 0, 0, 1), 

(6) stable map f6 : 5 3 
- R 2 whose singular value set and associated fibers are as 

depicted ih Figure 17 (6) with L(f6) = (1, 1, 0, 1, 0, 1, 0, 1), 

(7) stable map h : S 3·---+ R2 whose singular value set and associated fibers are as 

depicted in Figure 17 (7) with L(h) = (I, 2, 0, 0, 0, 0, 1, 1), 

(8) stable map fa : 5 3 
- R2 whose singular value set and associated fibers are as 

depicted in Figure 17 (8) with L(f8 ) = (1, 0, 0, 0, 0, 0, 0, 2). 

The stable map Ji has neither P- nor II* -type singular fibers. The stable map Jz is 

obtained from Ji by crossing IIIa(l) positively. The stable map f3 is obtained from f1 by 

crossing IIIb positively. The stable map / 4 is obtained from fz by crossing III~,a positively. 

The stable map / 5 is obtained from fz by crossing III0 (l) positively twice, in~,a positively 

once, and IIIa(b) negatively twice. The stable map f 6 is obtained from /2 by crossing III; 

positively. The stable map h is obtained from fz by crossing IIId positively. The stable 

map fa does not have II* -type singular fibers .. 

The determinant of L(fi, h, ... , f8 ) is equal to 1. Therefore, the first order semi-local 

invariants £ 1 , 1 2 , ... , 1 7 together with the constant invariant L0 are linearly independent. 

\ Figure 17 [ 

Problem 7.5. It is easy to construct a generic homotopy Fi: 53 x [-1, lJ ---+ R 2 between 

Ji and Ji (2 :s; i :s; 7). On the other hand, the stable map f8 is directly constructed 

from a. Heegaard splitting of 5 3 (see [33] for example). The author does not know how to 

construct a generic homotopy Fa : S 3 x [-11 1]- R 2 between Ji and f8 • 

The following proposition is easy t o see and its proof is left t o the reader. 

Proposition 7. 6. The seven first order semi-local invariants L1 , £ 2 , ... , £ 7 are invariants 

of the C00 right-left equivalence classes.' 

This proposition means the following. Let f and ·g : M ---+ R2 be two stable maps of a 

closed orientable 3-dimensional manifold such that f and g are C 00 right-left equivalent 
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but are not necessarily isotopic. Then Li(!) = Li(g) holds for each i = 1, 2, ... , 7, and 

we conclude that these first order semi-local invariants cannot distinguish f from g. 

8. A NON-LOCAL FIRST ORDER INVARIANT OF STABLE MAPS 

In this section, we subdivide the weak equivalence classes of unstable maps of codi­

mensions 1 and 2 usiqg their global properties. By using these new classifications of r 1 

and f 2, we give a first order non-local invariant of stable maps and clarify the geometric 

meaning of this invariant. We use the adjective "non-local", since we need to know the 

global behavior of the singular (value) set in order to classify f 1 and I'2 (see Remarks 6.2 

and 8.3). 

Let f : M ---+ R 2 be a codimension 1 unstable map whose weak equivalence class 

is IIIa(b) and y E R2 the corresponding codimension 1 singular value of f. Let F : 

M x [-1, 1] ---+ R 2 be a generic homotopy around f = fo, where ft : M---+ R 2 is defined 

by ft(x) = F(x, t) and F crosses r1 positively at Jo. 
Suppose x 1 and x 2 E S(f1) are the new born cusps of J1 in the generic homotopy 

F. The codimension 1 weak equivalence class IIIa(b) of r1 can be subdivided into the 

following three disjoint classes. 

(a) The class IIIa(b1) consisting ofthe codimension 1 unstable maps in IIIa(b) such that 

the new born cusps x 1 and x2 belong to the same connected component of S(/1 ) 

and it corresponds to two connected components of S(f _1 ). See Figure 18 (a). 

(b) The class IIIa(b2) consisting of the codimension 1 unstable maps in IIIa(b) such 

that the new born cusps x 1 and x 2 belong to the same connected component 

of S(f1 ) and it corresponds to exactly one connected component of S(f _i). See 

Figure 18 (b) . 

(c) The class I1Ia(b3) consisting of the codimension 1 unstable maps in Illa(b) such 

that the new born cusps belong to distinct connected components of S(f1). See 

Figure 18 ( c). 

I Figure 18 [ 

We consider the coorientations of Illa(b1)) IIIa(b2 ) and IIIa(b3 ) are induced from that 

of IIIa(b). According to this new classification of codimension 1 unstable maps, certain 

bifurcation diagrams in Figure 14 have to be modified. The class IIIa(b) appears in 

the bifurcation diagrams of IV°, IVb )VC, IV\ IVi, IVj )V\ 1v0,a(b), IV1,a(b) and IVe(b) 

in Figure 14. 

( 1) Stratum IVa. 

The stratum IIIa(b) can only be of type I1Ia(b3). Therefore, IVa is not subdivided. 
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(2) Stratum IVb or IVe. 

In the bifurcation diagrams for IVb and IVe (Figure 14 (a)), we have the following 

three cases: 

(a) the stratum of type nra(b) on the left hand side is of type 1na(b1) and the 

stratum on the right hand side is of type III°'(b3), 

(b) the stratum of type Illa(b) on the left hand side is of type IIIa(b3 ) and the 

stratum on the right hand side is of type I1Ia(b1), 

(c) both of the two strata of type 1Ir1(b) are of type II1°(b2). 

Therefore, the stratum IV6 (resp. IVc) is subdivided into IV~, IVt and IVt (resp. 

IV~, IV~ and IV;). The coorientations of IV! (i = 1, 2, 3) are induced from that 

of IV*. Here, IV* = IVb or IVC. 

(3) Stratum IV'\ IV\ IVj, IV\ Iv0,a(b), 1v1,a(b) or IVe(b). 

In the bifurcation diagrams for these classes (Figure 14 (a)), we have the following 

three c~ses: 

(a) both of the two strata of type nra(b) are of type ura(b1), 

(b) both of the two strata of type rna(b) are of type ura(b2). 

(c) both: of the two strata of type IIIa(b) are of type IIIa(b3). 

Therefore, the stratum IV* (resp. IV*(b)) is subdivided into IVi", IV; and IV; 

(resp. IV;(b), IV;(b) and IV;(b)). The coorientations of IV; or IV;(b) (i = 1, 2, 3) 

are induced from those of IV* or IV;(b) respectively. Here, IV*= IV\ IVi, IVj or 

IV/c (resp. IV*(b) = rv0,a(bL Iv1,a(b) or rve(b)). 

Let us consider smooth maps with exactly two co dimension 1 singular values such that 

the other singular values are all stable singular values. Let f and g : M --+ R 2 be such 

smooth maps such that y{ and y{ E R 2 are codimension 1 singular values of f, and Yi 

and Y§ E R2 are codimension 1 singular values of g . These two maps f and g are weakly 

equivalent if 1-1 (y{) and g- 1(yf) are weakly equivalent in the sense of Definition 4.1 (2) 

(i = 1) 2 and we exchange Yi and y~ if necessary). For the study of first order "non­

locaF) invariants of stable maps, we have to study the bifurcation diagram of the weak 

equivalence class 2 = [f]w of such a map by fixing a coorientation (see Remarks 3.8 and 

5.2). We have the following two cases ·to consider. 

Let f : M :---t R 2 be a smooth map with exactly two codimension I singular values y1 

and y2 E R2 such that the other singular values are all stable singular values of f. 

(4) Either J-1 (y1 ) or J-1(y2) is not a IIIa(b)-type singular fiber. 

By the definition of the subdivided codimension 1 weak equivalence classes, we see 

that for such a 2, the incidence coefficient [8 ; 2] is always zero for any subdivided 

codimension 1 weak equivalence class 8 . Thus, we can ignore such a 2 in order 

to determine first order non-local invariants of stable maps. 
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(5) Both J- 1(y1) and J-1(y2) are nra(b)-type singular fibers. 

Let U1 and U2 C R2 be sufficiently small open disk neighborhoods around y1 and 

y2 respectively. Since both y1 and y2 are codimension 1 singular values off, there 

exists a homotopy Fi: M x [-1, l]-. R2 such that F;.IUi x [-1, 1] : Ui x [-1, l]--+ 

R 2 is a generic homotopy around flUi and ~.(x, t) = f(x) holds for any x E M 

and t E [-1, 1] (i = 1, 2). Suppose that FilUi x [-1, l] crosses IIIa(b) positively at 

f]Ui. Then, a smooth map G: M x [-1, l] x [-1, l] --+ IP is defined by 

F1 (x, t) if x E U1 , 

G(x, t, s) = F2 (x, s) if x E U2, 

f (x) if x EM\ (U1 U U2). 

Let Xi and Xi E S(h,1 ) (resp. x~ and x~ E S(/1,1)) be the new born cusps for 

J-1(y1) (resp. J-1(y2)), where ft,s: M--+ R2 is defined by !t,s(x) = G(x,t,s). For 

these four points xL xr, x~ and x~ E S(f1,1), we define the following equivalence 

relation. For x{ and xL we define d, ,....., xi if and only if they are in the same con­

nected component of S(f1,1) (i, j, k, l = 1, 2). We denote by { *} each equivalence 

class of Xi, Xi, x~ and x~ under this equivalence relation. The. parameter space 

Int([-1, l] x [-1, 1]) of G is naturally stratified into four 2-dimensional strata, 

four 1-dimensional strata (i.e., the t- and s-axes) and one 0-dimensional stratum 

(i.e., the origin). We call this stratified parameter space Int([-1, 1] x [-1, l]) of G 

the bifurcation diagram of 3. For the bifurcation diagram of S, we usually consider 

that each stratum contains some extra information on the stable ( or codimension 

1 or 2 unstable) maps corresponding to the stratum, such as their singular sets, 

their coorientations, etc. Then> essentially we have only to consider the following 

seven cases. 

(i) For {xi}, {xi}, {xn, {xn) the bifurcation diagram of 3 is as depicted in Fig­

ure 19 (i). 

(ii) For {xL xi}, {xn, {xD, s is subdivided into two classes. The bifurcation 

diagrams of these subdivided classes are as depicted in Figures 19 (ii-1) and 

(ii-2). 

(iii) For {xLxn ,{xn, {xn, the bifurcation diagram of sis as depicted in Fig­

ure 19 (iii). 

(iv) For { Xi, xi}, { x1, xn, s is subdivided into three classes. The bifurcation 

diagrams of these subdivided classes are as depicted in Figures 19 (iv-1), 

(iv-2) and (iv-3). 
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(v) For {xLxD, {xI,xn, 3 is subdivided into two classes. The bifurcation di­

agrams of these subdivided classes are as depicted in Figures 19 ( v-1) and 

(v-2). 

(vi) For {x},xi,xtxD, if the cyclic order of these cusps on the corresponding 

component of the singular set is Xi, xf, xL X§, then 2 is subdivided into three 

classes. The bifurcation diagrams of these subdivided classes are as depicted 

in Figures 19 (vi-1), (vi-2) and (vi-3). 

(vii) For {xLxtx~,xn, if the cyclic order of these cusps on the corresponding 

component of the singular set is x}, xt xi; x~, then 3 is subdivided into three 

dasses. The bifurcation diagrams of these subdivided classes are as depicted 

in Figures 19 (vii-1), (vii-2) and (vii-3). 

I Figure 19 j 

We consider the coorientations of strata in (5) are defined by the orientations of the 

corresponding parameter spaces. 

Let M be a closed orientable 3-dimensional manifold and we set M = C00 
( M, R 2). 

Let us denote by C1(W(M); Z) the (finitely generated) free Z-module generated by the 

subdivided weak equivalence classes of r1 . We denote by C2 (W(M); Z) the (finitely 

generated) free Z-module generated by the subdivided weak equivalence classes of r 2 

and by the cooriented weak equivalence classes of all unstable maps corresponding to 

(5). Here, ri is the set of all unstable maps of codimension i and all the generators of 

Ci(W(M); Z) are cooriented (i ~ 1, 2). The rank of C1 (W(M); Z) is equal to 58, while 

the rank of C2 (W(M); Z) is equal to 422. Using these free Z-modules, we naturally · 

obtain the modified coboundary operator 

J: C1(W(M); Z) -+ C2(W(M); Z). 

The definition of J is the same as that of c5 in Section 5. Then, we have the following 

propositions. 

Proposition 8.1. The rank ofKer(l) is equal to eight and the following cochains ci) ... , Cs 
. -

constitute a basis of Ker(8): 

(1) ci = III0 (l) + III0 (b1 ) + III0 (b2 ) + IIIa(b3 ) + IIIb + I~lc + Illd1 

(2) c; = IIIb + III0,a + 2III°•0
, 

(3) es = III°•a + II11•a + Ille + 2III0
•
1

1 

( 4) G.i = III1
•
0 + 2III1

•
1 + IIIf - III~ + IIIi, 

(5) Cs = Ille+ Ille+ 2IIr2 - IIli + IIIi - IIIi + 31Ili + nr;, 
(6) C6 = nrd + 2rn3 _;_ 3IIII - rn;, 
(7) 0 = 2III~ - 2IIII + III8 

! 

(8) Cs = III0 (Z) - III0 (b1 ) + III0 (b3) . 
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Geometric interpretations of ci, c';, ... , Of are the same as those of c1 ) c2, ... , c7 in The­

orem 7.3 respectively. A geometric interpretation of Cs is given as follows. 

Proposition 8.2. Let f and g : M ---* R 2 be two stable maps of a closed orientable 3-

dimensional manifold into the plane and F: M x [-1, 1)---* R2 a generic homotopy such 

that the initial stable map of F is g and the terminal one is f. Then the value ca ( F) E Z 

is equal to ~S(f) - ~S(g), where ~S(J) (or ~S(g)) is the number of connected components 

of the singular set off (resp. g). 

The proof of the above proposition is similar to that of Theorem 7.3, and is left to the 

reader. 

Remark 8.3. The element ca defines a first order non-local invariant in the sense as follows. 

We need to know the global behavior of the singular (value) set in order to decide which 

codimension 1 strata a generic homotopy crosses. 

Remark 8.4. It is easy to see that the invariant L8 : M\r---* Z defined by L8 (f) = ~S(f) is 

an isotopy invariant ofstable maps. By Proposition 8.1 > this invariant is a first order non­

local invariant and we have L8 (f) = eg(F) + L8 (g), where g EM\ r is a distinguished 

stable map and F : M x [-1, 1] ---* R2 is a generic homotopy between g and f. It is 

obvious that this isotopy invariant £ 8 is invariant of the C 00 right-left equivalence classes 

(see Proposition 7.6). 

9. FIRST ORDER SEMI-LOCAL INVARIANTS OF STABLE FOLD MAPS 

In this section, we determine those isotopy invariants for stable fold maps which are 

obtained as first order semi-local invariants. 

Let f : M---* R2 be a smooth map of a closed orientable 3-dimensional manifold into 

the plane. If f has only fold points as its singular points, then we call f a fold map. If 

f is a stable map and is a fold map (i.e., f is a stable map without cusp points), then 

we call f a stable fold map. Note that each singular fiber of a stable fold map is weakly 

equivalent to a fiber of type 1° 11 n°,0 n°,1 II1
•
1 II2 or II3 

' ' ' ) ) . 

Remark 9.1. By a theorem of Levine [27], any closed 3-dimensional manifold M has a fold 

map f.: M ---* R 2 . Therefore, for any closed orientable 3-dimensional manifold M, first 

order semi-local invariants for stable fold maps make sense. 

9.1. Computation of the Vassiliev quotient cochain complex for fold maps: Let 

M be a closed orientable 3-dimensional manifold and F the subspace of M = C00 (M, R 2) 

which consists of all fold maps of Minto R2
. It is easy to see that Fis an open subspace 

of M. By Remark 9.1, Fis non-empty for a ny M. Let r i b e the set of ail codimension i · 
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unstable maps in M. Then, any element in :F n r i is called a codimension i unstable fold 

map (i = 1, 2). 
Let F : M x 1 - R2 be a generic homotopy between two stable fold maps. If ft is 

a fold map for each t E I, then we call F a generic fold homotopy, and if ft is a stable 

fold map for each t E J, then we call F a fold isotopy. If fto is the unique co dimension 1 

unstable fold map in the 1-parameter family of fold maps ft, we call such an Fa generic 

fold homotopy around fto· Here, ft : M---+ R2 is defined by F(x, t) = ft(x) (x E M, t E 1). 

and 1 is a closed interval in R. 

Let us construct the Vassiliev quotient cochain complex for the weak equivalence classes. 

We set C0 (W(F); Z) = C 3 (W(:F); Z) = 0. Let us denote by Ci(W(C); Z) the (finitely 

generated) free Z-module generated by the cooriented weak equivalence classes of ri \ 
(ri n :F), i = 1, 2. Let J : C1(W(M); Z) -+ C 2(W(M); Z) be the coboundary operator 

defined in Section 5. Since :Fis an open subset of M, we see easily that 5(C1(W(C); Z)) C 

C 2(W(C); Z) holds. Therefore, the cochain complex 

0 - C1 (W(C); Z) ~ C 2 (W(C); Z) ---+ 0 

is a subcomplex of the Vassiliev cochain complex of the weak equivalence classes . . 

0---+ C1 (W(M);Z) ~ C 2 (W(M);Z)---+ 0 

constructed in Section 5. We set Ci(W{:F); Z) = Ci(W(M); Z)/Ci(W(C); Z). The rank of 

C1 (W(:F); Z) is equal to 45, while the rank of C2 (W(:F); Z) is equal to 301 (see Figures 12 

and 13). 

Let p1 : C1 (W(M); Z) .- C1(W(.r); Z) and p2
: C 2 (W(M); Z) .- C 2 (W(.F); Z) be the 

canonical quotient maps. Then we can define the Vassiliev quotient cochain complex for 

the weak equivalence classes, 

0 - C1 (W(.r); Z) C 2 (W(:F}; Z) ------+ 0, (9.1) 

so that the diagram 

0 --------+ C1(W(M); Z) _!.__,. C 2(W(M); Z) ------+ 0 

pl 1 lp2 
0 ---+ C1 (W(:F); Z) ~ C 2(W(:F); Z) -----+ O 

is commutative. Therefore, the Vassiliev quotient cochain complex (9.1) is well-defined. 

By the definition of the Vassiliev quotient cochain complex for the weak equivalence 

classes, the elements p1(III:) (or p2 (IV:)) such that * does not contain any alphabetical 

letter constitute the natural basis of C 1(W(:F); Z) (resp. C 2(W(:F); Z)). We denote each 

element p1(1II;) (resp. p2 (IV;)) by [III;) (resp. [IV;]). Not e that two codimension i un­

stable fold maps f and g E :F n ri are weakly equivalent if and only if they represent the 
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same element of Ci(W(F; Z)) ( i - 1, 2). By abuse of notation, we use the symbol [III:] 

(resp. [rv:n for the corresponding weak equivalence class of fold maps in :F n r1 (resp. 

F n I'2 ). Each weak equivalence class [III:] of F n r 1 or [IV:] of F n f 2 has the coorien­

tation induced from that of III; or rv: respectively. By the definition of the coboundary 

operator fJF, we have the following. 

Proposition 9.2. The coboundary operator 

of the Vassiliev quotient cochain complex for the weak equivalence classes is rep,f:sented 

by the following block matrix AF with respect to the natural bases of C1(W(F); Z) and 

C2 (W(F); Z): 

A4,2 A4,3 A44 , A4s , 

Asz , Ass 
' 

As4 , As,s 

A;:= Ag,2 Ag,s A9,4 Ags , 

0 I I•••• I• I••••••••••• o • I 

A24,2 A24,s A24,4 A24,s 

. Here1 each block Ai,j is the same as the block Ai,j in Proposition 7.1 . Note that A;: is a 

301 x 45 matrix. 

By a direct calculation, we we get the following. 

Theorem 9.3. The rank of Ker( o;:) is equal to seven and the following cochains di, d2, ••• , d7 

constitute a basis of Ker(b';:} 

( 1) d1 = [III0
•
0
]) 

(2) dz= [III°·1L 
(3) d3 = 2[II11

'
1

] + [IIIf] - [III~] + [IIIiL 

(4) d4 = 2[III2
] - [IIIf] + [III~] - [IIIi] + 3[IIIi] + [III~L 

(5) d5 = 2[III3] - 3[IIIi] - [III~], 

(6) d6 = 2[I11~] - 2[IIID + [III8
], 

(7) d7 = -[III?]. 

For [III''] = [III0
•
0
], [III°·1

], [III111
], [IIr2], [III3L and [IIr7], we have set [III*]= I:)In:J . 

9.2. Geometric interpretations of the 1-cocycles in Ker(6;:"). In this subsection, we 

give a geometric interpretation of each Vassiliev 1-cocycle di E Ker( 6;:) (1 ~ i ~ 7) given 

in Theorem 9.3. 

Let c = 21 +22 E C1 (W(M); Z) be a 1-dimensional cochain such that 22 E C 1(W(C); Z) 

and F: M x [....:.1, 1)-> R 2 a generic fold homotopy. By t he definition) c(F) = 21 (F) E Z 

andp1(c) = p1(21 ) E C 1(W(F); Z) hold. Therefore1 the integer value [III;J(F) E Z defined -
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by [III:](F) = III:(F) for each [III:J E C1(W(.F); Z) is well-defined. Let 81, 82, ... , 84s 

be the natural basis of C 1(W(.F); Z) and d = I:J:1 aj8j a cocycle in Ker(o;:-L where 

· aj E Z. Then d defines an integer valued function on the set of all generic fold homotopies 

as follows: 
45 

d : {generic fold homotopies} -+ Z, d(F) = L aj8j(F). 
j=l 

It is easy to see that .F is not connected. Let .F be any connected component of .F and 

F: M x [-1, 1] -t R 2 any generic fold homotopy which connects two stable fold maps 

f and g: M -t R2 in F. If we can show that the value d(F) depends only on the fold 

isotopy classes off and g, then d defines a semi-local invariant of fold isotopy classes for 

each connected component F of .F. In fact, given such ad, taking a distinguished stable 
- -fold map g E .F \ (.F n r) and a constant a:0 E Z, we can define the semi-local invariant 

Jf: F\ (F n r)--+ Z of stable fold maps in F by Jf (f) = d(F) + a:0 • Here, Fis any 

generic fold homotopy between g and f. Note that J{ is an isotopy invariant of stable 

fold maps in :f and J{(g) = cx0 . 

In the following theorem, we give a geometric interpretation of each Vassiliev 1-cocycle 

di E Ker(b;:-) (1 :s; i :s; 7). 

Theorem 9.4. Let f and g : M -+ R 2 be two stable fold maps of a closed orientable 

3-dimensional manifold into the plane such that f and g are in the same. connected com­

ponent of .F. Suppose that F : M x [-1) 1] --+ R 2 is a generic fold homotopy such that the 

initial stable fold map of F is g and the terminal one is f. Then we have the following 

for each di(F) E Z (1 :Si :S 7). 

(1) The value d1(F) E Z is equal to (ttII010 (f) - ttn°,0 (g))/2. 

(2) The value d2(F) E Z is equal to (ttII°11 (f) - ttn°,1(g))/2. 

(3) The value d3(F) E Z is equal to ttII111 (f) - ttII1
'
1 (g). 

( 4) The value d4 ( F) E Z is equal to ijlr2 (!) --'- ttII2(g). 

( 5) The value ds ( F) E Z is equal to ttII3 (f) - ttII3 (g) . 

(6) The value d6 (F) E Z is equal to (rot(!) - rot(g))/2. 

(7) The value d7 (F) E Z is equal .to (Bq(f) - Bq(g))/2. 

Here, we denote by ijII* (!) the number of II* -type singular fibers off, by rot(!) the surgical 

rotation number off ( S (f)) and by B q(f) the B ennequin invariant of the definite fold off. 

Theorem 9.4 (1)-(6) can be proved as in the proof of Theorem 7.3. To prove Theo­

rem 9.4 (7), we first have t o define the Bennequin invariant of the definite fold. In the next 
' . 

subsection, we define the Bennequin invariant and after that we prove Theorem 9.4 (7). 

9.3. Bennequin invariant. Let f : M --+ R 2 b e a stable fold map and S0 (f) the set 

of all definite fo ld points of f. Each connected component of S0 (f) is a circle and the 
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restriction f\S0 (f) : So(!) - R2 is an immersion with normal crossings. Let us consider 

the orientation on each connected component Sf of S0 (f) = uiSJ which is induced from 

the orientation off (Sf) C R 2 (see Remark 4.6). 

Let R 2 be the oriented plane. For S0(!) = UiSJ and the parameterization f \S0 (f) -

Ui(f \Sl) : UiSf - R2 of f(So(f)), we define the embedding lift F : UiSf -+ R 2 x S1 of 

JISo(f) as follows. For x E Sf; let n(x) be the unit vector normal to the positive unit 

tangent vector t(x) of j(SI) at (f\Sl)(x) such that the frame {n(x), t(x)} is positive on 

R2
. Then FJSJ is defined by (F]S:)(x) = ((JJSI)(x), n(x)). We call F = Ui(F\Sl) : 

S0(f) -+ R 2 x S 1 the Legendrian link of f\S0 (f). Since f \S0 (f) is an immersion with 

normal crossings, the Legendrian link F is an embedding. 

We slightly shift each embedding lift FIS; C R 2 x S1 to the direction of the positive 

unit normal vector field n(x), x ES;, of fjS;. As a result, we obtain the embedding F\Sf 
defined by (F\Sl)(x) = ((f\Sf)(x) + cn(x), n(x)), x E Sf, where c > 0 is a sufficiently 

small positive real number. Since F is an embedding and E is a sufficiently small positive 

real number, each embedding F\Sf does not intersect F(S0(f)) in R2 x S1 • 

To define the Bennequin invariant, we first define the linking number of FIS} and F\SJ 
for each pair i,j. We define the embedding i : R2 x S1 

- R3 = C x R 1 defined by 

(x, y, B) 1--4 (p, z) = (exe, y), where we use coordi~ates (x, y, ()) on R2 x S1 and coordinates 

(p, z) on C x R\ and we identify S1 with the unit circle in C. We define the linking 

number lk(F1Sl, FIS]) as the standard linking number of the oriented· knots lo (F\SI) 

and lO (F\SJ) in R3
. For more details, see [4, 7, 8]. Then the Bennequin invariant Bq(f) 

of the Legendrian link F off \S0 (f) is defined by Bq(f) = ~i,j lk(FIS; ) f \SJ ). We call 

it the Bennequin invariant of the definite fold off. The Bennequin invariant is defined 

only when f is a fold map. 

9.4. Proof of Theorem 9.4 (7). In this subsection, we prove Theorem 9.4 (7). Let 

F: M x [-1, 1] - R2 be a generic fold homotopy around fo in a connected component J­
of :F which connects two stable fold maps J _1 and Ji, where ft is defined by F{ x, t) = ft( x). 

We suppose that the positive coorientation of the weak equivalence class of Jo coincides 

with the canonical positive direction·of [-1, 1]. To prove Theorem 9.4 (7), we have only to 

check that wher1 F crosses each nr:nf c r1 nJ- positively, d7 (F) = (Bq(fi)-Bq(f _1))/2 

holds. Here, * does not contain any alphabetical letter. 

Suppose that fo E III~·0 . As is shown in Figure 20, we see that Bq(f1) - Bq(f _1) = -2 

whether or not the two tangent definite fold arcs are in the same connected component 

of S0 (f0 ). On the other hand, d7 (F) = -1 holds. Therefore, we have d7 (F) = (Bq(i1 ) -

Bq(f _1))/2. 

I Figure 20 I 
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In Figure 20, parts of the curves fi(Sl) and fi(SJ) (resp. f-1(Sl) and f-1(SJ)) of 

f1(So(fi)) (resp. f_ 1(S0 (!_1 ))) are drawn in each R 2
. The corresponding parts of the 

Legendrian link Fi (SI), Fi (SJ) (resp. F_1 (S}), F_1 (SJ)) and its shift F'1 (SI), F'1 (SJ) (resp. 

F_1(S;) .F_1 (SJ)) are drawn in each R 2 xS1 . Note that in Figure 20) the positive direction 

of the y-axis enters from the face of the sheet and comes out of the reverse side. Thus, 

while F_1 (Sl) is under F_1 (SJ), F1(Sl) is on F1(S;) 

If Jo belongs to the other weak equivalence classes off 1 n :f, we see that Bq(fi) -

Bq(j _1) = 0 holds. This completes the proof. D 

By Theorem 9.4 and the definition of the Bennequin invariant, we see that each value 

di(F) depends only on f and g (1 ::; i ::; 7). Thus, we have the following. 

Corollary 9.5. Let d E Ker(o.r) be any element of the kernel of the coboundary operator 

o.r: C1 (W(F); Z)-+ C2(W(F); Z). 

Then for each connected component :f of F) d induces a first order semi-local invariant 

J{ of stable fold maps in F. 
- . 

. Since we do not know if the space Fis contractible or not, we cannot directly use Propo-

sition 6.3 in general. Thus, we cannot prove that each Vassiliev 1-cocycle d E Ker(o;:-) 

defines a first order semi-local invariant of stable fold maps only by the_ construction of 

the coboundary operator O:F. 

Remark 9.6 . Let M be a closed orientable 3-dimensional manifold and F the subspace 

of C00(M, R 2) which consists of all fold maps of Af into R 2. Suppose that F is any 

connected component of :F. As in the case of stable maps, the following (modified) severi 

first order semi-local invariants of stable fold maps are also invariants of the C00 right-left 

equivalence classes in F (see Proposition 7.6): 

J[ (f) = ijII0
•
0 (f) /2 or = (~II0

•
0 (!) + 1) /2, 

J{(f) = ~I1°·1(f)/2 or = (~I1°·1 (f)+ 1)/2, 

J[ U) = ~n1,1u) 1 

J{ (!) = ~II2(f), 

J{ (f) = ~Ils(f)) 

J{ (!) = rot(!) /2, 

J{(f) = Bq(f)/2 or = (Bq(f) + 1)/2. 

The values of J{(f), if(!) and J{(f) ·depend only on the connected component F of F 

which contains f E F. All t he invariants J[ can be extended t o integer-valued invariants 
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Ji : F \ (F n f) --+ Z of the 0 00 right-left equivalence classes of stable fold maps in F 

(1 5: i 5: 7). 

Example 9. 7. Let F(S3
) be the subspace of C00 (S3 , R 2) which consists of all fold maps 

of S 3 into R 2
. Suppose that Ji : S3 --+ R2 is the stable fold map defined in Subsection 7.5. 

Let .F(S3
) be the connected component of :F(S3 ) which contains j 1 • It is easy to see that 

the following seven invariants 1[(
53

) : F(S3 ) \ (F(S3 ) n r) --+ z· (1 5: i 5: 7) are isotopy 

invariants of stable fold maps in F(S3): 

( 4) J{(ss\f) = ~Il2(!), (5) 1;(ss) (!) = ~II3(!), 

(7) J{(53\f) = (Bq(f) + 1)/2. 

Here, we deriote by ~II*(!) the number of II* -type singular fibers of f. By using The­

orem 9.4 and the fact that J{(53\Ji) E Z (1 5: i 5: 7), we see that all these are inte­

ger valued invariants . By Theorems 9.3, 9.4 and Corollary 9.5, these seven invariants 

are first order semi-local invariants of stable fold maps in J. Furthermore, we have 
F(S3 ) F(S3) - . -

Ji (!) = di(F) + Ji (g)) where g E F(S3
) \ (F(S3

) n r) is a distinguished stable 

fold map in F(S3
) and F: Mx [-1, 1]-+ R2 is a generic fold homotopy in .F(S3 ) between 

g and/. 

Let us define the isotopy invariant JF(S
3

) : F(S3 ) \ (F(S3 ) n r) --+ Z 7 by JF(S
3

) = 
F(Ss) .F(Sa) .F(S3) . - -

(J1 , J2 , ... , J7 ). For any stable fold map f in F(S3 ) \ (F(S3 ) n r), we have 

JF(S
3

) (!) = (a + b, 0, 0, 0, 0, 1, 1 - b) E Z7 for some a and b with a+ b 2:: 0. 

This statement is proved as follows. Since Ji has only definite fold points, there is no 

indefinite fold in any stable fold map f in F(S3). Thus, 1[(53
) (f) = 0 for i = 2

1 
3, 4, 5. 

By Corollary 10.1 in the next section, J{(S
3\f) = 1 holds. It is easy to see that the weak 

equivalence classes of maps belonging to F(S3
) n r1 are either III? (k = 1, 2, 3) or III~·0

•
0 

(l = 1, 2). Let F: S3 x [-1, 1] -+ R2 be a generic fold homotopy in .F(S3 ) between f1 and 
0 0 0 F(S3 ) F(S3) f. We remark that even if F crosse~ III1' ' ) both of the values J1 and J7 remain 

unchanged. Suppose that F crosses III~,o positively at .times and that F crosses III? 

negatively a;; times. Then we have d1(F) = I:L1 (a; - a;) and d7 (F) = -(af - ai-). 
- 3 

Since each J{(s) is a first order semi-local invariant, the values d1(F) and (h(F) E Z 

depend only on Ji and f only. Thus, if we put a = I:!=2 ( a; - a;) and b = at - a 1, we 
F(S3 ) . F(S3 ) . .F(S3) 

have J~ (!) = a+ b and J7 (f) = 1 - b. By definition, J1 (f) is non-negative for 

any f E .F(S3
). Thus, a+ b 2:: 0 holds. 

Furthermore, for any non-negative integers a and b, we can construct a stable fold 

map f : S3 -+ R2 in F(S3) such tha t Jf:(S
3
l(J) = (a+ b,0, 0,0,0,1,1 - b) except for 
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(a) b) = (0, b) with b ~ L The singular value set and the associated fibers of such a map 

f is descri.bed in Figure 21. 

\ Figure 21 [ 

Let M be a closed orientable 3-dimensional_ manifold and :F the subspace of C00 
( M, R 2) 

which consists of all fold maps of M into R 2 • Suppose that F is any connected component 

of :F. Let J{) J{, ... , J{ be first order semi-local invariants of stable fold maps defined 

in Remark 9.6. In general) these seven first order semi-local invariants of stable fold maps 

· are not linearly independent (see Example 9.7 and compare Subsection 7.5). Therefore 1 

we have the following problem. 

Problem 9.8. Do there exist a closed orientable 3-dimensional manifold M and a con­

nected component F of :F such that the seven first order semi-local invariants of stable 

fold maps J(, J{, ... , J{ are linearly independent? 

The stable fold maps Ji and f 8 : S 3 
......--t R2 constructed in Subsection 7.5 show that the 

invariants J{(ss) and Jf(S
3

) are linearly independent. In fact, ( J{(S
3

) (f 1), J{(S
3

) (Ji)) = 
' ( F(S3

)( F(S3
) )) ) (1, 1) and J6 fs)) J7 (fa = (2, 1 . 

10. INVARIANTS OF THE CONNECTED COMPONENTS OF THE SPACE OF FOLD MAPS 

In this section, we study the connected components of the space of all fold maps :F 

using results of the previous sections. 

Let f : M--. R2 be a stable fold map of a closed orientable 3-dimensional manifold M 

into the plane. We denote by S0 (f) the set of all definite fold points off and by S1 (/) the 

set of all indefinite fold points off. It is easy to see that each component of S0(f) or S1(f) 
is a circle and S0(f) n S1 (f) = 0. We denote by ijSj(f) the number of connected compo­

nents of Sj(f) and by rot(f!Sj(f)) the surgical rotation number of f(Sj(f)) (j = 0, 1). 

By the definition of the surgical rotation number, rot(!) = rot(f!So(f)) + rot(f!S1(f)) 

holds. 

Note that for a stable fold map f : M - R2 , the rotation number of JIS0 (f) in the 

usual sense is equal to one half the surgical rotation number rot(f !So(f)). 

Let F : M x [-1, 1 J --. R 2 be a generic fold homotopy bet ween two stable fold maps 

J _1 and Ji such that O is the unique codimension 1 bifurcation value of F, where ft is 

defined by F(x, t) = ft(x). Then, it is easy to check that ijS0 (ft), ijS1(ft) and rot(ft!So(ft)) 

remain unchanged under the generic fold homotopy (see Figures 7, 12 and the definition 

of a generic homotopy in Subsection 3.2). Therefore we have the following. 

Corollary 10.1. Let f and g: M - R 2 be two stable fold maps of a closed orientable 3-

dimensional manifold M into the plane. If f and g are in the same connected component 

of :FJ then USo(f) = US0(g) 1 US1 (f) = ~S1(9) and rot(f!So(f)) = rot(g !So(g)) hold. 



48 MINORU YAMAMOTO 

For a generic fold homotopy F : M x [-1) 1] --+ R2 around [III~], [IIIi] or [III8
), we 

have rot(filS1(/i)) -/: rot(f-1IS1(f-1)). Therefore) rot(!IS1(f)) is not an invariant of 

connected component of :F. Here, ft E :Fis defined by ft(x) = F(x, t). 

Let Vi = S} U · · · U Sf be a disjoint union of k copies of the circle embedded in M 

(k 2. 1). We denote by :F(Vi) the set ofall fold maps f: M--+ Il2 such that S0(f) = Vi. 
Note that :F(Vk) is a subspace of :F. By [44L :F(Vi) is always non-empty. 

We can modify the above invariants to obtain invariants of the connected components 

of .:F(Vi). Let f : M--+ R2 be a stable fold map in :F(Vic) (k 2. 1). We consider the k­

tuple vector (rot(!IS?), ... ,rot(!IS!)) E Z\ where rot(f!Sl) denotes the usual rotation 

number of the immersion f]Sl (1 s; is; k). Then we have the following. 

Corollary 10.2. Let f and g : M --+ R 2 be two stable fold maps of a .closed orientable 

3-dimensional manifold into the plane and Vi = SI U · · · U Sl a disjoint union of k copies 

of the circle embedded in M (k 2. 1). If f and g are in the same connected component of 

F(Vk) 7 then ~S1(!) = ~S1(g) and (rot(!ISt), ... ,rot(JISl)) = (rot(g!Si), ... ,rot(glSi)) E 

zk hold. 

To prove this corollary, we need a relative version of the parameterized multi-transversality 

theorem as follows. 

Let M be an n-dimensional manifold and P a p-dimensional manifold. We fix an m­

dimensional (resp. q-dimensional) properly embedded submanifold N of M (resp. Q of P). 

Then a relative map f : (M, N) - (P, Q) is a smooth map of M into P with f (N) C Q. 

We denote by C 00(M, N; P, Q) the space of all relative maps f : (M, N) --+ (P, Q) such 

that f : M --+ P is proper. We endow this set with the topology induced from the Whitney 

0 00 topology on C00 (M, P). In the jet bundle Jr(M, P), we consider the submanifold 

Jr(M, N; P, Q) of r-jets along N of relative maps in C00 (M, N; PiQ). For a relative map 

f : (M, N) --+ (P, Q) 1 the jet section ff : M--+ Jr(M, P) maps N to Jr(M, N; P, Q). 

We fix a positive integer s. For each pair (k, Z) of non-negative integers with k + l s; s, 

we set k,zJr(M, N; P, Q) = f(M, N; P, Ql x JT(M, P)1 and denote by N(k) x (M \ N)(Z) 

the set of (a1 , . .. , ak; b1 , ... , bi) E Afk+Z such that a1 , ... , ak (resp. b1, ... , b1) are distinct 

· points in N (resp. M \ N). For a relative map f: (M, N) --+ (P, Q), we define the relative 

multi-jet section k,lf f; N(k) x (M \ N)(l) --+k,l JT(M, N; P, Q) by 

k,zff(a1, ... ,ak; b1, ... ,bz) = (f f(a1), .. . ,f f(ak);f f(b1L ... ,jr f(bz)) , 

and kf (JIN): N(k)--+ Jr(N, Q)k by 

Then we have the fo llowing. 
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Proposition 10.3 (Relative multi-transversality theorem [19]). Let r be a non-negative 

integer and s a positive integer. For given countable families of submanifolds Sk,l of 

k,ilr(M, N; P,Q), k + l ~ s, and Uk of Jr(N,Q)k, k ~ s, the set 

k,1F f is transverse to SkJ, k + l :S s, and } 

kF(f IN) is transverse to Uk, k ~ s 

is a residual subset and is dense in C00(M, N; P, Q). 

Let Z be a manifold and F : (M x Z, N x Z) ----+ (P, Q) a relative smooth map. For 

each z E Z, the relative smooth map Fz : (M, N) ----+ (P, Q) is defined by Fz(x) = F(x, z). 

We set k,1Jr(M,N;P,Q;Z) = (Jr(M,N;P,Q)k x zk) x (Jr(M,Pi x Z 1
). We define the 

parameterized jet extension k,zf F: (N(k) X zk) X ((M\ N)(!) X Z1) ----+k,l Jr(M, N; P, Q; Z) 

by 

and kf (FIN X Z) : N(k) X zk----+ Jr(N, Q)k X zk by 

Then, the parameterized relative multi-transversality theorem is stated as follows. 

Proposition 10.4 (Parameterized relative multi-transversality theorem). Let r be a non­

negative integer ands a positive integer. For given countable families of submanifolds Sk,l 

of k,zJr(M, N; P, Q ; Z), k + l ~ s, and Uk of Jr(N, Q)k x Zk, k :S s, the set 

R= {FE C00(M x Z, N x Z;P,Q) 
k,zf F is transverse to Sk,l, k + l ~ s, and } 

dr(FIN x Z) is transverse to Uk, k ~ s 

is a residual subset and is dense in C00(M x Z, N x Z; P, Q). 

Prnof of Corollary 10.2. We put N = '\I,_ , P = Q = R2 and apply the relative version of 

the parameterized multi-transversality theorem. Then, we see that there exists a generic 

fold homotopy F : M x [-1, 1] ----+ R2 in the space F('\I,_) which connects the two stable fold 

maps f and g. By an argument similar to that for Corollary 10.1, we see that rot(ftlSJ) 

and ~S1 (ft) remain unchanged during the generic fold homotopy F (1 S i~ k) , where ft 

is defined by F(x, t) ~ ft(x). This completes the proof. D 

Note that if the hypothesis of Corollary 10.2 holds, then the two links S1 (f) and S1 (g) 
are isot opic in M. We can check t his by studying the behavior of the singular set during 

a generic fo ld homotopy between g and f. 
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type 

lips 

beaks 

D swallowtail 

I swallowtail 

cusp-plus-D fold 

cusp-plus-I fold 

D&D tacnodefold 

D&I tacnodefold 

I&I tacnodefold 

D&D&D triplefold 

D&D&I triplefold 

D&I&I triplefold 

I&I&I triplefold 

type I normal form f (x) y, z) 

definite fold (D fold) 

indefinite fold (I fold) 

(x) y2 + z2) 

(x, yz - z2) 

cusp ( x, y3 + xy + z2
) 

D&D nodefold 

D&I nodefold 

I&I nodefold 

(;1,Yi + zf), (yf + Zi,X2) 

(xi,Yi + zi), (Yi - z?;x2) 
(x1,Yi - zi), (y?- Zi,X2) 

TABLE 1. stable (Ae-codimension 0) germs 

I normal form G(x, y, z, t) 

(x, y 3 + y(x2 - t) + z2
) 

(x, y 3 - y(x2 - t) + z2) 

( x, y4 + xy - ty2 + z2
) 

(x,y4 + xy-ty2 
- z2

) 

(type 1) (x1) yf + X1Y1 +z2), (Yi+ Zi - t, Xz) 

(type 2) (x1, yf + X1Y1 + z2
), (-Yi - Zi - t, x2) 

(xi, yf + X1Y1 + z2
), (Yi - Zi - t, x2) 

(type 1) 
(type 2) 

(type 3) 
(type 1) 

(type 2) 

(tYJ?e 1) 

(type 2) 
(type 1) 

(type 2) 

(x1, Yi+ Zi + t), (xz, x~ +Yi+ z?) 
(x1, -yr -z?+ t), (xz,X~ +Yi+ zD 
(x1, Yi+ Zf + t), (xz) x~ - Yi - z?) 
(x1,Yi + Zf + t), (x2, x~ + Yi - z?) 
(x1, -yf - Zf + t), (x2 1 X~ + Yi - Zi) 

(x1, Yi - zf + t), (x2, x~ + Yi - zi) 

(x1 +Yi+ Zf 1 X1 - Yi - Zf + t), (xz, Yi+ zi), (-yJ - zl, xs) 

(x1 +Yi+ z?, x1 - Yi - Zf + t), (xz, Yi+ z?), (y~ + z~, xs) 

(x1 + Yi - Zf, X1 - Yi+ Zf + t) , (xz, Yi+ z?), (-Yl - z~, X3) 

(x1 + Yi - Zi,X1 -yf + Zf +t), (xz,Yi + zn, (yi + z~,xs) 

(x1 + Yi - z?, X1 - Yi+ z? + t), (x2, Yi+ z?), (yJ-:- z~, xa) 
(x1+ Y-i - zf, X1 - Yi+ Zf + t), (xz, y~ - zJ), (y~ - zi, xs) 

TABLE 2. 1-parameter unfoldings 



54 MINORU YAMAMOTO 

type I normal form H(x, y, z, a, b) or H(x, y, z, a, b, t) 

goose (x, y3 + x3y + z2 +ax+ bxy) 

butterfly (x, xy + ys + y7 + z2 + ay3 + by2) 

D gulls (x,xy2 + y4 + y5 + z2 + axy + by) 
I gulls (x, xy2 + y4 +y5 - z2 + axy + by) 
n+ 

4 (xiXY + y3 + ty2z + z3 + .z5 + az + by2) 

(t > -(27 /4)113
) t # o, (27 /4)1i3) 

n-
4 (x,xy + y3 + ty2z + z3 + z5 + az + by2) 

(t < -(27/4)113) 

lips-plus-D fold · (x1, yf + Y1(xf - a) + zr), (Yi+ z? + b, x2) 
lips-plus-I fold (x1,Yi + Y1(xi - a)+ zr), (y?- z? + b,x2) 

beaks-plus-D fold (x1, Yi - Y1(Xi - a)+ zr), (Yi+ Zi + b, X2) 
beaks-plus-I fold (x1,Yi -Y1(x?- a)+ zi), (Yi- z? + b,x2) 

D swallowtail-plus-D fold (xi, Yi+ X1Y1 - ayr + zf), (y~ + Zi + b,x2) 
D swallowtail-plus-I fold (x1, Yi+ X1Y1 - ayf + Zi), (Yi - Zi + b, X2) 
I swallowtail-plus-D fold (x1, yf + X1Y1 - ayf - zr), (Y? + z? + b, x2) 

I swallowtail-plus-I fold (x1, yf +x1Y1 - ayf - zi), (Y? - Zi + b, x2) 

cusp-pl us-cusp (type 1) (x1 + a, Yi+ X1Y1 + zr), (y~ + X2Y2 + zt X2 + b) 
(type 2) (x1 + a, Yi+ X1Y1 + zi), (y~ + X2'f}2 - zI, X2 + b) 

(type 3) (x1 + a, Yi+ X1Y1 - zi), (y~ + X2Y2 - z?, x2 + b) 
cusp-plus-D fold tangency (type 1) (x1 + a, Yi+ X1Y1 + zr), (x2, Y? + Zi + ax2 + b) 

(type 2) (x1 + a, Yi+ X1Y1 + zf), (x2, -Yi - z? + ax2 + b) 
cusp-plus-I fold tangency (x1 + a, Yi+ X1Y1 + zi), (x2, Yi - z? + ax2 + b) 

D&D :flecnodefold (type 1) (x1, Xi - ax1 +Yi+ zi), (xz, Yi+ z? + b) 
(type 2) ( 3 2 2) ( . 2 2 ) X1,X1 - ax1 + Y1 + Z1 1 X2, -Y2 - Zz + b 

D&I flecnodefold (x1, Xi - ax1 +Yi + zr), (x2, Yi - z? + b) 
I&I flecnodefold (xi, Xi - ax1 + Yi - zr), (x2, Yi - zJ + b) 

TABLE 3. 2·parameter unfoldings (1) (for Df, t is the parameter of modality) 
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type 

D&D nodefold-plus-cusp 

D&I nodefold-plus-cusp 

I normal form H(x, y, z, a, b) 

(type 1) (xi, Yi+ X1Y1 + zr), (x2 + Y? + zJ, Xz - Yi - Zi + a), 

(xs + y~ + z~, -xs + y~ + z~ + b) 

(type 2) (x1, Yi+ X1Y1 + zi), (x2 +Yi+ zl, X2 - Yi - Zi + a), 
(xs - y~ - z~, -x3 - y~ - zl + b) 

(type 3) (x1, Yi+ X1Y1 - zi), (x2 + Y? + Zi, X2 - Yi - Zi + a), 
(xs -yl- zJ, -x3 - y~ - zl + b) 

(type 4) (xi, yf + X1Y1 + zr), (x2 - Yi - Zi, Xz +Yi+ Zi + a), 
(x3 - Yi - z?, -x3 - y~ - z~ + b) 

(type 1) (x1, Yi+ X1Y1 + zi), (xz +Yi+ zJ, x2 - y~ - zJ + a), 
(x3 + y~ - z~, -X3 + Yi - Zi + b) 

(tyep 2) (x1, Yi+ X1Y1 - zi), (x2 +Yi+ Zi, Xz - Yi - Zi + a), 

(xs + Yi - zg, -X3 + Yi - Zi + b) 
(tyep 3) (x1, Yi+ X1Y1 + z;), (x2 - Yi - zt Xz +Yi+ z? + a), 

(x3 - Yi+ Zi, -x3 - yg + z~ + b) 
(type 4) (x1, Yi+ X1Y1 - zi), (x2 - Yi - Zi, Xz +Yi+ Zi + a), 

(xs - Yi+ zl, -X3 - Yi+ z5 + b) 
'I&I nodefold-plus-cusp (xi, Yi+ X1Y1 + zi) , (x2 + Yi - zi, x2-'- Yi + z? + a), 

(xs + y~ - zt -xs + y~ - Zi + b) 
D&D tacnodefold-plus-D fold (type 1) (xi, Xi+ Yi+ z;), (xz, Yi+ z? + a), (Yi+ z~ + b, xs) 

(type 2) (x1, Xi+ Yi+ z;), (xz , -yJ - z5 + a) , (yf + z~ + b, xs) 

(type 3) (x1, Xi - Yi - zi), (x2, Yi+ z? +a), (Yi+ z1 + b, x3) 

D&D tacnodefold-plus-I fold (tyep 1) (x1, xf +Yi+ zi), (x2, Yi+ Zi + a) , (Yi - Zi + b, xs) 

(tyep 2) (xi, Xi+ Yi+ zr), (xz, .-Yi - zJ + a), (y~ - Zi + b, X3) 
(type 3) (x1, xf - Yi - Zi), (x2, Yi+ i? + a), (Yi - zg + b, X3) 

D&I tacnodefold-plus-D fold (type 1) (x1, xf +Yi+ zr), (x2, Yi - z? + a), (yg +z~ + b, X3) 

(type 2) (x1 , xf - Yi - zi), (x2, Yi - zJ + a), (Yi+ Zi + b, x3) 

D&l tacnodefold-plus-I fold (type 1) (xi, xf +Yi+ zr), (x2 , Yi-:- z? + a) , (yg - zi + b, xs) 

(type 2) (x1 1 Xi -Yi - zi) , (xz,Y?- z~ + a), (yi- z] + b, xs) 

I&I tacnodefold-plus-D fold (x1) xf + Yi - zi), (xz, y~ - z~ + a)) (Yi+ zl + b, xs) 
I&I tacnodefold-plus-I fold (xi, Xi+ Yi - z?), (xz, y~ - z? + a), (y~ - zJ + b, X3) 

TABLE 4. 2-parameter unfoldings (2) 
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type 

D&D&D&D quadruplefold 

D&D&D&I quadruplefold 

D&D&I&I quadruplefold 

D&I&I&I quadruplefold 

I&I&I&I quadruplefold 

MINORU YAMAMOTO 

(type 1) 

(type 2) 

(type 1) 

(type 2) 

(type 3) 

(type 1) 

(type 2) 

(type 3) 

(x1 +Yi+ Zi, X1 +Yi+ Zi + a), (x2, Yi+ Zi) , 

(y~ + zt :ts), (x4 + Y1 + zl, - tx4 +Yi + zl + b) 

(x1 +Yi+ zi, X1 +Yi+ Zi + a), (x2, Yi+ z?), 

(- yJ - zJ, xs), (x4 + yJ + zl,-tx4 + Yl + zl + b) 

(x1 +Yi+ Zi ,X1 +Yi+ zf + a), (x2,Yi + zJ), 

(yJ + z~, x3), (x4 + Yl - zl, -tx4 + Yi - zl + b) 

(x1 +Yi+ z?,x1 +Yi+ z? + a), (xz, Y? + z~)i 

(-y~ - zi, xs), (x4 + Yl - zl, - tx4 + yJ - zJ + b) 

(x1 +Yi+ zf,x1 +Yi+ zf + a), (xz, Y? - z?), 

(y~ + z5,xs), (x4 + Yl + zl, -tx4 + yJ + zl + b) 

(x1+ Yi+ Zf,X1 + Y.i + z? + a) , (xz,Yi + zD, 
(y~ - z~,xs), (x4 + Yi- zl, - tx4 + Yl- z1 +b) 

(x1 +Yi+ zf,x1 +Yi+ zf + a), (xz,Yi - z?), 

(yJ + ztxa), (x4 + yJ - z1, - tx4 + Yl- zl + b) 
(x1 +Yi+ zf,x1 +Yi+ zf + a), (xz,Y? - zJ), 

(y5 - z~.,xs), (x4 + Yl + zJ , -tx4 + yJ + zJ + b) 

(x1 +Yi+ zf ,x1 +Yi+ z? + a), (xz,Yi - z~) , 

(y~ - zl,xs), (x,1 + Yl- zt - tx4 + Yi- zl + b) 

(x1 + Yi - z;, X1 + y; - z; + a),' (x2, Y? - zD, 
(yg - zg,xa), (x4 + Yl- zJ, - tx4 + Yl - zl + b) 

TABLE 5. 2-parameter unfoldings (3) (for t hese cases, t is the parameter of modality) 
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III"(l) ma(b) IIIb IIIC IIId IIIi'" III~·" III~·" III~·" IIIi III1 
IV" 1 -1 
IV3 1 -1 -1 1 
IV" -2 2 
rvc -2 2 
IV9 

IV" 1 -1 
IV' 
IV3 

IVk 
rvu,"(l) -1 1 
IV1 ·"(l) -1 1 
IV6 (l) -1 1 

rvu,a(b) 1 - 1 
rv1 ,"(b) 1 -1 
IV .. (b) 1 -1 

TABLE 6. The block A1,1 of the block matrix A 

III~,v rn~,u m~,u rn~,1 m~,1 m~,1 rn~,1 m~,1 m~,1 m~,1 mt III~ rm IIIi III~ 
IV" 
IV1 

rvb -1 
rvc -1 
IV9 

rvn 
IV' 
IV3 

IV1c 
rvu,"(l) 
rv1 ·"(l) 
rve(!) 

rvu•" (b) 
rv1•"(b) 
IV"(b) 

TABLE 7 . The block A 1,2 of the block matrix A 

rm III~ rm III1 IIIz III~ III~ IIfI m1 uf8 
IV" 
IV1 

IV0 

rvc 
IV9 

IV" -1 -1 
IV' 
IV3 

IV1c 
rvu,"(l) 
rvl,a (!) 
IV6 (l) 

rvu•" (b) 
IV1 ·"(b) 
IV6 (b) 

TABLE 8. The block A1,s of the block ma,trix A 

mo. (l) III" (b) rrt rue IIId III~ '" III~'" rn; ·" III~·" IIIi III~ 
rvu,o -1 1 
rv1,o -1 1 
rvu ,c -1 1 
rv1,c -1 1 
rvu,a -1 1 
rv1 ,a. -1 1 

IV' - 1 1 
rvm -:1 1 
rvn 1 - 1 -1 1 

TABLE 9. The block A 2,1 of the block mat rix A 



m~,u,u m~,u,u III~·u,, m~,u,; III~·u,, III~·"•' III~'"'" III~,1,1 mt,1,1 m;,1,, 
rvu,o -1 
rvi,o -1 
rvu,c 
rv•,c 
rvu,a 
rv1

·"' 

IVL 
rvm 
rvn 

TABLE 10. The block A2,3 of the block matrix A 

III~·· III2·' III~·· III~·· mt·~ III~·~ III~·~ III~'~ IIIi'~ III~·~ 
rvu,o 

IV'•0 

rvu,c -1 
·rvJ.,c -1 
rvu,a -1 
rv.1,a -1 
IVL 
rvm 
rvn 

TABLE 11. The block A2,4 of the block matrix A 

rm III~ rm III\' III~ rm rm III:i III2 mo 
1vu,o 
1v1,o 
rvu,c 
rvJ.,c 
Ivu,a 

IV1
•" 

IV' -1 
IV"' -1 
rvn -1 

TABLE 12. The block A2,s of the block matrix A 

III" (l) IW(b) IIIb rue III" III~·" III~·" IIli'" III~,a III\' III2 
IVt" -1 1 1 -1 
rv;,u 
rv;• 0 

IV1 -1 1 1 -1 

IV2 
IVs 

IV~·0 -1 -1 
IV2'" -1 -1 

rvt·" -1 -1 

IV~·" - 1 -1 

IVi -1 -1 

IV2 -1 -1 

TABLE 13. The block A3,l of the block matrix A 

m~,u m~,u rn~,u m~,1 rn~,1 m~,1 m~,1 IIIi'1 III~,1 rn~,1 rnf III~ III~ rm III~ 
Ivr·" 
IV~•" 
Iv;,"' 
IV~ 
IV2 
IVa 

IV~·0 1 1 
IV2'"' 1 1 
IV~ ·" 1 1 
IV~·" 1 1 
IV! 1 1 
IV2 1 1 

TABLE 14. The block A3,2 of the block matnx A 
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rn~,v m~·u rn~,u m~,1 rn~,1 rn~·" III~·· m~,1 m~,1 mt·
1 IIIi III~ III~ IIIf III~ 

IV~,u 
IV~,u -1 1 

IV~·1 1 -1 

IV~·· -1 1 

IV~·" 
IV~,1 -1 1 

IVi 
IV5 -1 1 

IVf 
IV~ 

TABLE 15. The block A4,2 of the block matrix A 

m~,u,u m}u;u III~ III~,u,1 III~·V,l m~,1,1 m~,1,1 m~,1,1 IIIi'1,1 m~,1,i 

rv~,u,a -1 1 
IV~·U,a 1 1 
rv~,u,a -1 -1 
IV~,u,a -1 1 
rv~,1,a -1 1 
1v~,1,a 1 -1 
rv~,l," -1 -1 

IV~•1
•" -1 1 

rv~,1,a -1 1 
rv~,i,a -1 -1 
IV~,1,a 1 1 
rv~,1,a -1 1 
1v~,1,a -1 1 
rv~,1,a 1 1 
rv~,1,a -1 -1 
IV4'1,a -1 1 

TABLE 16. The block As,3 of ~he block matrix A 

m~,u,u rn~,u,u III~·ll,1 m~,u,1 m~,u,1 m~,1,1 rn~,1,.1. m~,i ,1 rn~,1,1 m~,1,.1. 

IVi'a 
IV~·a 
IV~,a 
rv~,a 

IV1·" 
rv;,a 
IV~·e -1 
rv~,e 1 
rv~,e -1 
rv~,e - 1 
IV~,e -1 
IV~,e -1 
IV~,e 1 
IV~,e -1 
1v1,e -1 
1v~,e 1 
1v1,e -1 
rv~,e -1 
IV;•e -1 

IV~·e -1 
rv¢·e 1 
IV~,e -1 

TABLE 1 7. The block A6,3 of the block matrix A 



III~·" III~·" III~·" III~·" III~·" III~'" III{•" III~·o III~·' III~'' 
IVt"' -1 1 
IV~,a 1 1 
IV~,a -1 -1 
rv:·a. -1 1 

IV~·" -1 1 
IV~·" -1 1 
IV~·e 1 
IV~·e 1 
IV~,e -1 
rv~,e 1 

IV~·· 1 
rv~,e -1 
IV~·e 1 
rv~,e 1 
IV1•" 1 
IV2'" 1 
rv~,e -1 
IV4•" 1 
IV~·· 1 
IV~·· -1 
IV~·e 1 

IV~·· 1 
TABLE 18. The block A6,4 of the block matrix A 

IW(l) III"(b) IIIb IIIC III'" m~,a III?' m~,a. III2'a IIIi III~ 
IV{ -1 1 
IV~ -1 1 
IV~ 1 -1 
rv: 1 -1 
IV~ 1 -1 
1v: 1 -1 

IV~ -1 1 
IV~ -1 1 
IVi 
IV~ 
rvi 
rv: 
IV1 
IV2 

TABLE 19. The block A7,1 of the block matrix A 

mt·" III~·' III~·" III~·" III2'" III~·" III~·" III~•" III~ ·" III2'" 
IV{ -1 
IV{ 1 
Iv; -1 

IVf -1 
IV~ -1 

IV~ -1 

IV~ 1 
IV~ -1 
IVi -1 
IV~ 1 
rvi - 1 
IV4 -1 
IVi -1 
IV2 -1 

TABLE 20. The block A1,4 of the block matrix A 
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nrr III2 IIlj IIIJ'. III2 rm ·rm rm III~ IW 
IV{ 1 
IV~ 1 . 

IV~ -1 

IV~ 1 
IVt 1 
IV~ -1 

IV~ 1 
IV~ 1 
IVi 1 
IV~ 1 

Ivi -1 

IV~ 1 
IV1 1 
rv; 1 

TABLE 21. The block A7,5 of the block matrix A 

m~,u,u m~,u,u rn~,u,1 rn~,v,1 m~,u,1 mi,.,1 III~··,• m~,1,1 m~,1,1 m~·"·l 
rvi,v,v -2 
Iv~,u,u -1 1 
rv~,u,u -1 1 
rvr,u,.1. -2 
rv~,u,.1. -1 1 
rv~,u,1 -1 1 
rv~,v,1 -1 -1 
rv~,u,1 -1 1 
rv~,u,1 -1 1 
rv~,u,1 -1 -1 
rvi···· -1 -1 
rv~,1,1 -1 1 
rv~,1,1 -1 1 
IV~'1'1 -1 -1 
rv~·1·-' -2 
rv~,1,1 -1 1 
rv~·1•-' - 1 1 
rvt,1,J. -2 
rv;···· -1 1 
rv~,1,1 -1 1 

TABLE 22. The block Aa,a of the block matrix A 

. mi,v III~·v m ~,v mi,1 rn~,1 m ~,1 m~,1 m1·1 III~·' m~,1 IIIf III~ III~ IIIi III~ 
rvr·" 
IV~·" 
rvu,:t 

3 . 

IV~·· 
rv~,:t 
rv~,· 
IV?' 
IV~,:. 

Iv~,· 
Iv~,· 
IV!'' 
IV~·· 
IV~·· 
IV*'" . 

IVi'" 
IV~·., 
IV~·" -1 . 1' 

rv~·0 -1 1 
IV~·., 
IV~·· 
IV~·" - 1 1 

IV~•" 1 - 1 

TABLE 23. The block A9,2 of the block matrix A 



III~·" III~·~ III~·~ III,:··" m;·" III~·· rnu,o 
J. III~•" rn~,a m~,o 

IV~•" -2 
IV~·· -1 1 
IV~'' -1 1 
IV~·" -1 -1 
IV~·· -1 1 
IV~·· -1 1 
IV~·" -1 -1 

IV~'" -2 
IV~·· -1 1 
IV~'" -1 1 
IV~·· -1 -1 
IV~•" -1 1 
IVt' -1 1 
IV~·" -1 -1 
rv~,o -2 
rv~,o -2 
IV~'0 -1 1 
IV~,• 1 -1 
IV1'0 

-2 
rv~,o -2 
IV~,• -1 1 
IV~·" 1 -1 

TABLE 24. The block A9,4 of the block matrix A 

m~,u m~,u III~,u rn~,1 m~,1 III~·" m~,J. m~,J. rn~,1 III~·" IIIf III2 IIIa IIIf III~ 
IVf 
IV~ 
rv; 
rv: 
IV! 1 - 1 
IVl 1 - 1 
IVi 1 -1 
IVi 
IV~ 
IV~ 
IV~ 1 -1 
IV~ - 1 1 
IV~ 
IV~ 
IV{ 1 -1 
IV2 1 -1 
IVa 1 - 1 
IV" -1 1 

TABLE 2.5, The block A10,2 of the block matrjx A 

III! rm lII3 IIIJ'. III2 nrl III2 IIIi III2 III" 
IV! -1 - 1 
IV~ -1 1 
IV? -1 1 
IV! -1 -1 
rvi - -2 
Ivi -1 1 
IV~ - 1 1 
IVi -2 
IV~ - 1 1 
IV~ -1 1 

IV1 1 -1 
IV2 -1 1 
IV~ -2 
IV~ -2 
IV{ -2 
IV2 -1 1 
IV£ -1 1 
IV" - 2 

TABLE 26. The block A10,5 of the block matrix A 
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m~,u,u rn~,u,u rn~,V,L m~,O,l IlI~,U,l III~,T,l m~,1,1 m~,1,1 IIli'l,l m;,1,. 
IV~·U,J 
rv~,v.~ 
rv~,u,6 
IV~,u,o 
rv~,u,o -1 2 1 
IV~·1

'~ 

IV~·1
•" -

IV~··• 0 

IV~•'•" 
IV~·"•" -1 2 1 
IV~•'•" 1 -2 -1 
IVi'1,~ 

IV~'1
'

0 

IV~·1
·" 

IV4•"•" 
IV~·"'·" -1 3 

TAB.LE 27. The block A12,3 of the block matrix A 

m~,u,u m~,u,u III~·U,l m~,u,1 m~,U,l rn~,1,1 m~,1,1 III~,1,1 IIIi'1,1 m~,1,. 

IV~•" 1 

IV~·" -1 
IV~·'! -1 
IV~'"" 1 
IV~·" -1 

rv~·" 1 

IV?' -1 
IV~·" 1 
TV~·" 1 
IV~0,. -1 

IV~1" 1 
IV~2" - 1 

IV~·" 1 

Ivt" - 1 

IV~'" -1 

IV~·" 1 
IV~'4 -1 
IV~•'' 1 

IV*'" -1 

IV~·"' 1 

IV~·" 1 

IV~b" -1 

IV~t' 1 

IV~:i4 -1 

TABLE 28. The block A1s,3 of the block matrix A 



III~·· III~·· III~'" mt·" III~·" mt·" III~·" III~'" III~·" III~·" 
rvr,4 -1 
IV2·" 1 
IV~·" 1 
IV~·" -1 
IV~'" 1 

rv;;,4 -1 
IV7"' 1 
IV~·" -1 

IV~'" ~1 

IVrci"' 1 
Ivu,,, 

11 -1 
IV~~· 1 
rv;:,-· -1 
IV~•" 1 
IV~•4 1 
IV1'" -1 
IV~·" 1 
IV~'" -1 
IV~·" 1 
IV~·" -1 
IV~·" -1 

IVto" 1 

IV~1
4 -1 

IV~;t 1 
TABLE 29. The block A13,4 of the block matrix A 

III?' III2'" III~·" III~·" III~·' III~·· III?' III2'0 mt·" III2'0 

IV~· 0 

IV~·" 
IV~'0 

IV~'
0 

IV~·0 -1 2 1 

IV~·0 1 -2 -1 
IV~·" 
IV~· 0 

IV;•" 
IV~'

0 

IV~•" -1 2 1 
rv~,o 1 -2 -1 
IV1' -1 -1 1 2 1 
rv~,, -1 1 
IV~·' 1 -1 
IV~·' -1 1 
rvt·' - 1 -1 1 2 1 
IV~'' -1 1 
IV~· ' 1 -1 
IV~·' -1 1 
Ivu ,1< 1 -1 
IV"•0 1 -1 

TABLE 30. The.block A1s ,4 of the block matrix A 

III~·" III2'" III~·" III~·" III2'" III~·" III1'" III2'" III;:•" III2' 0 

rvf·" 
IV~·" 
rv;·" 
IV~·" 
IVt'6 -1 2 1 

TABLE 31. The block Al7,4 of the block matrix A 
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III~'" m~-;2 III~;:, III~'" III;•" III~·" rn~,s III~'" m~,, m~,, 
IVi 
IV~ -1 1 
IV~ 
IV~ -1 -1 
IV~ 
IV~ 
IV~ -2 
IV8 1 1 

IV0 -1 1 

IVio 1 -1 

IV11 
IVh 1 -1 

IVh 
IVi4 -1 -1 
IV~s 
IVi6 
rvr' -1 

IV~0 1 
rv1u -1 
rv~u 1 
IV§u -1 
IVJU 1 
IV~u -1 
rv~v 1 
IV§v 1 
Ivrn -1 

IVi~ -1 
rvrn 1 

TABLE 32. The block A19,4 of the block matrix A 

rm rm rm III\'. III~ rm III~ IIII III~ III~ 

IVi 
IV~ 
IV~ 
IV! 1 1 
IV§ 
rvi 
IV~ 1 1 
rvi -1 ...:..1 

IV~ 1 -1 
rvro -1 1 

IVi1 
IVi2 
IVis 
IVi4 1 1 
IVh 
IVi6 
rvtu 1 
rviu - 1 
rvtu 1 
rv~u -1 
IVgu 1 
rv~u -1 
IV~0 1 
rv~v -1 
rv~u -1 
rvig 1 
IVt~ 1 
rvt~ -1 

TABLE 33. The block A19,5 of the block matrix A 



III~;~ III~·~ III~·· III~·· III~·· III'•' . 3 III~·" m~,o m~,o III~·" 
IVf1 -1 
IV§" -1 
IV3" 1 
IV.t' 1 
IV/;' 1 
IV/;' 1 

TABLE 34. The block A20,4 of the block matrix A 

mt III~ m; nn III~ III~ III~ III{ IIIf rrr~ 
IVt" 1 
IVt'- 1 
IVs" -1 

IV4' -1 
IVs" -1 1 2 -1 
IVg' 1 -1 -2 -1 

TABLE 35. The block A20,s of the block matrix A 

rm III~ Illj IIIi III~ III\'. III~ III{ rm nr~ 
IVJ:° 
IV1° 
IVs" 
IVj:0 

IVg 0 

IVf 
IVf 
IVf 
IV~" -1 3 
IVia 1 -3 
rvr· 
rvr 
rv.r 
IVj:" 
IVir'' -1 1 2 
IVt 
IVf 
IVf -1 - 1 1 1 

IVf' 
IVs0 -1 .1 2 
IVf° -1 1 
IV'.2° 1 -1 
IVa0 -1 1 
IVj:0 1 -1 
IV/;° -1 -1 1 2 1 
IVi\° 1 1 -1 - 1 
IV~0 1 -2 -1 
IV/t -1 1 
IV~b - 1 - 1 1 1 

IVi8 1 1 -1 
rvn -1 1 -1 2 1 
IVg -1 1 1 -1 
IVfr . -1 1 
IVf 1 -1 

rvr -1 
.. 

1 

IVf 1 -1 

TABLE 36. The block A22,5 of the block matrix A 

III1 rm rm II1J'. IIU III\'. rm III{ III~ III0 

IV;" 
rv~1 

IVt 
IV.t 
rv;1 - 1 1 1 -3 2 
rv·· 

TABLE· 37 . The block A24, 5 of the block matrix A 


