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3-MANIFOLDS INTO THE PLANE

. MINORU YAMAMOTO

ABSTRACT. In the late 1980%, Vassiliev introduced new graded numerical invariants

of knots, which are now called Vassiliev invariants or finite-type invariants. Since his

definition, many people have been trying to construct Vassiliev type invariants for various
mapping spaces. In the early 1990’s, Arnold and Goryunov introduced the notion of first
order (10&&1) invariants of stable maps. » » ' | '
In this paper, we define and study first order semi-local invariants of stable maps and
those of stable fold maps of a closed orientable 3-dimensional manifold into the plane.
Here, a stable fold map is a stable map with only fold singular pé)ints and a first order
semi-local invariant is an isotopy invariant which is constructed by looking at the singular
value set 'loca]ly' and the singular fibers semi-locally. We show that there are essentially
seven first order semi-local invariants. For a stable map, six of therﬁ count the number

of singular fibers of a given type which appear discretely (there are exactly six types of

such singular fibers), and the other one is the rotation number of the singular value set.

Besides these invariants, for stable fold maps, the Bennequin invariant of the singular

value set éorresponding-v to definite fold points is also a first order semi-local invariant.
Qur study of codimension 1 unstable fold maps provides invariants for the connected
components of the set of all fold maps.
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1. INTRODUCTION

1.1. History. Vassiliev [50] introduced a wonderful method to define graded numerical
invariants of knots, which are now called Vassiliev invariants or finite-type invariants. He
constructed these invariants by caréfully studying a certain stratification of the mapping
space C*(S*, RS). Since his definition, many people have been trying to construct Vas-
siliev type invariants for various mapping spaces. Arnold [4] introduced “basic invariants”
(we call them Arnold invariants) for stable immersions of S* into R?, which brought a
new insight to the classical subJect of the topology/geometry of plane curves. Arnold
invariants are regarded as a spec1al kind of first order Vassiliev type invariants, which
are objects of great interest by themselves. Arnold invariants of plane curves (and those
of wavefronts) were studied by many authors, for example, Aicardi [2], Goryunov [17],
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Tchernov {46, 47], etc. The construction of this kind of order one invariants may work
for stable maps of manifolds whose dimensioils are greater than 1. In fact, as a kind of a
generalization of the J*-invariants (not involving the strangeness invariant St), Goryunov
[16] introduced and studied first order local invariants of stable maps of an oriented closed
surface into R?. Aicardi and Ohmoto [3] worked on first order local invariants of stable
maps of a closed surface into R? (see also [39]). It should be remarked that in both cases,
these first order “local” invariants are determined by numerical invariants of discrete criti-
cal sets and a certain Bennequin invariant of the critical value set (note that this is related
to the J*-theory of plane curves). See Remark 6.5 for the other results about Vassiliey

(finite) type invariants. In these works, almost all invariants are essentially reduced to
order one invariants. '

~ 1.2. Purpose. In this paper, we consider the case where the source manifolds are closed
6rienta.ble 3-dimensional manifolds and the target manifold is the plane. In all the cases
mentioned in the previous subsection, the dimensions of the target manifolds are greater
than or equal to those of the source manifolds. Thus for any point in the target manifold,
the inverse image of this point consists of a finite number of points, provided that the map
is proper and generic enough. Hence, in order to study first order (local) invariants of such
stable maps, we have only to consider multi-germs along zero dimensional sets. However,
if the dimension of the source manifold is strictly greater than that of the target manifold,
then the inverse image of a point (or the fiber over a point) is no longer a discrete set.

In general, this forms a complex of positive dimension. Hence, if we consider multi-germs
only along singular points in a fiber to study first order 1nvar1ants of stable maps, then it
is expected that little information about stable maps appears in these invariants. Thus,

to get much information about stable maps from first order invariants, we need to study"

map germs along a whole fiber of positive dimension.

We define and study first order semi-local invariants of such stable maps A first

order semi-local invariant is a special kind of a first order invariant: when a homotopy
in the mapping space crosses a codimension 1 stratum transversély at a codimension 1
~unstable map, the jump of the invariant is determined by the homeomorphism type of
the local deformation of the singular value set near the codimension 1 singularv value
and by the diffeomorphism types of associated singular fibers. Note that the notion of a
diffeomorphism of singular fibers modulo regular compohents was first used implicitly by
Kushner, Levine and Porto (26, 29]. After that Sa,ekl [45] gave a precise deﬁmtlon of this
notion (including regular components).
This is the first study of first order invariants when the dimension of the source manifold

is strictly greater than that of the target manifold, as long as the author knows.
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1.3. Organization of the paper. The paper is organized as follows. ,

In Section 2, we review the cla‘ssiﬁéat-iqn' of multi-germs (R?S) — (R%,y) up to A-
equivalence (i.e., C* right-left equivalence), where S is a set of finitely many isolated
points. We list the .A-equivalence classes of miniversal unfoldings of such multi-germs
whose parameter spaces have dimensions 0; 1 or 2. They were studied by Rieger-Ruas {41},
Gibson-Hobbs {14], Nabarro [35] and Rieger [40], and we use their results in this paper.
We have to add two exceptional A-equivalence classes of rniniver'sal unfoldings of multi-
germs which correspond to Df or a quadruplefold. The reason is as follows. Miniversal
unf@ldings of these multi-germs have parameter spaces of dimension 3. However, their
A-modalities are all equal to 1. On the parameter space R2 of their miniversal unfoldings,
one coordinate ¢ of the coordinates (a,b,t) € R? corresponds to the A-modality. Thus DE
and a quadruplefold are considered to be 1-parameter families of A~equiva1ehce classes.

To obtain first order invariants, we have to consider each such l-parameter family to
constitute a stratum, and the codimension of each such stratum is equal to 2. For details,
see [40] and Subsection 2.2. .

In Section 3, we define stable maps and unstable maps of codimensions 1 and 2. By
‘using the classification of miniversal uxifoldings of Section 2, we study local deformations
of singular value sets and the associated local singular fibers near singular points.

In Section 4, we first define the notion of the weak equivalence for vsz’ngular fibers (preim-
ages of singular values). This equivalence relation reflects homeomorphism types of (local
deformations of) singular value sets and diffeomorphism types of the associated semi-local
singular fibers. This equivalence relation is related to the C'*° equivalence for map germs »
along singular fibers. See [45] for the definition of the C equivalence. Since our equiv-
alence is weaker than the C'® equivalence, we use the term “weak” for our equivalence
relation. We classify singular fibers of stable maps and unstable maps of codimensions 1
and 2 up to this equivalence relation (see Theorems 4.4, 4.7 and 4.8). For a stable map, -
there are exactly six weak equivalence classes of singular fibers which appear discretely.:
Then, we define the equivalence relation, which we also call weak equivalence for simplic-
ity, for unstable maps of codimensions 1 and 2 and classify them up to this equivalence
relation. We then define the coorientation of each weak equivalence class of codimension
1 unstable maps by looking at the local deformation of its singular value set and the |
associated (semi-local) singular fibers.

- In Section 5, we construct the Vassiliev cochain complex for the weak equivalence classes
of unstable maps of codimensions 1 and 2. (As general references about the Vassiliev
cochain complex, see [23, 49].) | |
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In Section 6, we define first order semi-local invariants of stable maps. These invariants
are constructed from the cocycles of the Vassiliev cochain complex mentioned above and
they are isotopy invariants of stable maps. .

In Section 7, we determine the first order semi-local invariants of stable maps by using
the Vassiliev cochain complex constructed in Section 5 (see Theorem 7.2). More precisely,
we show that there are essentially seven first order semi-local invariants of stable maps.
By a careful study of homotopies which intersect codimension 1 strata (the hypersurface
in the mappihg space which consists of the codimension 1 unstable maps) transversely,
we give geometric interpretations of all the invariants. It turns out that for a stable map,
six of them count the number of singular fibers of a given weak equivalence class which
appear discretely (there are exactly six such weak equivalence classes by Theorem 4.4)
and the other one is the “rotation number” of the singular value set (see Theorem 7.3),
" Then we construct several explicit examples of stable maps f S$% — R?. By using these
examples, we show that the above seven first order semi-local invariants together with
" a (non-zero) constant invariant are linearly independent for stable maps of an arbitrary
closed orientable 3-dimensional manifold.

Note that these types of results would be impossible if we used the multi-germ of a ‘
given map only along the singular points in a fiber instead of considering the map germ
along a whole singular fiber..

: Iri Section 8, we subdivide the weak equivalence classes of unstable mdps of codimen-
- sions 1 and 2 by using a global property of such maps. To subdivide them, we Jook at
their singular value sets globally. By using such a finer classification, we give an additional
first order invariant of stable maps, which is a non-local invariant, and give a geometric
interpretation of this invariant (see Propositions 8.1 and 8.2). |

In Section 9, we consider the space of all fold maps. A fold map is a smooth map with
only fold singular points. By using the Vassiliev cochain complex for the weak equivalence
- classes of unstable fold maps of codimensions 1 and 2, we determine the first order semi-

local invariants of stable fold maps and give geometric interpretations of all the invariants

(see Theorems 9.3 and 9.4). | '

By cornblmng our results with other results about first order invariants which are al-
ready known, we may conjecture that first order invariants can give mformatlon only
~about the 0-dimensional strata of the critical value set, endowed with the topology of the
a,ssocmted ﬁbers or the topology of the critical value set (e g. the rotation number or the

Bennequin invariant). ' ,

In Section 10, we give several invariants for the connected components of the spa,ce' of
all fold maps. These in\{arié,nts are obtained by a careful study of codimension 1 unstable
~ fold maps carried out in the previous sections. '
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Throughout the paper, all manifolds and maps are differentiable of class O,

1.4. Acknowledgment. The author would like to express his sincere gratiﬁude to Prof.
Osamu Saeki, Prof. Toru Ohmoto Prof. Joachim Rieger and Prof. Maria Ruas for their
invaluable comments and encouragement.

2. CLASSIFICATION OF MULTI-GERMS '

In this section, we quickly review the classification of multi- -germs by A-equivalence
(that is, C right-left equwalence)

2.1. A-equiva]ence of multi-germs. In this subsection, we review some fundamental
concepts and results from singularity theory. For details, see {5, 10, 39, 51].

Let f: (M,S) — (R?y) be a multi-germ at finitely many isolated points S of f"l(y),_
- where M is a 3-dimensional manifold. When S consists exactly of one point, we also say
that f is a mono-ge'rm. An unfolding of such a multi-germ f : (M, S) — (R?y) with
parameter space R* centered at ¢, € R® means a multi~germ F (M xRS x {tg}) —
(R2,y) such that F(z,to) = f(x). , |

Let M; be 3-dimensional manifolds (i = 1,2). Liet fi 0 (M3, S;) —(R?,9;) be multi-
germs and F; : (M; x R*, S; x {t;}) — (R? %) unfoldings of f; with parameter space
R* centered at ¢; (i = 1,2). We say that F; and F; are A-equivalent if there exist a
diffeornorphism germ ¢ : (R%,t1) — (R®,%2), and unfoldings R: (M; x R*, S x {t:1}) —
(M,,8;) and L : (R2 x R®, (y1, 1)) — (R2,9s) of diffeomorphism germs R : (M;, ;) —
(M3,5;) and L : (R?,41) - (R?, 92) i'espectively, such that the following diagram is
commutative: | '

(M; x R® 5'1 X. {tl}) | (R2 x R* (yl,tl))b —" 5 (R*,t)

(le o | B (f?,wi | 'soL

(Mg X Rs .Sg X {tg}) —-Fl—* (R2 x R*® (yg,tg)) —r--i (Rs ’tg)

Here, 7 is the projection to the second factor, (R, i,o) (or (L, ¢)) is defined by (R go) (z, t)
(R(m t), ¢(t)) (resp. by (L o)y, t) = (L(y, 1), ¢(t))), and the map F,, i=1,2, is defined
byF(:c t) = (Fi(z,t),t).
- Two unfoldmgs Fyand Fy of f: (M,S) — (Rz,y) with the same parameter space R®
are said to be f-isomorphic if Fy and F2 are A—equlvaient with R and L bemg the identity
multi-germs idys and idg2 respectively. .
Let F @ (M x R, S x {t;}) — (R?%y) be an unfolding of f : (M,S) — (Rz,y)
and g : (R*,t,) — (R*,t;) a smooth map germ. We define the induced unfolding
g*F : (MxR2, Sx{t,}) = (R? y) by ¢*F(x,w) = F(z, g(w)), which is also an unfolding
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of f. An unfolding F of f is called a universal unfolding if any unfolding G of f is f-
isomorphic to an unfolding induced from F. A universal unfolding of a multi-germ f is
“called a miniversal unfolding if the parameter space has the minimal dimension among
all universal unfoldings of f. o e ,

For a multi-germ f : (M, S) — (R2,7), let 8(f)s denote the set of C* vector fields along
f. That is, it is the set of multi-germis ¢ : (M, ) — TR such that {(z) € TR?,(E)F(m € M).
We set 8(M)s = 0(idas)s and 6(R?), = 8(idr2),. The two maps tf : §(M)s — 6(f)s and
wf : B(R?), — 8(f)s are defined by tf(¢) = df o £ and wf(n) = n o f respectively. The
extended tangent space T A.f is defined by

TAf = tf(6(M)s) + wf(O(R"),) C 6(f)s

~ and the dimension of the quotient vector space 6( f) s/TA.f is called the A.-codimension
of f

Note that if the .4.-codimension of fis ﬁmte then it admits a universal unfoldlng and
the A.-codimension coincides with the dimension of the parameter space of a mmwersal
unfolding of f (see [39, 51]). A multi-germ f : (M, S) — (R?,y) is said to be A o~ finite
1f the A.-codimension of f is finite.. It should be noted that every A.-finite multz—germ
is finitely determined. That is, its A-equivalence class is determined by its jet of finite

order, and hence it is represented by a polynomial multi-germ (see [51]).

2.2. Classification of multi-germs. Let us consider the classification of those Ae-ﬂﬁite
multi-germs whose A.-codimension minus A-modality is strictly less than three. In the
‘follbwing, let'm 4(f) € Z denote the value of (A.-codimension) — (A4-modality) for f. The
modality is defined as follows. Suppose that a Lie group G acts on a variety V, then a
theorem of Rosenlicht [42] implies that V' has a uniquely determined finite stratification
S such that the action of G on each stratum S defines a fibration S — S/G. If a point
p € Vis in a stratum S such that dim S/G = m, then we say that the modality of pe V
is equal to m € Zyo, where Zsg is the set of 'nOn-nega,tive i‘ntegei‘s. The .A—modality of
an A.-finite mono-germ f : (R?,z) — (R2,y) is the modality of an A-sufficient jeb Gk f in
J*(3,2)0,y under the action of the Lie group A* of k-jets of elements of A. If f is not a
mono-germ, then we can define the A-modality similarly. For detalls, see {40, 52]. »

Let f : (R3,8) — (R?,0) be an A.-finite multi-germ, where S i is a set of finitely many
~ isolated points of f~!(0). To determine first order invariants of stable maps, we may

assume that my4(f) is equal to 0, 1 or 2. '

For f with ma(f)=10,1or 2, the A-equivalenbe classification of mono-germs and their
miniversal unfoldings has been obtained by Nabarro {35}, Rieger [40], and Rieger-Ruas
~ [41]. The A-equivalence classification of multi-germs and their miniversal unfoldings has’
been studied by Gibson-Hobbs [14]. In fact, they considered multi-germs £ : (R% S) —
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(R?,0) and classified them by A-equivalence. We can use similar arguments for multi-
‘germs £ : (R3,5) — (R?,0) and obtain the required .A-equivalence classification.

Let f : (R? S) — (R?0) be a multi-germ. We put S(f) = {qg € R® | rank df, < 2}
and call it the singular set germ of f. Furthermore, we call f (S( 1)) the singular value
. set germ of f. - _ - -

Let f: (R? S) — (R?0) be a multi-germ such that S C S(f) and ma(f) < 2. Then
we have S = {q1,...,q}, 1 < k < 4, and there exist local coordinates (%i,vi,2) and
(X,Y) around ¢; € R®, 1 <1 < k, and f(g;) = 0 € R? respectively such that a miniversal
unfolding of f is expressed by one of the polynomials listed in Tables 1-5 with respect to
the local coordinates. | "

[Table 1|[Table 2|[Table 3||Table 4][Table 5]

We remark that by [14, 35, 40, 41], Tables 1-5 give the complete list of A-equivalence
classes of multi-germs f : (R®,S) — (R2,0) such that § ¢ S(f) and m4(f) < 2. In our
situation, the A4,-codimensions of Df and a quadrupléfc')ld are equal to 3 and their A-
modalities are equal to 1. For the miniversal unfoldirigs'for these cases t is the parameter
" of modality in Tables 3 and 5. For the other classes, their A—mocialities'are equal to 0.

- Let f: (R%8) — (R?0) be a stable germ in Table 1. Then using the local normal
forms in Table 1, we see that the singular value set germ f(S(f)) around 0 is as depicted

in Figure 1, where (1) corresponds to a fold point, (2) corresponds to a cusp point, and
(3) corresponds to a nodefold.

Let G : (R® x R, S x {0}) — (R2,0) be a 1-parameter unfolding in Table 2. We define
g: - R® — R2 by g:(q) = G(qg,t). Suppose that 0 € go(S(go)) and S C S(go). Then using
the local normal forms in Table 2, we see that the deformations of the singular value set
germ 9:(5(g¢)) around O are as depicted in Figure 2,'Where'(1) corresponds to lips, (2)
corresponds to beaks, (3) correspbnds to a swallowtail, (4) corresponds to a cusp-plus-fold,
(5) corresponds to a tacnodefold and (6) corresponds to a triplefold. ’

Figﬁre 2 .

Let H: (R®x R2, S x {(0,0)}) ~ (R?,0) be a 2-parameter unfolding in Tables 3 or
4 other than DF. We define hop : R® — R2 by hgp(q) — H(q,a,b). Suppose that 0
hoo(S(hop)) and S C S(hog). Then using the local normal forms in Tables 3 or 4, we see
that the deformations of the singular value set germ hqp(S(Rap)) around 0 are as depicted
in Figure 3. Let H : (R® x R?, S x {(0,0,0)}) — (R?,0) be a 3-parameter unfolding in
Tables 3 or 5 which corresponds to Df or a quadruplefold. We fix t = ¢, € R in lthe-
corresponding local normal form and define h.p : R®* — R? by hap(g) = H(g,a,b,t0).
Suppose that 0 € hgg(S(hoo)) and S C S(hoo). Then using the local normal forms,
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we see that the deformations of the singular value set germ: hop(S(hap)) around O are
as depicted in Figure 3. In Figure 3, (1) corresponds to a goose, (2) corresponds to a
butterfly, (3) corresponds to gulls, (4) corresponds to D, (5) corresponds to Dy, (6)
corresponds to a Iips-ﬁlus-fold, (7) corresponds to a beaks-plus-fold, (8) corresponds to a
swallowtail-plus-fold, (9) corresponds to a cusp-plus-cusp, (10) corresponds to a cusp-plus-
fold tangency, (11) cbrrésponds to a flecnodefold, (12) correspbnds to a nodefold-plus-cusp,
(13) corresponds to a tacnodefold-plus-fold, and (14) corresponds to a quadruplefold.

'

In Figure 3, on each 2-dimensional region R of the parameter space, we have depicted
hap(S(hap)) C R? for (a,b) € R. Some parameter spaces in Figure 3 may not strictly
coincide with the corresponding (a, b)-plane for H in Tables 3-5. For each of these cases,
we need to compose an orientation preserving homeomorphism on the (a,b) plane to
obtam the correspondmg parameter space in Figure 3.

3. STABLE MAPS AND UNSTABLE MAPS OF CODIMENSIONS ONE AND TWO

~In this section, we define stable maps and unstable maps of codzmenszons 1 and 2 by
* using the A-equivalence classification of multi-germs as in Tables 1-5. We also study local
“behaviors of their singular value sets and their singular fibers.

Let f : M — R? be a smooth map. We set S(f)y={q € M| rank df, < 2} and
call it the singular set of f. Furthermore, we call f(S(f)) the singular value set of f.
When y € R? is in the singular value set of f : M — R?, we call f(y) a singular fiber;
otherwise, a regular fiber. - :

3.1. Stable maps. Let M be a‘ciosed 3-dimensional manifold and f : M — R? a smooth
map. We denote the set of such maps by C*°(M, R?) which is equipped with the Whitney
C*=-topology. A smooth map f is said to_be stable if in oo (M, R?), there exists an open
neighborhood U of f such that for any g € U, g is C*° right-left beqm'valent to f, that is,
there exist two diffeomorphisms ® : M — M and ¢ : R? — R? such that the following .

diagram is commutative:
- M-t M
1 b
.~ R* = R% :
, It is known that the set of stable maps is open and dense in C°°(M, R?) (see [32]). Note

that for a stable map f : M — R? S(f) is a compact 1-dimensional submanifold of

M. The following characterization of stable maps is well- known (see [15, 26, 29, 53] and
Table 1). ' :
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Proposition 3.1. A smooth map f : M — R? of a closed 3-dimensional manifold into
the plane is stable if and only if the following conditions are satisfied.

(i) For every g € M, there exist local coordinates (z,y,z) and (X,Y) around 9 eM
and f(g) e R? 'r'espectwely such that one of the following holds:

| (fB, v), q:regular point, |
: (X oV of) =2 (z,9* + 2%), q:deﬁmte fold point,
, (z l vy — 2%, g:ihdeﬁm’te fold point,
| (z z,y° + oy + 2 ), g:cusp point.

(ii) For everyy € f(S (F); X y)NS(f) consists of at most two points and the multi-
germ (FIS(f), f~(y) N S(f)) is right-left equivalent to one of the three multi-
germs as depicted in. Figure 1. (1) represents a single immersion germ which
corresponds to a fold point, (2) corresponds to a cusp point, and (3) represents a

normal crossing of two immersion germs each of which corresponds to a fold point.

~ Suppose that for a stable map f : M - R?2, there are distinct singular points ¢; and
~g» in S(f) such that y = f(q1) = f(g2) € R? holds. In this case, we call y a nodefold of f
or a node of f(S(f)). Note that S(f) is a closed 1-dimensional submanifold of M, that
the number of nodefolds of f is finite and that the number of cusps on each component

~of S(f) is even (see [27]).

Definition 3.2 ([45]). Let M; be manifolds and A; C M; subsets, i = 0,1. A continuous

‘map g : Ay — A; is said to be ‘smooth if for every point ¢ € Ag, there exists a smooth
map g : V — M, defined on a neighborhood V of ¢ in My such that gV N4 = glV N A.
Furthermore, a smooth map g : Ay — A; is a diffeomorphism if it is a homeomorphism
and its inverse is also smooth. - | ' |

Let g be a singular point of a stable map f: M — R2. Then, using the local normal
formis in Table 1, we.can easily describe the diffeomorphism type of a neighborhood of ¢
in f71(f(g)). That is, we easily get the following local charaoteriza,tion of singular fibers.

Lemma 3.3. Let f : M — R? be a stable map of a closed 3-dimensional manifold
into the plane. FEvery singular point q¢ of f has.one of the following neighborhoods in its
corresponding singular fiber (see Figure 4):
(1) isolated point diffeomorphic to {(y,z) € R2 \ 7y + 2 = O}, if g is a definite fold
point, R : : e '
(2) union of two transverse arcs diﬁeomo}phz’c to {(y,2) e R? | y* — 22 =0}, if q is
an indefinite fold point, | '

(3) 3/2- cu.spzdal arc dzﬁeomo'rphec to {(y, z) e R? | ¥+ 2% =0}, if g is a cusp point.-
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[Fawe

~ For the local nearby fibers, we have the following.

Lemma 3.4. Let f: M — R? be a stable map. "Suppose that g € S(f) is a singular point

~such that f7(f(q))NS(f) = {q} or that g1 and g2 € S(f) are distinct singular points with

fla) = f(g) and fFH{flq)) NS(F) = {ql,qz}.. Then the local fibers near g or the pair .
h, 92 ‘are as described in Figure 5, where D means “definite” and I means “"indeﬁnite”.

In Figure 5, e@ch 0- or 1-dimensional object except f(S (f)) € R? represents a portion of

theﬁber over the corresponding point in the plane. They are drawn with thin lines and

F(S(F)) is drawn with thick lines. “

In Figure 5, some of the edges of f(S(f)) are oriented. For the definition of the
orientation on f{S(f)), see Remark 4.6.

3.2. Unstable maps of codimensions one and two. Let M be a closed 3-dimensional

manifold. In this subsection we define and study unstable maps of codimensions 1 and 2.

Definition 3.5. If for a singular value ¥ € R? of a smooth map f : M - R?, thé multi-
Cgerm f: (M, £~ (w) N S(f)) — (R?,y) is A-equivalent to a stable multi-germ in Table 1,
then we call y a stable singular value of f and f~'(y) a stable singular fiber of f.

Definition 3.6. Let f: M — R? be a smooth map. Suppose that for a singular value
ye R?, f~(y) N S(f) is & finite set and that the multi-germ f : (M, fXy)n S(f)) —
(R?%,y) is not A-equivalent to any stable multi-germs in Table 1. » :
(1) If there exists a 1-parameter unfolding G : (M xR, (f~'(y)NS(f))x{0}) —> (R%,y)
of f: (M, f~1(y)NS(f)) — (R2,y) which is .A-equivalent to one of the 1-parameter
unfoldings in Table 2, then we call y a codimension 1 singular value of f and f7(y) | |
a codimension 1 singular fiber of f. | R »
(2) If there exists a 2-parameter unfolding H:(MxR%L(f Yy N S(f)) x {0}) —
(R%,y) of f (M, fY(y) 0 S(f)) — (R2,y) which is A-equivalent to one of the
| 2-parameter unfoldings in Tables 3-8, other than those for _fo or a quadrui::lefold,
 or if there exists a 3-parameter unfolding H : (M x R3, (FHy)NS(f)) x {0}) —
(R%,y) of f : (M, (y) 0 S(f)) — (RZ%y) which is A-equivalent to the 3-
parameter unfolding of D¥F or a quadruplefold in Tables 3 or 5 around the pa-
rameter (0,0,%) for some %o, then we call y a codimension 2 stngular value of f
and f~1(y) a codimension 2 singular fiber of f.

Note that we use the term “codimension i singular fiber of a smooth map” in a sense
different from the term “codimension i singular fiber of & stable map” used in [45] (i =
1,2). |
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Definition 3.7. A smooth map f : M — R? is said to be a codimension 1 (resp. 2)
unstable map if there exists a unique codimension 1 (resp. 2) singular value of f and the

other singular values are all stable smgular values of f-

Remark 3.8. Let, f M — R2 be a 'sto’ch map. Suppose that f has exactly two
codimension 1 singular values and that the other singular values are all stable singular
values of f. We can regard such an f as a codimension 2 unstable map in C*(M,R?)
in a natural sense. However, for the study of first order semi-local invariants of stable
maps, we can ignore such kind of maps. We will explain the reason in Remark 5.2. For
the study of first order non-local invariants of stable maps, we have to consider such kind
- of maps (see Section 8).

Definition 3.9. Let f and g : M — RZ? be two stable maps of a closed 3-dimensional
manifold M into the plane and I C R a closed interval such that I = {a,b} and a < b.
Let 7: I — C=(M,R?) be a continuous map which connects f and g, i.e., T(d) = f and
7(b) = g. We call T a continuous path between f and g.

For a continuous path 7, we define the associated continuous map F: M- x I — R? by
F(z,t) = 7(t)(z) (z € M,t € I). Note that f; is a smooth map for each t € I, f, = fand
fo = g, where f,: M — R? is defined by ft( ) = F(z,t). By an approximation theorem,
there exists a smooth map G : M x I — R? which is an approximation of F such that

= f and g, = g, where g is defined by gi(x) = G(z,t) (see [34]). We call G a smooth
-~ homotopy between f and g. To choose a suitable smooth homotopy, we use the following
parametenzed multl—transversahty theorem. | |
| Let N, Q and P be manifolds and F': N X @ — P a ‘smooth map. For each qge Q,

- the smooth map F, : N — P is defined by Fy(z) = F(z,q). We denote by N®) the set of
all (z3,...,2x) € N¥ such that zy,..., 74 are distinct points in N. Let J"(N, P) be the
7-jet space and j"Fy(x) the r-jet of Fy at z € N. We define kJT(N P) by kJ(N,P) =
(n§)"*N®), where 7y : J7(N, P) — N is the projection.
' We define the parameterized jet extension JF: N *) % QF— J"(N, P) X Q" by

» kJTF(mla---:xk,q}r“ st) = (.7 q1(w1)>'°'>3 FQk(xk))QI)“')Qk)'

Then we have the following proposition.

Proposition 3.10 (Parameterized multi-transversality theorem). Let Wy, Wy, ... be count-
ably many submanifolds in ,J"(N, P) x Q*. Then, the set -

T={F¢ C°°(N X Q,P) | v F s transverse to every Wl,Wz, -}

is a residual subset and s dense in C°°(N x @, P)
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The above proposition follows from the (ordihary) multi-transversality theorem proved
in [30, 31] (see [20] for details). For the case of k=1, see [1,9].

By the above proposition, we may assume that the smooth homotopy G : M x I — R?
apprbxima.ting the continuous map F : M x I — R?* associated with a continuous path
7: I — C*°(M,R?) satisfies the following: ,

(1) there is a finite set of parameter'va.iues a <ty <ty <--- <t <b(possibly empty)
in the open interval Intl = (a,b) such that the following holds.
(1-1) Forany t € I\{t1,..., 4}, themap g : M — R? is stable,‘where gt is defined
by g:(z) :»G(m,t).i : :

(1-2) Foreach t; (i =1,...,1), g, is a codimension 1 unstable map. v
(1-3) Let y; € R? be the codimension 1 singular value of gy, (i =1,...,l). Then
G (M x (i~ ti+e), (g, (%) NS(gs)) x {t:}) — (Rz>yz) (3 1)

is A—equwalent to one of the 1-parameter unfoldings in Table 2, Where €is a
o sufﬁ01ently small positive real number.
We call such a G a generic homotopy between f and g and call each t; (1 < i < 1) a
codimension 1 bifurcation value of G. If there is no codimension 1 bifurcation value of G
in I, then we call G an 1sotopy between f and g, and if there exists an isotopy between
f and g, then we say that f and g are isotopic. We say that f is the initial stable map
of G and g is the terminal stable map of G. For a generic homotopyv, if the initial stable
map aﬁd the terminal one are the same, then we call it a generic loop.

Let p: W — C®°(M,R?) be a continuous map such that for the associated continuous
‘ma.p F: M x W — R? the restriction F|M x 0W is a generic loop. Here, W C R?
is a closed disk and F is defined by F(z,w) = p(w)(z). By an approximation theorem,
there exists a smooth map G : M x W — R? which is an approximation of F' such that

FIM x OW = G|M x 0W. By Proposition 3. 10 we may assume that the smooth map G
satisfies the following conditions.

(2) The closed disk W is stratified into finitely many 2-, 1- and 0- dlmenswnal strata
and OW is a union of finitely many 1- and 0- dimensional strata. They satisfy the
' folloWing B | -
(2-1) For any point w in each 2-dimensional stratum, g, is a stable map, where g,
is defined by g, (z) = G(z,w).
'(2-’ )} For any point w in each 1-dimensional stratum contained in IntW, g, is a
~ codimension 1 unstable map. Let ¥ € R? be the codimension i'singular value

of gy and I, C IntW a small open arc passing through w which is transverse
to the 1-dimensional stratum of w. Then

GIM x Ly + (M x Lo, (957 () N S(gw)) x {w}) — (R?,y)
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is A-equivalent to one of the 1-parameter unfoldings in Table 2.

(2-3) For each O-dimensional stratum w; in IntW (§ = 1,...,m), g, is a codimen-
sion 2 unstable map. Let y; € R? be the codimension 2 singular value of g,;. |
Then, either ‘ |
(2-3a)

G (M W, (952(55) N1 S(0,)) x {w;)) — (R2,35) (3:2)

is A-equlvalent to one of the 2- parameter unfoldings in Tables 3 or 4
other than those for Df, or .

(2—3b) there exists a £, € R such that (3.2) is A—equwalent to the unfolding of
DF or a quadruplefold in Tables 3 or 5 with ¢ = .

We call such a G a generic 2-parameter famzly and we call each w; (1 < 7 < m) a
codimension 2 bifurcation value of G in W.
Tet F: MxI — R2bea generic homotopy such that a closed interval I contains -
0 and O is the unique codimension 1 bifurcation value in I. Then, the open interval
" Int! = (a,b) C Risstratified into two 1-dimensional strata and one 0-dimensional stratum
(i.e., the origin). We call such a stratified open interval Int] a codimension 1 bzfurcatzon
" diagram of fo. Here, fi: M — R? is defined by fi(z) = F(z,1).

Let G : M x W — R? be a generic 2-parameter family such that 0 is the unique
codimension 2 bifurcation value in the closed disk W. Then, the oiaén disk IntW C R?
is naturally stratified into several 2-dimensional strata, several 1-dimensional strata and
one 0-dimensional stratum (i.e., the origin). We call such a stratified open disk IntW
a codimension 2 bifurcation diagram of go. Here, g, : M — R? is defined by g,(z) =
G(z,w) (see Figure 3). | |

For a bifurcation diagram, we usually consider that each stratum contains some extra
information on the stable (or codimension 1 or 2 unstable) maps corresponding to the |

stratum, such as their singular value sets, their singular fibers, etc. (see Figures 2 and 3).

Remark 3.11. Let G;- M x W, — RZ be two geﬁeric’ 2-parameter families such that for
each G;, 0 € W; is the unique codirhension 2 bifurcation value (i = 1,2). Suppose that
both G; are A-equivalent to the unfolding of D or a quadruplefold in Tables 3 or 5 with
t =1t (t1 # t2) (see (2-3b) above). By using the normal form of DF or a quadruplefold
in Tables 3 or 5, we see that there exists a homeomorphism @ : IntW, — IntW, which

preserves the codimension 2 bifurcation diagrams of IntW; and IntW, (see Figure 3).

3.3. Bifurcation diagrams. In this subsection, we study bifurcation diagrams of un-

stable maps of codimensions 1 and 2, and clarify the deformations of their singular value _
sets and their singular fibers locally.
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Let M be a closed 3-dimensional manifold and F : M x I — R? a generic homotopy
such that I is a closed interval and 0 € Int[ is the uniélue-codim,ension 1 bifurcation value
of F. Suppose that y € R? is the codimension 1 singular value of f,, where f; is defined
by fi(z) = F(z,t). We call such an F a genem’c homotopy around f. The deformation
of the singular value set f;(S(f:)) around y is as depicted in Figure 2.

Let f : M — R? be a codimension 1 unstable map and y € R? the codimension 1
singular value of f. Suppose that ¢ € f~'(y) N S(f) is a singular point in f~(y). Using
the local normal forms in Table 2, we can easily describe the diffeomorphism type of a
neighborhood of ¢ in f~1(y). I‘fb f~Y(y) N S(f) has two or more points, then ¢ has one
of the neighborhoods as listed in'Lemma 3.3 in its corresponding singular fiber. In the

following lemma, we describe the local characterization of codimension 1 'singular fibers
when {g} = f~(y) N S(f) holds.

Lemma 3.12. Let f M — R? be a codimension 1 unstable map of a closed 3- dzmenswnal
mamfold into the plane and y € R? the codimension 1 “singular value of f. Suppose
that F7(y) N S(f) consists of a single point, say q. Then g has one of the followmg
neighborhoods in its correspondmg singular fiber (see Figure 6):

(1) 3/2-cuspidal arc diffeomorphic to {(y,z) € R? | y® + 22 = 0}, if q corresponds to
lzps or beaks, '

(2) isolated point diffeomorphic to {(y,2z) € R? | y + 22 = 0}, if q is a definite
swallowtasl, o »

(3) union of two tangent arcs diffeomorphic to {(y, 2) e R? | o =0}, if q is an
 indefinite swallowtail.

‘Flgure 6

Note that in Figure 6, the black square (2) represents an isolated point. However, we
do not use the black dot as in Figure 4 (1) in order to disfinguish the fiber corresponding
to a definite fold from that corresponding to a definite swallowtail.

For the local nearby fibers of stable maps appearing ina genenc homotopy around a

codimension 1 unstable map, we have'the following.

Lemma 3.13. Let f : M — RZ2 be a codimension 1 unstable map of a closed 3-dimensional
manifold into the plane and yo € R? the codimension 1 singular value of f. Suppose that
F: M x[-1,1] — R? is a generic homotopy around f, and define f; by f.(z) = F(z,t).
. Then the local fibers of f near fy Hyo) N S(fo) are as depicted in Figure 7, where -we
replace t by —t for fi if necessary. In. Figure 7, each 0- or 1-dimensional object except
f:(S(ft)) C R? represents a portion of the fiber over the corresponding point in the plane.
They are drawn with thin lines and f:(S(fi)) is drawn with thick lines.
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| Figure 7|

In Figure 7, some of the edges of fi(S(f;)) are oriented. For the definition of the
orientation on fi(S(f:)), see Remark 4.6. Note that the figures in Figure 7 are in one-to-
one correspondence with the normal forms in Table 2 and these figures do not depend on
the choice of a generic homotopy F up to &iﬁeomorphiém.

Let us now study codimension 2 unstable maps. Let F': M x W — R? be a generic
2-parameter family such that O is the unique codimension 2 bifurcation value in the closed
disk W. Suppose that y € R? is the codimension 2 singular value of f,, where £, is defined

by fw(:c) F(z,w). We call such an F a generic 2-parameter family around fy. Then
the deformation of the singular value set fw(S(fu)) around y is as depicted in Figure 3.

Let f: M — R? be a codimension 2 unstable map and y € R? the codimension
2 singular value of f. Let ¢ € f~(y) N S(f) be a singular point in f~(y). Using
the normal forms in Tables 3-5, we can easily describe the dlffeomorphism type of a
neighborhood of ¢ in f~!(y). If f~ 1(y) N S(f) has two or more points, then g has one
of the neighborhoods as listed in Lemmas 3.3 or 3.12 in its corresponding singular fiber.

In the following lemma, we describe the local characterization of codimension 2 singular

fibers when {g} = f~}(y) N S(f) holds.

Lemma 3.14. Let f : M — R? be a codimension 2 unstable map of a closed 3-dimensional
- manifold into the plane and y € R? ‘the codimension 2 singular vahie of f. Suppose
that f=(y) N S(f) consists of a single point, say q. Then g has one of the following
neighborhoods in its corresponding singular fiber (see Figure 8): |
(1) 3/2-cuspidal arc diffeomorphic to {(y,z) € R? | ¥* + 22 = 0}, if q is a goose,
(2) 5/2-cuspidal arc diffeomorphic to {(y,z) € R | y°+y"+2% = 0}, if q is a butterfly,
(3) isolated point diffeomorphic to {(y,2) € R* | y* + ¢® + 22 = 0}, if ¢ corresponds
to definite gulls, ‘, IR
(4) union of two tangent arcs diffeomorphic to {(y,'z) € R,2 | 4+ 45— 22 =0}, ifq
corresponds to indefinite gulls, »
(5) union of an arc and an isolated point dzﬁ’eomorphzc to {(y, ) eR* | y®+¢%2+
A422=0},ifqgisa Dy point,
(6) union of three arcs meeting at a point with distinct tangents diffeomorphic to
{(y,2) eR* | P®* —2y%2+ 22 + 25 =0}, ifqis a DZ point.

Flgure 8 i

By [35, 40], if ¢ is a D} point (resp Dy point), the normal form H(z,y,z,0;0,t)
in Table 3 is C*K-equivalent to the map of the form Tz(m,y,z) = (z,2y + ¥?z + 2°)
(resp. h(z,y,2) = (z,zy — y?z + 2°)). Because of the definition of C°°K-equivalence, a _
neighborhood of g in its corresponding singular fiber is diffeomorphic to a neighborhood of
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(0,0,0) € R3 in A~1(0,0). Therefore, q has a neighborhood in its corresponding singular
fiber diffeomorphic to {(y, z) € R? | + 4?2+ 2* = 0} and we have the figures depicted as
in Figure 8 (5) and (6). |

Note that in Figure 8 (2), the “shape of Y”, (3) the black square, and (5) the union
of an arc and an isolated point represent a 5/2 cuspidal arc, an isolated point and a line
respectively. We use these symbols to distinguish a 3/2-cuspidal arc and (2), a black dot
and (3) (see the paragraph just after Lemma 3.12), and a regular arc (without smgula,r
poxn‘cs) and (5).

‘For the local nearby fibers of a codunensmn 2 unstable map, we have the following.

Lemma 3.15. Let f: M - R%bea codt’mension 2 unstable map of a closed 3-dimensional
manifold into the plane and yo € R? the codimension 2 éingular value of f. Then the
local fibers of f near f~Y(yo) N S(f) are as depicted in Figure 9. In Figure 9, each 0-
or 1-dimensional object except f(S(f)) C R? repreéents a portion of the fiber over the
corresponding point in the plane. They are drawn with thin lines and f(S(f)) are drawn
with thick lines. ’

Figure 9| .

In Figure 9, some of the edg;és of f(S(f)) are oriented. For the definition of the
- orientation on f(S(f)), see Remark 4.6. Note that Figure 9 has one-to-one correspondence
with Tables 3-5. '

Note that for a generic 2- parameter family F around a codimension 2 unstable map f,
we can depict figures similar to those given in Lemma 3.13. But the statement and the
- figures would be so complicated that we do not write them down here.

4. CLASSIFICATION OF SINGULAR FIBERS

In this section, we first give a precise definition of the weak equivalence for singular
fibers. We classify singular fibers of stable maps and unstable maps of codimensions 1
and 2 ﬁp to this equivalence relation. Then we define an equivalence relation for unstable
maps of codimensions 1 and 2, which is based on the weak equivalence of smgular fibers
of codimensions 1 and 2. We also call this equivalence the weak equivalence for simplicity,
for unstable maps of codimensions 1-.and 2. We classify unstable maps of codimensions 1

and 2 up to this equivalence relation.

4.1. Deﬁnition of an equivalence of fibers. Let f and g : M — R? be two smooth
. maps of a closed manifold M into the plane. For ys and y, € R?, we say that the fiber of
[ over y; and that of g over y, are diffeomorphic to each other if FHyy) and g7 (y,) are
diffeomorphic in the sense of Definition 3.2. Let 7 : S x IntD2 — IntD? be the projection

to the second factor. Since 7 is a submersion, the fiber 77*(0) is a.regular fiber and is
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diffeomorphic to S*. We dencte by U, S} the disjoint union of a copies of S* (& > 1)
and by 7, 1 (U2;5}) x IntD? — IntD? the projection to the second factor.

Definition 4.1. Let f and g : M — R? b.él two smooth maps of a closed 3-dimensional
manifold M, and f~*(ys) and g~*(y,) two singular fibers of f and g over y; and y, € R?
respectively. Suppose that U (resp. U,) is a small open disk neighborhood of y; (resp.
Yo)- ' . »

(1) Suppose that both f and g are stable maps. We say that the two singular fibers
FY(ys) and g~Y(y,) are weakly equivalent if there exist a homeomorphism ¢ s
(Us,ys) — (U,, y,) and non-negative integers o and B such that (UM F(S(f))) =
U, M g(S(g)) and for each y € Uy, the disjoint union f~(y) U (771(0)) is diffeo-
morphic to the disjoint union g~*(ip(y)) U (751(0)). - :

(2) Suppose that both f and g are codimension 1 unstable maps and that y; € R?
(resp. y,) is the unique codimension 1 singular value of f (resp. g). Let F : M x
Iy — R? (resp. G : M x I, — R?) be a generic homotopy around f (resp. g) such
that fo = f (resp. go = g) holds, where I; and I, C R are small closed intervals
containing 0 and f; (résp. g¢) is defined by filz) = F(z,t) (resp. gi(z) = G(x,1)).
The two singular fibers f“i(yf) and g~*(y,) are weakly equivalent if their exist a
homeomorphism ¢ : Iy x Us — I, x U, of the form ¢(t,y) = (gb(t), w:(y)) and non-
negative integers @ and [ such that 1(0) = 0, @o(yy) = ¥, and e(UsNF(S(F))) =
Uy N gye)(S(gyn)) for all t € If' and that for each y € Uy, the disjoint union

¢ (y) U (757(0)) is diffeomorphic to the disjoint union gy (¢4(y)) U (r57(0)) for
all t € Iy. ' ‘ ‘

(3) Suppose that both f and g are codimension 2 unstable maps and that y; € R?
(resp. y,) is the unique codimension 2 singular value of f (resp. g). Let F :
M x Wfb — R? (resp. G : M x W, — R?) be a generic 2-parameter family around
[ (resp. g) such that fo = f (resp. go = g¢) holds, where W; and Wg‘C R2 are

 sufficiently small closed disks containing the origin and f,, (resp. g,) is defined

by fu(z) = F(z,w) (resp. gu(z) = G(z,w)). The two singular fibers Y (ys) and
g7 (y,) are weakly equivalent if there exist a homeomorphism ¢ : Wy x Uy —

- W, x Uy of the form p{w,y) = (¥(w), pu(y)) and non-negative integers o and 3
such that (0) = 0, ¢o(ys) = ¥y and ¢ (Us N fulS(fu))) = Us N Gy (S (gw)))
for all w € Wy and that for each y € Uy, the disjoint union f;1(y) U (77*(8)) is
diffeomorphic to the disjoint union g;(iv)(npw(y)) U (m5(0)). |

Note that the non—nega.tive integers o and (3 should not depend on y € Uy or ¢ or w.
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We remark that Definition 4.1 (2) and (3) do not depend on the choices of F' and G
respectively. ‘We can prove this by using an argument similar to that in the proof of
Theorem 4.7 in Subsection 4.3. ' |

" Remark 4.2. We can define another equivalence relation for singular fibers of unstable
maps of codimensions 1 and 2 by ignoring the unfoldings as follows. Suppose that both f
and g : M — R? are codimension 1 {(or 2) unstable maps of a closed manifold and that y;
and y, € R? are codimension 1 (resp. 2) singular values of f and g réspectively. The two
singular fibers f~*(ys) and g7 (y,) are coarsely equivalent if there exist a homeomorphism

¢ : (Us,ys) = (Uy,v,) and non-negative integers a and S such that ¢(Uy N f(S(f))) =
U N g(S(g)) and for each y € Uy, the disjoint union f~}(y) U (#;*(0)) is diffeomorphic to
the disjoint union g~*((y)) U (w5(0)). We will see later that this equivalence is strictly
weaker than the weak equivalence. For example, in Theorem 4.7 of Subsection 4.3, 1113 and
1113 are not weakly equivaieht but are coarsely equivalent (see Figure 12 in Seétion 4.3),
and in Theorem 4.8 of Subsection 4.3, IV}, 1V§ and IV} are not weakly equivalght to each

other but are all coarsely equivalent (see Figure 13 (p) in Section 4.3).

Remark 4.3. We have several equivalence relations for stable, codimension 1 or codimen-
sion 2 singular fibers. They are “diffeomorphism up to regular S'-components” (consid-
ered implicitly in [26]), “coarse equivalence”, “weak equivalence” and “C* equivalence
~up to regular S'-components” (originally defined in [45}). Let us write “4” = “B” by
using an arrow if the equivalence A implies the equivalence B. Then, we see easily that
“C° equivalence up to regular S*-components” ﬁ “weak equivalence”
. , @
z—g “coarse equivalence” (=>)' “diffeomorphism up.to regular S*-components”.
_ . v . |
The converse of (a) does not hold. This follows from the fact that D¥ and the quadruple-
fold have positive .A-modalities. That is, for D¥ or the quadruplefold we have mﬁmtely

many C* equivalence classes of multi-germs. By Remark 4.2, the converse of (b) does not

hold. Figures 4 (1) and 6 (2) show that the converse of (c) does not hold (see Lemma 3.12
in Subsection 3.3). o :

4.2. Classification of singular fibers of stable maps. In what follows, let M be a

- closed orientable 3-dimensional manifold. In this subsection, we get a cia,smﬁcatlon of

stable singular fibers up to weak equwalence v

We have the following theorem wh1ch was mellcltly proved in [26 29]

Theorem 4.4. Let f : M — R? be a stable map of a closed orientable 3-diménsional
manifold into the plane. Then, every singular fiber of f is weakly equivalent to one of the

fibers as in Figure 10, and no two fibers in Figure 10 are weakly equivalent. In Figure 10,
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we have described the deformation of singular fibers around each stable singular fiber to

clarify the weak equivalence class.

Figure 10

In Figure 10, I* and II* mean the names of the corresponding weak equivalence classes of
singular fibers. Note that we have named the fibers so that each connected singular fiber
‘has its own digit or letter and a disconnected fiber has the name consisting of the digits
or letters of its connected components céntaining singular points. Hence, the number
of digits in the superscript coincides with the number of connected components which -
contain singular points. In this figure, singular value sets are drawn with thick lines and
‘the orientations on the singular value sets correspond to those defined in Remark 4.6.

Note that Figure 5 (1) can be regarded as the deformation of the singular fiber of ‘type I°.

Proof of Theorem 4.4. The proof is simpler than that of [45 Theorems 3.1, 4.5 and 4.15].
For completeness, we give a detailed proof here. : ,

Let us take a point r € f(S(f)). If r corresponds to Figure 1 (1), then f~%(r) contains
exactly one singular point ¢ € M, which is a fold point. If ¢ is a definite fold point,
~ then the component of the singular fiber containing q is diffeomorphic to one point (the
singular fiber of type I in Figure 10) by Lemma 3.3. -

Suppose that ¢ is an indefinite fold point and f(q) = r € R?% By Proposition 3.1, the
germ of f at g is A-equivalent to the germ of fi(z,y,2) = (z,9% — z2)' (= (u,v)) at the
origin: i.e., there exist diffeomorphisms @; : V. — V1 and i, : (R?, f(q)) — (R?(0,0))
such that $1(g) = (0,0,0), p1(f(g)) = (0,0) and p7 o fo @1 = f on V, where V is a
sufficiently small open neighborhood of g in M and V; is an open neighborhood of the
origin in R? of the form

Vi={(z,9,2) €ER® | 2® + 12 + 2% <&, || fu(z, ¥, 2)|| < 6}

for 1> £ > § >0. Let Uy C R? be a small open interval d‘eﬁ'nved by u=0and [v| < §
with respect to the above coordinates (u,v). Then Vi N fy I(Ub) is a surface as depicted
~ in Figure 11 (1) (see also Figure 5 (2)). Note that the map

CAIBWVAN 7N U)) 6V N £ (Uo)) — Ui

is a proper submersion. Since the map f1{Vi N fi o) : i fl 1(Uo) ~ Up is a Morse
function and a Morse function is a submersion outside of the critical points, f Hr)\V
in M is a compact 1-dimensional smooth manifold which is diffeomorphic to the disjoint
union of two arcs and some circles. Therefore, f~!(r) is diffeomorphic to the disjoint
union of a “figure eight” type singular fiber (a singular fiber of type I' in Figure 10) or
the complex as'depicted in Figure 11 (2), and some circles. If a fiber as in Figure 11

(2) appears, then M must contain a punctured Mdbius band times [~1, 1], and hence is
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non-orientable. Since we have assumed that M is orientable, this does not occur. Hence,
we see that the singular fiber f=%(r) is diffeomorphic to the disjoint union of a “figure

eight” type singular fiber and a finite number of non—singula,r circles.

| [Figure 11 

If 7 corresponds to Figure 1 (3), then f~!(r) contains exactly two singular points, say
g1 and gz, which are fold points. Since they have neighborhoods as in Lemma 3.3 (1)
or (2) in f* (r), and since f is a submersion outside of the singular points, we see that
there are only a finite number of possﬂ:ﬁhtles for the diffeomorphism type of the union
of the components of f~ 1(’f’_) containing ¢, and g¢o: for example, if both ¢; and g, are
indefinite folds, then it is obtained from two copies of the figure as in Figure,él (2) by
connecting their end points by four arcs. Then we can use Lemma 3.4 to obtain the
nearby fibers of each possible singular fiber: for example, see Figure 10, IT"!, I1? and 1I°.
Excluding the ‘possvibili-ties such that a singular fiber as in Figure 11 (2) appears as a
| néarby fiber, we get the singular fibers and corresponding nearby fibers as depicted in
Figure 10, I1%° 11%! 11%* 112 and 113,

By a similar argument, we see that if r corresponds to Fxgure 1 (2) then we obtain the
singular fiber of type I1°.

Thus we have proved that every smgula,r fiber is diffeomorphic to the union of one of
the fibers listed in the theorem and a finite number of non-singular circles.

In order to complete the proof, we have only to show that if two singular fibers in the list
are diffeomorphic after omitting all non-singular circles, then they are weakly equivalent.

Let fand g : M — R? be stable maps of a closed orientable 3-dimensional manifold M-
into the plane. Let 7 : (UL, S}) x IntD? — IntD? and 74 ¢ (U)_1S}) x IntD? — IntD?
be the projections to the second factors, where o and [ are non-negative integers, and S}
and S} are copies of S*. Let us take 7; € f(S(f)) € R? and , € g(S(g)) C R2 Suppose
that the disjoint union f~*(rs) U (777(0)) and the disjoint union g=*(ry) U (75" (0)) are
diffeomorphic to each other. :

If the singular fibers over 7 and r, are both of type I° then there exist nelghborhoods
Uy of ry and U, of r, such that the sets Uy N £(S(f)) and U, N g(S(g)) are as depicted
in Figure 1 (1). In particular, there exists a homeomorphism ¢ : (Us, ) — (U,,7,) such
that (U N f(S(f))) = U, N g(S(g)). Note that we can describe the degeneration of
fibers of f over Uy and that of g over U, using Lemma 3.4 and Figure 5. Then we see
. that the homeomorphism ¢ can be chosen so that f=1(r) U (73%(0)) is diffeomorphic to

g7 (p(r)) U (z5(0)) for all r € Uy. Thus, the two fibers f~2(ry) and g=1(r,) are weakly

equivalent.

Similar arguments work also in the cases I, 11, 11%°, 1% 1ttt 117 and 18,
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ThlS completes the proof of Theorem 4.4 S ([l

Remark 4.5. The list of fibers given in Figure 10 was already obtamed by Kushner, Levine

and Porto [26, 29], although they did not describe explicitly the equivalence relation for
their classification.

Remark 4.6 ([29]). Let f : M — R? be a stable map or an unstable map of codimension
1 or 2, where M is a closed orientable 3-dimensional manifold. By the singular value set
F(S(f)) C R, R? is naturally stratified into 2-, 1- and 0O-dimensional strata. Note that
the union of 1- and 0-dimensional strata forms f(S(f)). On each 1-dimensional stratum
of f(S(f)), we can define an orientation as follows. We fix the canonical orientation on
RZ. Let 2 be a connected component of R?\ f(S(f)). We associate to Q a non-negative
integer n(€2), which is the number of connected components: of the fiber of f over any
' point of 0. Every i-dimensional stratum in f(S(f)) is adjacent to exactly two connected
components of R?\ f (S( £)). Since these two components have distinct nf(Q)}values (see
Figure 10), we can orient each 1-dimensional stratum in f(S(f)) so that the region with
the larger ns(f)-value is on its left. In Figures 5, 7, 9 and 10, we have oriented some
edges of f(S(f)) by this rule. o

4.3. Classification of unstable maps of codimensions one and two. In this subsec-
tion, we will classify codimension ¢ singular fibers by the weak equivalence. Then we will
classify unstable maps of codimensions 1 and 2 by using the weak equivalence of singular
fibers.

- We get the follov}ing classification of codimension 1 singular fibers.

Theorem 4.7. Let f : M — R? be a codimension 1 unstable map of a closed orientable
'3’-dimeﬁsiona£ manifold into the plane and y € R? the codimension 1 singular value of
f. Then, the codimension 1 singular fiber f~(y) ofb [ is weakly equivalent to one of the
codimension 1 singular fibers as depicted in Figure 12, and no two fibers in Figure 12 are
’ weakly equivalent. (In Figure 12, we have described the deformation of singular fibers on
F(S(f)) around each codimension 1 singular fiber. We can describe the regular fibers on
each 2-dimensional region around y'€ R? as well, although we have not included them in
the figures. For the deformations of singular fibers of stable maps dppéam’ng in a generic
homotopy around f, we can describe them by cbmbining Figures 7 and 12.)

|Figure 12

In Figure 12, III] means the name of the weak equivalence class of the corresponding

- codimension 1 singular fiber. Each symbol III* represents one diffeomorphism class (up

to regular S*-components) of a Qodimensiori 1 singular fiber. Note that III*(I) and III*(b)
correspond to lips and beaks respectively. The subscript « in III} or the letter * in I11%(x)
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means that we have two or more weak equivalence classes of codimension 1 singular fibers
in the corresponding diffeomorphism class. In this figure, singular value sets are drawn
~with thick lines and the orientations on the singular value sets correspond to those defined
in Remark 4.6. ’

Note that in Figure 12 (b}, ITI] and III3 are not weakly equivalent. We can distinguish
them by looking at their generic homotopies and the deformations of singular fibers of
stable maps appearing in these generlc homotopies. By the same reason, I1I3 and IH4 are
not weakly equivalent either. ,

Let f: M — R? be an unstable map of codimension 1 and y € R? the codlmensmn
1 smgular value of f. If the codimension 1 singular fiber f~}(y) belongs to I1I*, then we

- call it a codimension 1 singular fiber of type III}.

Proof of Theorem 4.7 (sketch). To prove the theorem, we can use almost the same argu-
ment, as in the proof of Theorem 4.4 (see also [45]). |

Let us take a point y € f(S(f)). By an argument similar to that in the proof of
Theorem 4.4, we can show that the union of the components of f~1(y) containing singular
~ points is diffeomorphic to one of the fibers of type III* listed in Figure 12.

- In order to complete the proof, we have only to classify the singular fibers in each
diffeomorphism class by the weak equivalence.

Let f: M — R? be a codiménsion 1 unstable map such that y € R? is the codimension
1 singular value of f and that f~*(y) is diffeomorphic to a singular fiber of type III*.
Let F': M x [-1,1] — R? be a generic homotopy around f. We define f, : M — R?
by fi{z) = F(z,t). The singular value set fi(S(f:)) around y is as depicted in one
of the figures of Figure 2 that corresponds to the type III*. Then we can describe all
the possibilities for the degeneration of fibers of f, arourid y by using Lemma 3.13 and

Figure 7. We classify these degenerations of fibetrs by the “weak equivalences’ in a sense
" as in Definition 4.1 and obtain 'all the weak equivalence classes. To prove that no two
~ fibers in Figﬁre 12 are weakly equivalent, we can easily show that there does ot exist a,
" 'homeomorphlsm @ in a sense as in Definition 4. L. |
ThlS completes the proof of Theorem 4.7. » | O

S1m11arly, we get the following classification of codimension 2 singular fibers.

" Theorem 4.8. Let f : M — R? be a codimension 2 unstable mapb of a closed orientable
3-dimensional manifold into the plane and y € R? the codimension 2 singular value of
. f. Then, the codimension 2 singular fiber f=(y) of f is weakly equivalent to one of the
codimension 2 singular fibers as»depz'cted in Figure 13, and no two fibers in Figure 13
are weakly equivalent. (In Figure 13, we have described the deformation of singular fibers
on £(S( ) around each codimension 2 singular ﬁber. We can describe the regular fibers
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on each 2-dimensional region around y € R? as well, although we have not included
them in the figures. For the deformations of singular fibers of stable and codimension 1 -
unstable maps appearing in a generic 2-parameter family around f, we can describe them
by combining Figures 3 and 9, Tables 3- 5 and Theorems 4.4 and 4.7.) |

. |Figure 13 .
The proof of this theorem is similar to that of Theorems 4.4 and 4.7 (see also [45]), and
~ is left to the reader. » ’ ‘ ' ,
In Figuré 13, IV} means the name of the weak equivalence class of the corresponding
‘codimension 2 singular fiber. Each symbol IV* represents one diﬂeomorphism class (up
to regular S'-components) of a codimension 2 singular fiber. Note that the subscript *
in IVY or the letter x in IV*(x) means that we have two or more weak equivalence classes
of codimension 2 singular fibers in the corresponding diﬁéomorphism class. Furthermore,
we use the convention as in Figure 8 for drawing the singular fibers in Figure 13. In this
figure, singular value sets are drawn with thick lines and the orientations on the singulai"
value sets correspond to those defined in Remark 4.6. v :
We remark that for example, IV, IV) and IV} are not weakly equivalent. We can
distinguish them by looking at their generic 2-parameter families and the deformations of

singular fibers of stable r’néps appearing in these generic 2-parameter families.

Definition 4.9. Let M be a closed orientable 3-dimensional manifold. Let f;: M — R2,
i = 1,2, be unstable maps of the same codimension k£ (= 1 or 2), and y; € R? the
codimension k singular value of f;. We say that f; and f, are weakly equivalent if f; Yy1)
and f;'(yz) are weakly equivalent in the sense of Definition 4.1.

We use the same expression i‘weakly equivalent” for the ‘equivalence relation of singﬁ.lar
fibers and that of unstable maps for sirhplicity. | ' ' ,

We can claséify codimension 1 (resp. 2) unstable maps by the weak equivalence by using
| Theorem 4.7 (resp. Theorem 4.8). By abuse of notation we use the symbol IIT (resp. IVY)
for the weak equivalence class of maps in I'y (resp. I';) which have exactly one singular
fiber of type III} (resp. IV}). Note that these classes III* and IV} are con31dered to be
‘strata of the set of all unstable maps T' in C%(M,R?). Note that each stratum ITT; or
Iv; ‘may not necessarﬂy be connected.

4.4. Coorientations of codlmensmn one strata. Let M be a closed ortentable 3-
dimensional manifold and T'; the set of all codimension 1 unstable maps in C*(M,R?).
In this subsection, we define a coorientation for each weak equivalence class of I'y.
Let F : M x [-1,1] — R? be a generic homotopy around a codimension- 1 unstable
- map fo, where f; : M — R? is defined by F(z,t) = fi(z) (z € M,t € [-1,1]). Then we
say that F' crosses I'y positively at fo if one of the following holds. :
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(1) When f, € T11%(1), I11%(b), III°, T11¢ or IT1%, the number of cusps of fy is greater
than that of f_;. , ’
(2) When f, € T2, I1122, 1118, 11120 1119 11152 1112 or T11%, the number of nodefolds
of f; is greater than that of f_;. o ‘ ‘
(3) When fo € HIZ%0 111004 111003 11rdb 1192, T11h2 100%3, 10153 1114, TS, 108, 1017
or 1118, the number of connected components of the regular fiber over a point in the
new-born triangle of f; is greater than that over a point in the vanishing triangle
of fq. . | , o . - :
If a generic homotopy F does not satisfy the above property, then we say that F
crosses I'y negatively at fy. By the above definition, all weak equivalence classes of maps
in Ty € C®(M,R?) are cooriented. | |

5. THE VASSILIEV COCHAIN COMPLEX FOR THE WEAK EQUIVALENCE

In this section we construct the Vassiliev cochain complexr for the weak equivalence
classes of unstable maps of c»odimensionvsv 1 and 2. } }

Let M be a closed orientable 3-dimensional manifold. In the following, we set M =
C°(M,R?). Let T'; be the set of all codimension 7 unstable maps in M (i = 1,2).

Let f: M — R? be a codimension 1 unstable map and g : M — R? a codimension 2
unstable map. Suppose that F': M x [—1,1] — R? is a generic homotopy around f, = f,
where F has the form F(z,t) = fy(z) (¢ € M,t € [~1,1]). Let W C R? be a small
closed disk rieighborhood of the origin in R? and G : M x W — R? a generic 2-parameter
family around g = go, where G has the form G(z,w) = g,(z) (zr € M,w € W). We fix

an orientation of the parameter space W of G (for deté,ils, see below), while we assume
that F crosses Tl positively at f, in the sense of Subsection 4.4. }
 Let [#lw (resp. {glw) be the cooriented weak equivalence class in I'; (resp. I'p) of f

(resp. g), where the coorientation of [f]yy (resp. [glw) is defined by the orientation of the
parameter space of F' (resp. G). If we cha@nge the orientation of the paramefer space of F©
(resp. G), then the corresponding weak equivalence class is considered to be —{f] (résp.
—lglw). -

Let us denote by C*(W(M); Z) the (finitely generated) free Z-module generated by the
cooriented weak equivalence classes of I';, ¢ = 1,2. The rank of C*(W(M); Z) is equal to
56, while the rank of C2(W(M); Z) is equal to 389 (see Figures 12 and 13). Furthermore,
we set COOW(M); Z) = C3(W(M);Z) = 0. By Subsection 4.4, any weak equivalence
. class I} in Iy is considered to be an element of C*(W(M); Z), and any weak equivalence
class IV} in I'; with a fixed coorientation is considered to be an element of C2(W(M); Z).
We adopt the convention that the coorientation of each IV} is defined by the canonical
orientation of R? in Figure 3.
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To define the coboundary operator 6 : CY(W(M); Z) — C*(W(M); Z), we define the
incidence coefficient |© : E] € Z for every pair of generators © of CY{W(M);Z) and = of
CHW(M); Z) as follows. .

Let W(Z) C R? be a small closed disk neighborhood of the origin in R? and G :
M x W(Z) — R? a generic 2-parameter family around g = go, where G has the form
G(z,w) = gu(z) (z € M,w € W(E)) and [glyy = = € C*(W(M);Z). We denote by
©(E) the subset of W(E) consisting of all points w such that g;,, is an element of ©. If
O(Z) is empty, then we define [© : Z] to be zero. Otherwise, near the origin of W(Z),
the closure of ©(Z) is a union of curves in W(Z) containing the origin as an end point.
Take a sufficiently small circle around the origin which is transverse to ©(%). The circle
is oriented by the orientation of W(Z), while the orientatibn of the normal bundle of
©(Z) is induced from the coorientation of ©. Thus the intersection ﬁumber of the small
circle and ©(=) is well-defined, and we define the incidence coefficient [© : E] € Z as this
intersection number. ‘ |

The oriented open neighborhood IntW (=) C R? of the origin in the parameter space of
a generic 2-parameter family around a representative of Z is stratified by the subsets ©(Z)
for various ©. By the definition of the weak equivalence relation (Definition 4.1 (2) and
. (3)), this stratification of In’tW(E) by ©(E) does not depend on the choice of a generic
2-parameter family G around g or a representative g of = up to orientation preserving
homeomorphisms. Therefore, the incidence coefficient [© : =] is well-defined. This open
disk IntW (=) is stratified into several 2-dimensional strata, several 1-dimensional strata

©(E) and one O-dimensional stratum = (i.e., the origin). We call this stratified parameter

‘space IntW (Z) with the local stable singular value set g,(S(g.)) N U C R? on each
2-dimensional stratum the bifurcation diagram of =, where w is an element of each 2-
dimensional stratum of IntW (=) (see the definition of a codimension 2 bifurcatiori diagram
in Subsection 3.2 and the pafagraph just before Remark 3.11 as well). Here, U is a
small open disk neighborhood around the codimension 2 singular value of go. For each
cooriented codimension 2 weak equivalence class =, the bifurcation diagram IntW (Z) of
= is as depicted in Figure 14. We adopt the convention that the coorientation of each IV}
is defined by the canonical orientation of R? in Figure 14. |

Note that for each weak equivalence class of codimension 2, there exists an orienta-~
tion preserving homeomorphism between the corresponding parameter space of Figure 14
and the canonical parameter space given by Tables 3-5 such that the horizontal axis
corresponds to a and the vertical one corresponds to b. ‘
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By using the incidence coefficients defined above, we define the homomorphism

§: CHW(M); Z) — CE(W(M); Z) by §(0) = > [6: 5,

=

where © is an arbitrary generator of C? (W(M);Z) and the summation runs over all the
generators = of C*(W(M); Z). We call the cochain complex | |

0 —— CYW(M);Z) —2o CHW(M),Z) —— 0
the Vassiliev cochain complez of the weak equivalence classes.

Definition 5.1. We call a non-trivial element of Ker(d) a Vassiliev 1-cocycle for the

Vassiliev cochain complex of the weak equivalence classes.

Remark 5.2. Let g : M - R? be a smooth map with exactly two codimension 1 singular
values such that the other points in R? are either a regular value or a stable singular
value. We can naturally define a generic 2-parameter family G around g and a weak
equivalence relation for such maps by using a definition similar to that for codimension 2
unstable maps. We could consider the weak equivalence class = = [g]yy of g as an element
of C*(W(M);Z) by fixing a coorientation (see Remark 3.8). By the definition of the
incidence coefﬁcieht, ‘Webbsee that for such a =, [© : E] is always zero for any cooriented
weak equivalence class @ € CY(W(M); Z). Therefore, in order to determine the Vassiliev
l-cocycles and the associated first order semi-local invariants of stable rﬂaps, which will

be defined in Subsection 6.2, we can omit such a = from C*(W(M); Z).

6. FIRST ORDER SEMI-LOCAL INVARIANTS

In this section, we define first order (semi-local) invariants of stable maps. These
invariants are constructed from the cocycles of the Vassiliev cochain coinplex which has
‘been constructed in the previous section. These invariants are isotopy invariants of stable
maps. ‘

' 6.1. Semi-local invariants. Let M be a closed orientable 3-dimensional manifold and
I" the set of all unstable maps in the mapping space M = C®(M,R?). The set M\ T
consists of all stable maps and we are interested in finding numerical invariants of path-
connected components of M\ T

Let I'; be the set of all codimension 1 unstable maps and © one of the cooriénted weak
equivalence classes in I';. For any generic homotopy F : M x {~1,1] — R2, we can count
_ the algebraic intersection number of F with ©. We denote by O(F) € Z this intersection
number. That is, let {t,...,%} be the set of all codimension 1 bifurcation values ¢; of
F such that fy : M — R? is in the weak equivalence class ©, where f;. is defined by
F(z,%;) = fy(z). If F crosses I'y positively at f,, then we define the sign of ¢; to be
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+1: otherwise —1. Then we define the integer ©(F) to be the sum of signs 1 over all
codimension 1 bifurcation values ¢; € (—1,1) of type © (1 <i < k).

Any formal sum ¢ = 3, a;0; € C'(W(M);Z) such that a; € Z and each ©; is a
cooriented weak equivalence class in I';, defines an integer valued function on the set of
all generic homotopies as follows: ' |

_c: {generic homotopies} — Z, c¢(F) = Z a;0;(F).
: J

Definition 6.1. We say that a formal sum ¢ = 3 a;0; defines a semi-local invariant of
stable maps if for any generic homotopy F, the value ¢(F) depends only on the isotopy

classes of the stable maps f_; and fi, where f_; is the initial stable map of F' and f is
the terminal one. ' '

In fact, given such a ¢, taking a distinguished map g € M\T and a constaﬁt ap € Z, we
can define the semi-local invariant L. : M\ T — Z of stable maps by L.(f) = ¢(F) + a.

Here, F is any generic homotopy between g and f. Note that L. is an isotopy invariant
of stable maps and L.(g) = c. '

Remark 6.2. “Semi-local” means the following. "The increment of the value c(F) at ©; is
determined by the coorientation of ©;. The weak equivalence class ©; and its coorienta-
tion can be recognized only by lodking at the homeomorphism type of the local deforma-
‘tion of the singular value set and the diffeomorphism types of the associated semi-local
singular fibers. For these fibers, we consider the diffeomorphism type of a whole fiber
instead of the multi-germ at the singular points contained in a fiber. Therefore, we say

that L. is a “semi-local” invariant.

6.2. First order semi-local invariants. Let M be a closed orientable 3-dimensional

manifold and M = C*(M,R?) the mapping space. Since M is contractible, we have the
following. '

P:oposifion 6.3. Let ¢ be a non-zero element in CYW(M);Z). Then c is a Vassiliev
1-cocycle if and only if ¢ induces a semi-local invariant L. of isotopy classes of stable
maps.

In view of Proposition 6.3, we say that each Vassiliev 1-cocycle c induces a ﬁrst order
semi-local invariant of stable maps. In general meaning of Remark 6.4 stated below, an
isotopy invariant L : M\ T — Z is said to be of first ofder if I can be extended to
L : M — Z satisfying the following conditions: |

(1) L is constant on each connected component of Ty,

(2} L is constantly zero over I'\ I'y,
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(3) for each cooriented stratum © of I'y and for any generic homotopy F' : M x
[—1,1] — R? around f, such that F(z,t) = f;(z) and F crosses © positively at
fo, it holds that L(fo) = L(fi) — L(f-1). Here, each stratum © of T'; and its

~ coorientation is the general meaning of Remark 6.4 stated below.

Therefore, if ¢ induces a semi-local invariant -L.C of isotopy classes of stable maps, then L.
is a first order invariant.»

Proof of Proposition 6.3. Let ¢ = Y a;0; be any Vassiliev 1-cocycle of CY(W(M); Z) and
F: M x 8" — R? a generic loop in M in the sense of the definition just before (2) in
- Subsection 3.2. In order to prove that c defines a semi-local invariant of isotopy classes
of stable maps, we have only to show that c¢(F) = 0 holds. Since M is contractible,
there exists a generic 2-parameter family G : M x D? — R? such that GIM x8D* =F

(see Proposition 3.10 and (2) in Subsection 3.2). We fix an orientation of D2 By the
definition of a generic 2-paraméter family, D? is stratified into finitely many strata. This
stratification is the same as that of W C R? constructed in (2) of Subsection 3.2.

" Let P1,...,Ps be the O-dimensional strata in IntD?. We take small disjoint k disks
D(p;) (1 <1 < k) centered at p; in IntD?. We may assume that each D(p;) intersects
‘the 1-dimensional strata of D? transversely. The orientation of D(p;) is induced from that
of D%, For each p;, let =; be the cooriented weak equivalence class of pis where gp; 18
defined by gp,(z) = G(z,p:). The orientations of 4D? and 8D(p;) are induced from those
of D? and D(p;) respectively. Note that D? is homologous to S5, 8D(p;) in D?.
~ We define the generic loop Fi : M x 8D(p;)) — R* by F; = GIM x 8D(p:) (1 <
i < k). It is easy to see that the intersection number ¢(F) = 3. a;0;(F) is equal to
Zf=1(zj a;0,(F;)). By the definition of the incidence coefficient, we have ©;(F;) = [0, :
2] for each ¢ and j. Since c =}, a,0; is a Vassiliev 1-cocycle, we have -

| > a8 8] =0
AN |

for each ¢ (1 < ¢ < k). Therefore, ¢(F) =0 holds.

Conversely, suppose that for a non-zero element ¢ € CYW(M);Z), we have c(F) = 0
for any generic loop F : M x S* — R?. For each element = € C*(W(M);Z), we
take a generic 2-parameter family G : M x W — R? around a representative of Z. Then
¢(G|M x 6W) = 0 holds by our assumption. Since c(G|M x 0W) is equal to the coefficient
of Z for &(c), we have §(c) = 0 and ¢ is a Vassiliev 1-cocycle.

This completes th_e'proof. ' ' : S 0

" Remark 6.4. If we define another equivalence relation on I'; and I'y, and if we have a well-
defined coboundary operator,_ then we can construct another Vassiliev cochain complex.

This means that a first order invariant depends on the equivalence relations on I'; and
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Iz, and on the definition of the coorientation on each equiva.lence class of Ty (see’ [45], for.
example).

Remark 6.5. In [6], Birman and Lin reformulated order ¢ Vassiliev invariants of knots in
5% in terms of a skein relation (i > 1). If we can define a suitable “skein relation” for
generic maps M — N between manifolds, then we can construct higher order finite-type -
invariants for these generic maps. In {11, 12, 13], Ekholm determined the higher order
‘finite-type invariants for immersions $% ¢ R%-! (k > 3) and S* 9+ R*~2 (k > 3). In
[22], Kamada determined the higher order finite-type invariants for immersions M? 9> R*
of an oriented closed connected surface M2 In [21], Januszkiewicz and Swiatkowski
determined the higher order finite-type invariants for immersions M™ & R** of a closed
- connected n-dimensional manifold M™. In (18], Habiro, Kanenobu and Shima determined
the higher orider,ﬁnite-ty.pe invariants for ribbon 2-knots 5% — R* Nowik determined
the higher order finite-type invariants of immersions M2 9+ R3 of a closed surface M? in
[36] and those of immersions M? 9+ R® of a closed orientable surface M? in [37, 38].

But unfortunately, these higher order finite-type invariants are obtained as polynomials
~of first order finite-type invariants (see [11, 12, 13, 21, 22, 36, 37, 38]) or derivatives of
" the Alexander polynomial (see [18]). These results mean that we have not yet obtained
essential second or higher order invariants when the dimension of the source manifold is
strictly greater than one. |

Remark 6.6. In this paper, we use the Vassiliev cochain complex to find first order in-
variants for stable maps. Kazarian [24, 25] used the Vassiliev cochain complex to study
the characteristic classes of circle bundles. In this case, the Vassiliev cochain complex is
constructed by considering fiberwise smooth functions on a total space This is another
- application of the Vassiliev cochain complex.

7. FIRST ORDER SEMI-LOCAL INVARIANTS OF STABLE MAPS
In this sectwn we determlne the first order semi-local invariants of stable maps and

clarify the geometric meamngs of all the invariants.

7.1. Computaitiou of the coboundary operator. In this subsection, we determine |
the coboundary ovperator and all Vassiliev l-cocycles for the Vassiliev cochain complex of

the weak equivalence classes which has been defined in Section 5.

By looking at each bifurcation diagram IntW (Z) in Figure 14, we obtam the following.
Proposition 7.1. The cobouﬂdary operator

§: Cl(W(M), Z) — C*(W(M); Z)
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of the Vassiliev cochain complex of the weak equivalence classes is represented by the fol-
lowing block matriz with respect to the natural bases of C*(W(M); Z) and C*(W(M); Z):

Ayr Ars Ais Ars Ars
A2,1 Az,z Az,a A2,4 Az,s

...............................

Here, the natural (ordered ) bases of CY(W(M); Z) (resp. C*(W(M);Z)) corresponds to
the weak eguivalence classes as depicted in Figure 12 (resp. Figure 13). The non-zero
blocks A;; are giwven in Tables 6-37. The other blocks which are not in Tables 6-37 are
the zero blocks. Note that A is a 389 X 56 matriz. . |

Tables 6,- - , 37|

By a direct calculation, we get the following.

Theorem 7.2. The rank of Ker(0) is equal to seven and the followzng cochams C1,Cay- .-, Cr
constitute a basis of Ker(d): o |
(1) g = III%(1) + II1°(B) + IT1° + II1° + 111¢,
(2) cp = IIT® + TI1%° 4 21T1°°,
(3) ca = HI%™® 4 1M 4 TIT° + 2111,
(4) cq = III" + 211H* 4 TIT§ — I1T; + 110,
(5) ¢5 = ITI° + TII° + 21112 — I1I2 4 IIT4 ~ 1114 + 311 + 111,
(6) cg = IT1¢ 4 2111° — 3111} — 1T,
(7) ¢ = 2101 — 21017 + I122.

For IIT* = III°#, TIT™*, TTI¢, IT1°°, TI1*, III” I and I, we have set I1T* = > L.

- The above proposition means that any Vassiliev 1-C’ocycle for the Vassiliev cochain
~ complex of the weak equivalence classes is a linear combination of ¢, ¢s,.. ., ¢r.

7.2. Geometric interpretations of the 1-cocycles. In this subseétion, we give a geo-
metric interpretation of each Vassiliev l-cocycle ¢; € Ker(8) (1 < 4 < 7) given in Theo-
rem 7.2. |

" Theorem 7.3. Let f and g : M — R? be two stable vﬁaps of a closed orientable 3-
dimensional manifold into the plane and F : M x [~1,1] — R? a generic homotopy such
that the inttial stable majo of F is g and the terminal one is f. Then we have the following
foreachc;(FYeZ (1 <i<T). A '

(1) The value c;(F) € Z is equal to (fI1°(f) — §11°(g))/2.

(2) The value co(F) € Z is equal to JII*°(f) — §11%°(g).

(3) The value c3(F) € Z 1s equal to YIS (f) — {1122 (g).
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(4) The value cy(F) € Z is equal to {II* 1(f) 11 (g).
(5) The value cs(F) € Z is equal to fI1*(f) — H11%(g).
(6) The value cs(F) € Z is equal to §II3(f) — §113(g).
(7) The value c7(F) € Z is equal to (rot(f) — rot(g))/2.

Here, we denote by §II*(f) the number of II*-type singular fibers of f and by rot(f) the
surgical rotation number of f(S(f)). '

By observing Figures 7 and 12 carefully, we can prove (1)-(6). Thus, the proof of (1)-
(6) is easy and is left to the reader. To understand and prove (7), we first have to define
the surgical rotation number of a singular value set. In the next subsection, we define the
surgical rotation number, and after that we prove item (7) of Theorem 7.3.

7.3. Surgical rotation number. Let M be a closed orientable 3-dimensional manifold
and f : M — R? a stable map. The definition of the surgical rotation number of f(S(f))
is given as follows.

By the rule mentioned in Remark 4.6, the family of curves f(S( f))v, except for its nodes
and cusp points, is oriented. Let N;(II’) be the set of those nodes y of f(S(f)) such
“that f~1(y) is weakly equivalent to the II3-typ¢ singular fiber. Then we can define the
s>moothing operation on f(S(f)) at y € N;(IF) as follows.

The node y is adjacent to four regions, say 2, 1 <4 < 4, of R?\ f(S(f)), although
there might be a repetition. We may assume that ns () = ns(Q) = a and ny(Qs) =
n#(Q) = a + 1 for some a > 1 (see Remark 4.6 and Figure 10, I1%). Let us consider the
smoothing operation which connects ©; and 2, as in Figure 15. .

|

After the smoothing operation at each node in N¢(II*), we obtain oriented plane curves
with cusps f : US? — R2. We define the genemlized rotation number of f as the total
degree of the tangent line map ( f)’ : US? — RP! associated with f {for details, see
below). Then we call the generahzed rotation number of f the surgical 'rotatzon number
of f(S (£)), and we denote it by rot(f). B

‘The generalized rotation number is defined as follows. Let h: US* — R2 be oriented
smooth curves such that each singular point z € US! is a cusp point. That is, around «
and h(z), we can choose local coordinates ¢ and (u,v) respectively such that wo h = £2
‘and vo h = ¢ hold. We set S(h) = {z € US?| rank dh, = 0} and call it the singular
set of h. Fix the standard orientation on R? and take the unit circle in R?* with the
counterclockwise orientation. Orient the space of lines through the origin in R?, i.e.
RP?, so that its double covering by the unit circle, which coincides with the space of
directions, is orientation preserving. For the smooth curve h, we define the smooth map
' UST — RP! as follows. If z ¢ S(R), then K/(z) is the derivative of h at z, that is,
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R (z) is the line through the origin in R? parallel to the tangént line of A at h{z). It is
easy to see that the map h' : US® \ S(h) — RP? has a unique smooth extension to all
 of US?, which we denote by the same symbol h'. The generalized rotation number of h
is defined to be 5 deg(h'|S?), where the summation runs over all the components S of
US?, the source of k', and deg(h'|S") is the degree of A’ |S. For more details, see [28].

7.4. Proof of Theorem 7.3 (7). In this subsectlon, we prove Theorem 7. 3 (7).
Let F: M x [-1,1] — R? be a generic homotopy between two stable maps f;
and f; such that O is the unique codimension 1 bifurcation value, where f, is defined by
F(z,t) = fu(z ). We suppose that I crosses I'y positively at fo. To prove Theorem 7.3 (7),
we have only to check that c;(F) = (rot(f1) — rot( f_l)) /2 holds:

(1) When fo € ITE.
As is seen in Figure 16.(1), f; has exactly two additional nodefolds of type iy
when compared with f_;. Then, looking at Figure 16 (1), we see easily that
rot(f1) ~ rot(f_1) = 4. On the other ha‘nd, ¢7(F) = 2 holds. Therefore, we have
cz(F) = (vot(f1) — rot(f-1)}/2. |
(2) When fo € ITT]. | . »
As is seen in Figure 16 (2), the number of nodefolds of type 1% for fy is smaller
than that for f_1 by three. Then, looking at Figure 16 (2), we see easily that
rot(f1) — rot(f-1) = —4. On the other hand, ¢7(F) = —2 holds. Therefore, we
have c;(F) = (rot(f1) — rot(f_1))/2.
(3) When fo € IT1%
~ Asis seen in Figure 16 (3), the number of nodefolds of type IT® for f1 is equal to that
for f_,. But, looking at Figure 16 (3), we see easily that rot(f;) — rot(foy) = 2.
On the other hand c7(F) 1 holds. Therefore, we have c;(F) = (rot(f1) —
ot(fa)/2 | | |
For the case of the other weak equivalence classes, we see easﬂy that rot(f1) —~rot( f_l) =
0 holds. This completes the proof ' ‘ 3

»

Remark 7.4. For a stable map f: M - R? of a closed orientable 3-dimensional manifold,
we have the quotient space Wy, where we identify points in the same connected component
of each fiber of f. This space Wj is called Stein factorization of f (see 26, 29, 33, 43, 44,
45)). It is known that Wy is a compact 2-dimensional polyhedron. It is easy to see that
rot(f)/2 = x(Wy) holds for a stable map f, where x(Wy) is the Euler characteristic of
* Wy. Therefore, we have ¢7(F) = x(Wy,) — X(Wf_-l). in Theorem 7.3 (7).

7.5. Linear independence of the first order semi-local invariants. Let M be a
closed orientable 3-dimensional manifold, M = C*(M,R?) the mapping space and I' C
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M the set of all unstable maps. It is easy to see that the following eight 1nvar1antsv
L MA\T — Z (0 <1< 7) are isotopy invariants of stable maps:

(0) Lo(f) = 1, SO L) =12 @) L) =),
(3) L) =4I, (@) L) =HPYp), () Lelf) =H0(F),
(6) Le(H) =HI(7), (1) Ln(f) = xot(f) /2 |

Here, we denote by II*(f) the number of II*-type singular fibers of f. By [48], #11%(f)
- is always even for any stable map f : M — R? (see also [27]). Furthermore, by using
this property and the definition of the generalized rotation number of F(S(f)), we see
that rot(f) is also always even. Therefore; both L; and L, are integer valued invariants.
By Theorems 7.2 and 7.3, the seven invariants Ly, Ly, ..., L; are first order semi-local
invariants and we have Li(f) = c;i(F) + Li(g), where g € M\ T'is a distinguished stable
map and F : M x [~1,1] = R? is a generic homotopy between g and f. |
In this subsection, we show that the eight isotopy invariants Lo, Ly, ..., L7 are lin-
early indepenvdent for all M. To prove this, we construct eight examples of stable maps
fi, for. .o fo + S = R2 such that the determinant of the matrix (L;(f;))1<icsoci<r i
equal to 1. . - , o
" If we can construct such examples for M = 53, then we can Iﬁro_ve the linear inde-
pendence of Ly, Ly,..., Ly for an arbitrary M as follows. Let f : 5% — R? be a stable
map of the 3-dimensional sphere and g : M — R? a stable map of a closed orientable
3-dimensional manifold. Then we can construct a stable map fllg : S*§M — R? such
that Lo(flig) =1, Li(fig) = Li(f) + Li(g) (1 <4 < 6) and Ly(fig) = L+(f) + Lz(9) —
~ where § means connected sum of maps or manifolds. For a definition of the stable map
flig : S*3M — R?2, see [43, Lemma 5.4]. '
For any closed orientable 3-dimensional mamfold M let us define the 1sotopy invariant
of stable maps L : C*(M,R?) \T — Z8 by L = (Lo, Ly,...,L;). For stable maps
fi P R2(1<i< 8) suppose that the determinant of the 8 x 8 matrix

E(flafZ;-“:ij = F ..

is non-zero. Then, we see that the determinant of E( fallg, follg, .- ., fellg) is equal to the
determinant of L(fy, fa,. .., fs) for the stable maps fifig: M — R?, where g: M — R?is
any stable map. Therefore, for all M, Ly, Ly, ..., L7 are linearly independent. :

Set §° = {(z1,22,%3,%4) € R* | 22 + 23 + 22 + 22 = 1}, and let 7 : R* — R? be
the standard projection defined by m(x1, 22,23, %4) = (21, 22). Then we can construct the
following examples:
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(1) stable map fi; = 7|S® : S? — R? whose singular value set and associated fibers
are as depicted in Figure 17 (1) with L(f) = (1,0,0,0,0,0,0,1),
(2) stable map f : S* — R? whose singular value set and associated fibers are as
depicted in Figure 17 (2) with L(f;) = (1,1,0,0,0,0,0,1),
(3) stable map f3 : S* — R? whose singular value set and associated fibers are as
depicted in Figure 17 (3) with L(f;) = (1,1,1,0,0,0,0,1),
(4) stable map fs : S — R? whose singular value set and associated fibers are as
depicted in Figure 17 (4) with L(fy) = (1,1,1,1,0,0,0,1),
(5) stable map fs : S° — R? whose singular value set and associated fibers are as
~ depicted in Figure 17 (5) with L(fs) = (1,1,0,1,1,0,0,1), - |
(6) stable map fs : S* — R? whose singular value set and associated fibers are as
depicted in Figure 17 (6) with L(fe) = (1,1,0,1,0,1,0,1),
(7) stable map f7 : S* — R? whose singular value set and associated fibers are as
depicted in Figure 17 (7) with L(f7) = (1,2,0,0,0,0,1,1), .
(8) stable map fs : S® — R? whose singular value set and associated fibers are as
depicted in Figure 17 (8) with L(fs) = (1,0,0,0,0,0,0,2). |
The stable map- f; has neither - nor II*-type s_ing’ular ‘fibers. The stable map f is
obtained from f1 by crossing 111%(!) positively. The stable map f; is obtained from f; 'byb
crossing III® positively. The stable map fy is obtained from f2 by crossing 1118;“ positively.
The stable map f5 is obtained from f, by crossing 111%(l) positively twice, e positively
once, and I11%(b) negatively twice. The stable map fe is obtained from f; by crossing III3
positively. The stable map f7 is obtained from f; by crossing 111 positively. The stable
map fz does not have II*-type singular fibers.. .
The determinant of E( fa, f2y- -, f3) is equal to 1. Therefore, the first order semi-local ”
invariants Ln, L, . .., L7 together with the constant invariant Lg are linearly independent.

| Figure 17 I

Problem 7.5. It is easy to construct a generic homotopy F; : S% x [~1,1] — R? between
fi and f; (2 <4 < 7). On the other hand, the stable map fg is directly constructed
from a Heegaard splitting of S° (see {33] for eXérnple). The author does not know how to
construct a generic homotopy Fg :'S® x [—1,1] — R? between f; and fs.

The follbwing proposition is easy to see and its proof is left to the reader.

- Proposition 7.6. The seven first order semi-local invariants L1, Lo, . .. ,Lr,- are invariants
- of the C* right-left equivalence classes.

This proposition means the following. Let f and'g : M — R? be two stable maps of a
closed orientable 3-dimensional manifold such that f and g are C* right-left equivalent
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but are not necessarily isotopic. Then L;(f) = Li(g) holds for each ¢ = 1,2,...,7, and

we conclude that these first order semi-local invariants cannot distinguish f from g.

8. A NON-LOCAL FIRST ORDER INVARIANT OF STABLE MAPS

In this section, we subdivide the weak equivalence classes of unstable maps of codi-
mensions 1 and 2 using thé;ir global vproperties. By using these ﬁew classifications of I'y.
and Ty, we give a first order non-local invariant of stable maps and clarify the geometric
meaning of this invariant. We use the adjective “non-local”, since we need to know the
global behavior of the singular (value) set in order to classify Ty and I’z (see Remarks 6.2
and 8.3). | |

Let f : M — R? be a codimension 1 unstable map whose weak equivalence class
is I11*(b) and y € R? the corresponding codimension 1 'singular(valﬁe of f. Let F :
M x [-1,1] ~ R% be a‘generic homotopy around f = f, where f, : M — R? is defined
by fi(z) = F(z,t) and F crosses I'; positively at fo. . | '

Suppose z; and x, € S(f;) are the new born cusps of f; in the generic homotopy
F. The codimension 1 weak equivalence class III*(b) of I'; can be subdivided into the
following three disjoint classes. | |

(a) The class I11%(b;) consisting of the codimension 1 unstable maps in ITI*(b) such that
the new born cusps z; and z, belong to the same connected component of S(f;)
and it corresponds to two connected components of S(f_3). See Figure 18 (a).

(b) The class I11%(b,) consisting of the codimension 1 unstable maps in 111%(b) such
that the new born cusps z; and z, belong td the same connected component
of S(f1) and it corresponds to exactly one connected component of S(f_;). See
Figure 18 (b). , o ' ,

(c) The class I11%(b3) consisting of the codimension 1 unstable maps in I11%(b) such
that the new born cusps belong to distinct connected components of S(f). See
Figure 18 (c). | | ’

v Figure 181

We consider the coorientations of I11%(b;), I11%(be) and III*(b3) are induced from that
of IT1%(b). According to this new classification of codimension 1 unstable maps, certain
bifurcation diagrams in Figure 14 have to be modified. The class I11%(b) appears in
the bifurcation diagrams of IV® IV TVe IVA IV IVZ IV TVO2(b), TV 2(b) and TV®(b)
in Figure 14. ’ ' ‘

(1) Straturh IV®. , : . » _
The stratum II1*(b) can only be of type 111%(b3). Therefore, IV is not subdivided.
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(2) Stratum IV® or IV®. .
In the bifurcation diagrams for IV® and IV® (Flgure 14 (a)), we have the followmg
three cases:
(a) the stratum of type III*(b) on the left hand side is of type III*(b;) and the
stratum on the right hand side is of type III*(b3),
(b) the stratum of type ITI%(b) on the left hand side is of type III“(bg) and the
stratum on the right hand side is of type III*(b;),
“(c) both of the two strata of type II1*(b) are of type I11%(by).
Therefore, the stratum IV® (resp. IV®) is subdivided into IV, TVS and IVY (resp.
IVY, IVS and IVS). The coorientations of IV* (i = 1,2,3) are induced from that
of IV*. Here, IV* = IV® or IV®. |
(3) Stratum IV*, IV, IV, IVE, IVO=(), IV24(b) or IVE(D).
In the bifurcation diagrams for these classes (Figure 14 (a)), we have the following
three cases: ’
{a) both of the two strata of type I1I*(b) are of type I1I*(b;),
(b) both of the two strata of type I1I*(b) are of type III%(b;).
(¢) both of the two strata of type I1I*(b) are of type I11%(bs).
‘Therefore, the stratum IV* (resp. IV*(b)) is subdivided into IV], IV* and IV
(resp. IV (D), IV5(b) and IV3(b)). The coorientations of IV} or IV;{b) {t = 1,2, 3)
are induced from those of IV* or IV} (b) respectively. Here, IV* = IV* IV¢ IV? or
TVF (resp. TV*(b) = IVO*(b), IV *(b) or IVE()). |
Let us consider smooth»maﬁs with exactly two codimension 1 singular values such that
the other singular values are all stable singular values. Let f and g: M — R? be such
smooth maps such that y{ and .y{ € R? are codimension 1 singular values of f, and %
- and y§ € R? are codimension 1 singular values of g. These two maps f and g are weakly
‘equivalent if £~2(y/) and g=1(1f) are weakly equivalent in the sense of Definition 4.1 (2)
(i = 1,2 and we exchange v and ¥§ if necessary). For the sﬁudy of first order “non-
local” invariants of stable maps, we have to study the bifurcation diagram of the weak
equivalence class = = [f]yy of such a map by fixing a coorientation (see Remarks 3.8 and
-5.2). We have the following two cases to consider..
Let f: M — R? be a smooth map with ‘exa,étly two codimension 1 singular values yy
and 1, € R? such that the other singular values are all stable singular values of f.

(4) Either f~(y;) or f~*(y2) is not a III*(b)-type singular fiber.
By the definition of the subdivided codimension 1 weak equivalenoe classes, we see
that for such & Z, the incidence coefficient [© : Z] is always zero for any subdivided
codimension 1 weak equivalence class ©. Thus, we can ignore such a = in order

to determine first order non-local invariants of stable maps.
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(5) Both f=!(y1) and f~*(y,) are I11%(b)-type singular fibers.

Let Uy and U, € R? be sufficiently small open disk neighborhoods around yp and
Yo respectively. Since both y; and yy are codimension 1 singular values of f, there
exists a homotopy F; : M x [~1,1] — R2 such that F}|U; x [~1,1] : U; x [=1,1] —
R? is a generic homotopy around f|U; and Fi(z,t) = f(z) holds for-any z € M
and t € [—1,1] (i = 1,2). Suppose that F|U; x [~1,1] crosses [11%(b) positively at
fIU;. Then, a smooth map G : M x’[-—nl, 1] x [~1,1] — R? is defined by

Fi(z,t) ifze U,
G(z,t,8) = § Fy(z,s) ifze Uy,
N f(=@ ifze M\ (U;UUs).

Let =} and z? € S(f1,1) (resp. z3 and z% € S(f11)) be the new born cusps for
F ) (iresp. f"l(yzj), where f; : M — R? is defined by f; (z) = G(z,t,s). For
these four points z3,z% 2} and 2% € S(f1,1), we define the following equivalence
relation. For 2 and x4, we define 27 ~ z if and only if they are in the same con-
nected compénent of S(f11) (4,5,k,1 = 1,2). We denote by {*} each eciuivalence
class of zl, 2% 21 and 22 under this equivalence relation. The parameter space
Int([—1,1] % [~1,1]) of @ is naturally stratified into four 2-dimensional strata,
four 1-dimensional strata (i.e., the ¢~ and s-axes) and one O-dimensional stratum
(i.e., the origin). We call this stratified parameter space Int([—1,1] x [=1,1]) of G
the bifurcation diagram of =. For the bifurcation diagram of =, we usually consider
that each stratum contains some extra information on the stable (or codimension
1 or 2 unstable) maps corresponding to the stratum, such as their singuiar sets,
their coorientations, etc. Then, essentially we have only to consider the following.
sevel cases. .
(i) For {21}, {1}, {z3}, {3}, the bifurcation diagram of = is as depicted in Fig-
ure 19 (i). ' v
(ii) For {z1, 2%}, {sc%},{a:%}, = is subdivided into two classes. The bifurcation
diagrams of these subdivided classes are as depicted in Figures 19 (ii-1) and
- (ii-2). o
(iii) For {z},zi} {z3},{x3}, the bifurcation diagram of Z is as depicted in Fig-
ure 19 (iii). ‘ | o
(iv) For {zj,z%},{z}, 22}, = is subdivided into three classes. The bifurcation
diagrams of these subdivided classes are as deplcted in Flgures 19 (iv-1),
(1v—2) and (iv-3). |
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(v) For {z},z}},{z? 22}, Z is subdivided into two classes. The bifurcation di-
agrams of these subdivided classes are as'depicted in Figures 19 (v-1) and
(v-2). |

(vi) For {zf,z7, 3,23}, if the cyclic order of these cusps on the corresponding
‘component of the singular set is ml,:c§,932, z2, then = is subdivided into three
classes. The bifurcation diagrams of these subdivided classes are as depicted
in Figures 19 (vi-1), (vi-2) and (vi-3). ' .

(vii) For {zl,z% z3,22}, if the cyclic order of these cusps on the corresponding
component of the singular set is z}, 3, %, 22, then Z is subdivided into three
classes. The bifurcation diagrams of these subdivided classes are as depicted

‘in Figures 19 (vii-1), (vii-2) and (vii-3). |

We consider the coorientations of strata in (5) are defined by the orientations of the
corresponding parameter spaces. |

Let M be a closed orientable 3-dimensional manifold and we set M = C®(M,R?).
Let us denote by OJ(W(M), Z) the (finitely generated) free Z-module generated by the
subdivided weak equivalence classes of 1. We denote by C2(W(M);Z) the (finitely
generated) free Z-module generated by the subdivided weak equivalence classes of I';
and by the cooriented weak equivalence classes of all unstable maps cqrrespondihg to
(5). Here, I'; is the set of all unstable maps of codimension % and all the ‘generators of
Ci(W(M); Z) are cooriented (i = 1,2). The rank of CI(W(M) Z) is equal to 58, while
the rank of C2(W(M);Z) is equal to 422. Using these free Z-modules, we natufally -
obtain the modified coboundary operator ’ E

5 OV 2) — CHFM); 2).

The deﬁmtlon of & is the same as that of § in Section 5 Then we have the following
. propositions.

Proposition 8.1. The rank of Ker(g) is equal to eight and the following cochains ¢y, .. ., Cg
constztute a basis of Ker(d): ’

(1) & = III%(1) + T11%(by ) + IT1%(by) + IT1°(bs) + 1P + 111° + 1114,

(2) & = I 4 I11% 4+ 2111°°,
(3) & = 1% + TIIY® + T11° + 21117,
(4) & = IT% 4 21IM 4 1017 — 1115 + 1113,
(5) & = III° 4 I11® ++ 21112 — IT1% + 1115 — 111§ + 31117 + 1117,
(6) & = I1I¢ + 21T1° — 3117 — I1I7, |
©(7) & = 21113 — 21017 + 118,
- (8) G = IT1%(1) — IT1%(by ) + I1I%(b3).
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Geometric interpretations of ¢i, ¢y, ..., 7 are the same as those of ¢q, ¢, ..., ¢7 in The-

orem 7.3 respectively. A geometric interpretation of ¢g is given as follows.

Proposition 8.2. Let f and g : M — R? be two stable maps of a closed orientable 3-
dimensional manifold into the plane and F:Mx[-1,1] — R? g generic homotopy such.
that the initial stable map of F is g and the terminal one is f. Then the value G(F) € Z

s equal to §S(f) — 45(g), where §S(f) (or #S(g)) is the number of connected components
of the singular set of f (resp. g).

The proof of the above proposition is similar to that of Theorem 7.3, and is left to the
‘reader.

Remark 8.3. The element cg defines a first order non-local tnvariant in the sense as follows.
We need to know- the global behavior of the singular (value) set in order to de<31de which
codimension 1 strata a generic homotopy crosses.

Remark 8.4. Tt is easy to see that the invariant L : MAT — Z defined by Ls(f) = 1S(f) is
 an isotopy invariant of stable maps. By Proposition 8.1, this invariant is a first order non-
- local invariant and we have Lg(f) = (F) + Ls(g), where g € M\ T is a distinguished
' stable map and F : M x [—1,1] — R? is a generic homotopy between g and,fv.v It is.
~ obvious that this isotopy invariant Lg is invariant of the o= right-left equivalence classes
(see Proposition 7.6). '

9. FIRST ORDER SEMI-LOCAL INVARIANTS OF STABLE FOLD MAPS

In this section, we determine those isotopy invariants for stable fold maps which are
obtained as first order semi-local invariants. ‘ |

Let f: M — R? be a smooth map of a closed oriéntable 3-dirnensional manifold into
the plane. If f has only fold points as its singular points, then we call f a fold map. If
f is a stable map and is a fold map (i.e., f is a stable map without cusp points), then
we call f a stable fold map. Note that each singular fiber of a stable fold map is Weakly
equlvalent to a fiber of type I°, I, II00 0 I I12 or I,

Remark 9.1. By a theorem of Levine [27], any closed 3-dimensional manifold M hasafold
map f.: M — RZ2 Therefore, for any closed orientable 3-dimensional mamfold M, first
order semi-local invariants for stable fold maps make sense.

9.1. Computation of the Vassiliev quotient cochain complex for fold maps, Let
M be a closed orientable 3-dimensional manifold and F the subspace of M = C*(M, R?)
which consists of all fold maps of M ilito R2. It is easy to see that F is an open subspace
of M. By Remark 9.1, F is non-empty for any M. Let T'; be the set of all codimension i



FIRST ORDER SEMI-LOCAL INVARIANTS OF STABLE MAPS 41

unstable maps in M. Then, any elemen’é in F NI is called a codimension i unstable fold
map (1 =1,2). - ’
Let F: M xI— R2bea generic homotopy between two stable fold maps. If f; is
a fold map for each t € I, then we call F a generic fold homotopy, and if f; is a stable
fold map for each ¢ € I, then we call F a fold .isotopy If f;, is the unique codimension 1
unstable fold map in the 1-parameter family of fold maps fi, we call such an F a generic.
fold homotopy around fi,. Here, fy: M — R2 is defined by F(sc t)= filz) (ze M,t )
and I is a closed interval in R. ' -
Let us construct the Vassiliev quotient cochain complex for the weak equivalence classes.
We set COOW(F);Z) = C}(W(F);Z) = 0. Let us denote by C*(W(C); Z) the (finitely
generated) free Z-module generated by the cooriented weak equivalence classes of I'; \ -
(T:NF),i=1,2 Let §: CYW(M); Z) — C*(W(M);Z) be the coboundary operator
 defined in Section 5. Since F is an open subset of M, we see easily that §{(C*(W(C);Z)) C
C?(W(C); Z) holds. Therefore, the cochain complex

0 s CHN(C)Z) —is CAW(CZ) —— O

is a éubcomplex of the Vassiliev coéhain complex of the weak equivalence classes
0 — CHW(M);Z) —— CHW(M);Z) — 0

constructed in Section 5. We set CH(W(F); Z) = CH{W(M); Z)/C(W(C); Z). The rank of

C'OWV(F), Z) is equal to 45, while the rank of Oz(W(.’F) Z) is equal to 301 (see Figures 12
and 13). :

 Letpl: CY(W(M);Z) — Ol(W(}"); Z) and p? : CHW(M); Z) — C2(W(F); Z) be the

canonical quotient maps. Then we can define the Vassiliev quotient cochain complez for

the weak equivalence classes,

0 — CWF)Z) L CWFNZ) — 0, 01
so that the diagram -

0 —— CYW(M):Z) —2— C2W(M);Z) —— 0

. : pIJ’: . lpz :

0 — CW(F)Z) —Z CPW(F)Z) — O

is commutative. Therefore, the Vassiliev quotient cochain complex (9.1) is well-defined.
By the definition of the Vassiliev quotient cochain complex for the weak equivalence

classes, the elements p*(III}) (or p?(IVZ)) such that * does not contain any alphabetical
letter constitute the natural basis of CY(W(F); Z) (resp. C2(W(F); Z)). We denote each
element p*(III*) (resp. p2(IVY)) by [IIIZ] (resp. {IVZ]). Note that two codimension i un-
stable fold maps f and g € F N T; are weakly equivalent if and only if they repr’esent.the
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same element of C:(W(F;Z)) (i = 1,2). By abuse of notation, we use the symbol [III}]
(resp. [IV}]) for the corresponding weak equivalence class of fold maps in F N T, (résp. '
F NT;). Each weak equivalence class [IT1] of F N Ty or [IV}] of F N T has the coorien-
tation induced from that of III} or IV} respectively. By the definition of the coboundary
operator dr, we have the following, |

Proposition 9.2. The coboundary operator
87 : CYW(F); Z) — C*(W(F); Z)

of the Vassiliev quotient cochain complex for the weak equivalence classes is represented

by the following block matriz Ar with respect to the natural bases of CI(W( Y, Z) and
C*W(F), Z): |

kl

Asp  Asgs Asa  Aus

Ar=| Ago Ags Aoa Ags
Agsp Ass Asis Amgs

. Here, each block A;; is the sarrie as the block A;; in Proposition 7.1. Note that Ar is a
301 x 45 matriz.

| By a direct calculation, we we get the following.

Theorem 9.3. The rank of Ker(d5) is equal to seven and the following cochains dy, da, .. ., d7
constitute a basis of Ker(éz):

(1) dy = [L1%9],

(2) dy = 1117,

(3) dg = 2[IIIM] + [I114) — [1113) + [III4]

(4) dy = 2[IT1%) — [T11%] + [1113) — [1113] + 3[ITT7] + [II13],

(5) ds = 2[1I1°] — 3|I1I7] — [I1I}],

(6) de = 2[II13] — 2[ITIY] + [I11%],

(7) dy = —[I°].

For [II1*] = [ITI°], [IT1%Y], [ITIY], [I11%], [I11%), and [H17], we have set [III*] = 3~ [111%].

9.2. Geometric interpretations of the 1-cocycles in Ker(éz). In this subsection, we
give a geometric interpretation of each Vassiliev 1-cocycle d; € Ker(dx) (1 <4 < 7) given
in Theorem 9.3. | } » .

Let ¢ =Gy +C; € CY(W(M); Z) be a 1-dimensional cochain such that ¢&; € C*(W(C); Z)
and F': M x [=1,1] — R? a generic fold homotopy. By the definition, ¢(F) =1 (F) € Z
and pl(c) = p*(c)) € C*(W(F); Z) hold. Therefore, the integer value {HI*](F) € 7Z defined
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by [IIIZ](F) = IITX(F) for each [III}] € CYW(F); Z) is well-defined. Let ©1,02,...,0ss
be the natural basis of C*(W(F);Z) and d = E] 10505 a cocycle in Ker(dr), where
‘a; € Z. Then d defines an integer valued function on the set of all generic fold homotopies

as follows:
: 45

d : {generic foldlhomotopies-} — Z, d(F) = Z ajej(F).
j=1

It is easy to see that  is not connected. Let F be any connected component of F and
F: M x[-1,1] — R? any generic fold homotopy which connects two stable fold maps
fandg: M — R?in F. If we can show that the value d(F) depends only on the fold
isotopy classes of f and g, then d defines a semi-local invariant of fold isotopy classes for
each connected component F of F. In fact, given such a d, taking a distinguished stable
fold map g € F \ (FNT) and a constant e € Z, we can define the semi-local invariant
JI F\ (fﬂl") — 7 of stable fold maps in F by JI(f) = d(F) + . Here, F is any
generic fold homotopy between g and f. Note that Jf is an isotopy invariant of stable
fold maps in 7 and J7 (g) = oy. -

In the following theorem, we give a geometric interpretation of each Vassiliev 1-cocycle
di € Ker(dr) (1 <9< 7).

LTh}eorem 9.4. Let f and g : M — R? be two stable fold maps of a closed orientable
3-dimensional manifold into the plane such that f and g are in the same connected com-
ponent of F. Suppose that F: M x [-1,1] - R% isa genem}'cb fold homotopy such that the
initial stable fold map of F is g and the terminal one is f . Then we have the following
for each di(F) € Z (1 <i<7). |

(1) The value dy(F) € Z is equal to (fI°°(f) — 110 (g)) /2.

(2) The value dy(F) € Z is equal to ({11 (f) — 11> (g)) /2.

(3) The value d3(F) € Z is equal to 11V (f) — 11" (g).

(4) The value do(F) € Z is equal to JII*(F) — 11%(g).

(5) The value ds(F) € Z is equal to {II°(f) — HI1%(g).

(6) The value ds(F') € Z is equal to (rot(f) — rot(g))/2.
(7)) The value d7(F) € Z 1is equal to (Bq(f) — Bq(g))/2.
* Here, we denote by fII*( i) the number of IT*-type singular ﬁbers of f, byrot(f) the surgical
rotation number of f(S(f)) and by Bq(f) the Benneguin invariant of the definite fold of f.

- Theorem 9.4 (1)-—(6) can be proved as in the proof of Theorem 7.3.- To prove Theo-
rem 9.4 (7), we first have to define the Bennegquin invariant of the definite fold. In the next
subsection, we define the Bennequin invariant and after that we prove Theorem 9.4 (7).

9.3. Bennequin invariant. Let f : M — R? be a stable fold map and So(f) the set
of all definite fold points of f. Each connected component of Sy(f) is a circle and the
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restriction f1So(f) : So(f) — R? is an immersion with ﬁormal crossings. Let us consider
the orientation on each connected component S of Sp(f) = U;S? which is induced from
the orientation of f(S!) C R2 (see Remark 4.6).

Let R? be the oriented plane. For Sp(f) = U;S} and the parameterization f|Sy(f) =

Ui(f1S]) - UiSE — R? of f(So(f)), we define the embedding lift F: U;S! — R? x S* of
F15o(f) as follows. For z € S}, let n(z) be the unit vector normal to the positive unit
~ tangent vector t(z) of f(S}) at (f|S})(x) such that the frame {n(z),t(z)} is positive on
R?. Then F|S} is defined by (F|S})(z) = ((f|S})(z),n(z)). We call F = Uy(F|S}) :
So(f) — R? x S* the Legendrian link of f|So(f). Since f|So(f) is an immersion with
normal crossings, the Legendrian link F' is an embedding.

We slightly shift each embedding lift F|S} € R? x S to the direction of the positive
unit normal vector field n(z), z € S1, of f|S%. As aresult, we obtain the embedding F|S}
defined by (F|SH(z) = ((£|S})(z) + en(z),n(z)), z € S}, where ¢ > 0 is a sufficiently
small positive real number. Since F' is an embedding and ¢ is a sufficiently small positive
real number, each embedding F|S? does not intersect F(Sy(f)) nR?x St

To define the Bennequin invariant, we first define the linking number of F|S} and F |S L
for each pair 4,5. We define the embedding ¢ : R? x §* — R® = C x R defined by
(z,9,0) = (p, 2) = (€8, ), where we use coordinates (z,y,0) on R%x S! and coordinates
(p,z) on C x R, and we identify S* with the unit circle in C. We define the linking
~number lk(F[S},ﬁS}) as the standard linking number of the oriented knoi:s vo (F|S})
and ¢o (ﬁ|S}) in R®. For more details, see {4, 7, 8]. Then the Bennequin invariant Bq(f)
of the Legendrian link F of f1So(f) is defined by Bg(f) = > Uk(F|SY, f’|S}) We call
it the Bennequin invariant of the definite fold of f. The Bennequin invariant is defined
only when f is a fold map.

9.4. Proof of Theorem 9.4 (7). In this subsection, we prove Theorem 9.4 (7). Let -
F: M x[-1,1] — R? be a generic fold homotopy around f; in a connected component F
~of F which connects two stable fold maps f_; and fi, where f; is defined by F(z,t) = fi(z).
We suppose that the positive coorientation of the weak equivalence class of fy coincides
‘with the canonical positive direction’of {1, 1]. To prove Theorem 9.4 (7), we have only to
-~ check that when F crosses each IIIXNF C I‘l NF positively, d;(F) = (Bq( fl) Bq(f-1))/2
holds. Here, % does not contain any alphabetical letter.
Suppose that f, € II13°. As is shown in Figure 20, we see that Bg(f1) — Bq(f-1) = —

whether or not the two tangent definite fold arcs are in the same connected component
of So(fo). On the other hand, d7(F) = —1 holds. Therefore, we have d;(F) = (Bg(f1) —

Bg(f-1))/2. ‘
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In Figure 20, parts of the curves f1(S}) and f1(S}) (resp. f-i(S}) and f_1{S})) of
F1(So(f1)) (resp. f_1(So(f-1))) are drawn in each R?. The corresponding parts of the
Legendrian link F1(S}), Fi(S}) (resp. F_1(S}), F_1(S})) and its shift Fy(SY), Fi(SY) (vesp.
~ FLy(S}) F_1(S})) are drawn in each R?x S, Note that in Figure 20, the positive direction
of the y-axis enters from the face of the sheet and comes out of the reverse side. Thus,
while F_;(S}) is under F_1(S}), Fi(S}) is on F1(S]) ‘

If fo belongs to the other weak equivalence classes of T3 N F, we see that Bq(fi) —
Bq(f-1) = 0 holds. This completes the proof : : , J

'By Theorem 9.4 and the definition of the Bennequin invariant, we see that each value
d;(F) depends only on f and g (1 <% < 7). Thus, we have the following.
Corollary 9.5. Let d € Ker(65) be any element of the kernel of the coboundary opemtor
| b : CHOV(F); Z) = CPOW(F); ).

" Then for each connected component F of F, d induces a ﬁrst order semi-local mvamant
JF of stable fold maps in F.

Since we do not know if the space F is contractible or not, we cannot directly use "Propo—
sition 6.3 in general. Thus, we cannot prove that each Vassiliev l-cocycle d € Ker(é 7).
defines a first order semi-local invariant of stable fold maps only by the construction of
the coboundary operator dr.

Remark 9.6. Let M be a closed orientable 3-dimensional manifoid and F the subspace
of C*(M,R?) which consists of all fold maps of M into R% Suppose that j-: is any
connected component of F. As in the case of stable maps, the following (modified) seven
first order semi-local invariants of stable fold maps are also 1nvariants of the C* hght left .

}’equwaience classes in F (see Proposition 7.6): _
D)= o = () + 1)/,
() =P (f) /2 o = (U (F) 4+ 1)/2,
()= ), |
() = HP(),
() =P (f),
() =rot(£)/2,
JE(f) = Ba(f)/2 or = (Byg(f) +1)/2.
The values of J¥ (£), JZ (f) and JZ (f)-depend only on the connected component Fof F

~ which contains f € F. All the invariants JJr can be extended to mteger-valued invariants
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Ji  FN(FNTL) — Z of the C* right-left equivalence classes of stable fold maps in F
(1<i<7).

Example 9.7. Let F(S?) be the subspace of C®(S% R?) which consists of all fold maps
of §% into R%. Suppose that f; : S* — R2 is the stable fold map defined in Subsection 7.5.
Let F(S%) be the connected component of F(5%) which contains f1. It is easy to see that
the following seven invariants Jf 9. F (SH\ (F(S¥NTD) — 7 (1 << 7) are isotopy
invariants of stable fold maps in F(S®%): :

O TN = @ - © ) =),
@I =ary, A=), (6 FO) = rot()/2
(™ I Ef) = (Ba() +1)/2. | -

Here, we denote by JII"(f) the number of II*-type singular fibers of f. By using The-
orem 9.4 and the fact that JF(S )( f1) €Z (1 < i < 7), we see that all these are inte-

ger valued invariants. By Theorems 9.3, 9.4 and Corollary 9.5, these seven invariants

- are first order semi-local invariants of stable fold maps in F. Furthermore, we have
Jf(s (F) = di(F) + J] (s )(g), where g € F(S3)\ (J:(S3) NT) is a distinguished stable
fold map in F(S%) and F : M x [—1,1] — R? is a generic fold homotopy in F(S?) between
g and f.

Let us define the isotopy invariant JFE L F(S\ (F(SB) n F) — Z7 by Jf(sa) =
(Jf(sa) Jy (Sa) R (e ). For any stable fold map f in F(S®)\ (F(5%) NT), we have
J (33)(]‘) = (a+5,0,0,0,0,1,1~ b) € Z7 for some a and b with a +b > 0. v

~ This statement is proved as follows. Since f; has only definite fold points, there is no
indefinite fold in any stable fold map f in F(5%). Thus, J7 7 (f) = 0 for i = 2,3, 4,5.
By Corollary 10.1 in the next section, J (° J(f) =1 holds. It is easy to see that the weak
equivalence classes of maps belonglng to F (S®)NTy are either II1)° (k = 1,2,3) or III>*°
(1=1,2). Let F: $®x{~1,1] — R? be a generic fold homotopy 1n~f(.5'3) between f; and
| f. We remark that even if F crosses IT['*°, both of the values Jf %) and Jﬁ(sa) remain
unchanged Suppose that F' crosses IIIg positively a; fmmes and that F' crosses III00
negatlvely oy, times. Then we have di(F) = S (o} —ap) and do(F) = —(a} ~ ay ).
Since each J: P is a first order semi-local mvanant the values di(F) and dr(F) € Z
depend only on f; and f only. Thus, if we put a = Zk oo — ak) and b= af — o7, we
have Jﬂs )(f) —a+band J; ' >(f) = 1—b. By definition, J'1 (f) is non-negative for
any f € F(S%). Thus, a+b > 0 holds.

Furthermore, for any non-negative integers a and b, we can construct a stable fold

map f:S® — R%in .7::(5'3) such that JF(*) (f) = (a+15,0,0,0,0,1,1 — b) except for
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(a,b) = (0,b) with b > 1. The Singuia,r value set and the associated fibers of such a map
f is described in Figure 21. ’

Figure 21

~ Let M be a closed orientable 3-dimensional manifold and F the subspace of C*(M,R?)
which consists of all fold maps of M into R% Suppose that F is any connected component
of F. Let Jf , Jf N Jf be first order semi-local in\r;ariants of stable fold maps defined
in Remark 9.6. In general, these seven first order semi-local invariants of stable fold maps |

‘are not linearly independent (see Example 9.7 and compare Subsection 7.5). Therefore,
we have the following problern

Problem 9.8. Do there exist a closed orientable 3- dlmenmona.i manifold M and a con-
nected component F of F such that the seven first order serm—local invariants of stable
fold maps Jf: , J'; - Jf are linearly 1ndependent'?

- The stable fold maps jl and fa: 8% — R2 constructed in Subsectlon 7.5 show that the
invariants Jg F5) and J7®%) are linearly independent. In fact, (J; JIE N(A),J F(S (h) =
(1,1) and (e )(fa) FO (g = @)

10. INVARIANTS OF THE CONNECTED COMPONENTS OF THE SPACE OF FOLD MAPS

In this section, we study the connected components of the space of all fold maps F -
using results of the previous sections. -

Let f : M — R? be a stable fold map of a closed orientable 3-dimensional manifold M
~ into the plane. We denote by So(f) the set of all definite fold points of f and by S1(f) the
~ set of all indefinite fold points of f. It is easy to see that each component of Sp(f) or Si(f)
is a circle and So(f) N S1(f) = 0. We denote by §5;(f) the number of connected compo-
nents of S, 5(f) and by rot(f]S;(f)) the surgical rotation number of f(S;(f)) (7 = 0,1).
By the definition of the surgical rotation number rot(f) = rot(f|So(f)) + rot( 1S1(f))
holds. :

Note that for a stable fold map f : M- > R2, the rotation number of f |Se(f) in the
usual sense is equal to one half the surgical rotation number rot(f|So(f)).

Let FF: M x [-~1,1] — R? be a generic fold homotopy between two stable fold maps
f_1 and fi such that 0 is the unique codimension 1 bifurcation value of F', where f; is
defined by F (z,t) = fe(x). Then, it is easy to check that §So(f;), §51(f:) and rot( ftISg( fe)
remain unchanged under the generic fold homotopy (see Figures 7, 12 and the definition
of a generic homotopy in Subsection 3.2). Therefore we have the following.

Corollary 10.1. Let f and g: M — R? be two stable fold maps of a closed orientable 3-
dimensional manifold M into the plane. If f and g are in the same connected component

of F, then §5o(f) = #5o(g), #51(f) = #51(g) and rot(f1So(f)) = rot(g|So(g)) hold.
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For a generic fold homotopy F : M x [~1,1] — R? around [IIL3}, [IIT7} or [III%], we -
have rot(f1]Si(f1)) # rot(f-1|S1(f-1)). Therefore, rot(f|S:i(f)) is not an invariant of
connected component of 7. Here, f; € F is defined by fi(z) = F(z,1).

Let Vi, = S§ U--- U S} be a disjoint union of k copies of the circle embedded in M
(k > 1). We denote by F(Vj) the set of all fold maps f : M — R? such that So(f) = V.
Note that F (V) is a subspace of F. By [44], F(V}) is always non-empty.

We can modify the above invariants to obtain invariants of the connected components
‘of F(Vi). Let f: M — R2 be a stable fold map in F(Vj) (k > 1). We consider the k-
tuple vector (rot(f|S1),...,rot(f|S1)) € Z*, where rot(£]S!) denotes the usual rotation
number of the immersion f|S} (1 < i < k). Then we have the following.

| Corollary 10.2. Let f and g : M — R? be two stablé fold maps of a closed orientable
3-dimensional manifold into the plane and Vi, = S{ U---U S} a disjoint union of k copies
of the circle embedded in M (k > 1). If f and g are in the same connected component of

F(Vi), then §S1(F) = S1(g) and (rot(f]51),...,rot(f]S})) = (rot(g|S}),. .., rot(g|S})) €
7Z* hold. : | :

To prove this corollary, we need a relative version of the parameterized multi-transversality
' theorem as fol_lows.’ | - -

Let M be an n-dimensional manifold and P a p-dimensional manifold. We fix an m-
dimensional (resp. g-dimensional) properly embedded submanifold N of M (resp. Q of P).
Then a relative map f : (M, N) — (P, Q) is a smooth map of M into P with f(N) C Q.
- We denote by C*°(M, N; P,Q) the space of all relative maps f : (M, N) — (P,Q) such
that f : M — P is proper. We endow this set with the topology induced from the Whitney
C* topology on C®(M, P). In the jet bundle. J™(M, P), we consider the submanifold
J'(M, N; P,Q) of r-jets along N of relative maps in C*°(M, N; P;Q). For a relative map
[+ (M,N) — (P,Q), the jet section j°f : M — J"(M, P) maps N to J (M, N;P,Q).
- We fix a positive integer s. For each pair (k,[) of non-negative integers with k +1 < s,
we set 1 J"(M, N; P,Q) = J'(M, N; P,Q)* x J"(M, P)* and denote by N® x (M \ N)®
the set of (ay,...,ax;b1,...,b) € M** such that a,... Gy (resp. by,...,b;) are distinct
- points in N (resp. M\ N). For arelative map f : (M, N) — (P, Q), we define the relative
multi-jet section ;5" f : N x (M \ N)® —,, J (M, N; P,Q) by

R (@ aki b b = (57 f (@), - ,j’f(qk);j"f(bl), cs I F (),
and 5" (f|N) : N® = J°(N,Q)F by

N @) = G N @), 5N @)

Then we have the following.
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Proposition 10.3 (Relative multi-transversality theorem [19]). Let v be a non-negative
integer and s a positive integer. For given countable families of submanifolds Sx; of
MJT(M N P Q), k+1<s, and Uy of J’"(N Q)F, k < s, the set

R= {F e 0 (M, N; P,Q)

k1" f is transverse to Skl,k +1<s,and
kiT(fIN) is transverse to Uk,k <s

is Q reszdual subset and is dense in C'°°(M N; P, Q).

Let Z be a manifold and F : (M X Z,N % Z) — (P,Q) a relative smooth map. For
each z € Z, the relative smooth map F, : (M, N) — (P,Q) is defined by Fy(z) = F(z,2).
We set, 1 J"(M, N; P,Q; Z) = (J"(M, N; P, Q) x Z*) x (J"(M, P} x Z*). We define the
parameterized jet extension 57 F : (N® x Z¥) x (M\N)® x Z') —;; J"(M, N; P,Q; Z)
by : . » v

k,leF(al,.i. Oy 21y e -5 2k D1y e .v,bz,zk.,.l,...,_zkﬂ‘)»
I(jTFél(al) 7er2k(a'k) 21, .- 'Zk;erzkH(bl),u-,j*sz;l(bt)yzkH, s Zhl)s
ndk;t (FIN x Z): N’“)XZ’?-‘»JT(NQ) kaby - |
Wi (FIN X Z) (s, .y ap, 21, 2e) = (57 (Fz1|N)(a1) T (B I N)Yak)s 21, - - 20)-
Then, the parameterlzed relative multi-transversahty theorem is stated as follows.

Proposition 10.4 (Parameterized relative multi-transversality theorem). Letr be a non-
negative integer and s a positive integer. For given countable families of submanifolds Skl
»oszJ (M,N; P,Q; Z) k4 1< s, and U of J(N,Q)F x Z¥, k < s, the set

R={Fecm(MxzNxz;pQ)| M T e o Sup-+1< 5, and
. U RIT(FIN x Z) is transverse to Uy, k < s

is a residual subset and is dense in C°(M x Z,N x Z; P,Q).

Proof of Corollary 10.2. We put N = Vi, P = @Q = R? and apply the relative version of
the parameterized multi-transversality theorem. Then, we see that there exists a generic
fold homotopy F : M x|—1,1] — R? in the space F (Vi) which connects the two stable fold
maps f and g. By an argument similar to that for Corollary 10.1, we see that rot(fiS})
and §S1(ft) remain unchanged during the generic fold homotopy F' (1 <@ < k), where f;
is defined by F(z,t) = fi(z). This completes the proof. I i

Note that if the hypothesis of Corollary 10.2 holds, then the two links Sl( f) and Sl( )
are isotopic in M. We can check this by studying the behavior of the singular set during
a generic fold homotopy between g and f.
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type normal form f(z,y, 2)
definite fold (D fold) | (z,4* + 2%)
indefinite fold (I fold) | (z,y* — 2%)
cusp (z,9° + 2y + 2%)
D&D nodefold (21,9 + 23), (W2 + 22, 22)
D&I nodefold | (21,2 + 22), (42 — 22, 2)
1&I nodefold (z1,97 — 23), (y2 — 22,22)
TABLE 1. stable (Ae-codimension 0) ge,rmsA
type normal form G(z,vy, 2,t)
lips (z,9° +y(2” — t) + 2%)
beaks (z,9® — y(z? ~ t) + 27)
D swallowtail (z,y* + 2y — ty* + 2?)
I swallowtail (z,y* + zy — ty* — 2%)
cusp-plus-D fold  (type 1) | (z1, 93 + zy1 + 22), (v3 + 25 — t, z2)
| (type 2) | (21,88 + zuwn + 22), (~4f — 2 — t,2)
cusp-plus-I fold (21,93 + 29 + 22), (y3 — 23 — t,22)
D&D tacnodefold  (type 1) | (z1,9? + 2% + 1), (2, 73 + 92+ 23)
(type 2) | (w1, —9F — 28 + 1), (22,73 + 93 + 23)
: (type 8) | (z1,91 + 21 +1), (22,25 — ¥ — 23)
D&I tacnodefold  (type 1) | (z1,9% + 2% +1), (0, 23 + y3 — 25)
- (type 2) | (z1, —4% — 21 + 1), (22,78 + 9 — 23)
I1&I tacnodefold (21,93 — 22 + 1), (T, 22 + Y2 — 23)
D&DED triplefold (type 1) | (z1 + 3 + 2§, 21 — Y2 — 22 +t), (@2, Y2 + 22), (—~V5 — 23, 23)
’ ~ (type 2) | (1 + Y3 + 21,01 — ¥f — 2f + 1), (22,93 + 28), (U3 + 23, w3)
D&D&I triplefold  (type 1) | (z1 + yi — zl,azl Yt + 24 + 1), (22,95 + 23), (—¥3 — 25, 3)
(type 2) ($1 +yi - 2o — 4+ 2+ 1), (22,95 + ), (V3 + 43, )
D&I&T triplefold (1 +192 — 22,21 — yl + 23 + 1), (2,93 + 23), (3 — 23, %3)
1&I1&]1 triplefold (21 + 42 — 22,20 — Y2 + 22 + 1), (2,95 — 23), (3 — 23, 23)

TABLE 2. l-parameter unfoldings
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type normal form H(z,y,z,a,b) or H(z,y,z,a,b,t)
goose (z,y® + 2%y + 2% + az + bzy)
butterfly (, 2y +v° + 47 + 2% + ay® + by?)
D gulls (z, 2y + y* + ¥° + 22 + azy + by)
I gulls (z, 2y + y* +y° — 2% 4 azy + by)
D} (z,zy + y® + ty22 + 22 + 25 + az + by?)
(t> —(27/4)73,1 £ 0, (27/4)/3)
Dy (m, 2y +9° + ty°2 + 22+ 2° + az 4 by?)

(t < —(27/4)/3)

lips-plus-D fold -
lips-plus-I fold

(21,03 + v1(2f — @) + 21), (45 + 2% + b, 22)
(1,23 + (2 — a) + 22), (42 — 22 + b, z2)
) 2
3

beaks-plus-D fold (21,98 — 11 (2} — a) + 21), (43 + 23 + b, z2)
beaks-plus-I fold (21,93 —yi(z? —a) + 23), (¥ — 22 + b, zy)
D swallowtail-plus-D fold (@1, ¥} + z1y1 — ayf + 23), (y2 + 22 + b, z))
D swallowtail-plus-I fold (21,97 + 2191 — ay? + 22), (y2 — 22 + b, z)
- 1 swallowtail-plus-D fold (z1, 91 + a1 — ayf — 2{), (45 + 22 + b, 22)
~ I'swallowtail-plus-I fold (z1,y +2y1 — ay? — 2%), (y3 — 22+ b 1172)
cusp-plus-cusp (type 1) | (21 4 a, 4 + 211 + 21), (U3 + Daye + 22, 22 + b)
(type 2) | (21 + a, 95 + zyr + 22), (43 + 2oy — 22,20 + )
(type 3) | (z1 +a, 48 + 21 — 27), (Y3 + 2ays — 22,2 + b)
cusp-plus-D fold tangency (type 1) b(‘azl + a,yd + z3y1 + 2%), (z2,y% + 22 + azg + b)

(type 2) | (1 + 0,95 + z1y1 + 22), (B2, —yF — 22 + az, + b)
cusp-plus- fold tangency (1 + a,y + 2191 + z%), (29,95 — 23+ azy +b)
D&D flecnodefold (type 1) | (21,23 — az; 12 4 22), (g, v2 + 22 + 1)
(1vp 2) | (22,22 — ags 4 2 + 22), (52, ~43 — 23 + B
D&I flecnodefold (z1,25 — azy +yF + 22), (@2, y2 — 22 + b)
1&1 flecnodefold (#1,73 — azy + y¥ — 22), (23,92 — 22 + D)

TABLE 3. 2-parameter unfoldings (1) (for D, t is the parameter of modality)
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type normal form H(zx,y, 2, a,b)

D&D nodefold-plus-cusp  (type 1) | (#1,95 + 2191 + 23), (22 + 95 + 25,20 — 95 — 25 + a),
| (23 + 93 + 22, —z3 + 43 -+ 23 + D) |
(type 2) | (21,91 + T +21), (w2 + 93 + 25,22 — 15 — 25 + a),
(zs — ¥5 — 23, —2s — Y3 — 2 + D)

(type 3) | (z1, %3 + Tayn — 27), (T2 + ya + 23,22 — y3 — 25 +a),
(3 —y3 — 25, —23 — y3 — 25 + )

~(type 4) | (21,98 + 219 + 21), (22— 43 — 25,20 + 43 + 2 + ),
(x5 — yi — 23, —z3 — y3 — 2§ +b)
D&I nodefold—plus—c‘usp (type 1) | (21,93 + 2111 + 23), (o +y5 + 25,22 — y2 — 2% +a),
| | (22 + 93 — 23, —x3 +y3 — 25 + ) o
(tyep 2) | (21,95 + ziys — 27), (w3 +y2 + 22,20 — ¥2 — 25 + a),
(ws+ 93 — 23, —ws +y5 — 25 +))
(tyep 3) | (#1,98 + Tan + 21), (T2 — 43 — 23,22+ 03 + 25 + a),
(w5 — 93 + 23, —@s — y§ + 23 + b) |

(type 4) | (21,95 + 2191 — 21), (32~ 13 — 25, 22 + 93 + 23 + a),
v | (m3 — 42 + 22, —33 — y2 + 22 + D)
1&1 nodefold-plus-cusp {(@nL g+ oy + 27), (22 +93 — 25,20 = Y5 + 22 + a),
| (matyd -2 -z yi—28+0)

~ D&D tacnodefold-plus-D fold (type 1) | (z1,22 + 42 + 22), (z2,¥2 + 2% + a), (y3 + 23 + b, z3)
| (type 2) | (21,23 +9f +23), (w2, —8 — 22 +a), (V3 + 2 +b,23)
. (type 3) (21,23 — y3 — zl)a (22,93 + 23 +a), (yg + Zg +b,z3)
D&D tacnodefold-plus-I fold  (tyep 1) | (z1,2% + % + 27), (2o, y% + z% +a), (Y3 — 25 + b, z3)
| (tyep 2) | (21,23 + v2 + 22), (2 — 22 4 a), (y2 — 25 + b, z3)
(type 3) (z1,23 — 4f — 21)7 (932;312 + 25+ a), (y§ — 2 + b, x3)
D&I tacnodefold-plus-D fold  (type 1) | (z1, 2% + yl + 23), (22, Y2 — 22 +a), (v + 23 + b, z3)
. + (type 2) | (21,23 — yi ~ 21), (22,95 — 25 + ), (43 + 25 + b, 23)
D&I tacnodefold-plus-I fold  (type 1) | (21,22 + y§ + 22), (2,95 — 25 + a), (¥5 — Z2 + b, x3)
|  (type 2) (3717-'171 ?!1 — 2, (
1), (
), (

To, Yo — z2+a (y2 — 22 + b, x3)

1&1 tacnodefold-plus-D fold (a:l, x4 yf — 2

);
> 502,:[}2 2’2+CL), (yg'l‘zs +b 333)
1&]1 tacnodefold-plus-I fold (21,22 + ¥ — 22), (29, y% — 22 + a), (y§ — 22 + b, z3)

TABLE 4. 2-parameter unfoldings (2)
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type

normal form H(z,y, z,a,b,t)

D&D&D&D quadruplefold  (type 1)

- (type 2)

(:Bl + y% + 3%7331 + y% + Z% + a‘)) (x‘Z)y%"f' Zgj’
(y2 + 22, 23), (T4 + V5 + 25, — 14 +ys + 25 +b)
(31 + 2 + 22,21 + 92 + 22 + a), (22,95 + 2),

D&D&D&I quadruplefold  (type 1)
(type 2)

(type 3)

(92 — 22,23), (T4 + ¥ + 25, —tws + Y3 + 22 +b)
(01 + 13 + 28,0 + 42 + 22 +a), (22,43 + 23),
(yg + Z%,ﬂ:g), (334 + yz - Zz: —tzy + yz - ZZ + b)
(21 + v} + 28, m 4yl + 2f +a), (82,03 + 22),
(—yi — 23,23}, (T4 + ys — 23, —1Zs +yi — 25 +b)

(m + 12+ 2,0+ + 22 +a), (22,95 — 23),

(2 + 22,8), (@0 + 92+ 23, ~txg + Ui+ 23 +0)

D&D&I&I quadruplefold  (type 1)
(type 2)

(type 3)

(@1 + 3 + 22,20+ Y2 + 2] + @), (22,95 + 23),
(y2 — 22,13), (zq + Y2 — 23, —tzs + y2 — 22 +b)
(@1 + 93+ 22,51+ 12 + 25 +a), (22,93 — 2),
(43 + 23,m3), (34 + Y3 — 25, —twy + ¥ — 25 + D)
(m+ 93 + 22,z + 9] + 28 +a), (22,03 — 2),
(y§ - z%;x:B)a (.’C4 + 'y;f + ZZ, —tx4 + yZ + ZZ + b)

D&I1&I&1 quadruplefold

(331 + y% + Z%,:Bl + y% + z? + a)7 (m%yg - Z%),
(% — 23, 23), (x4 + Vi — 25, —tma + 43 — 2§ + b)

1&1&1&T quadruplefold

(214 92 — 22,21 + 4% — 23 +a), (T2, 95— 23),

(yg - 'Zg,:ﬁé), (324 +y2 - zz:_tmtl +yz - ZZ + b)

TABLE 5. 2-parameter unfoldings (3) (for these cases, ¢ is the parameter of modality)
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“TABLE 6. The block Ay ; of the block matrix A

el TNl BT eR Bl Bl Fiivel i it e Bl Fiicy Fic e s
A
v’
v?P -1
ve -1
ive
v
v
Iv?
v*
VA0
vhe(l)
IVEQ)
oe(b)
TVHE(D)
VE(D) , .
TABLE 7. The block A1z of the block matrix A
. TG | 1003 | 1003 | 0G| [ | o |10 [ oy [ I | O
ve v
v/
v°
ve
ve
A -1 -1
v
v7
v*
IARO)
e
1IVEQ)
Ve (b)
VEe(h)
IVe(b) .
TABLE 8. The block A1 s of the block matrix A
T e [P [Ioe | e [y | ope | |y [ oomg | g |
wob -1 1
vie 1] 1
TVoe —1 1
e —1 1
o —1 1
vhe | -1 4 1 4
vt -1 1
V™ -1] 1
™ 1 [ -1 -1 ] 1

TABLE 9. The block A1 of the block matrix A
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e -1 v
voe ' -1
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v
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TaBLE 11. The block Az 4 of the block matrix A
I00F [ T3 | 100 | TOEY [ OO [ I00G | I003 | IO | I015 | 1O
voe
e
IVu,c
Ivl,c
Ive,d
Ivl,d
v* -1
™ -1
V" -1
TABLE 12. The block A3 5 of the block matrix .A
TIe () [ e () [ e | rore | mo? [ o | e [ Iy | I | g | I00g
e —~1 1 1 -1 .
vy~
I ‘
vy —1 1 1 | -1
V3
V3
e -1 | -1
vy -1 | -1
v -1 | ~1
Iv,*° —1 | -1 _
Vs T
IV§ -1 | -1
TABLE 13. The block As,1 of the block matrix A
“' Iy [1oe? Iy [yt [yt [ ogt [ooy? [yt [oop” gt [ oo | 1o | g | g | 10
g » .
vee
e
Ve
Vg
IV§
v 1 1
Wy | 1 1
vy® 1 1
vy* 1 1
IV§ i 1
V3§ 1 1

. TABLE 14. The block A3y of the block matrix A




o | I

el i

T

It

urt [t

T [T |0 | OE |18

W

eyt [ It

A

it

Vo

VLT

w3t

%

2

Vi

Vs

TABLE 15. The block A4 2 of the block matrix A

FITEER I 3

;>

It

RO

Iyt | Iyt

It

Iyt | I

U,U0,a
V3

-1

1

vy

1

1

Ve | —1.

v

-1

vyhe

VoTe

vy~

A

-1

Vgt

-1 .

IV:,J.,Q

v,y

U,1,a
Ivsa H

b

AN

Vg e

-1

wohe

-1

- TABLE 16. The block As,s of the block m

atrix A

T

Uy
2

1IL,"

™

st | ot

TeTe

st | I

vy

T

v,

vy

vy

vyt

I

vy°©

Ve

vy

Ve

-1

vy

-1

Vy©

| 1vee

vg®

e

vy*

| 1ve©

TVDe

vy

Ve

e

Vi

TABLE 17. The block As,3 of the block matrix A
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Iry? JIy? |y | op® fon? | mp? [yt fan? fanpy® [un®
wee -1 1
Ve . 1 1

| -1 -1
ot -1 1
e -1 1
IVy® -1 1
vye ’ 1 :
el 1
Ivy® -1
vye 1
vee 1
vy ~1
w1
IvVyg*© , 1
vye 1
vy* 1
vy*© ~1
wvy° ‘ 1
vy 1

IVg®. ] 1
N 1
Ivg*® 1

TABLE 18. The block Ag 4 of the block matrix A

IT*(0) | IXE%(b) | II1° ¢ XII° | IIX¢ | TIL)® | IT0p | IIipe® | Iiipe | Ioog | Inog

V7 —1 171

Ve | -1 1

Y ‘ 1 —1

VA T 1 —1

VE | , . 1 —1

VE : 1 ~1

Ve ’ -1 i

VE | 1 1

e

v

v

IV}

i

vy

TaABLE 19. The block A7 1 of the block matrix A

ILy” | ury? | my? [ orp? [ up? [up? [ an® fun® [un® | un?®
I -1 ’ ‘ :
vz 1
Vi -1 |
AN —1
v? —1
Ve | —1
IVE 1
Ve —1
v —1
v 1
Wil —1
IV —1 .
i ~1
v} ' —1

TaBLE 20. The block A74 of the block matrix A




TS | o | I | 100G | 1005 I‘H‘; IS [ [T | Ie
el
1
AR
v -1
A
vE 1
i —1
WEl 1
Ve 1
v . 1
v 1
v _ —1
IV? 1
v 11
vy | 1
TABLE 21. The block A7 5 of the block matrix A

% | O™ [ ™ | ™ (ISt Iyt [ - ot | IO | T
C,0,0 , - -

o -2
wy % —1 L
vy™’ | ~1
TyIOT T2
V™t -1 1
wyo? -1
vy ot B —1 —1
Ivg,u,l ] _1 1
Ve 1 -1 1
Vol : -1 -1
bt . —1 -1
vy bt | - -1 1
bt , , -1 1
vy bt -1 -1
v -2
vgh? -1 1
vy bt —~1 : 1 .
st -2
Vbt - -1 1
Vs ‘ ~1 1
TaBLE 22. The block As s of the block matrix A

byt fant [t |yt | Iyt oyt oyt Loyt | Egt gt (I | g | Imz | | Iy
vy? ’ :

vy?

Vy”

vy?

vy?

vy’

vy*

vy?

vy?

A

v,”

N

IV

Vi?

v;°

vy

vy -1 1

v,”° : -1 1

v;”°

v;”°

VL : 1| 1

vy*© 1 EEE T

TABLE 23. The block Ag 2 of the block matrix A




TaBLE 26. The block Aio,5 of the block matrix A

Ir)® | ony? | Iny® | Iny? | Iny? | mg? T | on® [ an® [ 1n®
vy? ] -2
vo* | -1
AV
vy 7 -1 | -1
vyt | -1 1
el | -1 1
vy* -1 | -1
vy’ ~2
vy” -1 1
vy? ~1 1
vy* -1 | ~1
vg* -1 1
vy’ -1 1
1v;? -1 | —1
vy*® )
N ;) v
1Ivy? 1 | 1
Iv,” -1
v,” —2
w;° 9
Ivy” -1 | 1
rve® 1 | 1
TABLE 24. The block Ag 4 of the block matrix A
Y | Hn° | nrgt oyt |yt |yt | noyt et [t [Ingt | g | I | 10 | I | 100
V] » . .
IV:
i
1vi
NG 1 -1
Ve 1 ~1
N 1 —1
Ve
A%
V3 ;
vy ESNE
s —1 1
ve
i
VY i -1
| IV 1 =T
v} 1 -1
VA T 1
TABLE 25. The block A1 of the block matrix A
IIf | T003 | I003 | IO [ Ifnp | D008 | 1TIg | TOn | 6o | 1
Vs -1 ] -1 '
i | =1 1
s | -1 1
Vi -1{ -1
Vi i -2
Vi [ -1} 1
Wil 1§ 1
V3 —2
V3 -1 ] 1
i\%] —1.1 1
s 1| -1
vy -1 1
N -2
v -2
V] -2
v} -1 1
Iv; -1 1
e ~2




iig

oy oY Ty ™t oyt | gt | iyt

-t

RN

Lt

Vo

T

Vo

Vo

U,U,3
[

Voo

Ve

vy

Ve

0,133
LTIV

U,1,3
VoL

Vo

-2

1,1,3
Ivlv )

vyhs

P

VI

v

TABLE 27. The block Aig,s of the block matrix A

111y "

I

i

it

o TIg>t [t | o™ [Ty

ot

!

vyt

-1

V5"

wv*

vyt

vgt

Ve

ve?

Vet

Vs

~1

IR

vy

v,

vy

vy*®

v,*

y*

et

N

TVL®

vt

Viy

i

vy

TABLE 28. The biock Aza,s of the block matrix A
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y? ury? [ an? [ p? [ my? | my? [ [ang® | ang® [og®

e -1

vyt . 1

vy® 1

v, -1

vg® 1

Ive” =1

! 1

vt | ~1

Vor | -1

V.5 1

A%t —1

vy 1

v -1_

v,* ] 1

v;* ' » 1

ViT , —1

vt 1

vg” —1

IV, "™ - 1

Ivg” -1

IVy” | -1

vy . 1

vy _1

IViy . 1

TABLE 29. The block A134 of the block matrix A

Uy’ [IR? [OE? [I7 [ OR7 [Op? [0 [I0° [On° | one

wy°

vy°

I

vy°

W =1 | 2 | 1

vt | 1 -2 | -1

G

vy°

vy°

v,°

vg'® -1 2 1

TVL® 1 | =2 | =1

Ve | -1 | -1 | 1 2 T

vy’ -1 1

vy’ 1 . . 1

vy |- -1 . 1

vy’ -1 | -1 1 2 1

vy’ ’ -1 o1

Vg’ 1 I -1

Nl v ~1 1

VOB - 1 | -1

vhe 1 =1

TABLE 30. The block Ais,4 of the block matrix A

0?7 | I ? | ng? | Ip? | org? | e | e | g | Inmg®
e .

v5®

vy®

wy°

vg”® -1 2 1

TABLE 3%. The block A7, of the block matrix A




o2 |y ? [ry? [ onp? [ [rg? | e | e P Ine | On°
- IVY | '
g -1 1
V3
IV -1 ] -1
V3
Vg
V5 -2
A% 1 1
I —1 1
Vi 1 -1
1TV
vy, 1 -1
IVis
Vi, -1 | -1
Vs
IVie :
vi° -1
Vi 1
NN -1
P 1
v -1
e 1
Ve —1
Vg’ 1
V0 1
[1vi3 ~1
[ -1
IVis 1
: TABLE 32. The block Ajg 4 of the block matrix A
T | 013 | f003 | 05 | 1 | 100 | IO [ g [ I [T
i E
vy
ve
vy | 1] 1
V3
Vg
vy 11
v -1 1 -1
i |1 ~1
Vi | =1 | 1
Vi,
Vi,
Vi, ,
i | 1 1
IVis
IVie
v 1
Iy ~1
v 1
Vi —1
vy’ 1
Vg’ —1
vt 1
IV’ -1
i —1
IVip 1
v 11
Vis -1

TaBLE 33. The block Ajgs of the block matrix A
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111,

7 | HIy? | p? [ rg?

T

y? | ®

e

i

-1

5

g

IVE

Ivit

VT

TABLE 34.

The block Azo,4 of the block matrix A

T3 | 1113

s | I | Tin

1113

1115

1005 | o | e

VT

1

TV

1

VI

-1

TV},

—1

Vi

-1

I\

-1

TABLE 35.

The block Az¢5 of the

block

matrix A

ITf | 1118

a1 [ I | I

11T

it

1155 | I | TI°

wvy°

v3°

Ivyg®

Vs

vg®

g

Ve

Ivg®

vy

IVig

TVt

vs3*

i

7%

Vo

Ve

IAZH

VI

VD

e

Vi

VI

Vi

VP

vy

vg°

VI

VE

VI

IVig

-1

V35

-1

—1

vy

-1

Y P U

vy’

i’

vy

vy

TABLE 36.

The block Asg5 of the

block

matrix A

TIi5 | IS

T [ | 10

jifi]

3

T T 10 | T

Ve

%

i

Ivi

vg!

-1

1

1 -3 2

V=

TABLE 37.

The block Azs5 of the block matrix A




