炭酸化養生によるコンクリートへのCO₂固定に関する研究

出版情報：Kyushu University, 2021, 博士(工学), 論文博士
バージョン：
権利関係：
炭酸化養生によるコンクリートへの CO₂固定に関する研究

取違 剛

2021年6月
目 次

1． 序論... 1
 1.1 研究の背景... 1
 1.1.1 日本における CO2 排出量の現状と排出抑制に向けた取り組み 1
 1.1.2 産業分野別にみた CO2 排出量の現状... 1
 1.1.3 コンクリート分野における CO2 排出の現状と抑制対策................................. 3
 1.2 本研究の目的... 6
 1.3 本論文の構成.. 6

2． コンクリートの炭酸化による CO2 固定および硬化物性の変化に関する既往の研究... 9
 2.1 コンクリートの炭酸化による CO2 固定に関する既往の研究.. 9
 2.1.1 CO2 固定量の分析手法 ... 9
 2.1.2 コンクリートの CO2 固定量の評価事例... 11
 2.1.3 CO2 を固定する混和材等の各種材料に関する研究事例..................................... 14
 2.2 コンクリートの炭酸化に関する既往の研究... 16
 2.2.1 炭酸化速度に影響を及ぼす要因 ... 16
 2.2.2 炭酸化によるコンクリートの物性変化... 18
 2.3 既往の研究のまとめ... 20

3． コンクリートの炭酸化による CO2 固定量の評価... 26
 3.1 はじめに... 26
 3.2 セメントおよび混和材の炭酸化による CO2 固定量の検証... 26
 3.2.1 実験概要.. 26
 3.2.2 実験結果.. 30
 3.3 γ-C2S の CO2 排出量に関する検討... 45
 3.3.1 実験概要.. 45
 3.3.2 γ-C2S を製造するための条件... 45
 3.3.3 使用材料と配合.. 46
 3.3.4 ロータリーキルンによる焼成方法... 47
 3.3.5 実験結果.. 47

—i—
3.3.6 γ-C2S の製造にかかる CO2 排出量の試算 ... 49
3.3.7 材料の CO2 排出量を考慮した CO2 の収支 ... 52
3.4 指示薬を用いたコンクリートの CO2 固定量の簡易評価手法に関する検討 54
 3.4.1 検討概要 ... 54
 3.4.2 実験内容 ... 54
 3.4.3 検討結果 ... 58
3.5 3章のまとめ .. 61

4. コンクリートの炭酸化速度に及ぼす要因の評価 ... 64
 4.1 はじめに ... 64
 4.2 使用材料および配合条件が炭酸化速度に及ぼす影響に関する検討 64
 4.2.1 セメント種類およびγ-C2S の比表面積に着目した検討 ... 64
 4.2.2 水セメント比，空気量に着目した検討 ... 72
 4.2.3 骨材の遷移帯に着目した検討 ... 79
 4.3 環境条件がコンクリートの炭酸化速度に及ぼす影響評価 ... 89
 4.3.1 湿度と炭酸化養生開始時の強度が炭酸化速度に及ぼす影響 89
 4.3.2 壓力によるコンクリートへの CO2 浸透量増加に関する検討 95
 4.3.3 供試体の体積と表面積が炭酸化速度に及ぼす影響 ... 103
 4.4 4章のまとめ .. 107

5. 混和材を用いたコンクリートの炭酸化養生による CO2 固定量および硬化物性の評価 109
 5.1 はじめに ... 109
 5.2 炭酸化による CO2 固定量と硬化物性を考慮したコンクリートの配合設計 110
 5.2.1 検討の概要 ... 110
 5.2.2 使用材料および配合 .. 110
 5.2.3 供試体作製 .. 111
 5.2.4 実験項目および試験方法 ... 111
 5.2.5 試験結果 .. 113
 5.3 環境配慮型コンクリートにおける硬化特性 .. 125
 5.3.1 検討概要 ... 125
 5.3.2 使用材料と配合 ... 125
 5.3.3 試験内容 .. 127
 5.3.4 試験結果 .. 128
 5.4 コンクリートの低 pH 化に伴う環境親和性向上 .. 137
5.4.1 炭酸化とセメントの種類およびγ-C2S の混和が植物生育に及ぼす影響……137
5.4.2 ポーラスコンクリートを用いた植物生育試験……………………………………146
5.5 5章のまとめ………………………………………………………………………………152

6. 火力発電所の排気ガスに含まれる CO2 のコンクリートへの固定に関する実証試験155
6.1 はじめに…………………………………………………………………………………155
6.2 火力発電所の排気ガスを用いたコンクリートブロックの製造試験………………155
6.2.1 検討概要………………………………………………………………………………155
6.2.2 炭酸化養生方法概要………………………………………………………………155
6.2.3 対象製品………………………………………………………………………………156
6.2.4 使用材料およびコンクリートの配合……………………………………………156
6.2.5 コンクリートの製造と炭酸化養生…………………………………………………158
6.2.6 試験結果………………………………………………………………………………162
6.3 熱交換機を導入した省エネルギー型排気ガス炭酸化養生システムの導入……169
6.3.1 検討概要………………………………………………………………………………169
6.3.2 熱交換システムの概要………………………………………………………………169
6.3.3 試験による熱交換機の性能評価……………………………………………………171
6.4 熱交換機を導入した省エネルギー型排気ガス炭酸化養生システムの運転検証175
6.4.1 検討概要………………………………………………………………………………175
6.4.2 炭酸化養生システムの全景…………………………………………………………175
6.4.3 環境配慮型コンクリート製品の製造………………………………………………176
6.4.4 製造試験結果…………………………………………………………………………181
6.5 6章のまとめ………………………………………………………………………………186

7. 結論…………………………………………………………………………………………188
7.1 本研究のまとめ…………………………………………………………………………188
7.2 今後の課題………………………………………………………………………………190
7.2.1 CO2 固定量の評価…………………………………………………………………190
7.2.2 コンクリートの炭酸化度および硬化物性の変化…………………………………191

謝辞
第1章
序論
1. 序論

1.1 研究の背景

1.1.1 日本における CO₂排出量の現状と排出抑制に向けた取り組み

全国地球温暖化防止活動推進センターの取りまとめによると、2016年時点において世界全体の CO₂排出量約323億 t のうち、3.5%にあたる約11.5億 t を日本が排出している[1]。これは中国、アメリカ、インド、ロシアについて5番目であり、日本は世界有数の CO₂排出国となっている。2015年に開催された第21回地球温暖化防止会議（COP21）にて採択された「パリ協定」において日本は、達成すべき長期目標として2050年に80%削減を目指しており、CO₂排出削減に向けた取り組みは加速している。

2019年6月には、CO₂を燃料や原料として利用するカーボンリサイクルについて、その技術開発のイノベーションを加速するために、経済産業省よりカーボンリサイクル技術ロードマップが示された。このロードマップは、様々な形で回収した CO₂を貯留（Storage）するだけでなく、その名の通り、有効利用しようという CCU『CO₂ Capture and Utilization』の概念が強く押し出されており、回収した CO₂をもとに化学品、燃料、鉱物の大きく3つのに乾燥物質を生み出す技術開発を推進していくことが示されている。ロードマップのスコープとしては2030年および2050年の2つの段階が見据えられており、CO₂を利用可能なエネルギー・製品ごとにコスト低減に向けた課題と目標が明確に示されている。

カーボンリサイクル技術ロードマップに記載された基幹物質のうち「鉱物」に分類されるものとしては、様々な産業から排出される物質に含まれるカルシウム Ca やマグネシウム Mg を CO₂と化合させて炭酸塩を生成し、これを鉱物原料として再利用するという発想によるものである。この中では、鉄鋼スラグに含まれる Ca や Mg と CO₂を反応させてコンクリート用骨材や路盤材として利用することなどが具体的な方策として示されており、主に建設分野における CCU素材の利用に高い期待が持たれている。

1.1.2 産業分野別にみた CO₂排出量の現状

(1) 電力産業

電気事業連合会のホームページ【2】より調査した、電力産業における2017年度の CO₂
排出量は41.1億tであり、日本全体のCO₂排出量のうちの約35％が電力産業からの排出によるものである。すなわち、電力産業は日本の主要なCO₂排出産業となっている。ただし、1970年代の石油ショック以降、日本の電力消費量は増加の一途を辿ってきたが、CO₂排出量の増加はそれに比例することなく抑えられてきた。これは、発電設備の効率向上や省エネルギー化の推進により、使用電力量1kWhあたりのCO₂排出量（CO₂排出係数）を低減してきたからである。しかしながら、2011年に発生した東日本大震災を契機とした原子力発電所の長期停止等により、供給力確保のために原子力の代替として火力が増加したことを受けて、震災前に比べてCO₂排出量が増加した。なお、2013年をピークとして、近年においては、震災により停止していた原子力発電所の再稼働、再生可能エネルギーの活用拡大、最新鋭の高効率火力発電設備の導入等により、電力産業におけるCO₂排出量は低下傾向にある。発電種別ごとの発電電力量構成比に着目すると、2017年度時点で天然ガスによる火力発電が約38％、石炭火力発電が約29％、石油火力発電が約3％、水力発電が約9％、再生可能エネルギーなどの新エネルギーが約7％、原子力発電が約3％となっている。すなわち、CO₂を多量に排出する火力発電は、依然として日本の電力の約70％を占めているのが実情である。

（2）鉄鋼業

（社）日本鉄鋼連盟の調査【3】によると、鉄鋼業における2017年度のエネルギー起源CO₂排出量は約1.81億tである。2017年度における日本のCO₂排出量が11.9億tであったことから、日本全体のCO₂排出量のうちの約15％が鉄鋼産業からの排出である。（社）日本鉄鋼連盟によると、①鉄鋼の製造プロセスにおける省エネルギー／CO₂削減努力を行う「エコプロセス」、②高機能素材の供給によって製品の使用段階でのCO₂削減に貢献する「エコプロダクト」、③日本の鉄鋼業が開発・実用化した省エネルギー技術の海外へ普及による地球規模でのCO₂削減貢献「エコソリューション」をキーワードとして、2020年度をターゲットに低炭素社会実行計画フェーズⅠが推進されてきた。また2014年11月には、2030年度をターゲットとする低炭素社会実行計画フェーズⅡが策定され、それぞれの項目に対して定量的な数値目標を立て、業界としてCO₂削減に取り組んでいる。今後、次世代コークス炉の導入や発電設備の老朽化に伴う更新時の高効率化設備の導入によって、徐々にCO₂排出削減に向かうものと推察される。
（3）セメント産業における CO₂排出量

セメント産業における 2017 年の CO₂排出量は、エネルギー起源（工場稼動に使う電力など）と原料起源（焼成の際に石灰石の脱炭酸等により排出）のものをあわせて約 4,200 万 t 程度である。前述のとおり、2017年度の日本全体としての CO₂排出量が 11.9 億 t であったことから、日本全体の CO₂排出量のうちの約 4%がセメント産業からの排出である。セメント協会では、業界としての総 CO₂排出量低減ではなく、セメント製造時における CO₂排出原単位の削減目標に掲げており、2030 年までに 1t のセメントを製造するのに用いるエネルギー原単位を 3,334MJ/t-cement に削減するための低炭素社会実行計画を策定している。具体的には、キルンにおける予熱装置の熱回収プロセスの改善、省エネルギー設備の普及展開、電力エネルギーの有効利用などを掲げており、着実に実行されている。

1.1.3 コンクリート分野における CO₂排出の現状と抑制対策

土木学会では、コンクリートの環境負荷評価研究小委員会が立ち上げられ、コンクリートによる環境負荷低減について検討を行っている。同委員会報告書【4】にて示された、鉄筋コンクリート 100m³のイベントリ分析試算結果を図 1.1-1 に示す。これによると、コンクリート構造物を構築するにあたって、もっとも CO₂排出量多いのは材料製造部分である。このことから、コンクリート分野においては、セメントや鉄筋・鋼材など、使用する材料の製造時における CO₂排出量を抑制することが、CO₂排出量削減にもっとも効果的である。

図 1.1-1 鉄筋コンクリート 100m³のイベントリ分析試算結果【4】
また、土木学会では、コンクリート構造物の設計、施工、供用、維持管理、解体・廃棄や解体後の再利用を行う際の環境負荷を照査できる仕組み作りが進められている。土木学会が2005年に取りまとめた「コンクリート構造物の環境性能照査指針（試案）」【5】では、コンクリート構造物におけるCO₂排出削減の方法論として、①構造形式・施工方法の最適化、および②副産物の有効利用に着目した事例が紹介されている。

前者について、CO₂排出削減の観点からコンクリート構造物の構造形式・施工方法を最適化する主な方策としては、構造物のスリム化、および長寿命化が挙げられる。構造物のスリム化によるCO₂排出削減の一例として、たとえば強度の高いコンクリートを適用することによって構造物の断面を大幅に低減し、コンクリート使用量を35％低減できることが試算されている【6】。また、反応性粉体コンクリート（RPC）を用いた橋梁構造物のCO₂排出量削減効果を試算した例【7】では、上部工にRPCを用いて軽量化することで使用する架設クレーンの小型化や運搬トレーラー台数の削減につながり、施工を含めた工事にかかるトータルのCO₂排出量を約25％削減できる試算結果が得られている。

産業副産物の有効利用について代表的な例は、セメントと同様に水と反応して硬化する水硬性を有する副産物のセメント代替としての利用である。コンクリートあるいはコンクリート構造物がCO₂を排出する主な要因は、コンクリートを構成する材料の中、セメントの製造過程におけるエネルギーコストと原料からの脱炭酸である。セメントは石灰石(CaCO₃)とケイ石(SiO₂)を主成分とした材料を1,400℃程度の高温環境下で混ぜ合わせ、この混合材料を急冷することによってセメントの“素”となるクリンカー鉱物が生成される。セメント1tを製造するのに700〜800kg程度のCO₂が排出されると試算されているが、高温で材料を燃焼するときの燃料消費が約半分であり、残りの半分は、燃焼過程でCaCO₃からCaOが遊離されてCO₂が排出される“脱炭酸”による。すなわち、燃焼効率のよい設備を投入したとしても、この脱炭酸によるCO₂排出分は削減が困難である。

このため、(社)セメント協会では、セメントの一部を高炉スラグ微粉末で置き換えた高炉セメントのような、混合セメントの利用を促進している。高炉スラグ微粉末とは、製鉄所の高炉にて鈷鉄の際に副生される高炉水砕スラグを微粉砕して製造される粉体であり、アルカリ環境下で水と反応して硬化する潜在水硬性を有する。そのため、セメント代替材料としての適用が大いに期待されており、高炉スラグ微粉末のセメントへの置換率に応じて、A種からC種までの高炉セメントがJISに規格化されている。しかしながら、例えば高炉セメントB種を用いたコンクリートは特に夏において一般的なセメントに比べて温度
が高くなりやすく、ひび割れが発生しやすい場合があることや、中性化がセメントに比べて早期に進行することなどから、高炉セメント B 種の生産比率はセメント全体の 20% 程度にとどまっている。また、高炉セメント A 種や高炉セメント C 種はほとんど使われていないのが現状である。

このような状況の中、高炉セメントに代表される、混合セメントを取り巻く環境は土木学会を中心とした精力的な活動により大きな変革期を迎えつつある。2018 年 9 月に土木学会より『高炉スラグ微粉末を用いたコンクリートの設計・施工指針』が発刊された。同指針は、高炉セメント B 種ならびに高炉セメント C 種を対象に、多種多様なそのメリット、デメリットが総括的にまとめられたものである。同指針に沿ってうまく高炉セメントを使いこなすことによって、高炉スラグ微粉末を積極的にセメント代替として利用できるものと考えられる。

また、同時期に土木学会より刊行された『混和材を大量に使用したコンクリート構造物の設計・施工指針（案）』では、セメント代替として、高炉スラグ微粉末だけでなく、石炭火力発電所にて石炭を燃焼する際に発生する石炭灰を電気集塵器で捕集したフライアッシュを加えた、セメント使用割合が 20～30% 程度の 3 成分（セメント～高炉スラグ微粉末～フライアッシュ）セメントを用いたコンクリートの物性や適用上配慮すべき事項などが取りまとめられている。同指針は、土木研究所がゼネコン等との共同研究により 2016 年 1 月に取りまとめた『低炭素型セメントを用いたコンクリート構造物の設計・施工ガイドライン（案）』の成果が活用されており、国や学会、ゼネコンを巻き込んだ低炭素型コンクリートの普及拡大に向けての大きな舵が切られている。

一方で、コンクリート分野における新しい CO2 削減技術として着目されているのが、コンクリートの炭酸化である。土木学会においても、解体したコンクリート塊が炭酸化によって固定可能な CO2 量を評価する手法が取りまとめられている【8】。また、日本が主催する気候変動問題の解決のための国際会議 ICEF（Innovation for Cool Earth Forum）において 2016 年に示された、Global Roadmap for Implementing CO2 Utilization では、コンクリートの炭酸化や、スラグ骨材および再生骨材への CO2 固定が近い将来の CO2 の有効利用において大きなポテンシャルを持つことが国際的に提示されている。
1.2 本研究の目的
ここまで述べてきたように、CO₂排出削減という世界規模の環境問題に対し、電力産業、鉄鋼業、セメント産業という、いずれも建設業界と関わりの深い産業が主要なCO₂排出産業となっている。また、昨今のカーボンリサイクルやCCUといった新たな枠組みに関して、コンクリート分野におけるCO₂排出削減の一つの要素技術として、「炭酸化」がキーワードとなっている。本論文では、コンクリートを「CO₂固定可能な資材」として捉え、各種の混和材を用いたコンクリートを、高濃度のCO₂雰囲気下にて養生（以下、炭酸化養生と称する）した際のCO₂固定量を定量的に評価すること、ならびにコンクリートの炭酸化養生条件が炭酸化速度ならびに硬化物性に及ぼす影響の評価を目的として検討を行った。

1.3 本論文の構成
本論文の構成を図1.3-1に示す。本論文は第1章から第7章までの全7章で構成されている。各章の概要は以下のとおりである。

第1章では、本研究の背景、目的について述べた。

第2章では、コンクリートの炭酸化に伴うCO₂固定量の評価方法、ならびに硬化物性の変化に関する既往の研究事例を取りまとめ、それらをもとに問題点を整理した。

第3章では、様々な分析手法を用いてセメント系材料の炭酸化養生によるCO₂固定量を評価し、コンクリートのCO₂固定量評価に適した分析手法を提案した。また、コンクリートの炭酸化および使用材料起因のCO₂排出量を考慮した、コンクリートとしてのCO₂排出量の考え方について整理した。

第4章では、材齢初期からコンクリートを炭酸化養生するうえで、炭酸化速度に影響を及ぼす材料・配合・環境条件について検討を行った。

第5章では、各種混和材を併用することで使用材料起因のCO₂排出量を低減しつつ、材齢初期から炭酸化養生したコンクリートにおけるCO₂固定量およびコンクリートとしての硬化物性を評価した。また、コンクリートの炭酸化による低pH化が植物との親和性に及ぼす影響について検討した。

第6章では、火力発電所の排気ガスを用いてコンクリートの炭酸化養生によるCO₂固定に関する実証実験を行った結果を取りまとめた。

第7章では、本論文のまとめおよび今後の課題について提示した。
図 1.3-1 本論文の構成

第 1 章
序論

第 2 章
コンクリートの炭酸化による CO₂ 固定および硬化物性の変化に関する既往の研究

第 3 章
コンクリートの炭酸化による CO₂ 固定量の評価

第 4 章
コンクリートの炭酸化速度に及ぼす要因の評価

第 5 章
混和材を用いたコンクリートの炭酸化養生による CO₂ 固定量および硬化物性の評価

第 6 章
火力発電所の排気ガスに含まれる CO₂ のコンクリートへの固定に関する実証試験

第 7 章
結論
【1章の参考文献】

【1】全国地球温暖化防止活動推進センターウェブサイト（https://www.jccca.org/）より
【2】電気事業連合会 HP：電気事業のデータベース（INFOBASE 2018）より
【3】(社)日本鉄鋼連盟 HP：http://www.jisf.or.jp/business/ondanka/joukyo/index.html
【4】土木学会：コンクリート技術シリーズ No.44，コンクリートの環境負荷評価，2002
【5】土木学会：コンクリート構造物の環境性能照査指針（試案），コンクリートライブラリー125，2005
【6】一宮ほか：超高強度繊維補強コンクリート「サクセム®」を用いた構造物の特徴，未来材料，Vol.8，No.10，pp.46-52，2008
【7】石原ほか：超高強度繊維補強コンクリートを用いた橋梁構造物の CO₂排出量削減効果，土木学会第 60 回年次学術講演会，pp.399-400，2005
【8】土木学会：コンクリート構造物の補修・解体・再利用における CO₂削減を目指して，コンクリートライブラリー134，2012
第2章
コンクリートの炭酸化によるCO₂固定および硬化物性の変化に関する既往の研究
2. コンクリートの炭酸化によるCO₂固定および硬化物性の変化に関する既往の研究

2.1 コンクリートの炭酸化によるCO₂固定に関する既往の研究

2.1.1 CO₂固定量の分析手法

コンクリートにおけるCO₂固定量を評価する上では、CO₂がどのような形で固定されているかが重要である。一般的な知見としては、C₃SとC₂Sのシリケート相から生成されるCa(OH)₂やC-S-H、および、C₃AやC₄AFのアルミネート相から生成されるエトリンガイトやモノサルフェートに含まれるCa成分がCO₂と反応してCaCO₃となる反応が起こると整理されている【1】。また、各水和物の炭酸化反応は熱力学的な観点からその反応のしやすさが異なるとされており、セメント系材料の炭酸化反応は段階を追って進むと考えられている【2】。

コンクリートにおけるCO₂固定量の評価方法としてよく使用されるのが、高温下におけるCaCO₃の脱炭酸を評価する熱分析である。この方法は、CaCO₃の化学結合が600〜850℃付近の領域でCaOとCO₂に分離される現象に着目し、当該温度域における質量減少量をCO₂含有量として求めるものである。熱分析におけるCO₂固定量の評価温度としては、表2.1-1に示すように論文によって評価温度が多少異なる。たとえば、再生砕石RC40に固定されたCO₂量を評価した黒田らの研究【11】では、RC40の600〜800℃における重量減少率をもとに、コンクリート塊1tから製造されたRC40に11kg程度のCO₂が固定されていたと報告している。

いずれの実験においても、表2.1-1に示す同温度帯における質量減少率の変化が大きいことから、この温度帯をCaCO₃の脱炭酸領域と設定している。これは、生成されているCaCO₃以外の水和物の影響によって、CaCO₃の脱炭酸が生じる温度帯が変化する可能性を示唆しているものと考えられる。

このほか、密閉された空気内に封入したCO₂ガスの濃度変化を測定することでCO₂固定量を評価する方法【3】や、試験体の重量変化から類推する方法【4】、評価事例は少ないものの、固定燃焼装置付きTOCによって無機炭素量としてCO₂固定量が評価された例【5】もある。
表 2.1-1 熱分析における CO₂固定量の評価温度範囲

<table>
<thead>
<tr>
<th>著者</th>
<th>発表年</th>
<th>評価温度</th>
<th>対象</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang【6】</td>
<td>2006</td>
<td>550-950℃</td>
<td>セメント水和物</td>
</tr>
<tr>
<td>Huntzinger【7】</td>
<td>2009</td>
<td>500-850 ℃</td>
<td>セメントキルンダスト</td>
</tr>
<tr>
<td>Huijgen【8】</td>
<td>2005</td>
<td>>500℃</td>
<td>高炉セメント水和物</td>
</tr>
<tr>
<td>Cole【9】</td>
<td>1960</td>
<td>600-750℃</td>
<td>セメント水和物</td>
</tr>
<tr>
<td>Ivindra【10】</td>
<td>2005</td>
<td>600-780℃</td>
<td>混合セメント水和物</td>
</tr>
<tr>
<td>黒田【11】</td>
<td>2009</td>
<td>600-800℃</td>
<td>セメント水和物</td>
</tr>
<tr>
<td>曽根【12】</td>
<td>2011</td>
<td>600-1,000℃</td>
<td>セメント水和物</td>
</tr>
<tr>
<td>Alex【13】</td>
<td>2013</td>
<td>500-750℃</td>
<td>セメント水和物</td>
</tr>
<tr>
<td>Park【14】</td>
<td>2014</td>
<td>700-770℃</td>
<td>ジオポリマー</td>
</tr>
</tbody>
</table>

土木学会にて, CO₂削減を考慮したコンクリート構造物の解体, 再利用, 補修技術に関する調査研究小委員会の活動成果として取りまとめられた「コンクリート構造物の補修・解体・再利用における CO₂削減を目指して—補修における環境配慮および解体コンクリートの CO₂固定化—」（コンクリートライブラリー134）では, コンクリート破砕物による CO₂固定状況を可視化して明示するための手法として, バッグ法を提案している。これは, ガス採取用のバッグに新鮮なコンクリート破砕物を入れ, これに CO₂を吹き込み, CO₂が固定されることでパッ上がりをしぼむことを視認する方法であり, 数分でパッカリしぼむ様子から, 塩酸化反応が表面から急激に進行していることが視覚的に捉えることができる。また, パッカリ表面に大量の水滴が付着し, 塩酸化反応によって水が放出される様子も見ることができる。

また, コンクリートの中性化した範囲を評価する一般的な方法は, フェノールフタレイン法を噴霧して, 赤色に呈色しない範囲を求めるが, これは必ずしも CO₂を固定した領域と同一とは考えられていない。福島ら【15】は, 供用開始から約 60 年経過した鉄筋コンクリート構造物の屋内側の柱のコンクリートからコアを採取し, その中性化深さを測定するとともに, 深さ方向に熱分析を行って CaCO₃量の生成範囲を測定した。その結果, フェノールフタレイン溶液が呈色しない中性化深さよりも 20mm 内部まで CaCO₃が生成され
ていることを確認している。併せて、中性化深さ位置では、まだ炭酸化し切れていないCa(OH)₂が残存していることを明らかにしている。すなわち、フェノールフタレイン1%溶液による着色境界は、炭酸化フロントと必ずしも一致しないことが示されている。

2.1.2 コンクリートのCO₂固定量の評価例

Banksら【16】は、穀物貯蔵庫を対象としてコンクリート構造物のCO₂固定量を評価している。養生槽内に大気よりも少し高濃度のCO₂を供給し、供給したCO₂量と槽内のCO₂濃度の変化から、コンクリートへのCO₂固定量が評価されている。同研究では、穀物貯蔵庫内はCO₂濃度が大気中に比べて高くなることから、炭酸化が促進され、コンクリート中にCO₂が多く固定されることが確認されている。

小川ら【35】は、ポーラスコンクリートを対象とした二酸化炭素吸収特性に及ぼす養生条件の影響について検討を行っている。同研究では、早強ポルトランドセメントを用いたW/C=35%のポーラスコンクリート（空隙率20%）を様々な環境で炭酸化養生し、その際のポーラスコンクリートへのCO₂固定量の経時変化を計測している。同研究で用いられた炭酸化養生装置は、養生槽内のCO₂濃度をCO₂供給バルブON-OFF制御方式によって一定値に保つように設計されているため、この装置に供給されたCO₂量をガスボンベと養生槽のあいだに設置したCO₂積算流量計によって測定し、これをコンクリートのCO₂吸収量として算定している。同研究の結果、最もCO₂固定速度の高い養生条件（温度50℃、湿度55%、CO₂濃度20%）において、材齢28日で18kg/m³程度のCO₂がコンクリートに固定されたという結果が得られている。

金ら【17】は、高炉スラグセメントを対象として炭酸化によるCO₂固定量の評価を行っている。W/C=40%、高炉スラグ微粉末（ブレーン比表面積3,450cm²/g）を50%置換した高炉セメントベーストを材齢7日および28日まで水中養生し、その後、28日間、CO₂濃度10%，相対湿度60%RHの環境にて炭酸化養生を行い、炭酸化養生14日程度で全面が炭酸化してCO₂固定量が一定となっていること、また、炭酸化養生28日における高炉セメントのCO₂固定量はCaO含有量の64%であったと示されている。

金ら【18】は、合成したエトリンガイトの炭酸化反応について評価を行っている。エトリンガイトをCO₂濃度10%の環境に3日間静置し、鉱物層の変化を確認した結果、アルミナゲル、石膏、CaCO₃が見られ、これらの鉱物の存在形態は養生中の湿度によって大きく異なることが示されている。また、湿度60%の環境でエトリンガイトを炭酸化すると、エ
トリンガイトに含まれるCaO量の153％に相当するCO₂が固定されるという結果が得られている。これについて金らは、反応生成物であるアルミナゲルにCO₂が吸着したか、あるいはゲル中の水分に炭酸イオンとして溶解したか、またはエトリンガイトに取り込まれるCO₂が存在することを指摘している。

坂井ら【19】は、低熱ポルトランドセメントを用いたW/Cの異なるセメントベーストを温度20℃、湿度60％、CO₂濃度5％の環境に28日間炭酸化養生を行って、そのCO₂吸収量を評価している。なお、CO₂固定量は固体燃焼装置付きTOCによって測定されている。同研究の結果、W/Cが50％より大きい領域では、CO₂吸収量がW/Cによって大きく変化しない結果が得られている。

Monkmanら【20】は、転炉スラグ（Ladle slag）の炭酸化について検討を行っている。対象とした転炉スラグの粒径は600μm以下がほとんどであり、細骨材代替としての利用が期待されるものである。粒径75μm以下の転炉スラグにCaOが多く含まれ、CO₂濃度99％、500kPaの環境で2時間炭酸化させることで、その粒径が倍以上になり、粒度分布が大きく変化すること、また、のちに膨張する可能性のある遊離石灰（f-CaO）をほぼ無くすことができることを明らかにしている。

Monkmanら【21】は、練混ぜ時にCO₂ガスを3分間ミキサに封入することで、10％程度圧縮強度が増加すること、および封入したCO₂ガスの35～93％がコンクリートに固定された実績を示している。

Zhangら【22】は、ポルトランドセメントを用いたコンクリートへの効率的なCO₂固定と炭酸化による強度改善効果を得るためには、CO₂と反応させる前に事前の水和が必要であることを実験的に明らかにしている。同研究では、練混ぜから0、5、11、23、71時間後に炭酸化養生を開始したコンクリートの圧縮強度とCO₂固定量を評価しており、事前の水和期間が長いほど、CO₂固定量は若干低下するが、材齢28日での圧縮強度は増加することを明らかにしている。

神谷ら【23】は、海岸から約100m離れた屋外で10数年間大気に暴露された鉄筋コンクリート杭を破砕し、590μmメッシュを通過した粉末試料を対象に、CO₂固定量を評価している。同粉末におけるCa含有率は12.7±0.7mass％であり、そのうち2.3mass％はすでに炭酸化していた。また、粉末X線回折の結果、この粉末にCa(OH)₂のピークが見られなかったことから、CaCO₃以外の残りのCaはC-S-Hなどのアモルファス相になったと判断されている。この粉末を蒸留水とともにガラス容器に投入し、ガスボンベにて100％濃度のCO₂
ガスを封入し、その際の CO₂ 固定量を定量した結果、Ca のうち 50％程度が CaCO₃ として析出されたとの結果が報告されている。

黒田ら【24】は、解体したコンクリート塊における CO₂ 固定量を評価する目的で、モルタルによる再現試験とコンクリート塊の中間処理工場の実態調査を行っている。同研究では、W/C=40％および 60％のモルタルを作製し、1年間封鍾養生を行った後に脱型して砂相当に粉砕したあと、乾燥条件をパラメータとして 91 日間大気中に暴露して、その CO₂ 固定量を評価している。この結果、W/C が大きいほど、粒度が細かいほど、また乾湿繰り返しを受けることで炭酸化が促進されることを示している。また、Ca(OH)₂ が消失した以降も CaCO₃ 生成量が増加しており、一般的な環境においても、C-S-H 等のセメント水和物の炭酸化が進行することを確認している。さらに、中間処理工場に輸送された 8 建場の再生砕石 RC40 を対象に分析を行った結果、コンクリート塊 1t から製造された RC40 が固定している CO₂ 量は、11kg/m³ 程度であり、これを考慮することで、構造物の LCCO₂ を 5.5％程度少なくできるという試算結果を示している。

神田ら【25】は、45 都道府県の 46 工場を対象に、再生砕石の試料を収集し、破砕時点での CO₂ 固定量をそのコンクリートが供用中に固定した CO₂ 量と考え、それが平均で 15.2kg/t であったとの結果を示している。また、同再生砕石を破碎後に 28 日間屋外暴露した切片の CO₂ 固定量が 23.6kg/t であり、供用したコンクリートの再資源化時における CO₂ 固定量はその差である 8.5kg/t と算出している。また、CO₂ 固定量は再生骨材のうち 5mm 以下の細骨材分の方が多く、表面積の大きい再生骨材の方が CO₂ をより多く固定できることを示している。

デンマーク、スウェーデン、ノルウェー、アイスランドの北欧 4 国で、コンクリート破砕物による CO₂ 固定化に関する共同プロジェクトが実施されており、その中で、コンクリート構造物における CO₂ 固定量の簡易的な試算方法【2】が取りまとめられている。同レポートでは、一般的な知見と同様に、コンクリートの中性化深さは √t で、t が一定であると仮定し、中性化速度係数 k が、コンクリートの強度レベルと構造物が暴露される条件（湿潤、屋内、屋外など）によって一義的に決定され、混和材を用いる場合には、その種類と置換率によって k が最大 1.3 倍になるように係数を与えることで、時刻 t における中性化深さを算出できるようになっている。また、中性化した範囲のコンクリートが固定できる CO₂ 量は、セメントに含まれる CaO の 75％と設定しており、これによって、コンクリート構造物の CO₂ 固定量を簡易的に評価することができる。
2.1.3 CO₂を固定する混和材等の各種材料に関する研究事例

Fernandezら【34】は、促進炭酸化技術に関する過去の文献のレビューを行っており、そのなかで、表2.1-2に示すような整理を行っている。同論文においてまとめられている材料はいずれもCaを含む材料であり、Caを含む材料がCO₂と反応してCaCO₃を形成することでCO₂の有効利用につながる、という観点で材料が整理されている。

表2.1-2 炭酸化によって有効利用が可能な考えられる廃棄物とその通常の処理方法

<table>
<thead>
<tr>
<th>種類</th>
<th>解説</th>
<th>通常の処理方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>高炉スラグ</td>
<td>磺鉄の際に排出されるスラグ</td>
<td>セメント混和材</td>
</tr>
<tr>
<td>製鋼スラグ</td>
<td>ステンレス製造時に排出されるスラグ</td>
<td>骨材や地盤材料</td>
</tr>
<tr>
<td>石炭灰</td>
<td>石炭を燃焼させた後に残る残渣</td>
<td>セメント混和材、セメント原料、埋立て材</td>
</tr>
<tr>
<td>Deinking ash</td>
<td>紙のリサイクル段階で発生</td>
<td>埋立て材</td>
</tr>
<tr>
<td>サイクロンダスト</td>
<td>大気中から採取したダスト</td>
<td>埋立て材</td>
</tr>
<tr>
<td>脱水ケーキ</td>
<td>スラリーに圧力をかけて脱水した残渣</td>
<td>材料次第ではあるが、基本は埋立て材</td>
</tr>
<tr>
<td>下水汚泥灰</td>
<td>下水汚泥を焼却処理した副産物</td>
<td>埋め立て材、セメント混和材、地盤改良材</td>
</tr>
<tr>
<td>セメントキルンダスト</td>
<td>石灰石の焼成が行われるキルン（窯）内から排出されるダスト</td>
<td>埋立て材、農業利用</td>
</tr>
<tr>
<td>Silica pot liner</td>
<td>アルミニウムの精錬の際の電解工程で発生する廃棄物</td>
<td>ガラス化して埋め立て</td>
</tr>
</tbody>
</table>

Moら【26】は、スラグおよびMgOを含むW/C=50%のセメントベーストを温度23℃、湿度98%、CO₂濃度99%の環境で養生し、その鉱物組成の変化を観察している。その結果、CaCO₃の多形であるCalcite、Aragonite以外に、dolomite（CaMg（CO₃）₂）やM-S-H（Mgを含むシリケート水和物）さらに、Mgを多く含む場合にはnesquehonite（MgCO₃・3H₂O）が生成されることを明らかにしている。Nesquehoniteはその30%以上をCO₂が占めるため、CO₂を固定して有効利用が可能な硬化体として期待できる素材と考えられる。

Powerら【27】は、石膏ボードなどの代替として用いられる、MgOとMgCl₂溶液を主成分とするMagnesium Oxychloride Cement（MOC）を用いたボードのCO₂固定能力について検
討を行っており、供用から15年でボード1tあたり150kg程度のCO₂を固定可能であることを暴露試験によって確認している。

Parkら【28】は、化学組成のうちCaOが41.25%を占めるCa高含有フライアッシュと高炉スラグ微粉末を用い、アルカリ刺激剤としてNaOHを用いたNon cement mortarを50×50×50mmの角型に成型し、3、7、28日まで大気中で養生し、その後、超臨界状態のCO₂（40℃、80kgf/cm²）にて60分炭酸化させた実験を行っている。同実験では、フライアッシュ100%から高炉スラグ微粉末100%まで、その割合を20%ずつ変化させて、上記条件で炭酸化させたモルタルの中性化深さ、圧縮強度、熱分析による重量減少について確認している。その結果、フライアッシュの割合が多いほど中性化しにくく、圧縮強度は小さくなるものの、CO₂含有量は大きくなるという結果を得ている。

Moralesら【29】は、CaやSiを含む産業副産物や残渣がCO₂固定材として作用できる可能性について検討している。同研究の中では、Caを含む産業副産物として、アセチレン産業から排出されるCa(OH)₂リッチなスラリー、および炭酸ナトリウムの製造プロセスで発生するCaCl₂に着目している。また、Siを含む産業副産物としても、もみ殻灰と、シリカフュームの元となるシリカ粉末に着目している。これらの材料を様々な割合で混合し、数100℃の温度負荷を与えることでLarnite（Ca₃SiO₄、C₈S）やWollastonite、Tobermoriteなどのカルシウムシリケート系の鉱物が生成されることを確認しており、これを炭酸化することでCalciteやVateriteなどを主要生成物とした新しい原料が生成できる可能性について言及している。

Morrisonら【30】は、NaOHにCO₂を吹き込んだ高アルカリ溶液と、脱塩プラントからの排水などのようにMgを含む溶液を反応させることによって、Nesquehonite(MgCO₃・3H₂O)を主成分とするセメント系硬化体が成型できる可能性を示している。

Xuanら【31】は、ヨーロッパにおいて、製造されたコンクリートの1～4%が過剰オーダーなどにより廃棄されている現状を鑑み、戻りコンクリートと再生骨材を組み合わせた廃棄物有効利用コンクリートを炭酸化によって固化させ、一般的なコンクリート製品と同等の品質を確保できることを明らかにしている。

Jeongら【32】は、CaCO₃と高炉スラグ微粉末を混合し、これに内割りでCaOとCaSO₄を5%ずつ添加した、セメントを使わない結合材を提案している。同研究では、CaCO₃と高炉スラグ微粉末の割合が20：80のときに最も高い圧縮強度を示し、W/C=38%のセメントベーストで55N/mm²程度の圧縮強度が得られることを示している。

−15−
Qian ら【33】は、Ca 高含有フライアッシュを水に混ぜてスラリー化させ、そこに CO₂ を封入することで炭酸化させて、それを練混ぜ水の一部に用いることで、CO₂ がコンクリート中に固定できることとともに、コンクリート自体の強度が若干増加することを示している。ただし、このスラリーを添加することでコンクリートの凝結時間が早まることがから、施工時には留意が必要との見解が示されている。

2.2 コンクリートの炭酸化に関する既往の研究

コンクリートの炭酸化については、過去に非常に多くの研究がおこなわれており、そのメカニズムや炭酸化の進行に影響を及ぼす要因についてはある程度明らかにされている。ここでは、コンクリートの炭酸化速度に影響を及ぼす要因と、炭酸化によるコンクリートの物性変化に着目して既往の研究を整理した。

2.2.1 炭酸化速度に影響を及ぼす要因

Fernandez ら【34】は、促進炭酸化技術に関する過去の文献のレビューを行っており、そのなかで、表 2.2-1 に示すような整理を行っている。温度や CO₂ 濃度が高いほど炭酸化が促進され、相対湿度は最適値が存在すること、また、圧力をかけると炭酸化速度の向上に効果があると整理されている。これは、様々な研究者によって提示された既往の研究の成果とも一致しており、共通の見解として支持されるものである。

<table>
<thead>
<tr>
<th>条件</th>
<th>影響</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ 濃度</td>
<td>CO₂ 濃度が高いほど、炭酸化速度は高まる。</td>
</tr>
<tr>
<td>湿度</td>
<td>相対湿度 50〜70%のときが最も炭酸化速度が高まる。</td>
</tr>
</tbody>
</table>
| 温度 | 60℃までは、温度が高まるほど炭酸化速度が高まる。これは、温度が高いほど固相からの Ca
 | イオン溶脱が促進されることに起因する |
| 圧力 | 小さな圧力をかけることが、炭酸化反応と強度改善に有効である。 |
小川ら【35】は、ポーラスコンクリートを対象とした二酸化炭素吸収特性に及ぼす養生条件の影響について検討を行っている。早強ボルトランドセメントを用いた W/C=35%のポーラスコンクリート（空隙率20%）を温度30, 40, 50℃、相対湿度55, 95%RH、CO2濃度1, 10, 20%の各種養生条件にて炭酸化養生して、そのCO2固定量を評価している。また、初期養生条件がCO2固定量に及ぼす影響を評価している。その結果、炭酸化養生を開始するまでの積算温度が小さいほど、CO2固定量が大きくなること、また、同研究の範囲内では、温度はCO2固定量に大きく影響せず、相対湿度は95%よりも55%の方が2倍程度CO2の固定速度が速くなる結果を得ている。また、CO2濃度は1%よりも10%の方が効率的にCO2を固定できるものの、10%と20%ではその差が小さい結果が得られている。

Phungら【36】は、52.5Nクラスの普通ボルトランドセメントを用いた W/C=42.5%のセメントベースト、およびそれにセメント×10%の石灰石微粉末を外割で添加したセメントベーストを炭酸化させた検討を行っている。同研究においては、CO2を圧入させる形で炭酸化しており、一定の圧力でCO2を圧入し続ける方法と、炭酸化反応に伴って生じた水分によって槽内の湿度が高まった段階で圧入を一旦停止させ、湿度が65%になるまで低下させてから再度圧入を繰り返す、段階的な炭酸化の2つの方法を行っている。その結果、乾湿を繰り返す段階的な炭酸化の方が、早期に炭酸化が進むことが確認されている。また、石灰石微粉末を添加することでCO2固定量が倍増する結果が得られており、その理由について、セメントから溶出するCaとCO2との反応によって生成するCaCO3がセメントの周りだけでなく石灰石微粉末の周りでも起こることによって、セメント表面が早期にCarbonation products(CaCO3)によってカバーされないために、セメントがより効率的にCO2と反応出来たためと考察している。

Sauto-Martinezら【37】は、様々な形状のコンクリートを作製してCO2濃度800ppmと300ppmの環境に暴露し、構造物の形状がコンクリートの炭酸化速度に及ぼす影響について検討している。同研究において、Surface Area-to-Volume(SA/V)が大きいほど、CO2固定量が早期に増加することを実験によって明らかにしている。
炭酸化によるコンクリートの物性変化

Fernandezら【34】は、促進炭酸化技術に関する過去の文献のレビューを行っており、そのなかで、表 2.2-2に示すような整理を行っている。養生中に強制的に炭酸化する場合は、コンクリート中の空隙をCaCO₃が充填することで強度が増進し、空隙率が小さくなるというのが一般的な知見である。一方、炭酸化反応によるCaCO₃の充填に伴う体積膨張によって、場合によってはマイクロクラックが生じる可能性も指摘されており、耐久性の観点からは物性が向上する場合と低下する場合が存在するとまとめられている。

表 2.2-2 炭酸化によるコンクリートの物性の変化

<table>
<thead>
<tr>
<th>特性</th>
<th>影響</th>
</tr>
</thead>
<tbody>
<tr>
<td>強度</td>
<td>高濃度のCO₂環境下で養生すると、一般的に強度は増加する。</td>
</tr>
<tr>
<td>空隙率</td>
<td>大きい径の空隙はCaCO₃の析出によって充填されるため、空隙率は一般に小さくなる。ただし、炭酸化反応による体積膨張によって、マイクロクラックが生じる可能性もある。</td>
</tr>
<tr>
<td>空隙構造</td>
<td>сти，炭酸化反応による体積膨張によって、マイクロクラックが生じる可能性もある。</td>
</tr>
<tr>
<td>水和反応</td>
<td>反応率の低い未水和セメントの水和を促進する場合がある</td>
</tr>
</tbody>
</table>

伊藤【38】は、1MPaまたは9MPaに加圧したCO₂環境下で1時間または10時間養生したW/C=15%のセメントベーストの炭酸化率や圧縮強度を確認している。W/Cが低いセメントベーストにおいては、水和に用いられる水分量が少ないので、硬化体に粗大な空隙が多く残り、その部分を炭酸化反応によって生成したCaCO₃やシリカゲルが充填すること、さらに炭酸化反応によって生じた水分が水和反応を促進することで、強度が著しく増進することが示されている。同研究では、W/Cが非常に低い超高強度コンクリートの物性改善には効果があるものの、比較的高W/Cの領域では、発生する水分の影響で逆に炭酸化が阻害されることもあることから、炭酸化によって緻密な硬化体を形成するのに最適なW/Cが存在する可能性を示している。

Kashef-Haghighiら【39】は、W/C=32%，26%，S/C=4の硬練りモルタルを100kNの力で加圧成型し、3時間湿度100%の環境に静置したあと、同モルタルにCO₂ガスを1時間吹き込むことで、ナノサイズのCaCO₃がセメント表面に形成されること、およびこのナノサイズのCaCO₃がセメントの反応をさらに活性化させる可能性があることを示している。

島ら【40】は、ポーラスコンクリートの炭酸化による強度増進効果について検討している。早強ポルトランドセメントを用いたポーラスコンクリートを打設後1日で脱型し、CO₂
濃度 15％、温度 40℃、湿度 95％RH の環境で養生させると、材齢 7 日までは一般的な養生に比べて 1.2 倍程度まで圧縮強度が増加するものの、それ以降は強度低下する結果が得られている。これについて島らは、鈴木らの既往の研究【41】を引用した上で、炭酸化養生を長くすることによって C-S-H の炭酸化による分解が生じている可能性を指摘している。

小川ら【42】は炭酸化させたポーラスコンクリートの耐海水性を評価している。炭酸化の有無のみを変えたポーラスコンクリートを塩水乾湿繰り返しに 16 サイクルかけたところ、炭酸化していないコンクリートの動弾性係数は大きく低下するのに対し、炭酸化したポーラスコンクリートの動弾性係数は低下しないという結果が得られている。この結果について小川らは、炭酸化させたことで海水への Ca 溶脱が抑制されたことが原因と考察している。

福原ら【43】は、製鋼スラグに 40～60％含まれる CaO を有効活用するために炭酸化反応を用いる研究を行っている。製鋼スラグに含まれる CaO は CO₂と反応して CaCO₃を形成し、これによって硬化体が製造できる可能性がある。製鋼スラグに含まれる CaO は未反応の状態で残存するとその後に浸透してきた水と反応して Ca(OH)₂を生成し、Ca(OH)₂生成時に作用する膨張圧で硬化体自体が破壊される懸念があった。このため、製鋼スラグに未反応の CaO を残さずに固化させることが必要であった。一方、製鋼スラグが硬化体内部まで反応するためには、CO₂を効率的に浸透させなければならないが、CaO と CO₂との炭酸化反応によって空隙がさらに充塡されることから、硬化体の成型時に、CO₂を効率的に浸透させつつ、強度を確保できる空隙形成が重要であった。福原らは各種検討の結果、1m × 1m の大型の製鋼スラグ炭酸固化体を製造する方法を構築するに至っている。製鋼スラグ炭酸固化体は、海洋中に暴露した際に海水生物や植物の付着が多く、環境親和性が高い材料であることが確認されている。
2.3 既往の研究のまとめ

コンクリートの炭酸化による硬化物性の変化およびCO₂固定に関する既往の研究成果をまとめた結果を以下に示す。

(1) コンクリートのCO₂固定量

・熱分析によって CO₂固定量を評価するのが一般的である。
・実構造物の炭酸化現象においては、供用期間中にセメントに含まれる CaO の 60〜75%程度が CaCO₃として CO₂を固定する。
・エトリンガイトを炭酸化させると、CaO に対して 100%以上の CO₂が固定される結果もあり、コンクリートにおける CO₂の固定形態は必ずしも CaCO₃だけではない。
・CO₂を固定する材料としては、Ca もしくは Mg を含む様々な材料が検討されており、CO₂は CaCO₃、MgCO₃もしくはそれに近い水和物として固定されている。

(2) コンクリートの炭酸化速度

・一般的なコンクリートの範囲では、温度・CO₂濃度が高いほど炭酸化の進行が早い。
・湿度については、最も炭酸化が進むやすい湿度が存在する。
・数 MPa程度の圧力をかけることで炭酸化が促進される。
・圧力をかける際には、発生する水分を適度に乾燥させることができ炭酸化の進行を早める。

(3) コンクリートの炭酸化による物性の変化

・養生中に炭酸化させた場合、炭酸化反応によって析出する CaCO₃がコンクリートの空隙を充填するため、空隙率は減少するというのが一般的である。
・空隙率の減少に伴って、コンクリートの強度が増進される。
・CaCO₃の析出の際に発生する膨張圧によって、マイクロクラックが生じる場合もある。
・炭酸化によってナノサイズの CaCO₃がセメント表面に生成され、これによってセメントの水和が促進されることがある。
・ポーラスコンクリートにおいては、長期に炭酸化することで、C-S-H の分解に起因すると思われる強度低下が起こる場合がある。
・炭酸化によって主要鉱物が CaCO₃となるため、溶脱に対する抵抗性が向上する。

—20—
上述した既往の研究成果を踏まえて、本論文で着目した点は以下のとおりである。これら
の着目点をもとに、本研究を進めることとした。

（1）炭酸化によるコンクリートの CO₂ 固定量としての、適切な分析手法が定められて
いない。
（2）材齢初期から炭酸化養生を行う場合、コンクリートの炭酸化速度に及ぼす要因とそ
の影響度合いが明らかになっていない。
（3）材齢初期から炭酸化養生したコンクリートの硬化物性を詳細に評価した例が少な
い。
【2 章の参考文献】

【1】(社)日本コンクリート工学協会,炭酸化研究委員会報告,1993
【2】Björn Lagerblad: Carbon dioxide uptake during concrete life cycle-State of the art, CBI Report2, pp.9-11, 2005
【5】坂井悦郎,蓮見孝志,斎藤浩,大門正機:高ビーライトセメント硬化体のCO2固定化と溶脱挙動,セメント・コンクリート論文集, No.60, pp.76-81, 2006
【7】Deborah N. Huntzinger et al: Carbon dioxide sequestration in cement kiln dust through mineral carbonation, environmental science & technology, Vol.43. No.6, pp1986-1002, 2009
【12】曽根真理,神田太朗：コンクリート塊の再資源化による二酸化炭素固定,建設の施工企画, No.12, pp.9-13, 2011
【14】Junyoung Park, Yootaek Kim: Improvement in mechanical properties by supercritical

【15】福島敏夫, 友沢史紀: コンクリートの中性化深さの物理化学的意味について, セメント・コンクリート論文集, No.43, pp.424-429, 1989

【17】金尚奎, 鶴見敬章, 大門正機: 高炉スラグセメント硬化体の炭酸化反応, セメント・コンクリート論文集, No.48, pp.572-577, 1994

【18】金尚奎, 鶴見敬章, 大門正機: エトリンガイドの炭酸化反応, 石膏と石灰, No.237, pp.15-21, 1992

【19】坂井悦郎, 運見孝志, 斎藤豪, 大門正機: 高ビーライトセメント硬化体の CO2 固定化と溶脱挙動, セメント・コンクリート論文集, No.60, pp.76-81, 2006

【22】D. Zhang et al: Optimal pre-hydration age for CO2 sequestration through Portland cement carbonation, ACS sustainable chemistry and engineering, pp.15976-15981, 2018

【24】黒田泰弘, 菊池俊文: 解体コンクリートによる二酸化炭素の固定, コンクリート工学論文集, No.20, pp.15-22, 2009

【33】X. Qian et al: Carbon dioxide as an admixture for better performance of OPC-based concrete, Journal of CO₂ Utilization, Vol.25, pp.31-38, 2018
【35】小川洋二, 加地貴, 島弘, 河野清: ポーラスコンクリートの二酸化炭素吸収特性に及ぼす養生条件の影響, セメント・コンクリート論文集, No.48, pp.780-785, 1994
【38】伊藤祐敏: 炭酸化反応を利用したセメント硬化体の組織制御, セメント・コンクリート, No.716, pp.50-55, 2006

【40】島弘, 原田直樹, 河野清：ポーラスコンクリートの二酸化炭素ガス吸収による強度増加, セメント・コンクリート論文集, No.46, pp.904-909, 1992

【41】鈴木一孝, 西川直宏, 林知延：Ca/Si 比の異なる C-S-H の炭酸化, セメント・コンクリート論文集, No.43, pp.18-23, 1989

【42】小川洋二, 島弘, 河野清：炭酸ガスを吸うポーラスコンクリート, セメント・コンクリート, No.568, pp.12-16, 1994

第3章
コンクリートの炭酸化によるCO₂固定量の評価
3. コンクリートの炭酸化による CO₂固定量の評価

3.1 はじめに

既往の研究について取りまとめた結果、炭酸化したコンクリートにおける CO₂の固定量として、適切な分析手法が確立されていないという現状が明らかになった。コンクリートの CO₂固定量を適切に評価することは、コンクリートによる環境影響評価を行う上で非常に重要と考えられる。第3章では、高炉スラグ微粉末、CO₂と反応して硬化する性質を有するγ型の 2CaO・SiO₂を対象に、各混和材を含むコンクリートの炭酸化養生による CO₂固定量を様々な分析手法によって評価した。また、使用材料の CO₂排出量を評価し、材料起因の CO₂排出量と炭酸化による CO₂固定量の比較を行った。さらに、コンクリートの CO₂固定領域の簡易的な評価手法についても検討を行った。

3.2 セメントおよび混和材の炭酸化による CO₂固定量の検証

本検討では、高炉スラグ微粉末、CO₂と反応して硬化する性質を有するγ型の 2CaO・SiO₂（以下、γ-C2S）および石灰石微粉末をセメントの一部に置換したセメントベーストを炭酸化養生し、混和材の置換と炭酸化による鉱物組成や細孔構造の変化を評価した。また、炭酸化によるセメントベーストの密度変化、CaCO₃生成量、無機炭素含有量の3つのアプローチで、炭酸化によってセメントベーストに固定された CO₂の量を評価した。

3.2.1 実験概要

（1）使用材料および配合

使用材料の化学組成、密度、比表面積を表3.2-1に示す。普通ポルトランドセメント（以下、OPCと称す）、高炉スラグ微粉末（以下、BFSと称す）、γ-C2S、および石灰石微粉末（以下、LSと称す）を用いた。γ-C2Sは工業原料の炭酸カルシウムとSiO₂原料を用い、ロータリーキルンで温度1,450℃にて焼成することにより合成したものである。試験に供したセメントベーストの配合を表3.2-2に示す。それぞれの混和材をセメントの内割りで30, 50, 70％置換した。水粉体比W/Pは45％で一定とした。
表 3.2-1 各材料の化学組成と物理特性

<table>
<thead>
<tr>
<th>化学組成(mass%)</th>
<th>密度 (g/cm³)</th>
<th>比表面積 (cm²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOI</td>
<td>Insol</td>
<td>SiO₂</td>
</tr>
<tr>
<td>OPC</td>
<td>2.20</td>
<td>0.5</td>
</tr>
<tr>
<td>BFS</td>
<td>0.04</td>
<td>—</td>
</tr>
<tr>
<td>γ-CaS</td>
<td>0.12</td>
<td>0.1</td>
</tr>
<tr>
<td>LS</td>
<td>43.5</td>
<td>0.4</td>
</tr>
</tbody>
</table>

表 3.2-2 試験に供したセメントベーストの配合

<table>
<thead>
<tr>
<th>配合名</th>
<th>混和材種類</th>
<th>W/P (%)</th>
<th>W/C (%)</th>
<th>単位量(kg/m³) W</th>
<th>単位容積質量(kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC</td>
<td>—</td>
<td>45</td>
<td>45</td>
<td>587 1,305</td>
<td>1,892</td>
</tr>
<tr>
<td>BFS-30%</td>
<td>BFS</td>
<td>30%</td>
<td>45</td>
<td>64 581 904</td>
<td>1,872</td>
</tr>
<tr>
<td>BFS-50%</td>
<td>BFS</td>
<td>50%</td>
<td>45</td>
<td>90 577 641</td>
<td>1,858</td>
</tr>
<tr>
<td>BFS-70%</td>
<td>BFS</td>
<td>70%</td>
<td>45</td>
<td>150 573 382</td>
<td>1,847</td>
</tr>
<tr>
<td>γ-CaS-30%</td>
<td>γ-CaS</td>
<td>30%</td>
<td>45</td>
<td>64 579 902</td>
<td>1,867</td>
</tr>
<tr>
<td>γ-CaS-50%</td>
<td>γ-CaS</td>
<td>50%</td>
<td>45</td>
<td>90 574 638</td>
<td>1,850</td>
</tr>
<tr>
<td>γ-CaS-70%</td>
<td>γ-CaS</td>
<td>70%</td>
<td>45</td>
<td>150 569 379</td>
<td>1,834</td>
</tr>
<tr>
<td>LS-30%</td>
<td>LS</td>
<td>30%</td>
<td>45</td>
<td>64 575 895</td>
<td>1,853</td>
</tr>
<tr>
<td>LS-50%</td>
<td>LS</td>
<td>50%</td>
<td>45</td>
<td>90 567 630</td>
<td>1,827</td>
</tr>
<tr>
<td>LS-70%</td>
<td>LS</td>
<td>70%</td>
<td>45</td>
<td>150 559 373</td>
<td>1,803</td>
</tr>
</tbody>
</table>

※P=OPC+BFS+γ-CaS+LS
(2) 試料作製
水と粉体を公称10ℓのモルタルミキサにて2分間練り混ぜた。なお、供試体作製時における材料分離を防止するために、水に対して1.5％の高機能特殊増粘剤（アルキルアルリルスルホン酸塩とアルキルアンモニウム塩の2剤の混合物）を添加した。また、練混ぜ時の空気量は1.0±0.5％に調整した。練混ぜ後、φ50×100mmの鋼製型枠に流し込み、20℃環境下に静置して24時間後に脱型した。その後、温度60℃、湿度50％RH、CO₂濃度20％の環境下で材齢7日、および14日まで促進炭酸化養生を行った。

(3) 実験項目
(i) 炭酸化深さ
炭酸化養生終了後に円柱供試体を長辺方向に割裂し、フェノールフタレインの1％アルコール溶液を嘔霧後、上底面を除く側面部分のうち赤変しなかった部分を炭酸化部分とみなして、JIS A 1152に準拠して、その深さをノギスで10点測定し、平均値を炭酸化深さとして求めた。

(ii) 試料調整
材齢7日まで炭酸化養生後、炭酸化深さを確認した供試体を用い、湿式カッタにて断面方向に厚さ5mm程度に切り出した。その後、断面にフェノールフタレイン1％溶液を嘔霧し、炭酸化部と未炭酸化部にニッパで切り分けて、それぞれアセトンに24時間以上浸漬して水和停止を行った。その後、デシケータ内に試料を入れ、24時間の真空乾燥を行った。

(iii) 鉱物組成
調整後の炭酸化部の試料をメノウ乳鉢で粉砕し、粉末X線回折装置（リガク製、Miniflex、X線源：CuKα）にて鉱物組成を検証した。

(iv) 絶乾密度、空隙率
調整後の炭酸化部および未炭酸化部の試料を用いて、水銀圧入式ポロシメータ（島津製作所製、オートボア9550）にて、3nm〜350μmの細孔径分布、空隙率および絶乾密度を測定した。なお、絶乾密度は、同装置にてステム内に投入した試料の質量と、圧入した水銀の体積をもとに自動的に計測された値を用いることとした。

−28−
(v) 熱分析
調整後の炭酸化部の試料をメノウ乳鉢で粉砕し、示差熱・熱重量分析TG-DTA（リガク製、TermoPlus2）により、1,000℃までの試料の質量減少率を求めた。

(vi) 無機炭素分析
調整後の炭酸化部の試料をメノウ乳鉢で粉砕し、全炭酸濃度測定装置（日本アンス製、クーロメータ）にて硬化体中の全炭素量を定量した。調整後の試料0.04gに対して、装置内で塩酸1:純水3の溶液を4cc滴下した。滴下から12分間で発生するCO₂ガスを吸着液（モノエタノールアミン）に採取し、全炭素量として定量された値をCO₂量に換算することによって炭酸化部におけるCO₂含有量を求めた。
3.2.2 実験結果

（1）炭酸化深さ

混和材置換率と材齢7日における炭酸化深さの関係を図3.2-1に示す。混和材種類によらず、置換率の増加とともに炭酸化深さは増大した。LSについては、置換率50%以上で材齢7日時点でφ50×100mmの全面が炭酸化した。混和材置換率の増加によってW/Cが増大し、CO₂が内部まで浸透したためと考えられる。また、BFSやγ-C₂Sを用いたセメントベースト（以下、BFS配合、γ-C₂S配合と称す）は、LSを用いたセメントベースト（以下、LS配合と称す）に比べて同一置換率における炭酸化深さが小さい結果となった。γ-C₂S配合についてはCO₂と炭酸化応応によって組織が緻密化したことに起因すると考えられる。BFS配合については、養生温度が60℃であったことから、CO₂との炭酸化応応に加えて、高温作用によるBFS自体の応応促進【2】も影響しているものと考えられる。

図3.2-1 混和材置換率と炭酸化深さ
次に、BFS配合およびγ-C₂S配合における、材齢の平方根と炭酸化深さの関係を図3.2-2に示す。BFS配合、γ-C₂S配合ともに、置換率70％では材齢14日で全面炭酸化したため、材齢7日時点の1点のデータによる回帰とした。同図をもとに、本検討における炭酸化の進行が√t則に従うと仮定したときの、各混和材置換率と炭酸化速度係数の関係を図3.2-3に示す。今回の配合条件および養生条件においては、BFS配合およびγ-C₂S配合の炭酸化速度係数がほぼ同等となった。

図3.2-2 炭酸化深さの経時変化

図3.2-3 混和材置換率と炭酸化速度係数の関係
（2）鉱物組成

BFS配合の、材齢7日時点で炭酸化部における粉末X線の回折パターンを図3.2-4に示す。BFSをセメント代替として用いた場合、置換率の増加に伴って、CaCO₃の結晶多形の1つであるCalciteのピークが減少し、CaCO₃の結晶多形であるVateriteのピークが増加している。これについて伊代田ら【3】は、材齢28日まで20℃水中養生を行った高炉セメントの炭酸化によるCaCO₃の生成に関して、高炉スラグ微粉末の混入によってCalciteとVateriteの生成割合が変化すること、および、CO₂濃度が高くなるとC-S-Hの崩壊に伴うVateriteの生成が起こると報告している。また、既往の検討において、高炉スラグ微粉末を用いたコンクリートにて生成された低Ca/Si比のC-S-Hが炭酸化することで、Vateriteが生成することが知られている【4】。本研究においては、材齢初期から60℃の高温で、かつCO₂濃度20％の環境下で炭酸化させている点でこれらの研究とは条件が異なるものの、高炉スラグ微粉末を用いたセメント系材料を炭酸化することによってVateriteが生成しやすくなるという傾向は同様であった。

図3.2-4 粉末X線回折試験結果（BFS）
次に，γ-C2S配合の材齢7日時点での炭酸化部における粉末X線の回折パターンを図3.2-5に示す。γ-C2S配合においても，BFS配合と同様にCalciteおよびVateriteのピークが確認された。また，いずれの置換率においてもCalciteのピークが卓越する結果となった。渡邉ら【5】は，水結合材比30％，γ-C2S置換率30％のセメントベーストを温度50℃，湿度60％RH，CO₂濃度20％の環境下で炭酸化させた際，炭酸化初期にはCalciteが主として生成し，炭酸化養生日数の増加に伴って，徐々にVateriteが増加する結果を得ている。この理由について渡邉らは，CalciteはCa(OH)₂に起因して生成【6】し，VateriteはC-S-Hの炭酸化およびγ-C2Sの炭酸化による【6】と考察している。本試験結果は材齢7日時点のものであり，材齢が短かったために，VateriteよりもCalciteが多く生成されたと考えられる。

図 3.2-5 粉末X線回折試験結果（γ-C₂S）
LS配合の材齢7日時点での炭酸化部における粉末X線の回折パターンを図 3.2-6に示す。LS配合については、置換率の増加に伴ってCalciteのピークのみが卓越する傾向が得られた。これは、炭酸化養生によって生成されるCaCO₃がCalcite主体であることに加え、セメントに置換したLSに存在するCalciteのピークが表れていると考えられる。なお、LS配合において、Vateriteのピークは確認されなかった。

![図 3.2-6 粉末X線回折試験結果（LSP）](image-url)
（3）空隙率と細孔径分布

BFS配合, γ-C₃S配合およびLS配合の未炭酸化部および炭酸化部における空隙率を, 混和材置換率との関係として整理した結果を図 3.2-7に示す。なお, 同試験結果は材齢7日時点のものであり, LS配合の置換率50％, 70％については全面炭酸化していたことから, 未炭酸化部のデータは取得していいない。また, BFS配合およびγ-C₃S配合の置換率70％については, φ50×100mmの円柱供試体の材齢7目時点の炭酸化深さが20mm程度であり, 未炭酸化部は中心部にごくわずか残る程度であった。このため, 空隙率を計測するための試料が採取できなかったことから, 未炭酸化部のデータは取得していない。

まず未炭酸化部に着目すると, γ-C₃S配合およびLS配合においては, 置換率の増加に伴って空隙率が大きくなる傾向が得られた。これは, γ-C₃SおよびLSが水和しないためと考えられる。一方, BFS配合においては, 置換率の増加によって空隙率は同等もしくはやや小さくなる結果となった。これは, 60℃の高温環境の影響でBFSの反応が活性化して, 組織が緻密化したものと考えられる。一方, 炭酸化部に着目すると, LS配合は置換率の増加に伴って空隙率が大きく増加する傾向となったが, BFS配合およびγ-C₃S配合においては, 置換率が増加しても空隙率はほぼ変わらない結果となった。
そこで、BFS配合とγ-C3S配合について、炭酸化部と未炭酸化部における材齢7日の細孔径分布を図3.2-8および図3.2-9に示す。BFS配合について、未炭酸化部においては、BFS置換率が高いほど100nm以下の空隙が減少し、代わりに10nm以下の微小な空隙が増加する傾向が確認された。このことは、高温の作用によってBFSの反応性が高まってC-S-Hの生成が活発化したことを示唆している。一方、炭酸化部では、BFS置換率30%、50%において、未炭酸化部に比べて総細孔容積は少ないものの、数10〜100nmの空隙の割合が多く、比較的粗大な細孔構造となっていることが確認された。すなわち、炭酸化部ではBFSの反応によるC-S-Hの生成が、未炭酸化部に比べて少ないと考えられる。

これらの考察と、前掲したBFSの置換によるVateriteの生成を踏まえると、BFSを用いたセメントベーストを高温環境下で炭酸化養生した場合には、高温の作用でBFSに含まれるCaやSiの細孔溶液中への溶解速度が向上する一方、細孔溶液中に大量に溶解した炭酸イオンとCaの反応が進行し、C-S-Hが生成されにくく、CalciteやVateriteが多量に生成した結果、総細孔容積は減少するものの、比較的粗大な細孔径分布になったと考えられる。

図3.2-8 BFSを置換したセメントベーストにおける細孔径分布
次に、γ-C2S配合については、図3.2-9に示すように、未炭酸化部では粗大な細孔径分布となるが、炭酸化部については1μm以下の空隙が大幅に低減される結果となった。これは、γ-C2Sの炭酸化によって生成されたCalciteやVateriteが空隙を充填したためと考えられる。また、γ-C2S配合の炭酸化部における細孔径分布は、BFSの細孔径分布に類似する結果となった。以上、ここまでの結果を踏まえると、本検討にて取得されたデータの範囲では、BFSおよびγ-C2SをOPCに置換した場合、炭酸化速度係数がほぼ同等になり、炭酸化に伴う細孔構造の変化の様子は大きく異なるものの、炭酸化部における細孔径分布や空隙率、鉱物組成は類似した形になると考えられた。

図 3.2-9 γ-C2Sを置換したセメントベーストの細孔径分布
（4）炭酸化による密度変化と CO₂固定量評価への適用性

炭酸化によってCalciteやVateriteが空隙を充填して空隙率が減少することから、これに伴う密度の変化からセメントベーストへのCO₂固定量の評価を試みた。BFS配合、γ-C₂S配合およびLS配合の、未炭酸化部および炭酸化部における絶乾密度を混和材置換率との関係として整理した結果を図 3.2-10に示す。なお、同試験結果は材齢7日時点のものであり、図3.2-7と同様に、全面炭酸化していたBFS-70%，γ-C₂S-70%，LS-50%，LS-70%については未炭酸化部のデータは取得できていない。

混和材の種類や置換率によらず、炭酸化部は未炭酸化部に比べて絶乾密度が高くなる結果が得られた。まず未炭酸化部に着目すると、γ-C₂S配合およびLS配合は置換率の増加とともに絶乾密度が低下する結果となった。空隙率の結果と同様に、水和しないγ-C₂SやLSをセメントに置換することでW/Cが大きくなり、水和に用いられる結合水量が少なくなった結果、絶乾密度が低下したと考えられる。一方、BFS配合においては、高温の作用によってBFS自体の反応が促進されたことで、結合水量がγ-C₂S配合やLS配合に比べて多くなったために、置換率によらず絶乾密度が変化しなかったと考えられる。

次に炭酸化部に着目すると、BFS配合やγ-C₂S配合では、LS配合に比べて、置換率の増加に伴う絶乾密度の低下が小さかった。LSをセメントに置換した場合には、CO₂を固定するセメントの量が減少するために絶乾密度が低下するが、BFSやγ-C₂Sをセメントに置換した場合は、前掲のとおり、高炉スラグ微粉末やγ-C₂Sに含まれるCaが炭酸化によってCalciteやVateriteとしてCO₂を固定したため、絶乾密度が低下しなかったと考えられる。

![図 3.2-10 未炭酸化部（左）と炭酸化部（右）における混和材置換率と乾燥密度の関係](image-url)
以上の結果を踏まえて、各混和材の置換率と、炭酸化部と未炭酸化部における密度差との関係を図3.2-11に示す。γ-C₃S配合においては、密度差は置換率とともにやや増加する傾向にあり、γ-C₃S置換率50%において、炭酸化部の密度が未炭酸化部に比べて約300kg/m³増加した。炭酸化反応の過程においては、例えばセメントの水和で生じたCa(OH)₂の炭酸化のように、CO₂を取り込むと同時にH₂Oを放出する反応もあることから、実際にこの密度差よりも多い量のCO₂が固定されている可能性がある。しかしながら、CO₂固定量を少なめに評価することが許容される仮定のもとであれば、γ-C₃Sをセメントの一部に置換したセメント系材料に対して炭酸化によるCO₂固定量を評価する場合には、未炭酸化部と炭酸化部の密度差を用いることができる可能性がある。

一方、BFS配合やLS配合についても、炭酸化部と未炭酸化部で密度差が200kg/m³以上生じているものの、BFS配合においては置換率の増加とともに密度差が小さくなる傾向が得られた。図3.2-10に示した通り、BFS配合では未炭酸化部においてもBFS自体の反応によって結合水量が増加する結果、密度が小さくならない。この影響により、BFSを用いたセメントベーストの密度差では、CO₂固定量を過小評価してしまう可能性がある。
（5）熱分析にて得られるCO₂固定量

各配合の炭酸化部における温度と熱分析にて得られる質量変化率の関係を図3.2-12に示す。まず、既往の研究【7】に従って600℃までの範囲を結合水量が消失する範囲と考えると、BFS配合およびγ-C₂S配合では、結合水量が置換率によらずほぼ変わらない結果となった。γ-C₂Sは水とは反応しないものの、炭酸化した領域ではγ-C₂SもBFSと同等程度に反応して結合水を持つ鉱物が生成されている可能性がある。

図3.2-12 各配合の炭酸化部における1,000℃までの質量減少率（材齢7日）

次にCO₂固定量を評価した。第2章で述べたとおり、熱分析の結果からCO₂固定量を評価するときの温度範囲は研究者によってやや異なる。本研究では、表3.2-1に示した化学組成の石灰石微粉末を対象とした熱分析を実施し、図3.2-13に示す結果を得たうえで、CaCO₃の脱炭酸（CaCO₃→CaO+CO₂↑）によって質量が減少する範囲を600〜850℃と設定した。

図3.2-13 石灰石微粉末におけるTG-DTA測定結果
各混和材の置換率と、600〜850℃の質量減少率との関係を図3.2-14に示す。これによると、BFS配合およびγ-C2S配合は、置換率の増加に伴って質量減少率が漸減するものの、15〜20%程度の質量が減少した。このことから、炭酸化によって大量のCO₂が固定されていたことが伺える。なお、LS配合は置換率の増加とともに質量減少率が線形で増加しているが、これは、LS自体の脱炭酸による質量減少も含まれるためである。

図3.2-14 混和材置換率と600〜850℃の質量減少率

ここで、この質量減少率(%)に、図3.2-10に示した炭酸化部における絶乾密度(kg/m³)を掛け合わせて、炭酸化部におけるセメントペースト1m³あたりのCO₂固定量を算出した結果を図3.2-15に示す。なお、LS配合については、LSに含まれるCO₂量を表3.2-2に示したLSの単位量(kg/m³)から算出したうえでCO₂固定量から差し引いて示した。BFS配合とγ-C2S配合のCO₂固定量は置換率によらずほぼ同等であり、LS配合に比べて大きい結果となった。

図3.2-15 混和材置換率とCO₂固定量の関係
（6）無機炭素分析にて得られるCO₂固定量

各混和材の置換率と、無機炭素分析にて得られた炭酸化部におけるCO₂含有率との関係を図3.2-16に示す。LS配合は置換率の増加とともに質量減少率が線形で増加しているが、これは、熱分析の評価と同様に、LS自体に含まれるCO₂量も併せて評価されてしまうためである。BFS配合およびγ-C₂S配合のCO₂含有率は15〜25%程度となった。次に、図3.2-16に示したCO₂含有率(%)に、図3.2-10に示した炭酸化部における浄乾密度(kg/m³)を掛け合わせて、炭酸化部におけるセメントベースト1m³あたりのCO₂固定量を算出した結果を図3.2-17に示す。なお、LS配合については、もともとLSに含まれるCO₂量を差し引いて示した。これによると、いずれの配合においても、熱分析にて得られたCO₂固定量よりもやや大きい値が得られた。また、BFS配合とγ-C₂S配合で比較すると、混和材置換率の増加に伴って、γ-C₂S配合とBFS配合のCO₂固定量の差が大きくなる結果となった。本検討では、生成された鉱物の組成や非晶質の量を定量的に評価できていないことから、明確な理由を考察することはできないものの、BFSの置換率が増加することで、CO₂を固定可能な水和物の量が減少すると考えられる。一方、γ-C₂Sは直接CO₂と反応【8】することから、置換率を高めてもCO₂固定量が大きく変化しなかったものと考えられる。

図3.2-16 無機炭素分析によるCO₂含有率測定結果
図 3.2-17 無機炭素分析から得られるCO₂固定量

図 3.2-18 分析方法がCO₂固定量に及ぼす影響

（7）CO₂固定量の総合評価

熱分析の結果から算出したCO₂固定量と無機炭素分析の結果から算出したCO₂固定量との関係を図 3.2-18に示す。無機炭素分析にて得られたCO₂固定量は、熱分析にて得られたCO₂固定量の約1.4倍程度であった。高温環境下で高濃度のCO₂と反応させた本検討の範囲では、BFSやγ-C₂Sをセメント代替として用いて炭酸化養生を行うと、CO₂はCaCO₃以外の形【9】でも固定された可能性がある。
次に、既往の検討事例【10】に準拠し、各配合におけるセメントならびに各混和材に含まれるCaO量（LSのCaOは除く）のモル数と、無機炭素分析にて得られたCO₂固定量のモル数から、仮にCaOがすべてCaCO₃の形でCO₂を固定したときを100％と考え、CaO反応率を算出した。

混和材置換率と無機炭素分析にて得られたCO₂固定量をもとに算定したCaO反応率の関係を図3.2-19に示す。BFS配合およびγ-C₂S配合については、結合材中のCaO量の60〜70％程度がCO₂を固定したという結果が得られた。金ら【11】によると、高炉スラグ微粉末を50%置換したW/C=40%のセメントベーストを材齢7日まで水中養生後、CO₂濃度10%の環境下にて28日間炭酸化させたときCO₂固定量は、含有するCaO量の64%程度との結果が得られており、本試験結果はこの数値と類似している。一方で、LS配合については、置換率が高いほどCaO反応率が高まる結果となった。LSでセメントを置換した場合、W/Cが増加することで早期にCO₂が内部まで浸透し、水和物がCO₂と接する時間が長くなったことや、W/Cが非常に大きいことから、生成される水和物自体がCO₂を固定しやすい組成になっていた可能性が考えられる。

以上、これまでの検討をまとめると、本検討の範囲においては、BFSやγ-C₂Sは、いずれも材齢7日でCaOに対して約60〜70%程度の大量のCO₂を固定でき、炭酸化反応に伴う空隙の充填に対しても同様の効果が得られることが明らかとなった。また、無機炭素分析の結果、CO₂固定能力はBFSよりもγ-C₂Sのほうが高いことを確認した。なお、CO₂固定量については、材齢の増加とともにその量が増える可能性があり、また、W/C等の配合条件によっても変化する可能性があることから、今後の検討課題である。
3.3 γ-C₂S の CO₂ 排出量に関する検討

3.3.1 実験概要

3.2節に示した通り、高炉スラグ微粉末ならびにγ-C₂Sは炭酸化に対して高い活性を有すること、および高い CO₂固定能力を有することが明らかになった。しかしながら、γ-C₂Sが製造時に大量に CO₂排出する材料であれば、セメント代替に伴う CO₂排出量の削減効果も少なくなってしまう。また、γ-C₂Sは定常的に生産されるものでないことから、ロータリーキルンで安定的に製造できるかどうか、その製造方法も課題である。ここでは、γ-C₂Sの大量製造性の確認、および製造時の CO₂排出量の評価を目的として検討を実施した。

3.3.2 γ-C₂S を製造するための条件

工業原料を用いてγ-C₂Sの合成条件を検討した例は極めて少ない。試薬を用いて不純物の存在を無視できる純粋な CaO-SiO₂系でβ-C₂Sの生成条件を検討した研究【12】によると、α型の状態から急冷する方法やγ-C₂Sを再熱処理する方法によってβ-C₂Sが生成するが、それ以外はγ-C₂Sが生成すると報告されている。一方、C₂Sの形態に及ぼす不純物の影響についても報告されており、関らはβ-C₂Sの安定化の条件をまとめている【13】。その条件は表 3.3-1に示すように大きく4つある。言い換えれば、この4条件に当てはまらない場合にはγ-C₂Sが得られると言える。

また、工業原料を用いた場合、Al₂O₃やFe₂O₃の混入が無視できない。これらは多くの工業原料中に存在する確率が高い成分で、かつ表 3.3-1に示すようにC₂Sをβ-C₂Sとして安定化させる役割を担うため、γ-C₂Sを得るとする場合には制御しなければならない。
表 3.3-1 β-C$_2$S を安定的に生産するための条件

<table>
<thead>
<tr>
<th></th>
<th>Steady condition of β-C$_2$S</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B$^{3+}$や P$^{3+}$などの Si$^{4+}$よりイオン半径の小さいイオンで置換した場合</td>
<td>Schwiete et al., Zem.-Kalk-Gips, Vol.21, No.9, 359, 1968</td>
</tr>
<tr>
<td>2</td>
<td>Ba$^{2+}$や Sr$^{2+}$などの Ca$^{2+}$よりイオン半径の大きいイオンで置換した場合</td>
<td>柴田純夫ほか，窯業協会誌，Vol.92, No.2, 71, 1984</td>
</tr>
<tr>
<td>3</td>
<td>Fe$_2$O$_3$を5mass%以上添加する。ただし，FeO は逆にγ型の生成を促す。</td>
<td>Mittel et al., Tonind-Ztg., Vol.93, No.6, 197, 1969</td>
</tr>
<tr>
<td>4</td>
<td>Al や Mo を添加し，アルミン酸塩やモリブデン酸塩で C$_2$S を包みβ型とする。</td>
<td>Niesel et al., Tonind-Ztg., Vol.93, No.6, 197, 1969</td>
</tr>
</tbody>
</table>

3.3.3 使用材料と配合

表 3.3-2 に本実験で使用した材料の化学成分を示す。CaO 原料として船尾鉱山産石灰石を，SiO$_2$ 原料として三養基興業所製のケイ石微粉を選定した。石灰石は炭酸カルシウムとして98mass%以上の純度の高いものである。ケイ石微粉は SiO$_2$ 分が95mass%以上の純度の高いものであるが，γ型の生成を阻害する成分の Fe$_2$O$_3$ が0.27%，Al$_2$O$_3$ が2.7mass%程度含まれている。これらを合わせると約3mass%となる。

石灰石 74.4mass%とケイ石 25.6mass%を配合して混合粉砕処理を行って原料とした。これはCaO/SiO$_2$ モル比で1.9に相当する。γ-C$_2$S の理論 CaO/SiO$_2$ モル比は2.0であるが，C$_3$S の副生や遊離石灰の副生を避けるため，理論値よりもやや低めの設定とした。また，CaO 原料として，カルシウムカーバイドからアセチレンガスを発生するプロセスで副生する消石灰も用いた。

表 3.3-2 使用材料の化学組成（mass%）

<table>
<thead>
<tr>
<th>Material</th>
<th>LOI</th>
<th>SiO$_2$</th>
<th>Fe$_2$O$_3$</th>
<th>Al$_2$O$_3$</th>
<th>CaO</th>
<th>MgO</th>
<th>Na$_2$O</th>
<th>K$_2$O</th>
<th>TiO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSP</td>
<td>43.57</td>
<td>0.10</td>
<td>0.02</td>
<td>0.05</td>
<td>55.40</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>0.51</td>
<td>95.83</td>
<td>0.27</td>
<td>2.71</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
<td>0.52</td>
<td>0.23</td>
</tr>
<tr>
<td>CH</td>
<td>24.2</td>
<td>0.90</td>
<td>0.20</td>
<td>0.30</td>
<td>72.4</td>
<td>0.05</td>
<td>0.06</td>
<td>0.02</td>
<td>0.03</td>
</tr>
</tbody>
</table>
3.3.4 ロータリーキルンによる焼成方法

本検討に用いたリータリーキルンの概要を図 3.3-1 に示す。キルンは長さ 25m, 外径 1.0～1.2m, 内径 0.77～0.97m で, クーラーは約 10m である。焼成工程は (1) 原料調製, (2) 造粒, (3) 焼成, (4) 冷却の順序である。粉末原料を混合粉碎工程にかけて調整した後, 水と混合原料とを練りこみ団子状に成型して造粒した。この際の水量は粉体×15～20mass%の範囲であった。焼成はバーナーの焼点温度で管理し, 放射温度計を用いて 1,450℃～1,530℃で行った。この際, 原料のフィード量は 900～1,000kg/hr であった。冷却はクーラーを通じて行ったが, 特別な徐冷処置は行っていない。

![図 3.3-1 ロータリーキルンの概要](image)

3.3.5 実験結果

キルン内から直接採取したサンプルを大気中で急冷した場合の状態を図 3.3-2 に示す。取り出してから 3 分くらいでダスティング（粉化）現象が始まり, 10 分後には完全にダスティングした。本観察では意図的に急冷条件でダスティング現象が生じるかどうかを確認したものであるが, 大気中で暴露するレベルの急冷でも γ-C_2S の生成に特有のダスティング現象が観察された。すなわち, 特別な徐冷操作を行わなくても γ-C_2S の製造が可能と考えられる。
図 3.3-3 に焼成後のサンプルの粉末 X 線回折法（XRD）による測定結果を示す。γ-C₃S が主体であり、β-C₃S は認められなかった。焼成後、クーラーを通して冷却しているが、前述のとおり、この際に特別な冷却操作を行っていない。つまり、徐冷操作を行わなくてもγ-C₃S を得ることができた。

表 3.3-3 に焼成後に得られたサンプルの化学成分を示す。不溶解残分（Insol.）や遊離石灰（f-CaO）が少ないとおり、焼成反応が十分に進行していることがうかがえる。得られたサンプル中の Al₂O₃ は約 1.7mass%で、Fe₂O₃ は約 0.1mass%だった。C₃S としてこの程度の不純物含有量ではγ-C₃S の製造には支障がないと考えられる。

<table>
<thead>
<tr>
<th></th>
<th>LOI</th>
<th>Insol.</th>
<th>SiO₂</th>
<th>Fe₂O₃</th>
<th>Al₂O₃</th>
<th>CaO</th>
<th>MgO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>TiO₂</th>
<th>f-CaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ-C₃S</td>
<td>0.12</td>
<td>0.08</td>
<td>35.00</td>
<td>0.06</td>
<td>1.68</td>
<td>61.90</td>
<td>0.50</td>
<td>0.02</td>
<td>0.18</td>
<td>0.06</td>
<td>0.61</td>
</tr>
</tbody>
</table>
図 3.3-3 焼成したサンプルの鉱物組成

3.3.6 γ-C2S の製造にかかる CO2 排出量の試算

（1）石灰石とケイ石から γ-C2S を製造するときの CO2 排出量

γ-C2S を製造するときの CO2 排出量を求めるには、少なくとも、(a) 用いた原料の採掘・輸送に伴う CO2 排出量原単位、(b) 石灰石の脱炭酸、(c) 燃料の燃焼に伴う CO2 発生の 3 つを考える必要がある。そこで、それぞれの項目について CO2 排出原単位を整理した。なお、実際には原料の採掘後に、混合粉砕工程でも動力を使用するために CO2 排出が発生する。しかしながら、今回は既に粉末になっている原料を混合する目的で粉砕機を通したため、この工程に係る動力とそれに伴う CO2 排出量はわずかであったために無視することとした。

(i) 原料の CO2 排出量原単位

石灰石の CO2 排出量原単位は既往の研究にて取りまとめられている 16.7kg-CO2/t を用いた【14】。これは原石の採掘や粉砕、横持ちなどに係る CO2 排出量を考慮した値である。ケイ石微粉末については、CO2 排出量原単位の公表値が見当たらないため、石灰石と同じ値（16.7kg-CO2/t）を用いることとした。式 [1] に従って γ-C2S が焼成されたとすると、2mol の CaCO3（分子量: 100）と 1mol の SiO2（分子量: 60）から、1mol の 2CaO・SiO2（分子量: 172）が生成され、2mol の CO2（分子量: 44）が発生することとなる。1t の γ-C2S（= 5.81kmol）を製造するのに、5.81kmol×2=11.62kmol の CaCO3
(1.162t) と、5.81kmol×1＝5.81kmol の SiO₂ (0.347t) が必要となる。すなわち、γ-C₃S を 1t 製造するのに必要な原料の CO₂ 排出量原単位は 16.7kg-CO₂/t×(1.162+0.347) = 25.3kg-CO₂ となる。

\[2\text{CaCO}_3 + \text{SiO}_2 \rightarrow 2\text{CaO} \cdot \text{SiO}_2 + 2\text{CO}_2 \]

[iii) 石灰石の炭酸化による CO₂ 排出量]

前掲の式[1]に従って γ-C₃S が焼成されたとすると、1mol の 2CaO・SiO₂（分子量：172）が生成されるときには 1mol の CO₂（分子量：44）が炭酸化によって発生することから、1t の γ-C₃S 製造時の炭酸化による CO₂ 排出量は、1t×88/172＝0.511t-CO₂ と計算できる。

単純な計算においては、2mol×100＝200t の CaCO₃ と 1mol×60＝60t の SiO₂，すなわち 260t の原料造粒物から、1mol×172＝172t の 2CaO・SiO₂ が生成され、42mol×44＝88t の CO₂ が排出される。本検討においては、原料フィード量 950kg/hr で 29hr 運転したため、原料の投入量は 950kg/hr×29hr＝27.6t となる。上述した化学量論に基づく計算より、27.6t の原料から 27.6×172/260＝18.2t の γ-C₃S が生成されることとなる。この数値は、実際に本検討にて確保された γ-C₃S の量とほぼ一致しており、上述した理論上の CO₂ が炭酸化によって排出されていると考えてよいと思われる。

(iv) 合計

以上の結果より、γ-C₃S を 1t 製造したときの CO₂ 排出量は (25.3+511.0+159.3) kg-CO₂/t＝695.6kg-CO₂/t となる。一方、普通ポルトランドセメントと高炉 B 種セメントの CO₂ 排出量はそれぞれ 757.9kg-CO₂/t，458.7 kg-CO₂/t であり [14]，γ-C₃S の CO₂ 排出量は普通ポルトランドセメントより小さい値となった。なお，γ-C₃S は焼成後にダストィン
グ現象が起こるため，これをさらに粉砕せずにそのまま用いる場合には，粉砕に要する電力の CO₂排出量を加える必要がない。図 3.3-4 に γ-C₂S の製造に係る CO₂排出量を 100 分率で示した。これを見ると，石灰石の脱炭酸による割合が 73.5%と著しく大きな割合を占めている。このため，焼成時に CO₂を排出しない原料を選定することが CO₂排出量の低減に有効である。そこで，CaO 原料として炭酸カルシウムの石灰石を用いず，他の産業から副生する消石灰を用いた場合の CO₂排出量について検討した。

図 3.3-4 γ-C₂S 製造時の CO₂排出量に占める各工程の割合

(2) 水酸化カルシウムとケイ石から γ-C₂S を製造するときの CO₂排出量

まず，副生水酸化カルシウムとケイ石から γ-C₂S が生成するか確認した。CaO/SiO₂モル比を 2.0 として原料を配合し，1,450℃で 30 分間熱処理した。熱処理後に電気炉から取り出し，大気中で冷却したところ，γ-C₂S 特有のダスティング現象が認められた。また，熱処理後のサンプルを XRD 測定した結果，CaO 原料として石灰石を用いた場合と同様に γ-C₂S が生成していることを確認した。そこで，上述した手法で副生水酸化カルシウムとケイ石を用いたときの γ-C₂S 製造時における CO₂排出量を試算した。

CaO 原料として水酸化カルシウムを用いた場合には，原料そのものの CO₂排出量は無視した。本検討で用いた水酸化カルシウムは，採掘や粉砕に係る CO₂排出量がかからないことに加え，カルシウムカーバイドからアセチレンを生成する際に副産物として生じるものであり，かつ，γ-C₂S を製造するロータリーキルンが設置されている工場と同一箇所で発生
していることから、材料の横持ちに係る CO₂ 排出量が無視できるほど小さいためである。
また、CaO 原料が石灰石 (CaCO₃) ではないため燃焼時における原料の脱炭酸がなくなる。
したがって、燃料の燃焼による CO₂ 排出量のみを考えればよいため、γ-C₂S を製造するときの CO₂ 排出量は 159.3kg-CO₂/t と試算され、CO₂ 排出量をセメントの 1/5 程度まで大幅に低減できる。

その後の研究では、実際に副生水酸化カルシウムとケイ石微粉を用いた γ-C₂S の製造試験が行われている【15】。同研究においては、回収率等を踏まえつつも、本研究に比べて焼成にかかる燃料消費量が低減され、γ-C₂S 製造時の CO₂ 排出量は 124.5t-CO₂/t と導出されている。

3.3.7 材料の CO₂ 排出量を考慮した CO₂ の収支

3.2節で検討したセメントベーストの、材料起因の CO₂ 排出量を算出し、ベースト全面が炭酸化したと仮定したときの CO₂ 固定量との差から、炭酸化したセメントベーストの CO₂ 収支を評価した。各使用材料における CO₂ 排出量は、表 3.3-4 に示す CO₂ 排出原単位に配合量を掛け合わせて算出した。各配合における混和材置換率と CO₂ 排出量の関係を図 3.3-5 に示す。BFS、γ-C₂S ともに OPC に比べて CO₂ 排出原単位が少ないことから、置換率の増加とともに、CO₂ 排出量が減少する結果となった。

<table>
<thead>
<tr>
<th>材料</th>
<th>CO₂ 排出原単位 (kg-CO₂/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>普通ポルトランドセメント</td>
<td>766.6【16】</td>
</tr>
<tr>
<td>高炉スラグ微粉末</td>
<td>26.5【16】</td>
</tr>
<tr>
<td>γ-C₂S</td>
<td>124.5【15】</td>
</tr>
<tr>
<td>石灰石微粉末</td>
<td>16.1【16】</td>
</tr>
</tbody>
</table>
次に、図 3.2-17 に示した無機炭素分析にて得られた CO₂固定量を CO₂排出量から差し引いて、混和材置換率との関係を整理した結果を図 3.3-6 に示す。BFS、γ-C₂S どちらを用いた場合も、OPC に対して 70% 置換して全面を炭酸化させた場合、材料起因の CO₂排出量 - CO₂固定量がほぼゼロになる試算結果が得られた。空隙率の測定結果より、BFS、γ-C₂S いずれの混和材で OPC を置換した場合も、炭酸化させたときの空隙率は無置換とほぼ同等であったことから、OPC に BFS および γ-C₂S を置換したセメント系材料を高温環境下で高濃度の CO₂ と反応させることがで、硬化物性を維持しながら、材料起因の CO₂排出量を相殺できる程度の CO₂ をコンクリートに固定できる可能性があることが分かった。

図 3.3-5 混和材置換率と CO₂排出量の関係

図 3.3-6 CO₂固定量を踏まえた CO₂排出量の評価結果

-53-
3.4 指示薬を用いたコンクリートのCO₂固定量の簡易評価手法に関する検討

3.4.1 検討概要

前節までの検討によって、高炉スラグ微粉末とγ-C₂Sをポルトランドセメントに適宜置換しつつ、コンクリートを炭酸化養生することで、材料起因のCO₂排出量を相殺できるどの大量のCO₂をコンクリートに固定できる見通しが得られた。一方、前節までの検討で用いたCO₂固定量の評価方法である熱分析や無機炭素分析は、試料の微粉砕や酸への浸漬など複数の工程があり、分析に日数を要することから、炭酸化させたコンクリートを大量に製造したときのCO₂固定量の品質管理方法には適していないと考えられる。

ここで、炭酸化深さを評価するための一般的な手法としては、JIS A 1152に制定されている「コンクリートの中性化深さの測定方法」が挙げられる。同測定方法は、濃度1%のフェノールフタレイン溶液をコンクリートの割裂面に噴霧して、赤色を呈色しない範囲を中性化深さとして求めるものである。同手法は比較的簡易な評価手法であるものの、この呈色反応とコンクリートのCO₂固定量との相関を評価した例は少ない。ここでは、強制的に炭酸化したコンクリートの簡易なCO₂固定量評価方法として、pH指示薬呈色深さの適用性を把握することを目的として、検討を行った。

3.4.2 実験内容

（1）使用材料と配合

本検討に用いたコンクリートの使用材料を表3.4-1に、配合を表3.4-2に示す。前節での検討を鑑みて、結合材はポルトランドセメント、高炉スラグ微粉末、γ-C₂Sの割合を30%：40%：30%とした。また、石炭灰は骨材の一部に置換する思想とし、71kg/m³用いた。本配合における水粉体比W/Pは46%とし、ポルトランドセメント、高炉スラグ微粉末、γ-C₂Sを合わせた結合材W/Bは60%とした。

---54---
表 3.4-1 コンクリートの使用材料

<table>
<thead>
<tr>
<th>材料</th>
<th>記号</th>
<th>摘要</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>W</td>
<td>水道水</td>
</tr>
<tr>
<td>セメント</td>
<td>HPC</td>
<td>早強ポルトランドセメント 密度: 3.14g/cm³, 比表面積: 4,510cm²/g</td>
</tr>
<tr>
<td>混合材</td>
<td>BFS</td>
<td>高炉スラグ微粉末 密度: 2.91g/cm³, 比表面積: 4,400cm²/g</td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>サイクルトシド末 (γ) -C2S 密度: 3.00g/cm³, 比表面積: 2,010cm²/g</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>石炭灰 密度: 2.18g/cm³, 比表面積: 3,640cm²/g</td>
</tr>
<tr>
<td>細骨材</td>
<td>S</td>
<td>混合砂（陸砂 60 : 砕砂 40） 密度: 2.61g/cm³, FM: 2.64</td>
</tr>
<tr>
<td>粗骨材</td>
<td>G</td>
<td>砕石 Gmax=20mm 密度: 2.68g/cm³, FM: 6.62</td>
</tr>
<tr>
<td>混和剤</td>
<td>AD</td>
<td>AE 滅水剤 変性リグニンスルホン酸化合物とポリカルボン酸系化合物の複合体</td>
</tr>
<tr>
<td></td>
<td>AE</td>
<td>空気量調整剤 アニオン及びノニオン系特殊界面活性剤</td>
</tr>
</tbody>
</table>

表 3.4-2 コンクリートの配合

<table>
<thead>
<tr>
<th>W/P (%)</th>
<th>W/B (%)</th>
<th>s/a (%)</th>
<th>スランプ (cm)</th>
<th>空気量 (%)</th>
<th>単位量 (kg/m³)</th>
<th>AD (P×%)</th>
<th>AE (P×%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.0</td>
<td>60.0</td>
<td>45.0</td>
<td>8±2.5</td>
<td>4.5±1.5</td>
<td>W 172 C 86 BFS 115 γ 86 F 71 S 784 G 935</td>
<td>1.0</td>
<td>0.13</td>
</tr>
</tbody>
</table>

※B=HPC+BFS+γ
※P=HPC+BFS+γ+F
（2）コンクリートの製造と養生

このコンクリートを練り混ぜて歩車道境界ブロック C 種（上辺 18cm，下辺 21cm，高さ 30cm，長さ 60cm）製造用型枠に打ち込み，1 日後に脱型した。歩車道境界ブロックの図面を図 3.4-1 に示す。コンクリート施工時の外気温は 31℃，コンクリート温度は 27℃，スランプは 7.0cm，空気量は 3.6%であった。脱型後のコンクリートブロックを，炭酸化養生設備内に搬入し，6 日間炭酸化養生を行った。

写真 3.4-1 コンクリートのフレッシュ性状
（3）試験内容

炭酸化養生終了後のコンクリートブロックを槽内から取りだして割裂し、JIS A 1152に準拠してフェノールフタレイン 1%溶液を噴霧し、中性化深さを測定した。また、フェノールフタレインの濃度が中性化深さの測定結果に及ぼす影響を把握するために、0.1%および5%濃度のフェノールフタレイン溶液を噴霧して呈色深さを測定した。さらに、フェノールフタレイン溶液よりも高 pH 領域で呈色するアリザリンイエロー GG 0.1%溶液、アリザリンイエロー R 0.1%溶液、チモールフタレイン 0.1%溶液をそれぞれ割裂面に噴霧し、呈色深さを測定した。同材料、ならびにその他の pH 指示薬における呈色範囲と色調を表 3.4-3 ならびに図 3.4-2 に示す。さらに、これらの方法で測定した呈色深さと CO2 固定量との関係を把握するために、1%フェノールフタレイン溶液にて中性化と判断された部分と未中性化と判断された部分から試料を採取し、コンクリート表面からの CO2 固定量の分布を測定した。CO2 固定量は、無機炭素分析装置（クーロメータ）にて硬化体中の無機炭素量を定量し、CO2 量に換算して求めた。

表 3.4-3 各種 pH 指示薬の呈色領域と色調

<table>
<thead>
<tr>
<th>pH 指示薬</th>
<th>記号</th>
<th>呈色下限値</th>
<th>色調</th>
</tr>
</thead>
<tbody>
<tr>
<td>フェノールフタレイン</td>
<td>PP</td>
<td>8.3〜10.0</td>
<td>無色〜赤紫</td>
</tr>
<tr>
<td>チモールフタレイン</td>
<td>TP</td>
<td>9.3〜10.5</td>
<td>無色〜青</td>
</tr>
<tr>
<td>アリザリンイエロー GG</td>
<td>AY-GG</td>
<td>10.1〜11.1</td>
<td>無色〜黄色</td>
</tr>
<tr>
<td>アリザリンイエロー R</td>
<td>AY-R</td>
<td>10.1〜</td>
<td>無色〜黄褐色</td>
</tr>
</tbody>
</table>

図 3.4-2 pH 指示薬の種類と呈色領域

- 57 -
3.4.3 検討結果

(1) 各種 pH 指示薬の呈色深さ

各種 pH 指示薬を噴霧したときの、炭酸化養生 7 日におけるコンクリートの呈色状況を写真 3.4-2 および写真 3.4-3 に、呈色深さの測定結果を図 3.4-3 に示す。フェノールフタレイン溶液の濃度が高くなることで赤紫色が鮮明に呈色され、かつ呈色深さが若干小さくなることがわかった。表 3.4-3 に示すように pH 指示薬の呈色下限値には幅があり、フェノールフタレイン濃度が高いほど低い pH でも呈色するため、このような差が生じたものと考えられる。次に、pH 指示薬の違いに着目すると、同一濃度（0.1％）において、フェノールフタレインとチモールフタレイン、アリザリンイエロー-GG で呈色深さはほぼ同等であった。また、アリザリンイエロー-R の呈色深さが 15.4mm と最も小さくなった。

本検討で使用した 3 種類の pH 指示薬の呈色域は 8.3～11.1 であることから、コンクリート表面から 15.4mm～19.75mm の約 4mm の範囲で、大きな pH の変化が生じていると推察された。

![図 3.4-3 各種 pH 指示薬の呈色深さ]
写真 3.4-2 各種 pH 指示薬噴霧後の呈色状況（フェノールフタレイン）

写真 3.4-3 各種 pH 指示薬噴霧後の呈色状況
（2）中性化深さと CO₂固定量の分布

コンクリート表面からの深さと CO₂固定量の関係を図 3.4-4 に示す。ここで、CO₂固定量測定用の試料としては、深さ方向に表面～19.5mm（JIS A 1152 に準拠して測定した中性化深さ）、19.5～50mm、50～100mm にて試料を採取し、当該箇所の試料を全粉砕して測定に供した。図 3.4-4 より、中性化している表面～19.5mm では CO₂を大量に固定しているものの、それより内部ではほとんど CO₂が固定されていないという結果が得られた。前掲の pH 指示薬による呈色深さのばらつきが 4mm 程度の範囲であったこと、ならびに、同配合中の結合材に含まれる Ca 量から想定される CO₂固定量が約 100kg/m³程度と試算できることから、中性化深さまでの範囲はほぼ全域で CO₂を固定しているものと考えられた。

既往の研究では、硬化したコンクリートを CO₂濃度 10%の環境で促進中性化させた場合、コンクリート内の CO₂固定量は内部にだらかに分布するとされている【17】。本検討のように材齢初期から高濃度の CO₂とコンクリートを接触させる場合には、コンクリートと CO₂の反応は、浸透した CO₂がその場で直ちにセメント成分と反応し、その場での反応が終了したら内部に進む、“反応律速”になっている可能性が示された。また、コンクリートの CO₂固定領域は、フェノールフタレイン溶液 1%を用いた中性化深さで簡易的に評価できる可能性が示された。

![図 3.4-4 CO₂固定量の深度分布](image)
3.5 第3章のまとめ

第3章では、高炉スラグ微粉末、および CO₂と反応して硬化する性質を有する γ 型の 2CaO·SiO₂を対象に、各混和材が炭酸化したコンクリートの CO₂固定量に及ぼす影響を様々な分析手法によって評価した。また、混和材の CO₂排出量を評価し、材料起因の CO₂排出量と炭酸化による CO₂固定量の比較を行った。さらに、コンクリートの CO₂固定領域の簡易的な評価手法について検討を行った。得られた知見を以下にまとめる。

(1) 高炉スラグ微粉末および γ-C₃S をボルトランドセメントに置換すると、炭酸化速度係数がほぼ同等になり、炭酸化瀬における細孔分布や空隙率もほぼ同等となる。

(2) 高炉スラグ微粉末や γ-C₃S をセメント代替として用いて炭酸化養生を行ったセメントベーストの無機炭素分析にて得られた CO₂固定量は、熱分析にて得られた CO₂固定量よりも大きく、CO₂は CaCO₃以外の形でも固定される可能性がある。

(3) 本検討の範囲において、γ-C₃S は高炉スラグ微粉末よりもやや高い CO₂固定能力を示す。

(4) γ-C₃S 製造時の CO₂排出量を評価し、副産物として生じる消石灰を原料として γ-C₃Sが製造可能であること、およびそのときの CO₂排出量は一般的なボルトランドセメントにおける CO₂排出量の 1/5 程度であることを明らかにした。

(5) 高炉スラグ微粉末や γ-C₃S をセメントに置換したコンクリートを高温環境下で高濃度の CO₂と反応させることで、硬化物性を維持しつつ、材料起因の CO₂排出量を相殺できる程度の CO₂をコンクリートに固定できる可能性がある。

(6) 材齢初期から高濃度の CO₂にて炭酸化養生したコンクリートにおける CO₂固定領域の簡易的な評価法として、フェノールフタレイン法が適している可能性を見出した。
【3 章の参考文献】

【7】(社) 日本コンクリート工学協会: 「コンクリートの試験・分析マニュアル」, C-3 化学組成の分析－結合水, 2005

【10】Björn Lagerblad: Carbon dioxide uptake during concrete life cycle-State of the art, CBI Report2, pp.9-11, 2005

【12】山口悟郎, 鈴木一孝, 宮部久子: 純 CaO-SiO₂ 系における β-C₃S 生成の 2 つの条件と生成した β-C₃S の比較, セメント技術年報, No.11, pp.28-31, 1957
【13】関明ほか：ステンレス鋼スラグ粉化防止剤の開発，川崎製鉄技報，Vol.18, No.8，pp.20-24，1986

【14】土木学会：コンクリート技術シリーズ No.44，コンクリートの環境負荷評価，pp.1-25，2002

【15】庄司慎，樋口隆行，山本賢司，盛岡実：副生の水酸化カルシウムを用いた C₂S の製造と CO₂ 排出量原単位，セメント・コンクリート論文集，Vol.67，pp.553-558，2013

【16】(社) 土木学会：コンクリート構造物の環境性能照査指針（試案），コンクリートライブラリー125，2005

【17】張ほか：中性化によるコンクリート内の二酸化炭素吸収量分布，第 52 回セメント技術大会講演要旨，pp.262-263，1998
第4章
コンクリートの炭酸化速度に及ぼす要因の評価
4. コンクリートの炭酸化速度に及ぼす要因の評価

4.1 はじめに

第3章では、高炉スラグ微粉末およびγ-C₂Sをセメントに置換して炭酸化養生すること
de、材料起因のCO₂排出量を相殺できるほどのCO₂をコンクリートに固定できる可能性を
dした。本研究は、CO₂を大量に固定させる炭酸化養生を行うことから、プレキャストコ
ンクリートを対象としている。プレキャストコンクリートにおいては、製品の製造効率を
高めることが重要であり、コンクリートの炭酸化速度を向上させることが製品の製造効率
向上に効果的である。そこで本章では、炭酸化養生においてコンクリートに効率的にCO₂
を固定させるための条件について検討することとした。なお、第2章にて述べた既往の研
究の多くは、ある程度硬化したコンクリートを対象とした炭酸の進行に関するものであ
り、本研究のように、材齢初期からの炭酸化養生における炭酸の進行に関して検討され
た例は少ない。そこで、既往の研究を踏まえつつ、材料条件や配合条件、温度・湿度・CO₂
濃度などの環境条件、初期養生条件や部材厚さなどの製造条件等の各種条件がコンクリー
トの炭酸化速度に及ぼす影響を評価することとした。

4.2 使用材料および配合条件が炭酸化速度に及ぼす影響に関する検討

4.2.1 セメント種類およびγ-C₂Sの比表面積に着目した検討

（1）実験概要

本検討では、コンクリートの材料条件のうち、セメントの種類、およびγ-C₂Sの比表面
積がモルタルの炭酸化速度に及ぼす影響を把握するとともに、炭酸化したモルタルの硬化
物性を評価した。

（2）使用材料及び配合

使用材料を表4.2-1に、モルタルの配合を表4.2-2および表4.2-3に示す。水結合
材比W/B=45％で一定とし、γ-C₂Sを結合材の50％置換した配合をベースとして、セメント
種類を変えた配合を試験に供した。また、普通ポルトランドセメントをベースにしたモル
タルにて、γ-C₂Sの比表面積をパラメータとする配合を試験に供した。
表 4.2-1 使用材料

<table>
<thead>
<tr>
<th>材料</th>
<th>記号</th>
<th>摘要</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>W</td>
<td>水道水</td>
</tr>
<tr>
<td>セメント</td>
<td>C (OPC)</td>
<td>普通ポルトランドセメント：密度 3.16g/cm³，比表面積 3,310cm²/g</td>
</tr>
<tr>
<td></td>
<td>C (HPC)</td>
<td>早強ポルトランドセメント：密度 3.14g/cm³，比表面積 4,460cm²/g</td>
</tr>
<tr>
<td></td>
<td>C (LPC)</td>
<td>低熱ポルトランドセメント：密度 3.22g/cm³，中庸熱面積 3,510cm²/g</td>
</tr>
<tr>
<td></td>
<td>C (MPC)</td>
<td>中庸熱ポルトランドセメント：密度 3.21g/cm³，比表面積 2,910cm²/g</td>
</tr>
<tr>
<td>混和材</td>
<td>BFS</td>
<td>高炉スラグ微粉末：密度 2.91g/cm³，比表面積 3,990cm²/g</td>
</tr>
<tr>
<td></td>
<td>γ-2500</td>
<td>ダイカルシウムシリケートγ相（γ-C₂S），密度 2.85g/cm³，比表面積 2,500cm²/g</td>
</tr>
<tr>
<td></td>
<td>γ-4000</td>
<td>ダイカルシウムシリケートγ相（γ-C₂S），密度 2.85g/cm³，比表面積 4,000cm²/g</td>
</tr>
<tr>
<td></td>
<td>γ-8000</td>
<td>ダイカルシウムシリケートγ相（γ-C₂S），密度 2.85g/cm³，比表面積 8,000cm²/g</td>
</tr>
<tr>
<td>細骨材</td>
<td>S</td>
<td>砂砂，密度 2.63g/cm³，粗粒率 2.76</td>
</tr>
<tr>
<td>混和剤</td>
<td>AE</td>
<td>AE 剤，変性ロジン酸化合物系陰イオン界面活性剤</td>
</tr>
</tbody>
</table>

表 4.2-2 モルタルの配合

<table>
<thead>
<tr>
<th>セメント</th>
<th>W/B*</th>
<th>W/C</th>
<th>結合材構成割合(%)</th>
<th>単位量 (kg/m³)</th>
<th>AE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>C</td>
<td>BFS</td>
<td>γ-C₂S</td>
</tr>
<tr>
<td>OPC</td>
<td>45</td>
<td>90</td>
<td>50</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>HPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>180</td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※B=C+BFS+γ-C₂S
表 4.2-3 モルタルの配合

<table>
<thead>
<tr>
<th>配合</th>
<th>W/B%</th>
<th>W/C%</th>
<th>結合材構成割合(%)</th>
<th>単位量(kg/m³)</th>
<th>AE g/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C BFS γ-C₂S</td>
<td>W OPC BFS γ-C₂S S</td>
<td></td>
</tr>
<tr>
<td>γ-2500</td>
<td>45</td>
<td>90</td>
<td>50 0 50</td>
<td>261 290 290 1,326</td>
<td>58</td>
</tr>
<tr>
<td>γ-4000</td>
<td></td>
<td></td>
<td></td>
<td>261 290 290 1,325</td>
<td>58</td>
</tr>
<tr>
<td>γ-8000</td>
<td></td>
<td></td>
<td></td>
<td>261 290 290 1,331</td>
<td>58</td>
</tr>
</tbody>
</table>

※B=C+BFS+γ-C₂S

（3） 製造、養生および試験項目

材料を公称容量10リットルのモルタルミキサにて90秒練り混ぜた後、JIS R 5201およびJIS A 1128に準拠し、モルタルフローと空気量を測定した。各配合におけるモルタルフローは145〜163mm、空気量は4.2〜5.2%のあいだであり、セメント種類やγ-C₂Sの比表面積がフレッシュ性状に及ぼす影響は小さかった。フレッシュ性状確認後のモルタルを、φ50×100mmの型枠に詰めて供試体を採取した。打込みから1日間20℃、80％RHにて封締養生を行い、その後脱型して、さらに1日20℃水中養生を行った。材齢2日にて水から取り出し、温度60℃、湿度50％RH、CO₂濃度20％の環境で炭酸化養生を行った。材齢2日（炭酸化養生開始時）および材齢7日にてJIS A 1108に準拠して圧縮強度を計測し、材齢5、7、9日にてJIS A 1152に準拠して炭酸化深さを計測した。また、材齢7日にて炭酸化部を対象に水銀圧入式ポロシメータにて空隙率と細孔径分布（3nm〜350μm）を計測した。
（4）試験結果

(i) 炭酸化深さと圧縮強度

各配合における材齢と炭酸化深さの関係を図 4.2-1 および図 4.2-2 に示す。セメントの種類に着目すると、BB や LPC といった初期に強度発現しにくいセメントの炭酸化速度が他に比べて大きい結果となった。また、一般的な炭酸化の進行は時間の平方根に比例するとされているが、炭酸化の進行は時間に比例する形となった。

γ-C_{2}S の比表面積着目すると、γ-C_{2}S の比表面積が 8,000cm^{2}/g の配合においては、2,500cm^{2}/g や 4,000cm^{2}/g の配合に比べて炭酸化の進行が遅い結果となった。γ-C_{2}S の比表面積が大きい場合、γ-C_{2}S の炭酸化反応による緻密化が早期に生じ、その後の炭酸化の進行を遅らせた可能性がある。

図 4.2-1 セメント種類が炭酸化深さに及ぼす影響

図 4.2-2 γ-C_{2}S 比表面積と炭酸化深さの関係
次に、各配合における養生開始時、および材齢7日の圧縮強度を図4.2-3および図4.2-5に示す。セメント種類に着目すると、養生開始時の圧縮強度はLPCが最も低く、材齢7日の圧縮強度はLPCが最も高くなった。図4.2-1に示すように、LPCは炭酸化の進行が早く、他の供試体に比べて早期に内部まで炭酸化したことで、内部までγ-C2Sが反応して圧縮強度が高くなったと考えられる。一方で、LPCと同等の炭酸化速度であったBBは材齢7日における圧縮強度がLPCよりもやや小さくなった。材齢7日の時点では、LPCの水和反応の方が高炉スラグ微粉末における潜在水硬性より卓越し、このような結果になったと考えられる。

ここで、炭酸化養生開始時（材齢2日）の圧縮強度と、図4.2-1の結果をもとに算出した炭酸化速度係数の関係を図4.2-4に示す。本検討の範囲においては、養生開始時の圧縮強度が低いほど炭酸化が進行しやすい結果となった。炭酸化速度を高める策として、強度が低い段階から炭酸化養生を開始することが有効と考えられた。

図4.2-3 セメント種類が圧縮強度に及ぼす影響

図4.2-4 養生開始時圧縮強度と炭酸化速度係数
γ-C₂S の比表面積に着目すると、γ-C₂S の比表面積が大きいほど、微粉末効果によって養生開始時の圧縮強度が増加する傾向が確認された。一方、材齢 7 日の圧縮強度は、比表面積が 8,000cm²/g のものが最も小さくなった。γ-C₂S は水和しないことから、炭酸化深さが小さい比表面積 8,000cm²/g のγ-C₂S を用いた配合の圧縮強度がもっとも低くなったと考えられる。また、炭酸化深さが同等であるにもかかわらず、比表面積 4,000cm²/g の配合の材齢 7 日の圧縮強度が 2,500cm²/g よりも高い値となったのは、γ-C₂S の炭酸化反応が促進されたためと考える。

すなわち、本検討の範囲においては、炭酸化速度を確保しつつ、圧縮強度を高められるのは、γ-C₂S の比表面積が 4,000cm²/g の時と考えられた。ただし、これらの考察は本検討で用いた配合についての結果と考えられ、W/C 等が変われば最適な比表面積も変化する可能性がある。

![図 4.2-5 γ-C₂S 比表面積が圧縮強度に及ぼす影響](image)
(ii) 空隙率

セメント種類を変更したときの炭酸化部における空隙率を図 4.2-6 に示す。BB については他のセメント種類に比べて空隙率が大きい結果となったものの、それ以外のセメントについては、炭酸化部の空隙率に顕著な違いは見られなかった。前述の圧縮強度の考察と同様、BB については、材齢 7 日の時点では、高炉スラグ微粉末における潜在水硬性がセメントの水和反応に比べてその効果を十分に発揮できていないため、空隙率が大きくなったものと考えられる。

\(\gamma \)-C\(_2\)S の比表面積と空隙率の関係を図 4.2-7 に示す。\(\gamma \)-C\(_2\)S の比表面積が 8,000cm\(^2\)/g の配合においては、2,500cm\(^2\)/g や 4,000cm\(^2\)/g の配合に比べて空隙率が小さい結果となった。比表面積の増加によって \(\gamma \)-C\(_2\)S の反応性が向上したためと考えられる。

![図 4.2-6 セメント種類が炭酸化部の空隙率に及ぼす影響](image)

![図 4.2-7 \(\gamma \)-C\(_2\)S 比表面積が炭酸化部の空隙率に及ぼす影響](image)
水銀圧入式ポロシメータにて得られた細孔分布を図 4.2-8 および図 4.2-9 に示す。BB については他の配合に比べて 10nm 以下の微細な空隙が多い結果となった。また、LPC や MPC、BB は他に比べて 0.1～数μm の比較的粗大な空隙が多いことが分かった。LPC や BB の炭酸化が早期に進行したことを踏まえると、強度が低い状態から湿度 40％RH の環境で炭酸化養生を行ったことで、コンクリートの表層部が乾燥して、粗大な空隙が残存しつつ炭酸化が進行した可能性がある。γ-C2S の比表面積に着目すると、γ-C2S の比表面積が 8,000cm²/g の配合においては、2,500cm²/g や 4,000cm²/g の配合に比べて 0.4～1μm の大きさの空隙が減少していることが確認された。この付近の径の空隙の減少は、γ-C2S の炭酸化反応による CaCO₃ の生成に伴うものと考えられる【1】。

図 4.2-8 セメント種類が炭酸化部の細孔分布に及ぼす影響

図 4.2-9 γ-C₂S 比表面積が炭酸化部の細孔分布に及ぼす影響
4.2.2 水セメント比、空気量に着目した検討

（1）検討概要

コンクリートの配合条件のうち、炭酸化速度に影響を及ぼす要因として、水セメント比および空気量に着目した検討を行った。

（2）使用材料およびコンクリートの配合

使用材料を表4.2-4に示す。高炉セメントB種を用いたコンクリートを基本配合とし、産業副産物の有効利用の観点から、フライアッシュⅣ種相当の石炭灰原粉（以下、FA）を混和材として用いることとした。

コンクリートの配合を表4.2-5および表4.2-6に示す。水粉体比W/Pを30％、40％、50％とし、粉体に占めるFAの割合を30～70％に変化させた。なお、単位水量はすべての配合で一定とし、AE減水剤ならびに高性能AE減水剤を用いて、テストビースが採取可能な範囲で適意スランプおよびスランプフローを調整した。また、一般的なAE剤とフライアッシュ用AE剤を使い分けながら、空気量が4.5±1.5％の範囲に収まるように添加量を調整した。さらに、空気量の影響に関しては、W/P=30％、FA置換率50％の配合をベースとし、フライアッシュ用AE剤の添加量を調整することで空気量を変化させた配合とした。各配合のコンクリートにおけるフレッシュ性状は表4.2-7に示すとおりであった。

<table>
<thead>
<tr>
<th>材料</th>
<th>記号</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>セメント</td>
<td>BB</td>
<td>高炉セメントB種　密度=3.08g/cm³</td>
</tr>
<tr>
<td>細骨材</td>
<td>S</td>
<td>砕砂　密度=2.65g/cm³</td>
</tr>
<tr>
<td>粗骨材</td>
<td>G</td>
<td>砕石　密度=2.65g/cm³　Gmax=20mm、実積率64.3％</td>
</tr>
<tr>
<td>混和材</td>
<td>F</td>
<td>石炭灰原粉　密度=2.2g/cm³、フライアッシュⅣ種相当</td>
</tr>
<tr>
<td>混和剤</td>
<td>AD</td>
<td>リグニンスルホン酸化合物とポリオールの複合体</td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td>ポリカルボン酸エーテル系化合物と配向ポリマーの複合体</td>
</tr>
<tr>
<td></td>
<td>AE1</td>
<td>変性ポリジン酸化合物系陰イオン界面活性剤</td>
</tr>
<tr>
<td></td>
<td>AE2</td>
<td>アニオン及びノニオン系特殊界面活性剤 (フライアッシュ用AE剤)</td>
</tr>
</tbody>
</table>

表4.2-4 使用材料
表 4.2-5 コンクリートの配合（水セメント比の影響）

<table>
<thead>
<tr>
<th>No.</th>
<th>W/P %</th>
<th>W/BB %</th>
<th>F %</th>
<th>P×%</th>
<th>s/a %</th>
<th>Air%</th>
<th>単位量 kg/m³</th>
<th>AD P×%</th>
<th>SP P×%</th>
<th>AE1 P×%</th>
<th>AE2 P×%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td></td>
<td></td>
<td>47</td>
<td>165 330 0 849 956</td>
<td>0.25%</td>
<td></td>
<td>0.25%</td>
<td>0.25%</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>30</td>
<td>165</td>
<td>231</td>
<td>99</td>
<td>833</td>
<td>940</td>
<td>- 0.50%</td>
<td>- 0.50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>50</td>
<td>165</td>
<td>165</td>
<td>165</td>
<td>823</td>
<td>928</td>
<td>- 0.50%</td>
<td>- 1.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>47</td>
<td>165 413 0 695 918</td>
<td>0.25%</td>
<td>- 0.30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>57</td>
<td>30</td>
<td>165</td>
<td>289</td>
<td>124</td>
<td>795</td>
<td>898</td>
<td>- 0.80%</td>
<td>- 0.75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>50</td>
<td>165</td>
<td>207</td>
<td>206</td>
<td>783</td>
<td>882</td>
<td>- 0.80%</td>
<td>- 0.75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>133</td>
<td>70</td>
<td>165</td>
<td>124</td>
<td>289</td>
<td>770</td>
<td>868</td>
<td>- 0.80%</td>
<td>- 1.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>60</td>
<td>50</td>
<td></td>
<td></td>
<td>47</td>
<td>165 550 0 759 856</td>
<td>- 0.80%</td>
<td>0.60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>43</td>
<td>30</td>
<td>165</td>
<td>385</td>
<td>165</td>
<td>733</td>
<td>826</td>
<td>- 1.40%</td>
<td>- 0.75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>50</td>
<td>165</td>
<td>275</td>
<td>275</td>
<td>716</td>
<td>806</td>
<td>- 1.70%</td>
<td>- 0.75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>70</td>
<td>165</td>
<td>165</td>
<td>385</td>
<td>698</td>
<td>788</td>
<td>- 2.00%</td>
<td>- 1.00%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※P=BB+F

表 4.2-6 コンクリートの配合（空気量の影響）

<table>
<thead>
<tr>
<th>No.</th>
<th>W/P %</th>
<th>W/BB %</th>
<th>F %</th>
<th>P×%</th>
<th>Air%</th>
<th>単位量 kg/m³</th>
<th>AD P×%</th>
<th>SP</th>
<th>AE1 P×%</th>
<th>AE2 P×%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>60</td>
<td>50</td>
<td></td>
<td>47</td>
<td>165 275 275 716 806</td>
<td>- 1.50%</td>
<td>1.50%</td>
<td>2.50%</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>60</td>
<td>50</td>
<td></td>
<td>47</td>
<td>165 275 275 716 806</td>
<td>- 1.50%</td>
<td>1.50%</td>
<td>5.00%</td>
<td></td>
</tr>
</tbody>
</table>

※設計空気量は4.5％の配合とし、AE2添加量の調整で空気量を調整

－73－
表 4.2-7 フレッシュ性状確認試験結果

<table>
<thead>
<tr>
<th>No.</th>
<th>W/P</th>
<th>W/BB</th>
<th>F P ×%</th>
<th>AD P ×%</th>
<th>SP P ×%</th>
<th>AE1 P ×%</th>
<th>AE2 P ×%</th>
<th>スランプ cm</th>
<th>スランプ フロー cm</th>
<th>空気量 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>0</td>
<td>0.25</td>
<td>-</td>
<td>0.25</td>
<td>-</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>3.4</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>30</td>
<td>-</td>
<td>0.50</td>
<td>-</td>
<td>0.50</td>
<td>-</td>
<td>4.6</td>
<td>-</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>50</td>
<td>-</td>
<td>0.50</td>
<td>-</td>
<td>1.00</td>
<td>-</td>
<td>5.5</td>
<td>-</td>
<td>3.1</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>0</td>
<td>0.25</td>
<td>-</td>
<td>0.30</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>3.1</td>
</tr>
<tr>
<td>5</td>
<td>57</td>
<td>30</td>
<td>-</td>
<td>0.80</td>
<td>-</td>
<td>0.75</td>
<td>-</td>
<td>9.2</td>
<td>-</td>
<td>4.7</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>50</td>
<td>-</td>
<td>0.80</td>
<td>-</td>
<td>0.75</td>
<td>-</td>
<td>8.0</td>
<td>-</td>
<td>3.7</td>
</tr>
<tr>
<td>7</td>
<td>133</td>
<td>70</td>
<td>-</td>
<td>0.80</td>
<td>-</td>
<td>1.00</td>
<td>-</td>
<td>12.0</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>0</td>
<td>-</td>
<td>0.80</td>
<td>0.60</td>
<td>-</td>
<td>-</td>
<td>5.0</td>
<td>-</td>
<td>3.2</td>
</tr>
<tr>
<td>9</td>
<td>43</td>
<td>30</td>
<td>-</td>
<td>1.40</td>
<td>-</td>
<td>0.75</td>
<td>-</td>
<td>49.0</td>
<td>-</td>
<td>4.0</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>50</td>
<td>-</td>
<td>1.70</td>
<td>-</td>
<td>0.75</td>
<td>-</td>
<td>68.8</td>
<td>-</td>
<td>3.2※</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>70</td>
<td>-</td>
<td>2.00</td>
<td>-</td>
<td>1.00</td>
<td>-</td>
<td>80.5</td>
<td>-</td>
<td>3.1</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>50</td>
<td>-</td>
<td>1.50</td>
<td>-</td>
<td>2.50</td>
<td>-</td>
<td>54.0</td>
<td>-</td>
<td>4.7※</td>
</tr>
<tr>
<td>13</td>
<td>60</td>
<td>50</td>
<td>-</td>
<td>1.50</td>
<td>-</td>
<td>5.00</td>
<td>-</td>
<td>65.8</td>
<td>-</td>
<td>5.9※</td>
</tr>
</tbody>
</table>

※空気量の影響を検討

（3）製造、養生および試験項目

材料を公称容量 55 リットルの強制二軸ミキサに材料を投入し、30 秒練り混ぜた。その後、材料のかき落としを行ったうえで 30 秒練り混ぜ、高性能 AE 減水剤の効果を安定させる目的で 5 分静置した。5 分静置後に 30 秒練り混ぜてからミキサよりコンクリートを排出し、フレッシュ性状を確認した。

フレッシュ性状確認後のコンクリートを、φ100×200mm の型枠に詰めて供試体を採取した。打込みから 1 日間 20℃、80％RH にて封締養生を行い、その後脱型して、温度 50℃、湿度 50％RH、CO2 濃度 15％の環境で炭酸化養生を行った。材齢 4 日、7 日および 28 日にて JIS A 1108 に準拠して圧縮強度を計測するとともに、圧縮強度試験後の供試体を割裂して、JIS A 1152 に準拠して炭酸化深さを計測した。

−74−
（4）試験結果

(i) 水セメント比が炭酸化したコンクリートの圧縮強度に及ぼす影響

各 W/P における材齢と圧縮強度の関係を図 4.2-10 に示す。図中の凡例のうち、W/P の
あとの数値は水粉体比 W/P を、F の後の数値は石炭灰の置換率を示している。いずれの
W/P においても、石炭灰置換率の増加によって圧縮強度が低下する傾向が確認された。ま
た、W/P=50%で石炭灰を置換していない、高炉セメントのみの W/P50-F0 において、材齢
28 日で圧縮強度が約 60N/mm² となっており、50℃の高温と炭酸化の影響で、高炉スラグ微
粉末は同材齢においてもかなり反応していると考えられる。次に、BB/W と圧縮強度の関
係を整理した結果を図 4.2-11 に示す。材齢によらず、BB/W と圧縮強度には高い相関が
得られた。本試験のような高温環境においても、材齢 28 日の時点ではポゾラン反応がほと
んど生じず、石炭灰は強度発現に寄与していないことを示していると考えられる。
(ii) 水セメント比が炭酸化深さに及ぼす影響

各 W/P における材齢と炭酸化深さの関係を図 4.2-12 に示す。図中の凡例については前掲と同様である。なお，φ 100mm の円柱供試体において炭酸化深さを測定しており，プロットが材齢の途中でなくなっているものについては，次の測定時に全面炭酸化していたことを示している。同図によると，W/P が高いほど炭酸化しやすい結果が得られた。これは一般的なコンクリートと同様の傾向である。また，石炭灰については置換率の増加とともに炭酸化深さが大きくなる傾向が確認され，圧縮強度の試験結果でも述べたように，本検討の範囲では，石炭灰は強度発現に寄与していないと考えられた。次に，圧縮強度と図 4.2-12 にて得られたデータから求めた炭酸化速度係数の関係を図 4.2-13 に示す。材齢によらず両者には高い相関が得られた。このことから，水セメント比は炭酸化速度に大きく影響し，水セメント比が高く強度が低いほど炭酸化は進みやすいことが確認された。
(iii) 空気量が炭酸化したコンクリートの圧縮強度および炭酸化速度に及ぼす影響

W/P=30％, 石炭灰置換率 50％の配合において AE 剤にてテストピース作製時の空気量を調整した際の, 空気量と圧縮強度の関係を図 4.2-14 に示す。いずれの材齢においても, 空気量が大きいほど圧縮強度が低下する結果となった。材齢 28 日においては, 空気量 3.2％の配合で 69.3N/mm² であるのに対し, 空気量 5.9％の配合において 47.9N/mm² となり, 空気量 2.7％の違いで圧縮強度が 21.4N/mm² 変化し, 2.7％の空気量の増加で強度が約 30％低下した。一般に, コンクリートの空気量が 1％増加することで圧縮強度は 4～6％低下するとされていることから, 空気量が多い配合については, 空気量の変化に伴う圧縮強度の低下に加えて, 炭酸化の進行が早いことでさらなる強度低下が起きている可能性がある。

図 4.2-14 空気量と圧縮強度の関係

次に, 空気量が炭酸化速度に及ぼす影響について評価した。各空気量における材齢と炭酸化深さの関係を図 4.2-15 に示す。いずれの材齢においても, 空気量が大きいほど炭酸化深さが大きくなる結果となった。

図 4.2-15 材齢と炭酸化深さの関係
ここで、空気量がコンクリートの圧縮強度および炭酸化速度に及ぼす影響を評価するため、図4.2-15にて得られた結果をもとに炭酸化速度係数を算出した。本検討にて得られた材齢28日における圧縮強度と炭酸化速度係数の関係を図4.2-16に赤いプロットで示す。同図には、図4.2-13で示した水セメント比の異なるコンクリート配合の圧縮強度と炭酸化速度係数の関係を黒いプロットで再掲し、その近似直線も併記した。これによると、空気量の影響による圧縮強度ならびに炭酸化速度係数の変化は、水セメント比を変えた時の変化と同一線上にプロットされる結果となった。

すなわち、本検討のように同一セメント種類（ここでは高炉セメント B種）の場合、水セメント比や空気量が異なる配合においても、炭酸化養生条件が同一であれば、最終的な圧縮強度によって炭酸化速度係数が一義的に定まると考えられる。

図4.2-16 材齢28日における圧縮強度と炭酸化速度係数の関係
4.2.3 骨材の遷移帯に着目した検討

(1) 検討概要

骨材の遷移帯量および遷移帯厚さを調整することで、炭酸化速度が向上する可能性があると考え、細骨材に単粒度の材料を用いたときの炭酸化速度を評価した。また、単位粗骨材量を大幅に増加させた硬練りコンクリート配合における炭酸化速度を評価した。

(2) 使用材料およびコンクリートの配合

使用材料を表4.2-8に、コンクリートの配合を表4.2-9に示す。細骨材に単粒度の材料を用いた場合の検討については、W/P=30％、石炭灰置換率50％の配合（W/P30-F50）を基本配合とし、写真4.2-1に示す2.0～3.5mmの単粒度のろ過砂利を細骨材として用いた。また、細骨材率s/aを10％変化させ、細骨材量の影響も評価することとした。単粒度の細骨材を用いたコンクリートのフレッシュ性状は表4.2-10および写真4.2-2に示すとおりであり、単位粉体量が多いことから、単粒度であっても材料分離等は見られなかった。

<table>
<thead>
<tr>
<th>材料</th>
<th>記号</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>セメント</td>
<td>BB</td>
<td>高炉セメントB種 密度=3.08g/cm³</td>
</tr>
<tr>
<td>細骨材</td>
<td>S</td>
<td>砂砕、密度=2.65g/cm³</td>
</tr>
<tr>
<td></td>
<td>S単</td>
<td>よ過砂利、密度=2.61g/cm³、粒径2.0～3.5mm</td>
</tr>
<tr>
<td>粗骨材</td>
<td>G</td>
<td>砕石、密度=2.65g/cm³ Gmax=20mm、実積率64.3％</td>
</tr>
<tr>
<td>混和材</td>
<td>F</td>
<td>石炭灰原粉 密度=2.2g/cm³、フライアッシュIV種相当</td>
</tr>
<tr>
<td>混和剤</td>
<td>SP</td>
<td>ポリカルボン酸エステル系化合物と配向ポリマーの複合体</td>
</tr>
<tr>
<td></td>
<td>AE</td>
<td>アニオン及びノニオン系特殊界面活性剤（フライアッシュ用AE剤）</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ケース名</th>
<th>W/P %</th>
<th>F P×%</th>
<th>s/a %</th>
<th>Air %</th>
<th>単位量（kg/m³）</th>
<th>SP (P×%)</th>
<th>AE (P×%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>普通-s/a47</td>
<td>30 50</td>
<td>47 4.5</td>
<td></td>
<td></td>
<td>W BB F S S単G</td>
<td>1.7 0.75</td>
<td></td>
</tr>
<tr>
<td>単粒-s/a47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165 275 275 716 -</td>
<td>806</td>
<td>0.7 1.0</td>
</tr>
<tr>
<td>単粒-s/a37</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td>165 275 275 - 705</td>
<td>806</td>
<td>0.7 1.5</td>
</tr>
<tr>
<td>単粒-s/a57</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td>165 275 275 - 855</td>
<td>654</td>
<td>0.7 1.5</td>
</tr>
</tbody>
</table>
写真 4.2-1 ろ過砂利

表 4.2-10 細骨材の粒度影響確認試験におけるコンクリートのフレッシュ性状

<table>
<thead>
<tr>
<th>ケース名</th>
<th>W/P %</th>
<th>F P×%</th>
<th>s/a P×%</th>
<th>Air %</th>
<th>SP (P×%)</th>
<th>AE (P×%)</th>
<th>スランプ cm</th>
<th>スランプフラワー cm</th>
<th>空気量 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>普通-s/a47</td>
<td>30</td>
<td>50</td>
<td>47</td>
<td>4.5</td>
<td>1.7</td>
<td>0.75</td>
<td>–</td>
<td>68.8</td>
<td>3.2%</td>
</tr>
<tr>
<td>単粒-s/a47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td>1.0</td>
<td>22.0</td>
<td>–</td>
<td>3.0</td>
</tr>
<tr>
<td>単粒-s/a37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td>1.5</td>
<td>16.5</td>
<td>–</td>
<td>3.3</td>
</tr>
<tr>
<td>単粒-s/a57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td>1.5</td>
<td>19.0</td>
<td>–</td>
<td>3.7</td>
</tr>
</tbody>
</table>

写真 4.2-2 単粒度の細骨材を用いたコンクリートのフレッシュ性状
単位粗骨材量が炭酸化速度に及ぼす影響に関する検討においては、前述の配合のうち、W/P=30%、石灰灰置換率30%の配合（W/P30-F30）を基本配合とし、水灰比を同一としつつ、単位粗骨材量を大幅に増加させた配合を試験対象とした。対象としたコンクリートの配合を表4.2-11に示す。

表4.2-11 対象としたコンクリートの配合（単位粗骨材量の影響）

<table>
<thead>
<tr>
<th>W/P %</th>
<th>F P×%</th>
<th>s/a %</th>
<th>Gvol l/m³</th>
<th>Air</th>
<th>単位量 kg/m³</th>
<th>SP (P×%)</th>
<th>AE (P×%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W</td>
<td>BB</td>
<td>F</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>47</td>
<td>312</td>
<td>4.5</td>
<td>165</td>
<td>385</td>
<td>165</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>16.3</td>
<td>579</td>
<td></td>
<td>117</td>
<td>262</td>
<td>131</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>20.4</td>
<td>514</td>
<td></td>
<td>137</td>
<td>307</td>
<td>154</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>25.2</td>
<td>450</td>
<td></td>
<td>157</td>
<td>352</td>
<td>176</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>35.9</td>
<td>450</td>
<td></td>
<td>112</td>
<td>251</td>
<td>126</td>
</tr>
</tbody>
</table>

表4.2-12 単位粗骨材量の影響確認試験におけるコンクリートのフレッシュ性状

<table>
<thead>
<tr>
<th>W/P %</th>
<th>F P×%</th>
<th>s/a %</th>
<th>Gvol l/m³</th>
<th>Air</th>
<th>単位量 kg/m³</th>
<th>SP (P×%)</th>
<th>スランプcm</th>
<th>VC値秒</th>
<th>空気量％</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W</td>
<td>BB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>47</td>
<td>312</td>
<td>4.5</td>
<td>165</td>
<td>385</td>
<td>1.40%</td>
<td>9.2</td>
<td>4.7</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>16.3</td>
<td>579</td>
<td></td>
<td>117</td>
<td>262</td>
<td>1.00%</td>
<td>—</td>
<td>7.6</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>20.4</td>
<td>514</td>
<td></td>
<td>137</td>
<td>307</td>
<td>1.00%</td>
<td>—</td>
<td>1.5</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>25.2</td>
<td>450</td>
<td></td>
<td>157</td>
<td>352</td>
<td>1.00%</td>
<td>15.5</td>
<td>—</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>35.9</td>
<td>450</td>
<td></td>
<td>112</td>
<td>251</td>
<td>1.00%</td>
<td>—</td>
<td>7.2</td>
</tr>
</tbody>
</table>
(3) 製造、養生および試験項目

材料を公称容量 55 リットルの強制二軸ミキサに砂利以外の材料を投入し、60 秒練り混ぜた。その後、材料のかき落としを行ったうえで 60 秒練り混ぜ、高性能 AE 減水剤の効果を安定させる目的で 5 分静置した。5 分静置後に 30 秒練り混ぜてから砂利を投入し、さらに 30 秒練り混ぜてミキサからコンクリートを排出した。

単位水量の少ない配合については RCD 用コンクリートのフレッシュ性状確認試験機である VC 試験機を用いて、JSCE-F507-2018 に準拠して VC 値を計測した。また、スランプが計測可能なコンクリートについてはスランプを測定した。なお、配合設計上は空気量を 4.5% として各材料の計量を行ったが、特に VC 値を計測するような硬練りコンクリートにおいては空気量が入りづらかったため、空気量は表 4.2-12 に示した測定値の状態でテストピースを採取した。VC 値でフレッシュ性状を評価したコンクリートのスランプ状況を一例として写真 4.2-3 に示す。

フレッシュ性状確認後のコンクリートを、φ100×200mm の型枠に詰めて供試体を採取した。なお、VC 値で計測するフレッシュ性状のコンクリートについては、ランマを用いて 2 層に分けて締め固めた。打込みから 1 日間 20℃、80%RH にて封締養生を行い、その後脱型して、温度 50℃、湿度 50%RH、CO₂ 濃度 15% の環境で炭酸化養生を行った。材年 4 日、7 日および 28 日にて JIS A 1108 に準拠して圧縮強度を計測するとともに、圧縮強度試験後の供試体を割裂して、JIS A 1152 に準拠して炭酸化深さを計測した。

写真 4.2-3 W/P=30%、単位水量 = 117kg/m³ のコンクリートの外観
（スランプは計測不可、VC = 7.6 秒）
試験結果

(ii) 細骨材の粒度が圧縮強度および炭酸化速度に及ぼす影響

各配合における材齢と圧縮強度の関係を図 4.2-17 に示す。一般的な細骨材を用いた場合に比べて、単粒度の細骨材を使用することで圧縮強度が大きく低下する結果となった。また、単粒度の細骨材を用いた場合には、材齢 7 日から 28 日にかけての強度増進が小さい結果となった。骨材の遷移帯に着目した既往の研究によると、細骨材の粒径が大きいほど、遷移帯厚さは増加するとされている【2】。単粒度の細骨材は粒径が 2.0～3.5mm と大きいことから、弱部となる遷移帯厚さが増加したことで圧縮強度が低下し、材齢に伴う強度の増進も小さくなったと考えられる。次に、材齢 7 日および 28 日圧縮強度を細骨材率との関係で整理した結果を図 4.2-18 に示す。本検討の範囲においては、単粒度細骨材を用いたコンクリートにおける細骨材率が圧縮強度に及ぼす影響は小さいことが確認された。
各配合における材齢と炭酸化深さの関係を図 4.2-19 に示す。また、同図もとに算出した炭酸化速度係数を、細骨材率との関係で整理した結果を図 4.2-20 に示す。単粒度の細骨材を使用することで、一般的な細骨材を用いた場合に比べて炭酸化深さが大きくなっ
た。これは、圧縮強度の試験結果と同様に、粒径が大きい単粒度細骨材を用いたことで弱
部となる遷移帯の厚さが大きくなったためと考えられる。また、単粒度細骨材を用いたときの細骨材率に着目すると、単粒度の細骨材において、細骨材率が 47%の配合における炭酸化速度が最も小さくなる結果となった。ここで、1%フェノールフタレイン溶液を噴霧したコンクリート割裂面の写真を表 4.2-13 に示す。細骨材率 37%や 57%の供試体は、表面からの炭酸化の進行が一様でないことが確認された。本検討で用いたコンクリートは写真 4.2-2 に示したようにスランプ 15cm 以上の流動性を有していたことから、締固め不足は考えにくい。したがって、単粒度の骨材を用いた場合には、一部で材料に偏りが生じてしまう可能性は否定できないものと考えられた。

図 4.2-19 材齢と炭酸化深さの関係（単粒度細骨材の影響）

図 4.2-20 細骨材率と炭酸化速度係数の関係（単粒度細骨材の影響）
表 4.2-13 フェノールフタレイン溶液を噴霧した割裂面の状況
（単粒度細骨材の影響）

<table>
<thead>
<tr>
<th>s/a</th>
<th>材齢 4 日</th>
<th>材齢 7 日</th>
<th>材齢 28 日</th>
</tr>
</thead>
<tbody>
<tr>
<td>37%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(ii) 単位粗骨材量が圧縮強度および炭酸化速度に及ぼす影響

各配合における材齢と圧縮強度の関係を図 4.2-21 に示す。また、単位粗骨材容積と材齢 7 日および 28 日圧縮強度の関係を図 4.2-22 に示す。材齢 28 日における圧縮強度は 68.2 〜74.2N/mm² であり、その差は最大 6N/mm² 程度で、単位粗骨材量が圧縮強度に及ぼす影響は小さいことが確認された。

図 4.2-21 材齢と圧縮強度の関係（単位粗骨材量の影響）

図 4.2-22 単位粗骨材容積と圧縮強度の関係
各配合における材齢と炭酸化深さの関係を図 4.2-23 に示す。また、同図より算出した炭酸化速度係数を、単位粗骨材容積との関係で整理した結果を図 4.2-24 に示す。単位粗骨材量が炭酸化速度に及ぼす影響は小さいことが確認された。

図 4.2-23 材齢と炭酸化深さの関係（単位粗骨材量の影響）

図 4.2-24 単位粗骨材容積と炭酸化速度係数の関係（単位粗骨材量の影響）
（5）結果の総括

ここで、4.2.2節およびこれまでの検討結果を踏まえて、材齢28日の圧縮強度と炭酸化速度係数の関係を整理した結果を図4.2-25に示す。多少のばらつきはあるものの、両者は高い相関が認められた。すなわち、同じ結合材（本検討においては、BB）を用いたコンクリートを同じ養生環境で炭酸化養生した場合には、水セメント比や空気量、骨材の粒度や骨材量を変えたとしても、密実な硬化体としてコンクリートが成形された場合においては、炭酸化速度は最終的な圧縮強度に強く依存することが確認された。

以上のことから、コンクリートの要求性能として圧縮強度が規定された場合、使用材料や配合の工夫によって炭酸化速度を高めることが困難と考えられた。なお、ポーラスコンクリートのように、目に見える形で物理的な空隙が残存するケースに関しては、この関係が成立するかは不明であり、今後の検討課題である。
4.3 環境条件がコンクリートの炭酸化速度に及ぼす影響評価

第2章で述べたように、一般的なコンクリートの中性化を対象として、その速度に影響を及ぼす条件として、表4.3-1に示すような傾向があることが多くの過去の研究において確認されている。一方で、本研究のように、材齢初期から炭酸化養生を行った場合の研究は例が少なく、表4.3-1に示した条件の必ずしも当てはまらない可能性がある。そこで本検討では、これらの環境条件のうち、湿度、圧力ならびに、前節の検討によって炭酸化速度に影響を及ぼすとの示唆が得られた炭酸化養生開始時の圧縮強度に着目し、これらがコンクリートの強制的炭酸化養生における炭酸化速度に及ぼす影響を評価することとした。

<table>
<thead>
<tr>
<th>条件</th>
<th>影響</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂濃度</td>
<td>CO₂濃度が高いほど、炭酸化速度は高まる。</td>
</tr>
<tr>
<td>湿度</td>
<td>相対湿度50〜70%のときが最も炭酸化速度が高まる。</td>
</tr>
<tr>
<td>温度</td>
<td>60℃までは、温度が高まるほど炭酸化速度が高まる。これは、温度が高いほど固相からのCaイオン溶脱が促進されることに起因する。</td>
</tr>
<tr>
<td>圧力</td>
<td>小さな陽圧をかけることが、炭酸化反応と強度改善に有効である。</td>
</tr>
</tbody>
</table>

4.3.1 湿度と炭酸化養生開始時の強度が炭酸化速度に及ぼす影響

(1) 検討概要

ここでは、高炉スラグ微粉末とγ-C₂Sをセメント代替として併用したコンクリートを対象に、炭酸化養生中の相対湿度および炭酸化養生開始時の圧縮強度が炭酸化速度に及ぼす影響をより詳細に検討した。

(2) 使用材料とコンクリートの配合

本検討に用いたコンクリートの使用材料を表4.3-2に、配合を表4.3-3に示す。結合材はポルトランドセメント、高炉スラグ微粉末、γ-C₂Sの割合を30%:40%:30%とした。また、石炭灰は骨材の一部に置換する思想とし、71kg/m³用いた。本配合における水粉体比W/Pは46%とし、ポルトランドセメント、高炉スラグ微粉末、γ-C₂Sを合わせた水結合材比W/Bは60%とした。

—89—
表 4.3-2 コンクリートの使用材料

<table>
<thead>
<tr>
<th>材料</th>
<th>記号</th>
<th>摘要</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>W</td>
<td>水道水</td>
</tr>
<tr>
<td>セメント</td>
<td>HPC</td>
<td>早強ポルトランドセメント 密度: 3.14g/cm³, 比表面積: 4,510cm²/g</td>
</tr>
<tr>
<td>混和材</td>
<td>BFS</td>
<td>高炉スラグ 微粉末 密度: 2.91g/cm³, 比表面積: 4,400cm²/g</td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>ガイナドロムシリケートγ相（γ-C₂S） 密度: 3.00g/cm³, 比表面積: 2,010cm²/g</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>石炭灰 密度: 2.18g/cm³, 比表面積: 3,640cm²/g</td>
</tr>
<tr>
<td>細骨材</td>
<td>S</td>
<td>混合砂（陸砂 60：砕砂 40） 密度: 2.61g/cm³, FM : 2.64</td>
</tr>
<tr>
<td>粗骨材</td>
<td>G</td>
<td>砕石 Gmax=20mm 密度: 2.68g/cm³, FM : 6.62</td>
</tr>
<tr>
<td>混和剤</td>
<td>AD</td>
<td>AE 減水剤 変性アミノスルホン酸化合物及びカルボン酸系化合物の複合体</td>
</tr>
<tr>
<td></td>
<td>AE</td>
<td>空気量調整剤 アニオン及びノニオン系特殊界面活性剤</td>
</tr>
</tbody>
</table>

表 4.3-3 コンクリートの配合

<table>
<thead>
<tr>
<th>W/P (%)</th>
<th>W/B (%)</th>
<th>s/a (%)</th>
<th>スランプ (cm)</th>
<th>空気量 (%)</th>
<th></th>
<th>AD</th>
<th>AE</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>60</td>
<td>46</td>
<td>8±2.5</td>
<td>4.5±1.5</td>
<td>172</td>
<td>86</td>
<td>115</td>
</tr>
</tbody>
</table>

※B=HPC+BFS+γ
※P=HPC+BFS+γ+F
（3）製造、養生および試験項目

材料を公称容量 55 リットルの強制二軸ミキサに投入してコンクリートを練り混ぜ、φ100×200mm の円柱供試体に打ち込んだ。検討ケースと養生条件を表 4.3-4 に示す。養生開始時の圧縮強度および炭酸化養生中の相対湿度をパラメータとして検討を行った。Case1 〜Case3 では、相対湿度がコンクリートの炭酸化速度に与える影響を検証するために、温度を 50℃、CO₂濃度を 20%，湿度を 30%〜50%に設定し、圧縮強度が 3.5N/mm² となった時点から炭酸化養生を開始した。Case4 および Case5 では、炭酸塩養生開始時のコンクリートの圧縮強度がその後の炭酸化速度に及ぼす影響を評価するために、圧縮強度が 7.0N/mm² および 10.5N/mm² に達するまで水中養生を行ったのち、50℃、40%RH、CO₂ 濃度 20% の環境にて炭酸化養生を行った。炭酸化養生 7 日または 14 日時点で供試体を割裂し、1%フェノールフタレイン溶液を噴霧して JIS A 1152 に準拠して炭酸化深さを測定した。また、材齢 14 日にて JIS A 1108 に準拠して圧縮強度を計測した。

表 4.3-4 試験ケースと炭酸化養生条件

<table>
<thead>
<tr>
<th>Case</th>
<th>養生開始時の圧縮強度 N/mm²</th>
<th>養生環境</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>温度℃</td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>3.5</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>7.0</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>7.0</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>10.5</td>
<td>40</td>
</tr>
</tbody>
</table>
(4) 試験結果

(i) 相対湿度が炭酸化速度に及ぼす影響

炭酸化養生日数 7 日の供試体における、養生中の相対湿度と炭酸化深さの関係を図 4.3-1に示す。また、養生 7 日、14 日におけるフェノールフタレイン溶液噴霧後の供試体の外観を写真 4.3-1に示す。これらによると、相対湿度 40％RH または 30％RH のときが、50％RH に比べて炭酸化速度が大きくなることが確認された。これは既往の研究成果に比べて、やや相対湿度が低い領域の方が炭酸化しやすいことを示している。材齢初期から積極的に炭酸化養生を行う場合には、相対湿度を 40％程度以下にすることで炭酸化速度を向上できることが分かった。

<table>
<thead>
<tr>
<th></th>
<th>30％RH</th>
<th>40％RH</th>
<th>50％RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 日</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 日</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

写真 4.3-1 養生7日および14日時点でのフェノールフタレイン噴霧後の供試体
(ii) 養生開始時強度が炭酸化速度に及ぼす影響

Case1～Case3における炭酸化養生日数と炭酸化深さの関係を図4.3-2に示す。また、同図から炭酸化速度係数を算出し、養生開始時圧縮強度との関係を整理した結果を図4.3-3に示す。これによると、養生開始時の圧縮強度が小さいほど炭酸化が進みやすい結果となった。本検討の範囲においては、養生開始時の圧縮強度が炭酸化速度に及ぼす影響は大きく、炭酸化速度を向上させるためには、出来るだけ養生開始時の圧縮強度を低く抑えることが重要となると考えられる。

図4.3-2 炭酸化養生日数と炭酸化深さの関係

図4.3-3 養生開始時圧縮強度と炭酸化速度係数の関係
次に、前述の試験結果を踏まえて、養生開始時の圧縮強度と材齢14日の圧縮強度の関係を図4.3-3に示す。同一配合のコンクリートに炭酸化養生を施したものであるが、養生開始時の圧縮強度が高いほど、材齢14日の圧縮強度が大きくなる傾向が得られた。本検討のパラメータにおける材齢14日圧縮強度の差は6.7N/mm2であり、有意な差が認められた。3.5N/mm2から養生を開始したCase1の炭酸化深度は他に比べて大きかったことから、他のケースに比べてφ100×200mm供試体のより内部までγ-C_2Sが反応したものと考えられる。それにも関わらず、養生開始時圧縮強度が低いほど材齢14日の圧縮強度が低下した。材齢が短い状態から相対湿度40％RHの比較的乾燥した状態で炭酸化養生をすると、本検討で用いたセメントや高炉スラグ微粉末の反応が一部で停滞している可能性がある。これらについては今後詳細な検討が必要と考えられる。

図4.3-4 養生開始時圧縮強度と材齢14日圧縮強度の関係
4.3.2 压力によるコンクリートへのCO₂浸透量増加に関する検討

ここでは、炭酸化養生中の圧力に着目し、加圧養生による炭酸化速度の促進について検討を行った。

（1）加圧養生装置の仕様設定

加圧しながら炭酸化養生を行う装置は既製品では無いことから、装置の設計ならびに試運転を行った。加圧養生装置のシステムフロー図を図4.3-5に、仕様を表4.3-5に示す。1回の試験でφ100×200mmの円柱供試体を3本加圧できる仕様とし、CO₂と装置周辺の大気を混合させてCO₂濃度を調整したガスを、ピストンシリンダで加圧して所定の圧力に調整したうえで、養生装置内に封入するシステムを採用した。これは、排気ガスに含まれるCO₂濃度が様々であることから、そのガスを加圧した状況を想定できるようにしたものである。また、ガスを供給する際の圧力の変化によって生じるガスに含まれる水分は、吸湿材を用いて除去できる仕組みも取り入れた。また、CO₂固定後のコンクリートの重量を計測できる仕組みを組み込み、温度を高められるように、養生装置周辺にラバーヒーターを設けた。加圧養生装置の写真を写真4.3-2および写真4.3-3に示す。
表 4.3-5 加圧養生装置の仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>設定範囲</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>圧力</td>
<td>0～5MPa</td>
<td>自動制御</td>
</tr>
<tr>
<td>CO₂濃度</td>
<td>0～100%</td>
<td>容積で管理</td>
</tr>
<tr>
<td>湿度</td>
<td>20～50℃</td>
<td>加圧前、後の制御あり</td>
</tr>
<tr>
<td>湿度</td>
<td>ー</td>
<td>加圧後の制御なし</td>
</tr>
<tr>
<td>重量測定</td>
<td>0.1g単位</td>
<td>加圧後の重量測定</td>
</tr>
</tbody>
</table>

写真 4.3-2 加圧養生装置の外観

写真 4.3-3 加圧養生装置の内部
(2) 加圧養生によるコンクリートの炭酸化に関する基礎実験

(i) 検討の概要

前掲の加圧養生装置にて,圧縮強度 20N/mm²程度のコンクリートを対象として,炭酸化速度を把握するための基礎的な検討を行った。

(ii) 使用材料およびコンクリートの配合

使用材料を表 4.3-6 に,コンクリート配合を表 4.3-7 に示す。水粉体比 W/P=60%とし,高炉セメントをベースとして,石炭灰原粉（フライアッシュIV種相当）およびγ-C2S を用いた配合とした。なお,前掲のとおり,材齢初期から炭酸化養生を行う場合においては,石炭灰原粉は結合材として機能しないと考えられることから,水結合材比に相当する W/BB+γ も配合表中に併記した。同コンクリートを練り混ぜたときのコンクリートのスランプは 8.0cm, 空気量は 5.1%であった。コンクリートのフレッシュ性状を写真 4.3-4 に示す。

<table>
<thead>
<tr>
<th>表 4.3-6 使用材料</th>
</tr>
</thead>
<tbody>
<tr>
<td>材料</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>セメント</td>
</tr>
<tr>
<td>γ-C2S</td>
</tr>
<tr>
<td>石炭灰原粉</td>
</tr>
<tr>
<td>細骨材</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>粗骨材</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>混和剤</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表 4.3-7 コンクリートの配合</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/P</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>%</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>60</td>
</tr>
</tbody>
</table>

※P=BB+F+γ
写真 4.3-4 コンクリートのフレッシュ性状

(iii) 試験方法

練り混ぜたコンクリートにて φ100mm×200mm の供試体を作製した。その後、同コンクリートの初期強度発現性を確認するために、材齢 1, 2, 3, 5 日にて圧縮強度を測定した。試験結果は表 4.3-8 に示すとおりであり、同試験結果をもとに、圧縮強度が 3.5N/mm² に達した材齢 2 日にて供試体を脱型し、炭酸化養生を開始した。一部の供試体は、加圧養生条件と比較するために、温度 50℃、湿度 50%RH、CO₂ 濃度 15%の環境で炭酸化養生を行いつつ、圧縮強度と炭酸化深さを計測した。

加圧養生については、材齢 2 日にて脱型後、温度約 50℃、CO₂ 濃度約 15%に設定した装置内にて 0.2MPa、および 0.5MPa の圧力下に 4 時間静置し、その後、炭酸化深さを計測した。

表 4.3-8 初期強度発現性の確認試験結果

<table>
<thead>
<tr>
<th>脱型時強度(N/mm²)</th>
<th>σ 1</th>
<th>σ 2</th>
<th>σ 3</th>
<th>σ 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.49</td>
<td>3.62</td>
<td>6.02</td>
<td>8.82</td>
<td></td>
</tr>
</tbody>
</table>
（iv）試験結果

材齢2日以降に50℃、50%RH、15%CO₂の環境で炭酸化養生したコンクリートの材齢と圧縮強度ならびに炭酸化深さの関係を図4.3-6に示す。これに対して、温度約50℃、CO₂濃度約15%の環境にて、0.2MPaおよび0.5MPaの圧力を4時間かけたときの炭酸化状況を写真4.3-5に示す。いずれの供試体においても、表面から炭酸化が全く進行していない結果となった。加圧養生装置内における温度、CO₂濃度、圧力の分布はそれぞれ図4.3-7および図4.3-8に示すとおりであり、0.5MPaの圧力をかけた場合には、CO₂濃度の制御が難しかったものの、0.2MPaの圧力においては環境をほぼ一定にできていたものと考えられる。ここで、加圧養生終了後の装置内のコンクリートには、写真4.3-6に示すように大量の水滴が付着していたことから、この影響で炭酸化が進行しなかったものと考えられた。

図4.3-6 炭酸化養生槽内におけるコンクリートの強度および炭酸化深さ

写真4.3-5 加圧4時間後のコンクリートの炭酸化状況
図 4.3-7 加圧養生槽内における温度、CO₂濃度、圧力の状況（0.2MPa）

図 4.3-8 加圧養生槽内における温度、CO₂濃度、圧力の状況（0.5MPa）

写真 4.3-6 加圧4時間後のコンクリート表面に発生した水滴
そこで、コンクリートを乾燥させてから加圧養生を行ったときの炭酸化速度を把握するために、材齢3日以降、表4.3-9に示す措置を行った。Case1は、温度50℃、湿度50%RHの環境で養生し、材齢7日にて温度50℃、CO2濃度15%、圧力0.2MPaにて6時間の加圧炭酸化養生を行った。Case2〜Case4は、温度20℃、湿度60%RHの環境にて一定期間養生し、その後、Case1と同様の環境で4時間あるいは6時間炭酸化養生を行った。加圧養生装置内の温度、CO2濃度、圧力は図4.3-9および図4.3-10に示すように安定していた。

<table>
<thead>
<tr>
<th>材齢 日</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>20℃封締</td>
<td>50℃,50%RH</td>
<td>▲(50℃,15%CO2, 0.2MPa)で6h</td>
<td></td>
</tr>
<tr>
<td>Case 2</td>
<td>20℃封締</td>
<td>20℃,60%RH</td>
<td>▲と同一条件で6h</td>
<td></td>
</tr>
<tr>
<td>Case 3</td>
<td>20℃封締</td>
<td>20℃,60%RH</td>
<td>▲と同一条件で6h</td>
<td></td>
</tr>
<tr>
<td>Case 4</td>
<td>20℃封締</td>
<td>20℃,60%RH</td>
<td>▲と同一条件で6h</td>
<td></td>
</tr>
</tbody>
</table>

図4.3-9 加圧養生中の温度、CO2濃度分布（Case1）

図4.3-10 加圧養生中の圧力分布（Case1）
Case1～Case4における炭酸化深さを表4.3-10および図4.3-11に示す。いずれの配合においても、4～6時間の養生で9～14mm炭酸化することが確認された。また、図4.3-12に示すように、本検討では材齢が経過して圧縮強度が高くなってから炭酸化養生を開始したにもかかわらず、数時間で10mm程度炭酸化しており、圧力によって炭酸化速度が大きく向上する可能性があることが示唆された。また、炭酸化養生開始材齢や加圧時間を変えたCase2～Case4の炭酸化深さがほぼ一定であったことから、加圧による炭酸化速度向上にはコンクリートの水分が大きく影響している可能性が示唆された。

表4.3-10 Case1～Case4における炭酸化状況

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>炭酸化深さ</td>
<td>9.35</td>
<td>13.25</td>
<td>13.2</td>
<td>13.95</td>
</tr>
</tbody>
</table>

図4.3-11 Case1～Case4の炭酸化深さ

図4.3-12 炭酸化養生日数と炭酸化深さの関係
4.3.3 供試体の体積と表面積が炭酸化速度に及ぼす影響

（1）検討内容
コンクリートの供試体寸法を変化させた場合、炭酸化速度が異なること、およびそれはコンクリートの体積と表面積の割合で一義的に評価できる可能性が既往の検討にて示されている【3】、【4】。本検討では、一般的な強度レベルのコンクリートを対象に、材齢初期から高濃度の CO₂ で炭酸化養生を行ったときの炭酸化速度に、供試体の体積と表面積が及ぼす影響を評価した。

（2）使用材料とコンクリートの配合
コンクリートの使用材料を表 4.3-11 に、配合を表 4.3-12 に示す。同配合のコンクリートは、炭酸化養生時において圧縮強度が 20N/mm² 程度となる配合である。コンクリートのスランプは 8±2.5cm、空気量は 4.5±1.0%とした。

<table>
<thead>
<tr>
<th>表 4.3-11 使用材料</th>
</tr>
</thead>
<tbody>
<tr>
<td>材料</td>
</tr>
<tr>
<td>水</td>
</tr>
<tr>
<td>セメント</td>
</tr>
<tr>
<td>細骨材</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>粗骨材</td>
</tr>
<tr>
<td>混合材</td>
</tr>
<tr>
<td>石炭灰原粉</td>
</tr>
<tr>
<td>AE 減水剤</td>
</tr>
<tr>
<td>AE 剤</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表 4.3-12 コンクリートの配合</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/P</td>
</tr>
<tr>
<td>%</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>60</td>
</tr>
</tbody>
</table>

※B=BB+γ
（3）試験方法

実験ケースを表 4.3-13 に示す。また、試験体の寸法イメージを図 4.3-13 に示す。体積表面積比（V/S）をパラメータとし、前述した配合のコンクリートを公称容量 100ℓのミキサにて練り混ぜた後、様々なサイズの試験体を作製した。また、φ100mm×200mm の円柱供試体や 100×100×100mm の角柱供試体の側面をアルミテープでシールすることで、表面積を強制的に小さくし、V/S の大きな領域についても検討を行うこととした。

材齢 1 日で脱型した後、温度 50℃、湿度 50%RH、CO₂濃度 15% の環境にて炭酸化養生を行い、炭酸化 6 日および 10 日にて試験体を割裂し、フェノールフタレイン溶液を噴霧して JIS A 1152 に準拠して炭酸化深さを測定した。

<table>
<thead>
<tr>
<th>V/S</th>
<th>供試体サイズ</th>
<th>炭酸化日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>φ100×200mm</td>
<td>6 日，10 日</td>
</tr>
<tr>
<td>30</td>
<td>φ150×300mm</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>250×250×250mm</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>100×100×100mm，側面シール</td>
<td>※V/S=20 のみ3日も計測</td>
</tr>
<tr>
<td>100</td>
<td>φ100×200mm，側面シール</td>
<td></td>
</tr>
</tbody>
</table>

図 4.3-13 試験体の寸法イメージ
（4）検討結果

各 V/S における炭酸化養生日数と炭酸化深さの関係を図 4.3-14 に示す。V/S が大きくなることで炭酸化の進行は遅くなることが確認された。また、V/S=50 と V/S=100 における炭酸化の進行はほぼ同様であった。また、図 4.3-15 をもとに炭酸化速度係数（mm/√日）を算出し、V/S との関係を整理した結果を図 4.3-15 に示す。既往の研究と同様に、V/S の増加に伴って炭酸化速度が小さくなることが確認された。また、V/S が 40 までは、V/S の増加に伴って炭酸化速度係数が線形的に低下し、それより V/S が大きな領域ではほぼ一定となった。3.4 節にて、CO₂固定領域を簡易的に評価する手法として、フェノールフタレイン法が適していることを示したが、例えば、実際にコンクリート製品を炭酸化養生した際の CO₂固定領域を評価する際にテストピースを用いる場合、製品の V/S を適切に模倣できるテストピースを用意する必要があると考えられた。

図 4.3-14 炭酸化養生日数と炭酸化深さの関係

図 4.3-15 V/S と炭酸化速度係数の関係

－105－
<table>
<thead>
<tr>
<th>V/S</th>
<th>炭酸化 6 日</th>
<th>炭酸化 10 日</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

写真 4.3-7 V/S とフェノールフタレイン呈色状況

－106－
第4章では、既往の研究を踏まえつつ、材料条件や配合条件、温度・湿度・CO₂濃度など、初期養生条件や部材厚さなどの製造条件等の各種条件がコンクリートの炭酸化速度に及ぼす影響を評価した。得られた知見を以下にまとめる。

（1）炭酸化養生を開始するときの圧縮強度はその後の炭酸化速度に大きく影響し、養生開始時の圧縮強度が低いほど炭酸化が進行しやすい。

（2）同一のセメントを用い、同一の養生条件でコンクリートを炭酸化させたとき、コンクリートの圧縮強度と炭酸化速度には強い相関がある。

（3）コンクリートの空気量、骨材の粒度や骨材量等の塩料帯を増加させた場合、圧縮強度が低下した分だけ炭酸化速度が大きくなる。

（4）材齢初期から炭酸化させる場合、炭酸化養生時の相対湿度は30～40%程度が炭酸化の促進に有効である。

（5）炭酸化養生時に圧力を作用させることによって条件によっては炭酸化が促進されるが、加圧による炭酸化速度向上にはコンクリート中の水分の制御とコンクリートを乾燥させることが不可欠である。

（6）コンクリート供試体の大きさが炭酸化速度に及ぼす影響については、体積 V/表面積 S の増加に伴って炭酸化速度が小さくなることを確認した。また、V/S が 40 までは、V/S の増加に伴って炭酸化速度係数が線形的に低下し、それより V/S が大きくなる領域ではほぼ一定となることを明らかにした。
【第4章の参考文献】

【2】加藤佳孝，魚本健人：細骨材の量と比表面積が遷移帯形成に及ぼす影響，コンクリート工学年次論文報告集，Vol.20，No.2，pp.775-780，1998

【4】小林聖，横関康祐，渡邉賢三，取違剛：供試体寸法および初期養生条件がコンクリートの炭酸化深さに与える影響，土木学会第65回年次学術講演会，pp.1387-1388，2009
第5章
混和材を用いたコンクリートの炭酸化養生によるCO₂固定量および硬化物性の評価
5. 混和材を用いたコンクリートの炭酸化養生による CO₂固定量および硬化物性の評価

5.1 はじめに

第 3 章では、高炉スラグ微粉末および γ-C₂S を対象に、各混和材を用いたセメントベーストの炭酸化による CO₂固定量を様々な分析手法によって評価した。その結果、高炉スラグ微粉末や γ-C₂S をセメントに置換したコンクリートを高温環境下で高濃度の CO₂と反応させることで、材料起因の CO₂排出量を相殺できる程度の CO₂をコンクリートに固定できる可能性があることを明らかにした。また、第 4 章では、コンクリートの炭酸化速度に影響を及ぼす要因として、湿度は 30〜40%RH 程度とすること、および、できるだけ材齢の初期から炭酸化養生を開始することでその速度が向上することを明らかにした。

第 5 章では、CO₂排出量を極限まで低減できる材料設計として、高炉スラグ微粉末と γ-C₂S をセメント代替として併用した三成分系のセメントを用いて、炭酸化養生を行ったコンクリートを対象に、CO₂固定量を評価した。また、材料起因の CO₂排出量との比較を行い、トータルとしての CO₂排出量に関する評価を行った。さらに、材料起因の CO₂排出量を上回る CO₂を固定するように配合設計されたコンクリートの硬化物性について、特に低 pH 化に伴う環境親和性に関して詳細な評価を行った。
5.2 炭酸化によるCO₂固定量と硬化物性を考慮したコンクリートの配合設計

5.2.1 検討の概要

BFSとγ-C₂Sをセメント代替として併用した三成分系のセメントを用いて、強制的に炭酸化させたコンクリートを対象に、その圧縮強度、空隙率ならびにCO₂固定量を評価した。

5.2.2 使用材料および配合

使用材料を表5.2-1に、試験に供したコンクリートの配合を表5.2-2に示す。BFS置換率を高炉セメントB種相当の範囲で変化させた記号BB, BCの配合をリファレンスとし、BCに対してさらにγ-C₂Sを15%, および30%置換した、合計4種類の配合のコンクリートを試験対象とした。AE減水剤を結合材B×1%添加した。空気量は4.5±0.5%の範囲となるように空気量調整剤にて適宜調整した。なお、表5.2-2に示した各材料の単位量に、表3.3-4に示した各使用材料のCO₂排出原単位を掛け合わせることによって得られる、各配合における材料起因のCO₂排出量は図5.2-1に示すとおりである。

<table>
<thead>
<tr>
<th>使用材料</th>
<th>記号</th>
<th>摘要</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>W</td>
<td>水道水</td>
</tr>
<tr>
<td>セメント</td>
<td>OPC</td>
<td>普通ポルトランドセメント、比表面積=3,310cm²/g、密度=3.16g/cm³</td>
</tr>
<tr>
<td>混和材</td>
<td>BFS</td>
<td>高炉スラグ微粉末、比表面積=3,990cm²/g、密度=2.91g/cm³</td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>ダイカルシウムシリケート γ 相（γ-C₂S）、密度=2.85g/cm³、比表面積=1,500 cm²/g</td>
</tr>
<tr>
<td>細骨材</td>
<td>S1</td>
<td>陸砂、密度=2.65g/cm³</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>砂糖、密度=2.60g/cm³</td>
</tr>
<tr>
<td>粗骨材</td>
<td>G 大</td>
<td>砕石 2005、密度=2.65g/cm³</td>
</tr>
<tr>
<td></td>
<td>G 小</td>
<td>砕石 2005、密度=2.64g/cm³</td>
</tr>
<tr>
<td>混和剤</td>
<td>AD</td>
<td>変性リグニンスルホン酸化合物とポリカルボン酸系化合物の複合体</td>
</tr>
<tr>
<td></td>
<td>AE</td>
<td>アニオン及びノニオン系特殊界面活性剤（フライアッシュ用 AE 剤）</td>
</tr>
</tbody>
</table>
表 5.2-2 コンクリートの配合

| 記号 | W/B% | W/C% | 構成比率（
<table>
<thead>
<tr>
<th>記号</th>
<th>W/B%</th>
<th>W/C%</th>
<th>構成比率（%）</th>
<th>単位量（kg/m³）</th>
<th>単位容積質量（kg/m³）</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB</td>
<td>105</td>
<td>57</td>
<td>43</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>BC</td>
<td>139</td>
<td>43</td>
<td>57</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>BC+γ15</td>
<td>162</td>
<td>37</td>
<td>48</td>
<td>15</td>
<td>167</td>
</tr>
<tr>
<td>BC+γ30</td>
<td>199</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>167</td>
</tr>
</tbody>
</table>

※B=OPC+BFS+γ-C2S

図 5.2-1 各配合における材料起因の CO₂排出量

5.2.3 供試体作製

AE減水剤と水以外の材料を公称55ℓの強制二軸ミキサに投入し、15秒練り混ぜた。その後、注水して90秒練り混ぜた。フレッシュ性状を確認したのち、φ100×200mmの円柱型枠に打ち込んだ。材齢1日および2日まで20℃にて封締養生後、圧縮強度を確認して脱型し、炭酸化養生を行った。炭酸化養生条件は、炭酸化が最も進行しやすい湿度40％RHとし、温度は50℃と設定した。

5.2.4 実験項目および試験方法

(1) フレッシュ性状

JIS A 1101 に準拠して、コンクリートのスランプを測定した。また、JIS A 1128に準拠して空気量を測定した。
（2）炭酸化深さ

養生終了後に円柱供試体を長辺方向に割裂し、フェノールフタレインの1%アルコール溶液を噴霧後、赤変しなかった部分を炭酸化部分とみなして、その深さをノギスで10点測定して、平均値を炭酸化深さとして求めた。

（3）圧縮強度

養生開始時（材齢1, 2日）および炭酸化養生3日、7日、14日、28日にて、JIS A1108に準拠して圧縮強度を計測した。圧縮強度計測の際には、炭酸化養生槽から取り出して2時間程度室内で静置し、温度を下げてから実施した。

（4）試料調整

炭酸化養生1週、2週、4週にて養生槽から供試体を取り出し、湿式カッタにて深さ方向に表面〜12.5mm、12.5〜25mm、25〜37.5mm、37.5〜50mmとなるように供試体を切り出した。その後、アセトンに24時間以上浸漬して水和停止を行い、さらに、デシケータ内に試料を入れ、24時間の真空乾燥を行った。

（5）絶乾密度、空隙率

調整後の試料から粗骨材部分をできるだけ取り除き、5mm角程度に成型したあと、水銀圧入式ポロシメータ（島津製作所製、オートポア9550）にて、3nm〜350μmの細孔径分布、空隙率および絶乾密度を測定した。なお、絶乾密度は、同装置にてシステム内に投入した試料の質量と、圧入した水銀の体積をもとに自動的に計測された値を用いることとした。

（6）無機炭素分析

調整後の試料を粗骨材まで含めて粉砕し、全炭酸濃度測定装置（日本アンス製、クーロメータ）にて硬化体中の全炭素量を定量し、CO₂量に換算することによって炭酸化部におけるCO₂含有量を求めた。
5.2.5 試験結果

（1）フレッシュ性状

各配合におけるコンクリートのスランプと空気量を図5.2-2に示す。γ-C₃Sを置換することとでスランプが低下する結果となった。γ-C₃Sは焼成後の冷却時に特別な徐冷処理を行わなくてもダスティング（粉化）する性質を有しているため、粉砕処理を行っていない。また、γ-C₃Sはその形状が非常に角ばっていることから、セメント代替として用いた場合にスランプが低下したと考えられる。しかしながら、γ-C₃S置換率の最も大きいBC+γ30でもスランプ12cmは確保できており、コンクリート施工上の問題は生じないと考えられる。

![図5.2-2 各配合におけるスランプと空気量]

※図中の数値は空気量を示す

<table>
<thead>
<tr>
<th></th>
<th>BB</th>
<th>BC</th>
<th>BC+γ15</th>
<th>BC+γ30</th>
</tr>
</thead>
<tbody>
<tr>
<td>スランプ(cm)</td>
<td>5.0%</td>
<td>4.2%</td>
<td>4.5%</td>
<td>4.8%</td>
</tr>
</tbody>
</table>

—113—
（2）炭酸化深さ
各配合における炭酸化養生日数の平方根と炭酸化深さの関係ならびに同試験結果から得られた炭酸化速度係数を図 5.2-3に示す。いずれの配合についても、炭酸化深さは一般的なコンクリートと同様に、\(\sqrt{t} \)則に従うと考えられた。また、養生28日における炭酸化深さには最大で10mm程度の差が生じたもの、炭酸化の進行には配合による大きな差が見られない。炭酸化速度係数については、本検討に用いた配合の中では、OPCの構成比率が最も小さい、BC+γ30における炭酸化速度係数が最も大きく、10.0mm/\(\sqrt{日} \)となった。

図 5.2-3 炭酸化の進行に関する評価結果

（3）圧縮強度
各配合の炭酸化養生前の初期における材齢と圧縮強度の関係を図 5.2-4に示す。BFSの潜在水硬性は水和初期には生じないことから、炭酸化養生開始前の圧縮強度はW/Cが支配的となり、W/Cの最も大きいBC+γ30の圧縮強度が小さい結果となった。

図 5.2-4 各配合における初期強度発現性
次に、炭酸化養生を行った各配合のコンクリートにおける炭酸化養生日数と圧縮強度の関係を図5.2-5に示す。いずれの配合においても、3日の炭酸化養生で、養生開始時の圧縮強度に比べて最も増加率の小さいBBでも3.8倍、最も増加率の大きいBC+γ30で8.0倍となった。50℃の高温で養生したことによって各配合に含まれるOPCやBFSの反応率が向上したことも要因の一つと考えられるが、それだけでは説明ができないほど圧縮強度が増加している。この理由として、湿度40％RHの環境によって供試体がある程度乾燥したこと【1】が1つの要因と考えられる。さらに、図5.2-3に示したとおり、各配合における炭酸化速度係数は9〜10mm/√日であり、3日の炭酸化養生で円柱供試体の表面から17mm程度が炭酸化している。すなわち、3日間の炭酸化養生でφ100mmの断面積の約57％に相当する部分が炭酸化によって緻密な硬化体組織となり、これらの影響によって圧縮強度が大きく増加したと考えられる。

炭酸化養生28日の圧縮強度に着目すると、いずれの配合においても、W/B＝60％の配合で約30N/mm²の圧縮強度を得られた。

図5.2-5 各配合の炭酸化養生における強度発現性
（4）空隙率
炭酸化養生2週及び4週における各配合の表面からの空隙率の変化を図5.2-6および図5.2-7に示す。炭酸化養生2週における試験結果によると、いずれの配合においても表面付近および円柱供試体中心部（37.5〜50mm）の空隙率が比較的大きく、12.5〜25mm、25〜37.5mmの空隙率が小さい。炭酸化養生2週における炭酸化深さは35〜37mmであったことから、供試体中心部は炭酸化していないため、これによって中心部の空隙率が他の深さに比べて大きい結果になったと考えられる。一方、表面〜12.5mmについては炭酸化しているにも関わらず未炭酸化部と同等の空隙率となっている。

図5.2-6 炭酸化養生2週における供試体内的空隙率の変化

図5.2-7 炭酸化養生4週における供試体内的空隙率の変化
前掲の空隙率の試験結果について、細孔径分布の違いから考察する。配合および炭酸化養生日数に関わらず、表面～12.5mmの細孔径分布はそれより内部とは傾向が大きく異なり、0.1～1μmの空隙が多い結果となった。普通ポルトランドセメントを対象とした既往の研究【2】において、脱型直後から温度20℃、湿度60%RHの環境においコンクリートは、表面から10mmの範囲で50mm以上の空隙が多くなるとの結果が得られている。本検討においては、材齢2日以降、湿度40%RHの環境下で炭酸化養生を行ったことから、炭酸化反応によって放出される水分もコンクリート表層部で逸散しており、その影響を受けて表面付近はやや水和が滞発した形の細孔径分布になったものと考えられる。

次に、養生日数に伴う空隙率や細孔径分布の変化に着目すると、BFSのみを置換した配合と、BFSとγ-C2Sを併用した配合では異なる傾向が確認された。

BFSのみを置換したBBおよびBC配合については、炭酸化養生日数の経過によって表面からいずれの深さにおいても空隙率は減少するものの、炭酸化養生4週で供試体のほぼ全面が炭酸化しても、供試体中心部の空隙は他に比べて大きい結果となった。深さ37.5～50mmにおいては10mm以下の微細な空隙が養生2週の時点で多く形成されており、この径の空隙の量は炭酸化養生4週においても大きく変化していない。10mm以下の空隙はC-S-Hの生成に伴って生じる空隙と考えられ、高温養生によってCO2が到達する前にBBやBC配合の供試体中心部に生成されたC-S-Hは、炭酸化によって分解しにくい性質を有していた可能性がある。すなわち、BFSのみを置換した配合においては、高温の作用によって供試体の全体でセメントやBFS自体の反応が活性化してC-S-Hの生成が進みつつ、表面からCO2が徐々にコンクリート内に浸透してCa(OH)2やC-S-Hの炭酸化等が起こるため、炭酸化後の細孔径分布が深さによって不均質なものになったと考えられる。

一方、BFSとγ-C2Sを併用したBC+γ15、BC+γ30においては、図5.2-10および図5.2-11に示すとおり、供試体がほぼ全面炭酸化した炭酸化養生4週の時点で、0～12.5mmより内部の細孔径分布がほぼ均一になった。BC+γ15、BC+γ30において養生2週で炭酸化していなかった37.5～50mmの細孔径分布に着目すると、養生を2週から4週にすることで全体的に細孔径が減少し、12.5～25mmや25～37.5mmと同様な細孔径分布となった。この変化は、既往の研究【5】と同様に、主としてγ-C2Sの炭酸化によるCaCO3の生成に伴う空隙の充填に起因すると考えられる。すなわち、γ-C2Sを用いたコンクリートの炭酸化養生による細孔構造の変化は、γ-C2Sの炭酸化に伴う空隙の充填が支配的になり、結果として、炭酸化反応を生じた部分は均質な細孔径分布になると考えられる。
図 5.2-8 BB配合における炭酸化養生2週（左）および炭酸化養生4週（右）の細孔径分布

図 5.2-9 BC配合における炭酸化養生2週（左）および炭酸化養生4週（右）の細孔径分布
図 5.2-10 BC+γ15配合における炭酸化養生2週（左）および炭酸化養生4週（右）の細孔径分布

図 5.2-11 BC+γ30配合における炭酸化養生2週（左）および炭酸化養生4週（右）の細孔径分布
（5）絶乾密度分布
炭酸化養生1週における炭酸化部と未炭酸化部の絶乾密度を図5.2-12に示す。また、炭酸化養生2週および4週における表面からの絶乾密度分布を図5.2-13に示す。図5.2-12より、炭酸化部と未炭酸化部で比較すると、3.2節で示したセメントベーストの結果と同様、炭酸化反応によるCaCO₃の生成等により密度が大きくなる結果となった。しかし、図5.2-13に示すように、炭酸化部においても絶乾密度は分布を持ち、BB以外の配合は、表面～12.5mmの絶乾密度がそれより内部に比べてやや小さい結果となった。これは前述のとおり、表層部における乾燥に伴う水和の停滞が影響しているものと考えられる。また、炭酸化養生4週では、炭酸化反応が内部まで進行することで供試体中心部の絶乾密度も増加した。
無機炭素分析にて得られた CO₂ 含有率

無機炭素分析にて得られた、炭酸化養生 1 週、2 週及び 4 週における CO₂ 含有率の分布を図 5.2-14 に示す。配合によらず、養生日数の経過とともに供試体内部まで CO₂ 含有率が増加する傾向が確認された。また、炭酸化養生 4 週の結果に着目すると、BC+γ30 以外の配合の CO₂ 含有率は、表面から 20mm のところにピークを持つ分布となることが確認された。前述の空隙率に関する考察の際に示した通り、BFS を主体とする配合については、炭酸化養生中の高温、高濃度 CO₂ の影響により、供試体の深さ方向で反応が不均質に生じたため、CO₂ 含有率にも分布が生じたと考えられる。特に供試体表面付近は炭酸化養生時に乾燥の影響を受けていると考えられ、この影響によって、炭酸化反応にて CO₂ を固定できる水和物の生成量自体が少なかった可能性がある。一方、γ-C₂S が結合材の 30% を占める BC+γ30 は、深さによらず CO₂ 含有率がほぼ一定となった。γ-C₂S を多く含む結合材の構成とした場合には、γ-C₂S が Ca(OH)₂ の生成を介さずに、液相中に溶解した炭酸イオンと直接反応する【3】ことから、表面においても乾燥の影響を受けにくく、多量の CO₂ を固定したと考えられる。

図 5.2-14 炭酸化養生1週、2週および4週におけるCO₂含有率の分布
(7) コンクリートとしてのCO₂固定量

無機炭素分析にて得られたCO₂含有率をもとに、コンクリートとしてのCO₂固定量を算出した。3.2節のセメントベーストの試験では、CO₂含有率(%)に炭酸化部における絶乾密度(kg/m³)を掛け合わせて炭酸化部におけるセメントベースト1m³あたりのCO₂固定量を算出した。しかしながら、同手法ではもとと使用材料に含有されていた炭素までCO₂固定量の一部に計上している可能性がある。そこで、コンクリートとしてのCO₂固定量の算出に際して、まず未炭酸化部におけるCO₂含有量を算出した。各配合について、図5.2-14の炭酸化養生1週における37.5〜50mm（確実にCO₂が浸透していないと判断できる深さ）のCO₂含有率に、図5.2-12で示した未炭酸化部の絶乾密度(kg/m³)を掛け合わせて算出した。未炭酸化部におけるCO₂含有量を図5.2-15に示す。OPCに含まれる最大5％の少量混合成分がすべて石灰石微粉末と仮定したときのCO₂含有量は1.8〜3.5kg/m³であり、添加量1.79kg/m³のAE減水剤に含まれる有機分等を考慮しても、同試算にて得られた未炭酸化部のCO₂含有量21.7〜34.8kg/m³はやや大きいと考えられる。しかし、コンクリートのCO₂固定量評価の観点では安全側と考え、図5.2-15に示した数値を使用材料に含まれるCO₂含有量と定義した。

そのうえで、図5.2-14に示した炭酸化養生2週および4週における無機炭素分析にて得られたCO₂含有率（％）に、図5.2-13に示した各深さごとの絶乾密度(kg/m³)を掛け合わせ、図5.2-15に示した使用材料起因のCO₂含有量を差し引くことによって求めた、各配合におけるCO₂固定量の分布を図5.2-16に示す。同図に、図5.2-1に示した材料起因のCO₂排出量を赤い点線で示した。これによると、配合によらず、養生日数の経過と
ともに供試体の深さ方向における CO₂固定量が増加することが分かった。また、BC+γ30 のようにセメントの構成比率を低減し、BFS と γ-C₂S を併用したコンクリートを炭酸化養生することで、深さ方向によらず、材料起因の CO₂排出量を上回る CO₂がコンクリートに固定されるという試算結果が得られた。これは、BFS や γ-C₂S が、表 3.3-4 に示すように CO₂排出量が少ない材料である一方で、大量の CO₂を固定できるためと考えられる。BFS は銑鉄の際に副産物として生成されるものであり、表 3.3-4 に示す数値に原材料起因の CO₂排出量を考慮されていない。また、γ-C₂S の原料となる消石灰には、カルシウムカーバイド製造の際の副産物を用いていることから、原材料起因の CO₂排出量はゼロとしたうえで CO₂排出量が計算されている【15】。すなわち、表 3.3-4 に示した CO₂排出量については、使用材料の CO₂排出量をどのように算定するか、その境界の与え方によって数値が変わる可能性があることから、原材料から使用材料、製品製造、そして供用後の廃棄にいたるまでのライフサイクル CO₂ (LCCO₂) 評価が必要と考える。

図 5.2-16 各配合における CO₂固定量の分布
（8）結合材のCaO反応率

既往の検討事例【2】に準拠して、各配合におけるセメントならびに各混和材に含まれるCaO量のモル数と、無機炭素分析にて得られたCO2固定量のモル数から、CaO反応率を算出した。各配合の炭酸化養生4週における供試体深さ方向のCaO反応率の分布を図5.2-17に示す。いずれの配合においても、CaO反応率が100%を超える箇所が生じた。セメントベーストを対象とした3.2節で示したCaO反応率は60～70%であったことから、それよりも大量のCO2が固定されている結果となった。水セメント比が異なること、結合材が三成分になっていることから、炭酸化速度はセメントベーストの試験よりも早かったことから、これらが影響している可能性が高い。なお、解体されたコンクリート構造物によるCO2固定量の検討【4】では、大気中に放置されたコンクリート破砕物が20～50年間で固定するCO2量は総CaO量の75%程度と示されており、本研究における数値はこれよりも大きい。金ら【5】は、エトリングサイトの炭酸化によってCaO量の140～150%のCO2が吸収された結果を得ており、これは、CO2がアルミナゲルやシリカゲルに吸着されたためと考察している。また、MgOと高炉スラグ微粉末を含むセメント系材料を炭酸化させた研究【6】では、CaCO3に加えて、CaとMgを含む炭酸塩やMgCO3などの形でCO2が固定された事例が報告されている。本検討においても、これらの影響でCO2固定量が100%を超えたと考えられる。

これらのことを踏まえると、高濃度CO2の環境下にて材齢初期からコンクリートを炭酸化養生することで、Caだけでなく、様々な形でCO2がコンクリートに固定されると考えられる。CaCO3やMgCO3以外の形で固定されたCO2を含む水和物については、今後、その組成を明らかにするとともに、長時間の安定性（耐久性）について確認が必要と考える。また、W/CがCO2固定量に及ぼす影響についても検討が必要である。

図5.2-17 各配合の炭酸化養生4週におけるCaO反応率
5.3 環境配慮型コンクリートにおける硬化特性

5.3.1 検討概要

前節において、高炉スラグ微粉末とγ-C₂S をセメント代替として併用した三成分系のセメントを用いたコンクリートを強制的に炭酸化することで、材料起因の CO₂ 排出量を上回る CO₂ をコンクリートに固定できることを実証した。本節では、この三成分系の結合材を用いたコンクリートを環境配慮型コンクリートと称し、その特徴的な硬化特性について評価を行った。

5.3.2 使用材料と配合

環境配慮型コンクリートの使用材料を表 5.3-1 に、コンクリートの配合を表 5.3-2 に示す。早強ポルトランドセメント、高炉スラグ微粉末および γ-C₂S を結合材とし、HPC : BFS : γ-C₂S = 30 : 40 : 30 とした。また、水粉体比 W/P=48%、水結合材比 W/B=60%とした。

表 5.3-1 使用材料（環境配慮型コンクリート）

<table>
<thead>
<tr>
<th>使用材料</th>
<th>記号</th>
<th>摘要</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>W</td>
<td>水道水</td>
</tr>
<tr>
<td>セメント</td>
<td>HPC</td>
<td>早強ポルトランドセメント、密度=3.14g/cm³</td>
</tr>
<tr>
<td>混和材</td>
<td>BFS</td>
<td>高炉スラグ微粉末、密度=2.91g/cm³</td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>ダイカルシウムシリケート γ 相（γ-C₂S）、密度=2.94g/cm³、比表面積=3,000 cm²/g</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>石炭灰、密度=2.20g/cm³</td>
</tr>
<tr>
<td>細骨材</td>
<td>S1</td>
<td>陸砂、密度=2.61g/cm³</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>砕砂、密度=2.64g/cm³</td>
</tr>
<tr>
<td>粗骨材</td>
<td>G</td>
<td>砕石 2005、密度=2.70g/cm³</td>
</tr>
<tr>
<td>混和剤</td>
<td>AD</td>
<td>AE 減水剤（高機能型）、変性リグニンスルホン酸化合物とポリカルボン酸型化合物の複合体</td>
</tr>
<tr>
<td></td>
<td>AE</td>
<td>アニオン及びノニオン系特殊界面活性剤（フライアッシュ用 AE 剤）</td>
</tr>
</tbody>
</table>
表 5.3-2 環境配慮型コンクリートの配合

<table>
<thead>
<tr>
<th>W/P (%)</th>
<th>W/B (%)</th>
<th>s/a (%)</th>
<th>Air (%)</th>
<th>単位量 (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>60</td>
<td>40</td>
<td>4.5</td>
<td>167 HPC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84 BFS γ F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84 S1 S2 G</td>
</tr>
</tbody>
</table>

※B = HPC + BFS + γ

比較として、普通ボルトランドセメントを用いた一般的なコンクリートを用意した。使用材料を表 5.3-3 に、コンクリートの配合を表 5.3-4 に示す。環境配慮型コンクリートの W/B および W/P に合わせて、W/C=60% と、W/C=48% の 2 種類の配合を比較対象とした。

表 5.3-3 使用材料（一般的なコンクリート）

<table>
<thead>
<tr>
<th>使用材料</th>
<th>記号</th>
<th>摘要</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>W</td>
<td>水道水</td>
</tr>
<tr>
<td>セメント</td>
<td>OPC</td>
<td>普通ボルトランドセメント、密度=3.16g/cm³</td>
</tr>
<tr>
<td>細骨材</td>
<td>S</td>
<td>川砂、密度=2.57g/cm³</td>
</tr>
<tr>
<td>粗骨材</td>
<td>G1</td>
<td>砕石 2010、Gmax20mm、密度=2.61g/cm³</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>砕石 1505、Gmax20mm、密度=2.60g/cm³</td>
</tr>
<tr>
<td>混和剤</td>
<td>AD</td>
<td>リグニンスルホン酸塩とオキシカルボン酸塩の混合物</td>
</tr>
<tr>
<td></td>
<td>AE</td>
<td>変性ロジン酸化合物系陰イオン界面活性剤</td>
</tr>
</tbody>
</table>

表 5.3-4 一般的なコンクリートの配合

<table>
<thead>
<tr>
<th>配合名</th>
<th>W/C (%)</th>
<th>s/a (%)</th>
<th>Air (%)</th>
<th>単位量 (kg/m³)</th>
<th>AD</th>
<th>AE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W OPC S G1 G2</td>
<td>P ×%</td>
<td>P ×%</td>
</tr>
<tr>
<td>一般 W/C60%</td>
<td>60</td>
<td>40</td>
<td>4.5</td>
<td>173 288 707 760 324</td>
<td>1.07</td>
<td>0.002</td>
</tr>
<tr>
<td>一般 W/C48%</td>
<td>48</td>
<td>37</td>
<td></td>
<td>360 642 764 326</td>
<td>1.07</td>
<td>0.002</td>
</tr>
</tbody>
</table>
5.3.3 試験内容
前掲した配合のコンクリートを強制二軸ミキサにて 20℃環境にて練り混ぜ、フレッシュ性状を確認した。環境配慮型コンクリートのスランプは 7.5cm、空気量は 5.1%であった。一般的なコンクリートのうち、W/C=48%の配合はスランプ 15.5cm、空気量 4.4%であり、W/C=60%の配合はスランプ 15.0cm、空気量 4.3%であった。
環境配慮型コンクリートは、打込み後 20℃、60%RH の環境に静置し、材齢 2 日にて脱型した。その後、温度 50℃、湿度 40%RH、CO₂濃度 20%の環境で炭酸化養生を行い、各材齢にて試験に供した。
一般コンクリートは、プレキャストコンクリート製品をイメージして、型枠に打込み後に蒸気養生を行った。練上がりから 2 時間 20℃環境で前置きし、その後、20℃/時間で 2 時間かけて 60℃まで昇温させ、60℃にて 3 時間キープし、その後、5℃/時間で 8 時間かけて 20℃まで低下させ、その後脱型した。脱型後は、温度 20℃、湿度 60%RH の環境にて気中養生を行い、所定の材齢で試験に供した。
試験項目および試験方法を表 5.3-5 に示す。規格の無い試験方法については、試験結果の際に詳細を記述する。

表 5.3-5 試験項目および方法

<table>
<thead>
<tr>
<th>試験項目</th>
<th>試験方法</th>
<th>供試体</th>
<th>材齢</th>
</tr>
</thead>
<tbody>
<tr>
<td>圧縮強度</td>
<td>JIS A 1108</td>
<td>φ 100×200mm</td>
<td>脱型時、炭酸化 14 日、28 日</td>
</tr>
<tr>
<td>炭酸化深さ</td>
<td>JIS A 1152</td>
<td></td>
<td>全面炭酸化後</td>
</tr>
<tr>
<td>耐摩耗性</td>
<td>O式すり減り試験</td>
<td>150×290×60mm</td>
<td>全面炭酸化後</td>
</tr>
<tr>
<td>エフロレッセンス</td>
<td>独自</td>
<td></td>
<td>全面炭酸化後</td>
</tr>
<tr>
<td>微量成分溶出特性</td>
<td>JSCE-G575-2018</td>
<td>φ 100×200mm</td>
<td>全面炭酸化後</td>
</tr>
</tbody>
</table>
5.3.4 実験結果

（1）圧縮強度と静弾性係数

各配合における材齢と圧縮強度ならびに静弾性係数の関係を図 5.3-1 に示す。また、環境配慮型コンクリートの強度発現性については、別途、同配合を水中養生して取得した圧縮強度試験結果と比較して図 5.3-2 に示す。なお、写真 5.3-1 に示すように、環境配慮型コンクリートは材齢 14 日で φ100×200mm のほぼ全面が炭酸化していた。

炭酸化養生を行うことによって、表面からの炭酸化と 50℃の高温養生の影響で早期に強度発現することが確認された。また、静弾性係数は同一強度レベルのコンクリートに比べて多少小さくなることが確認された。

図 5.3-1 材齢と圧縮強度（左）および静弾性係数（右）の関係

図 5.3-2 養生方法が環境配慮型コンクリートの強度発現性に及ぼす影響
写真 5.3-1 環境配慮型コンクリートの炭酸化状況（左：14日、右：18日）
(2) 耐摩耗性

耐摩耗性は、写真5.3-2に示すO式すり減り試験機【7】によって評価した。幅150mm×長さ290mm×高さ60mmの供試体を作製し、試験面の内側に向けて六角柱の形に組んで、回転ドラムにセットし、内側の中空部にφ22×40mmのPC鋼棒を20個封入して、中心部のパイプより20L/minの水シャワーを浴びせながら80rpmで回転させた。試験時間は4時間として、すり減り係数を以下の式によって算出した。

すり減り係数（mm³/cm²） = (W/ρ) / Ac

ここで、W: 摩耗量（g）

ρ: コンクリートの見掛け密度（g/mm³）

Ac: すりへりを受けた面積 = 376.3 cm²

写真5.3-2 O式すり減り試験機

同試験にて得られたすり減り係数を表5.3-6に示す。環境配慮型コンクリートのすり減り係数はW/C=48%の一般的なコンクリートと同等であった。図5.3-3に示すように、環境配慮型コンクリートは、同一強度レベルの一般的なコンクリートに比べてすり減り係数が高いことが確認された。これは、既往の研究【7】と同様に、表面が炭酸カルシウムに覆われていることによって耐摩耗性が向上したと考えられる。
表 5.3-6 すり減り係数

<table>
<thead>
<tr>
<th></th>
<th>環境配慮型コンクリート</th>
<th>一般－W/C=48%</th>
<th>一般－W/C=60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>290</td>
<td>324</td>
<td>440</td>
</tr>
<tr>
<td>2</td>
<td>323</td>
<td>275</td>
<td>423</td>
</tr>
<tr>
<td>3</td>
<td>280</td>
<td>305</td>
<td>412</td>
</tr>
<tr>
<td>平均</td>
<td>298</td>
<td>301</td>
<td>425</td>
</tr>
</tbody>
</table>

単位：mm³/cm²

写真 5.3-3 0式すり減り試験後の供試体表面

図 5.3-3 圧縮強度とすり減り係数の関係

図 5.3-3 圧縮強度とすり減り係数の関係
(3) エフロレッセンス発生量

供試体厚さの1/2程度まで純水に浸し、材齢7, 28日において供試体を105℃環境下で乾燥し、発生したエフロレッセンスの量を測定した。同試験にて得られたエフロレッセンスの発生量を表5.3-7に示す。また、試験前後の写真を写真5.3-4〜写真5.3-6に示す。エフロレッセンスの発生量は環境配慮型コンクリートが最も小さい結果となった。これは、炭酸化養生によってエフロレッセンスの元となるCa(OH)_2がほぼCaCO_3になっていたためと考えられる。また、一般的なコンクリートにおいては、W/C=48%のコンクリートのエフロレッセンスが大きく、存在するCa(OH)_2量が多いためと考えられた。

<table>
<thead>
<tr>
<th></th>
<th>環境配慮型コンクリート</th>
<th>一般-W/C=48%</th>
<th>一般-W/C=60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>供試体厚さ</td>
<td>供試体厚さの1/2程度</td>
<td>供試体厚さの1/2程度</td>
<td>供試体厚さの1/2程度</td>
</tr>
<tr>
<td>材齢7日</td>
<td>材齢7日</td>
<td>材齢7日</td>
<td>材齢7日</td>
</tr>
<tr>
<td>供試体厚さ</td>
<td>供試体厚さの1/2程度</td>
<td>供試体厚さの1/2程度</td>
<td>供試体厚さの1/2程度</td>
</tr>
<tr>
<td>材齢28日</td>
<td>材齢28日</td>
<td>材齢28日</td>
<td>材齢28日</td>
</tr>
<tr>
<td>供試体厚さ</td>
<td>供試体厚さの1/2程度</td>
<td>供試体厚さの1/2程度</td>
<td>供試体厚さの1/2程度</td>
</tr>
</tbody>
</table>

表5.3-7 エフロレッセンスの発生量

単位：g

環境配慮型コンクリート 一般-W/C=48% 一般-W/C=60%

写真5.3-4 エフロレッセンス発生前の試験体

写真5.3-4 エフロレッセンス発生前の試験体

写真5.3-4 エフロレッセンス発生前の試験体
環境配慮型コンクリート

一般 - W/C = 48%

一般 - W/C = 60%

写真 5.3-5 浸漬 7 日後のコンクリート表面

環境配慮型コンクリート

一般 - W/C = 48%

一般 - W/C = 60%

写真 5.3-6 浸漬 28 日後のコンクリート表面
（4）コンクリートからの微量成分溶出特性

（i）検討概要
一般に、硬化したコンクリートが炭酸化することによって、一部の水和物が分解され、微量成分、特に六価クロムの固定能力が低下するとの指摘がある【8】。ここでは、環境配慮型コンクリートからの微量成分溶出特性について評価した。コンクリートの配合は、前掲の表5.3-2に示した環境配慮型コンクリートとした。材齢2日で脱型後、温度50℃、湿度40%RH、CO₂濃度20%の環境下で18日間、全面炭酸化するまで養生を行ったあと、JSCE-G575-2018に準拠して、タンクリーチング試験を行った。具体的な試験手順は以下のとおりである。

①試験体を軽く水洗いする。
②表面積100mm²あたり5mlに相当する量のイオン交換水を試験容器に入れ、試験体を浸漬する。
 φ10×20cm円柱：((2×π×50×200)+(50²×π)×2)*5ml/100mm²＝3.925L
③浸漬開始から24時間ごとに、試験容器内のイオン交換水を全量交換する。取り出した水は孔径1μmのメンブランフィルターを用いて吸引濾過する。
④イオン交換水の全量交換を1日1回、4回繰り返す。
⑤溶液の元素量を分析する。

イオン分析項目を表5.3-8に示す。本試験では、微量成分に加えて、コンクリートからの各種イオンの溶出挙動も抑えることとした。

<table>
<thead>
<tr>
<th>項目</th>
<th>方法</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>イオン分析（微量成分）</td>
<td>JSCE-G 575-2018</td>
<td>【微量成分】8元素
ほう素、ふっ素、六価クロム、ヒ素、セレン、
カドミウム、水銀、鉛</td>
</tr>
<tr>
<td>イオン分析（溶出成分）</td>
<td>一</td>
<td>【溶出成分】12イオン
ナトリウム、カリウム、カルシウム、イオン状シリカ、硫酸イオン、硫酸物イオン、可溶性アルミニウム、マグネシウム、溶解性鉄、pH、炭酸イオン、重炭酸イオン</td>
</tr>
</tbody>
</table>
(iii) 試験結果

微量成分溶出試験結果を表 5.3-9 に示す。同表には、水質汚濁防止法ならびに土壌環境基準（環告 46 号）に示されているそれぞれの微量成分の基準値も併記した。いずれの微量成分も各基準値を大幅に下回る結果となっており、環境配慮型コンクリートは微量成分溶出に対して安全であることが示された。特にセメントの使用量が少ないことなどが影響していると考えられるが、これらの溶出メカニズムについては、詳細な検討が今後必要と考えられる。

表 5.3-9 微量成分溶出試験結果（mg/L）

<table>
<thead>
<tr>
<th>試料名</th>
<th>試 験 結 果</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>カドミウム及びその化合物</td>
<td>六価クロム化合物</td>
<td>水銀及びその化合物</td>
<td>セレン及びその化合物</td>
<td>鉛及びその化合物</td>
<td>砷素及びその化合物</td>
<td>ふっ素及びその化合物</td>
<td>ほう素及びその化合物</td>
</tr>
<tr>
<td>水質汚濁防止法</td>
<td>0.1</td>
<td>0.5</td>
<td>0.005</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>環告 46 号</td>
<td>0.01</td>
<td>0.05</td>
<td>0.005</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>1 日後</td>
<td>0.00004</td>
<td>0.001</td>
<td>0</td>
<td>0.0011</td>
<td>0</td>
<td>0.0001</td>
<td>0.0361</td>
<td>0.0493</td>
</tr>
<tr>
<td>2 日後</td>
<td>0.00004</td>
<td>0</td>
<td>0.000319</td>
<td>0.0005</td>
<td>0</td>
<td>0.0004</td>
<td>0.013</td>
<td>0.0264</td>
</tr>
<tr>
<td>3 日後</td>
<td>0.00004</td>
<td>0</td>
<td>0</td>
<td>0.0005</td>
<td>0</td>
<td>0.0008</td>
<td>0.003</td>
<td>0.022</td>
</tr>
<tr>
<td>4 日後</td>
<td>0.00002</td>
<td>0</td>
<td>0.000019</td>
<td>0.0003</td>
<td>0</td>
<td>0.0009</td>
<td>0</td>
<td>0.013</td>
</tr>
<tr>
<td>平均</td>
<td>0.000035</td>
<td>0.00025</td>
<td>0.0000845</td>
<td>0.0006</td>
<td>0</td>
<td>0.00055</td>
<td>0.013025</td>
<td>0.027675</td>
</tr>
</tbody>
</table>

図 5.3-4 微量成分溶出試験結果
微量成分溶出試験時に得られた溶液のうち、1 回目と 4 回目の液交換後に得られた作用水に含まれるイオンの量を分析した結果を表 5.3-10 に示す。これによると、環境配慮型コンクリートを水に浸漬することによって、Ca, Si, 重炭酸イオン, 硫酸イオンが溶出していることが確認された。材齢初期からの炭酸化によって、エトリンガイト等は分解され、過剰になった硫酸イオンは一部細孔溶液中にイオンのままで残っている可能性が考えられる。また、Si も結合せずにイオン状で細孔溶液中に存在している可能性が示唆された。これらの反応については、長期耐久性を評価するうえで重要な視点になりと考えられ、今後、詳細な分析を行う必要があると考える。なお、試験水の pH は 8.8 および 9.4 であり、Ca(OH)₂などの弱アルカリを呈する鉱物はすべて炭酸化しているものと考えられた。

| 表 5.3-10 微量成分溶出試験水に存在した各種イオン量（mg/L） |
|---|---|---|---|---|---|---|---|---|---|
| | SO₄²⁻ | Na | K | Ca | Mg | Fe | Al | pH | 付着状態 | HCO₃⁻ | CO₃²⁻ |
| 1日後 | 13 | 3.9 | 0.9 | 8.1 | 1 | 0.1未満 | 0.01 | 8.8 | 21 | 26 | 5.0未満 |
| 4日後 | 6 | 1.5 | 0.5 | 5.7 | 0.3 | 0.1未満 | 0.02 | 9.4 | 19 | 18.1 | 5.0未満 |

図 5.3-5 環境配慮型コンクリートからの各種イオン溶出挙動
5.4 コンクリートの低 pH 化に伴う環境親和性向上

5.4.1 炭酸化とセメントの種類およびγ-C₂S の混和が植物生育に及ぼす影響

（1）検討概要

炭酸化養生によってコンクリートの pH が中性に近づけば、コンクリートの植物生育能力は大幅に改善される可能性がある。そこで、炭酸化養生がセメント系材料の植物生育能力に与える影響を明らかにすることを目的として、セメントベーストを用いた植物試験を行った。植物試験は、「植物に対する害に関する栽培試験の方法（昭和 59 年 4 月 18 日付け 59 農蚕第 1943 号農林水産省農蚕園芸局長通知）」に準拠して行った。試験手順は以下に示すとおりである。

土壌（黒土もしくは砂）と硬化したセメントベーストの粉砕物を重量比で 70:30 となるように混合し、この混合土壌を内径 11.3cm、高さ 6.5cm の試験容器（ノイバウエルポット）に約 500ml 程度充填した。土壌およびセメントベーストはいずれも乾燥状態のものを使用し、混合土壌充填後に、最大容水量（土壌が重力に反して保持できる水の最大量）の 50～60％程度の水を加えた。以上の手順を踏まえて作った混合土壌に、コマツナの種子を 20 粒、等間隔となるようにマス目状にピンセットで播種し、20～25℃の室内で一定期間保持した。なお、実験期間中は土壌の水分が一定となるように、定期的に散水を行った。実験期間中および実験終了後にコマツナの発芽状況観察や土壌の化学分析を行った。サンプル数は n=2 とした。

（2）使用材料と検討ケース

使用材料を表 5.4-1 に示す。また、検討ケースを表 5.4-2 に示す。対象とする土壌は黒土および砂とし、砂にはコンクリート用の細骨材を選定した。

セメントベーストは水結合材比を 25％で一定とし、高性能減水剤を結合材×0.5％添加した。セメント種類が植物の生育に及ぼす影響を評価するために、普通ポルトランドセメント（OPC）、高炉セメント B 種（BB）に加えて、それぞれのセメントの半量を γ-C₂S で置換したもの（OPCγ, BBγ）の 4 種類のセメントベーストを使用した。また、炭酸化が植物の生育に及ぼす影響を評価するために、セメントベーストは封締養生と炭酸化養生の 2 種類の方法で養生した。
表 5.4-1 使用材料

<table>
<thead>
<tr>
<th>種別</th>
<th>材料</th>
<th>記号</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壌</td>
<td>黒土</td>
<td>-</td>
<td>市販の購入土</td>
</tr>
</tbody>
</table>
| | 砂 | - | コンクリート用細骨材
 | | | 密度 2.56 g/cm³
 | | | 粗粒率 2.47 |
| セメント | OPC | 普通ポルトランドセメント
 | | | 密度 3.15g/cm³ |
| | BB | 高炉セメント B 種
 | | | 密度 3.04g/cm³ |
| 混和材 | γ | ダイカルシウムシリケート γ 相 (γ-C₂S), 密度=2.85 g/cm³, 比表面積=3,000cm²/g |
| 混和剤 | SP | ポリカルボン酸系高性能減水剤 |

表 5.4-2 検討ケース

<table>
<thead>
<tr>
<th>ケース名</th>
<th>土壌</th>
<th>セメント種類</th>
<th>養生方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>土-OPC-封</td>
<td>黒土</td>
<td>OPC</td>
<td>封締</td>
</tr>
<tr>
<td>土-OPC-炭</td>
<td>OPC</td>
<td>炭酸化</td>
<td></td>
</tr>
<tr>
<td>土-OPCγ-炭</td>
<td>OPCγ※1</td>
<td>炭酸化</td>
<td></td>
</tr>
<tr>
<td>土-BB-封</td>
<td>BB</td>
<td>封締</td>
<td></td>
</tr>
<tr>
<td>土-BB-炭</td>
<td>BB</td>
<td>炭酸化</td>
<td></td>
</tr>
<tr>
<td>土-BBγ-炭</td>
<td>BBγ※2</td>
<td>炭酸化</td>
<td></td>
</tr>
<tr>
<td>土のみ</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>砂-OPC-封</td>
<td>砂</td>
<td>OPC</td>
<td>封締</td>
</tr>
<tr>
<td>砂-OPC-炭</td>
<td>OPC</td>
<td>炭酸化</td>
<td></td>
</tr>
<tr>
<td>砂-OPCγ-炭</td>
<td>OPCγ※1</td>
<td>炭酸化</td>
<td></td>
</tr>
<tr>
<td>砂-BB-封</td>
<td>BB</td>
<td>封締</td>
<td></td>
</tr>
<tr>
<td>砂-BB-炭</td>
<td>BB</td>
<td>炭酸化</td>
<td></td>
</tr>
<tr>
<td>砂-BBγ-炭</td>
<td>BBγ※2</td>
<td>炭酸化</td>
<td></td>
</tr>
<tr>
<td>砂のみ</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

※1OPC: γ-C₂S = 50:50 で混合
※2BB: γ-C₂S = 50:50 で混合
（3）セメントベースト作製方法
セメントベーストは練混ぜ後φ50×100mmの円柱型枠に打ち込み，1日間，20℃環境下で封鍊養生を行った後，そのまま封鍊養生を継続するものと，炭酸化養生を行うものの2種類に分けた。封鍊養生を行うセメントベーストについては，材齢28日まで20℃環境下で封鍊養生後に脱型し，空気中のCO₂による炭酸化を防ぐために窒素ガスで満たしたグローブボックス内にて粒径が2mm以下になるまで粉砕した。炭酸化養生を行うセメントベーストについては，打込みから1日後に脱型して，炭酸化養生を行う前に粒径が2mm以下になるまで大気中で粉砕した。その後，材齢28日まで50℃，50％RH，CO₂濃度20％に調整された恒温恒湿室内にて養生を行った。養生を終了したセメントベーストは0.3～1.2mmになるように粒度調整し，試験に供した。

（4）試験項目および試験方法
(i) 植物生育量
コマツナの播種から3日，7日，14日後に発芽している本数を測定し，播種量である20粒に対する発芽率を評価した。また，播種から28日後に育成したコマツナの全量を刈り取り，90℃で48時間炉乾燥させ，乾燥重量を測定することで植物の生育量を得た。

(ii) 混合土壌の化学分析
試験終了後の混合土壌を重量比で5倍の水に浸漬し，1日静置後に浸漬液のpHをガラス電極法で，電気伝導度（EC）を白金電極法で測定した。また，植物の生育にとって重要な元素である窒素に着目して，混合土壌中の窒素含有率を評価した。土壌での窒素形態は，主にアンモニア態窒素と硝酸態窒素に分けられる。大半の植物は土壌中の硝酸態窒素を取り吸収して生育することから，硝酸態窒素含有量が植物の生育に大きく影響すると考えられる。そこで，土壌中のアンモニア態窒素と硝酸態窒素の含有量を測定した。
試験前の混合土壌（乾燥状態）を重量比で5倍の水に浸漬し，7日後に浸漬液を濾過し，濾過後の浸漬液におけるアンモニア態窒素含有量ならびに硝酸態窒素含有量を，反射式光度計（RQフレックス，(株)藤原製作所製）にて測定した。
（5）実験結果

（i）植物の発芽率

各検討ケースにおける播種から3日、7日、14日後のコマツナの発芽率を図5.4-1に示す。土壌を黒土としたケースに着目すると、黒土のみのものは3日の時点で発芽率が100％となっているのに対し、封締養生を行ったOPCを混合した土壌では、14日後においても発芽率が30％と低い結果となった。一方、同じ封締養生でも、BBを混合した土壌では3日で90％以上の発芽率となった。セメントベーストから土壌へ溶出するイオンの成分や量が発芽率に大きく影響していると考えられる。炭酸化養生を行ったOPCを混合した土壌では、3日後における発芽率がほぼ100％となっており、炭酸化養生によってOPCの発芽率が大きく向上する結果となった。また、炭酸化養生を行ったセメントベーストにおいては、セメント種類によらず7日後には発芽率が約100％となり、炭酸化養生を行った場合には、セメント種類によらず良好な発芽率が得られる可能性が示された。

土壌を砂としたケースに着目すると、封締養生を行ったOPCを混合した土壌についても比較的高い発芽率が得られた。セメントベーストを混合した土壌における植物の生育には、セメントベーストの性質だけでなく混合する土壌の性質も大きく影響することが明らかとなった。
(ii) 植物の生育量

各検討ケースにおける、播種から 28 日後のコマツナの刈取り後の乾燥重量を図 5.4-2
に示す。コマツナの乾燥重量は黒土のみの場合がもっとも多く、セメントベーストの混合
によってコマツナの生育が劣る結果となった。次に、セメントベーストを混合した土壌に
着目すると、コマツナの刈取り後の乾燥重量はセメント種類、養生条件によって大きな差
が見られ、写真 5.4-1 に示すとおり、封締養生を行ったセメントベーストを混合した土壌
に比べて、炭酸化養生を行ったセメントベーストを混合した土壌においてはコマツナが良
好に生育する結果となった。炭酸化養生を行ったセメントベーストについてセメントの種
類に着目すると、黒土および砂いずれの土壌の場合も、BB を炭酸化させたものがもっとも
コマツナの生育に対して良好であり、良好な順に BB > OPCγ > OPC > BBγ となった。特に
土壌に砂を用いた場合においては、炭酸化養生した BB を混合したほうが砂のみの場合よ
りもコマツナの生育が良好となる結果であった。植物が比較的多量に必要とする元素は「多
量必須元素」と言われ、肥料の 3 大要素である窒素(N)、リン(P)、カリウム(K)に加えて、
カルシウム(Ca)、マグネシウム(Mg)、イオウ(S)がそれにあたる。Ca や Mg は植物の生育に
必要である一方で、K に対する拮抗作用があり、【10】、Ca や Mg が過剰に土壌に含まれる
場合には、植物への K の吸収が抑制され、植物の生育が阻害されることがある。BB は OP
C に比べて Mg 量が多く、Ca 量が少ないため、このことが BB における植物の生育能力向上
につながっている可能性がある。

図 5.4-2 試験開始から 28 日後のコマツナ刈取り後の乾燥重量
写真 5.4-1 28日後のコマツナ生育状況
(iii) 混合土壌の化学分析

各検討ケースにおける、試験後の土壌の電気伝導度（EC）と 28 日後におけるコマツナ刈取り量（乾燥重量）の関係を図 5.4-3 に示す。土壌の EC は、すべての検討ケースにおいて 0.1〜1.0dS/m の範囲であった。(社)日本造園学会では、植栽基盤条件としての品質を判定する際に表 5.4-3 が用いられる【9】。これによると、EC が 0.1〜1.0dS/m の範囲においては、EC が小さいほど植栽基盤としての品質は優れていると判断される。しかしながら、図 5.4-3 によると、両者に高い相関は見られない結果となった。

図 5.4-3 試験後土壌の EC とコマツナ刈取り後の乾燥重量

表 5.4-3 植栽基盤条件としての判定基準【9】

<table>
<thead>
<tr>
<th>pH</th>
<th>優</th>
<th>良</th>
<th>不良</th>
<th>極不良</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.6〜6.8</td>
<td>4.5〜5.6</td>
<td>3.5〜4.5</td>
<td>3.5></td>
</tr>
<tr>
<td>EC(dS/m)</td>
<td>0.1〜0.2</td>
<td>0.2〜0.5</td>
<td>0.5〜1.0</td>
<td>1.0<</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1></td>
</tr>
</tbody>
</table>

※塗りつぶしの色付きが封締
次に、各検討ケースにおける、試験後の土壌の pH と 28 日後におけるコマツナ刈取り量の関係を図 5.4-4 に示す。セメント種類によって元素含有量が異なり、これら元の存在が植物の生育に影響している可能性が考えられたが、本検討（pH が 5.5～11）の範囲では、対象土壌やセメント種類、養生方法によらず、土壌の pH と植物の生育量には比較的高い相関が得られ、pH が低いほど植物の生育に有利であることが確認された。また、封締養生と炭酸化養生で比較すると、セメント種類や土壌によらず、炭酸化することで pH が 1～2 程度低下する結果となった。

ここでは、pH の低下による植物の生育能力向上のメカニズムについて考察を行った。黒土を用いた混合土壌を対象として、試験後の土壌の pH とアノニア態窒素含有量との関係を図 5.4-5 に、硝酸態窒素含有量との関係を図 5.4-6 に示す。図 5.4-5 によると、封締養生を行ったセメントペーストを混合した土壌は pH が高く、アノニア態窒素含有量が小さい。一方、炭酸化養生を行ったセメントペーストを混合した土壌におけるアノニア態窒素含有量は、黒土のみのものと同等となった。一般に、pH が 9～10.5 の領域ではアノニア態窒素がアノニアとして揮発しやすくなることが知られており【10】、【11】、封締養生のセメントペーストを混合した土壌ではアノニア態窒素の一部がアノニアとして揮発したと考えられる。一方、図 5.4-6 によると、試験後の土壌の pH と硝酸態窒素含有量には高い相関が得られており、pH が低いほど硝酸態窒素含有量が多くなる結果となっ

図 5.4-4 試験後の土壌の pH とコマツナ刈取り後の乾燥重量

図 5.4-5 試験後の土壌の pH とアノニア態窒素含有量

図 5.4-6 試験後の土壌の pH と硝酸態窒素含有量
た。アンモニア態窒素は微生物による「硝化作用」によって硝酸態窒素となることが知られ
在されており【10】、【11】、また微生物の多くは高アルカリ環境下で生息することができない。
すなわち、セメントベーストを炭酸化させて pH が低下することによって、①アンモニア態窒
素のアンモニアガスとしての揮発防止と、②アンモニア態窒素から硝酸態窒素への硝化を阻害しないという 2 つの効果が得られる。これによって土壌中の硝酸態窒素量が確保
され、植物の生育が良好になったと考えられる。なお、セメントには重金属等の微量元
素が含まれており、これらが植物の生育に影響を及ぼす可能性も考えられるが、図 5.4-4 お
よび図 5.4-6 より、植物の生育能力には pH および硝酸態窒素含有量が支配的であると考
えられ、本試験の範疇では微量元素が植物の生育に及ぼす影響は小さいと考えられる。

図 5.4-5 試験後の土壌の pH とアンモニア態窒素含有量

図 5.4-6 試験後の土壌の pH と硝酸態窒素含有量
5.4.2 ポーラスコンクリートを用いた植物生育試験

（1）実験概要

炭酸化養生を行ったポーラスコンクリートでの植物の生育状況を確認することを目的に、以下の試験を行った。図 5.4-7 に示すように、φ150mm×高さ150mm の円柱状に作製したポーラスコンクリートに、黒土もしくは砂を同量の水でスラリー化した土壌を充填し、化成肥料 8-8-8（窒素、リン、カリウムの成分量がそれぞれ 8% の肥料）を 100g/m2 添 加した不織布系基材で 2cm 覆土し、トールフェスクの種子を 260mg（発芽期待本数 4,600 本/m²）撒き、6カ月間トールフェスクの生育状況を観察した。なお、乾燥防止のため週に2回、覆土の上から 200ml のイオン交換水を灌水した。

図 5.4-7 試験体概要

（2）使用材料およびコンクリート配合

ポーラスコンクリートの使用材料を表 5.4-4 に、コンクリート配合を表 5.4-5 に示す。本検討では、空隙率を大きくし、かつ粗骨材最大寸法 40mm の骨材を用いて空隙自体の大きさを確保することによって、一般的なポーラスコンクリートに比べて植物の生育に非常に優れた、環境配慮型ポーラスコンクリート【12】をリファレンスとして選定した。この環境配慮型ポーラスコンクリートは、前掲した「植生重視護岸タイプ」のポーラスコンクリートに該当し、材齢 14 日における圧縮強度は 9.92N/mm² である。本検討では、粗骨材最大寸法は 40mm で同一とし、全空隙率を 18% まで低減すること、さらにセメントやγ-C3S の炭酸化によってベースト部分の強度を高める【13】、【14】ことによって、強度 18N/mm² 以上を達成できる 3 種類の「強度重視護岸タイプ」ポーラスコンクリートを検討対象とした。なお、いずれのポーラスコンクリートについても、セメントベーストのモルタルフロ
ポーラスコンクリートを練混ぜ後、型枠に打ち込み、炭酸化養生を行うものは翌日脱型して、50℃、50％RH、CO₂濃度20％の恒温恒湿室内にて材齢14日まで養生を行った。封緘養生のものは脱型せず、材齢14日まで20℃環境下で養生を行った。

表5.4-4 ポーラスコンクリートの使用材料

<table>
<thead>
<tr>
<th>材料</th>
<th>記号</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>セメント</td>
<td>OPC</td>
<td>普通ポルトランドセメント 密度 3.15g/cm³</td>
</tr>
<tr>
<td></td>
<td>BB</td>
<td>高炉セメント B種 密度 3.04g/cm³</td>
</tr>
<tr>
<td>混和材</td>
<td>γ</td>
<td>ダイカルシリケートγ相（γ-C₃S），密度=2.85g/cm³，比表面積=3,000cm²/g</td>
</tr>
<tr>
<td>粗骨材</td>
<td>G</td>
<td>3号砕石 密度 2.64g/cm³ Gmax=40mm，実積率 60.4%</td>
</tr>
<tr>
<td>混和剤</td>
<td>SP</td>
<td>ポリカルボン酸系高性能減水剤</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>無機系増粘剤</td>
</tr>
</tbody>
</table>

表5.4-5 ポーラスコンクリートの配合

<table>
<thead>
<tr>
<th>ケース</th>
<th>Gmax(%)</th>
<th>全空隙率(%)</th>
<th>W/P(%)</th>
<th>単位量(kg/m³)</th>
<th>14日強度(N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W</td>
<td>OPC</td>
<td>BB</td>
<td>γ</td>
<td>G</td>
</tr>
<tr>
<td>OPC(025)-封緘</td>
<td>40</td>
<td>25</td>
<td>25</td>
<td>68</td>
<td>272</td>
</tr>
<tr>
<td>OPCγ(018)-炭酸化</td>
<td>40</td>
<td>18</td>
<td>25</td>
<td>96</td>
<td>192</td>
</tr>
<tr>
<td>BBγ(018)-炭酸化</td>
<td>40</td>
<td>18</td>
<td>25</td>
<td>97</td>
<td>-</td>
</tr>
<tr>
<td>BB(018)-炭酸化</td>
<td>40</td>
<td>18</td>
<td>25</td>
<td>97</td>
<td>-</td>
</tr>
</tbody>
</table>

※たとえば，025：全空隙率=25％

（3）試験項目および試験方法

4週に1回，覆土表面から40mmより上に生育したトールフェスクを刈り取り，90℃で48時間炉乾燥させ，乾燥重量を測定することで植物の生育量を得た。また，月1回程度灌水時に下面から浸出した水のpHをガラス電極法で測定した。生育量の測定は6カ月，pH測定は420日まで行った。
写真 5.4-2 植物生育試験に用いたポーラスコンクリート円柱供試体
(4) 試験結果

(i) トールフェスクの生育評価

各検討ケースにおけるトールフェスクの累積刈取り量を図 5.4-8 に示す。また、試験開始から1カ月および6カ月経過時点におけるトールフェスクの生育状況を写真 5.4-3～写真 5.4-6 に示す。炭酸化養生を行った空隙率18%のポーラスコンクリートにおけるトールフェスクの生育は、使用したセメントの種類によらず、「植生重視護岸タイプ」に該当する封締養生を行った空隙率25%のポーラスコンクリートと同等かそれ以上となる結果が得られた。空隙が小さくなることで植物の根の成長を阻害することが懸念されたが、本検討で用いたポーラスコンクリートは粗骨材最大寸法を40mmに設定していることから、空隙率が18%になっても空隙の大きさがある程度確保され、植物の根の成長を阻害しなかったものと考えられる。以上のことから、炭酸化養生を行ったポーラスコンクリートは、「強度重視護岸タイプ」に応用可能な強度を満足しつつ、「植生重視護岸タイプ」のポーラスコンクリートと同等以上の植物生育能力を有することを確認した。

図 5.4-8 トールフェスクの累積刈取り量
写真 5.4-3 トールフェスクの発育状況：1ヵ月目（黒土充填）

写真 5.4-4 トールフェスクの発育状況：1ヵ月目（砂充填）

写真 5.4-5 トールフェスクの発育状況：6ヵ月目（黒土充填）

写真 5.4-6 トールフェスクの発育状況：6ヵ月目（砂充填）
(ii) 浸出水のpH

充填土壌に砂を用いたポーラスコンクリートから浸出した水のpHの経時変化を図5.4-9に示す。封締養生を行ったポーラスコンクリートは、定期的に1年以上通水してもpHは9.1と高い値であった。一方、炭酸化養生を行ったポーラスコンクリートのpHは通水初期から8.5を下回っている。セメントベーストの植害試験結果を踏まえると、炭酸化によるpHの低下がポーラスコンクリートの植物生育能力向上に大きく寄与したと考えられる。

図5.4-9 ポーラスコンクリート通水後の水のpH
5.5 5章のまとめ

第5章では、CO₂排出量を極限まで低減できる材料設計として、高炉スラグ微粉末とγ-C₃Sをセメント代替として併用した三成分系のセメントを用いて、炭酸化養生を行ったコンクリートを対象に、CO₂固定量を評価した。また、材料起因のCO₂排出量との比較を行い、トータルとしてのCO₂排出量に関する評価を行った。さらに、同思想によって材料設計されたコンクリートの硬化特性を評価した。得られた結論は以下のとおりである。

(1) CO₂排出量の少ない産業副産物等をセメント代替として用いたコンクリートを強制的に炭酸化させることによって、材料起因のCO₂排出量を上回るCO₂をコンクリートに固定できる。

(2) 上記思想のもとで材料設計した環境配慮型コンクリートの圧縮強度は、一般的なコンクリートと同等程度を期待できる。ただし、静弾性係数はやや低下する。

(3) 環境配慮型コンクリートは、炭酸化の影響ですり減り抵抗性が高くなり、エフロッセンスの発生が抑えられる。

(4) ポーラスコンクリートの炭酸化養生によってpHが中性に近づき、土壌中の硝酸態窒素の含有量が増加することで、植物生育性能が向上する。

(5) 粗骨材最大寸法を40mmにしつつ、粗骨材間の空隙率を18%に設定したポーラスコンクリートを炭酸化養生することで、「強度重視護岸タイプ」の要求性能である18N/mm²以上を確保しつつ、「植生重視護岸タイプ」と同等の植物生育能力を有する新しいポーラスコンクリートが実現できる。
【5章の参考文献】

【1】岡島達雄：コンクリートの強度・ヤング係数と水分の関係，コンクリート工学，Vo.32，No.9，pp.20-24，1994。

【2】郭度連，宇治公隆，国府勝郎，上野敦：乾燥によるコンクリート組織の不均質化，コンクリート工学年次論文集，Vol.24，No.1，pp.711-716，2002。

【4】Engelsen，C. J.，Mehus，J.，Pade，C. and Sæther，D. H.：Carbon dioxide uptake in demolished and crushed concrete, CO2 uptake During the Concrete Life Cycle Nordic Innovation Centre Project 03018，2005。

【5】金尚奎，鶴見敬章，大门正機：エトリンガイトの炭酸化反応，石膏と石灰，No.237，pp.15-21，1992。

【6】Mo，L. and Panesar，D. K.：Accelerated carbonation – A potential approach to sequester CO2 in cement paste containing slag and reactive MgO，Cement and Concrete Composites，Vol.43，pp.69-77，2013。

【7】取違剛，渡邉賢三，横関康祐，盛岡実：コンクリートの炭酸化による耐摩耗性向上に関する研究，コンクリート工学年次論文集，Vol.30，No.1，pp.573-578，2008。

【8】森満和正，渡辺博志，片平博，新田弘之：コンクリート解体材からの6価クロム溶出の特性，簡易試験法および抑制対策に関する検討，コンクリート工学年次論文集，Vol.32，No.1，pp.1505-1510，2010。

【9】(社)日本造園学会 緑化環境工学委員会：緑化事業における植栽基盤整備マニュアル，日本造園学会誌，Vol.63，pp224-241，2000。

【10】久場一剛：最新土壌学，朝倉書店，1997。

【11】高橋英一：作物栄養学，朝倉書店，1980。

【12】佐藤健治，若林貴子，高山晴夫：環境配慮型ポーラスコンクリートの開発，鹿島技術研究所年報，No.49，pp.169-174，2001。

【13】島弘，原田直樹，河野清：ポーラスコンクリートの二酸化炭素ガス吸収による強度増加，第46回セメント技術大会講演集，pp.966-971，1992。
【14】渡邉賢三，横関康祐，坂井悦郎，大門正機：γ-2CaO・SiO₂を用いたセメント系材料の炭酸化養生による高耐久化，コンクリート工学年次論文集，Vol.26，No.1，pp.735-741，2004
第6章
火力発電所の排気ガスに含まれるCO₂のコンクリートへの固定に関する実証試験
6. 火力発電所の排気ガスに含まれる CO₂ のコンクリートへの固定に関する実証試験

6.1 はじめに

第 6 章では、これまでの検討結果をもとに、実際に火力発電所から排出される排気ガスに含まれる CO₂ をコンクリートに固定するための実証実験を行い、その CO₂ 固定量ならびにコンクリートの物性を評価した。

6.2 火力発電所の排気ガスを用いたコンクリートブロックの製造試験

6.2.1 検討概要

各種混和材をセメント代替として用いたコンクリートにてプレキャストコンクリート製品を製作し、排気ガスに含まれる CO₂ による炭酸化養生を行ったうえで、コンクリートの硬化物性および CO₂ 固定量を評価するとともに、製造時の CO₂ 排出量を試算した。

6.2.2 炭酸化養生方法概要

炭酸化養生方法の概要を写真 6.2-1 に示す。火力発電所の煙道から排気ガスの一部を抜き取り、排気ガスを温湿度制御装置に接続し、同装置内で温度を 50℃に、湿度を 40% に制御したうえで、排気ガスを炭酸化養生コンテナ内に送り込む方式を採用した。なお、火力発電所から排出される排気ガスに含まれる CO₂ の濃度は約 15% であった。

写真 6.2-1 炭酸化養生方法の概要

—155—
6.2.3 対象製品

本検討においては、歩車道境界ブロック（L=600mm、容積約 0.035m³）およびフェンス基礎ブロック（容積約 0.053m³）を対象とした。コンクリートに要求される圧縮強度は 18N/mm² である。対象製品の寸法を表 6.2-1 に示す。なお、歩車道境界ブロックについては、中心部に φ 10mm の孔を 2 つ設けることにより、同箇所からも炭酸化が促進されるようにした。

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>使用材料およびコンクリートの配合</td>
<td>普通ボルトランドセメント、高炉スラグ微粉末、γ-C₃S を結合材として用い、水結合材比 W/B=75%とした。このコンクリート配合中の単位量に、表 6.2-4 に示した各材料の CO₂排出原単位を掛け合わせることによって得られる、同コンクリートの材料起因の CO₂排出量は、同表に示すとおり、89.5kg-CO₂/m³ と試算される。</td>
<td></td>
</tr>
</tbody>
</table>
表 6.2-2 使用材料

<table>
<thead>
<tr>
<th>材料</th>
<th>記号</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>セメント</td>
<td>OPC</td>
<td>普通ポルトランドセメント，密度：3.15 g/cm³</td>
</tr>
<tr>
<td>混和材</td>
<td>BFS</td>
<td>高炉スラグ微粉末，密度：2.92 g/cm³</td>
</tr>
<tr>
<td>γ</td>
<td>ダイカルシウムシリケートγ相（γ-C₂S），密度：2.85 g/cm³</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>石炭灰，密度：2.20 g/cm³</td>
<td></td>
</tr>
<tr>
<td>細骨材</td>
<td>S</td>
<td>密度：2.57 g/cm³，FM：2.76</td>
</tr>
<tr>
<td>粗骨材</td>
<td>G</td>
<td>砕石 Gmax=20mm，密度：2.61 g/cm³，FM：6.65</td>
</tr>
<tr>
<td>混和剤</td>
<td>AD</td>
<td>リグニンスルホン酸塩とオキシカルボン酸塩の混合物</td>
</tr>
<tr>
<td></td>
<td>AE</td>
<td>変性ロジン酸化合物系陰イオン界面活性剤</td>
</tr>
</tbody>
</table>

表 6.2-3 コンクリートの配合

<table>
<thead>
<tr>
<th>W/P%</th>
<th>W/B%</th>
<th>s/a</th>
<th>Air</th>
<th>単位量</th>
<th>AD</th>
<th>AE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>kg/m³</td>
<td>P × %</td>
<td>P × %</td>
</tr>
<tr>
<td>W</td>
<td>OPC</td>
<td>BFS</td>
<td>F</td>
<td>γ</td>
<td>S</td>
<td>G</td>
</tr>
<tr>
<td>60</td>
<td>75</td>
<td>47</td>
<td>4.5</td>
<td>161</td>
<td>101</td>
<td>82</td>
</tr>
</tbody>
</table>

※B=OPC+BFS+γ，※P=OPC+BFS+γ+F

表 6.2-4 使用材料の CO₂排出量原単位と使用材料起因の CO₂排出量

<table>
<thead>
<tr>
<th>材料</th>
<th>CO₂排出量原単位</th>
<th>単位量</th>
<th>CO₂排出量</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg-CO₂/t</td>
<td>kg-CO₂/t</td>
<td>t/m³</td>
<td>kg-CO₂/m³</td>
</tr>
<tr>
<td>普通ポルトランドセメント</td>
<td>766.6【1】</td>
<td>0.101</td>
<td>77.43</td>
</tr>
<tr>
<td>高炉スラグ微粉末</td>
<td>26.5【1】</td>
<td>0.082</td>
<td>2.17</td>
</tr>
<tr>
<td>石炭灰</td>
<td>0.0</td>
<td>0.053</td>
<td>0</td>
</tr>
<tr>
<td>γ-C₂S</td>
<td>124.5【2】</td>
<td>0.032</td>
<td>3.98</td>
</tr>
<tr>
<td>細骨材</td>
<td>3.7【1】</td>
<td>0.844</td>
<td>3.12</td>
</tr>
<tr>
<td>粗骨材</td>
<td>2.9【1】</td>
<td>0.965</td>
<td>2.80</td>
</tr>
</tbody>
</table>

合計 89.5
6.2.5 コンクリートの製造と炭酸化養生

プレキャストコンクリート製品工場にて、所定の材料をミキサに投入し、一般的なコンクリートと同様に練り混ぜた。コンクリートのフレッシュ性状は写真 6.2-2 に示す通り、スランプ 12±2.5cm、空気量 4.5±1.5％の範囲に収まっていた。フレッシュ性状を確認したコンクリートを、写真 6.2-3 に示す型枠内に打ち込み、棒状バイブレータにて締固めを行った。歩車道境界ブロック用の型枠には、φ10mm の孔を 2 つ設けるように、ゴムチューブの中に鋼材を通した部材を型枠に貫通させた。なお、歩車道境界ブロックを 18 個、フェンス基礎ブロックを 14 個製造した。トータルのコンクリート量は 0.035m³×18 個 + 0.053m³×14 個 = 1.372m³ であった。

写真 6.2-2 コンクリートのフレッシュ性状

写真 6.2-3 型枠とコンクリートの打込み・締固め状況

—158—
コンクリートを製造した時期が11月だったため、当該箇所は山間部であり外気温が低かった。そのため、型枠をブルーシートで覆って蒸気養生を行った。翌日、圧縮強度が2.5N/mm²以上に達していることを確認してから脱型した。製造は2回行い、それぞれの脱型時強度は表6.2-5に示す通りであった。その後、火力発電所構内でコンクリートを運搬し、炭酸化養生コンテナの中にコンクリートを写真6.2-4に示すように配置した。材齢3日もしくは2日から排気ガスによる炭酸化養生を開始した。養生開始時のコンクリートの圧縮強度は、5.0N/mm²および4.5N/mm²であった。

炭酸化養生中、温度は約50℃、湿度は約40%RHになるように制御し、コンテナ内部の温度・湿度・CO₂濃度を定期的に測定した。

品質管理用のφ100mm×200mmのテストピースを用いて、定期的に炭酸化深さと圧縮強度を計測した。また、同テストピースを用いて、無機炭素分析にてCO₂固定量を評価した。

<table>
<thead>
<tr>
<th>No.</th>
<th>製造日</th>
<th>養生開始日</th>
<th>製造内容</th>
<th>脱型時圧縮強度</th>
<th>養生開始時圧縮強度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11/12</td>
<td>11/15</td>
<td>境界BL：18個</td>
<td>1 4.2</td>
<td>3 5.0</td>
</tr>
<tr>
<td>2</td>
<td>11/16</td>
<td>11/18</td>
<td>フェンス基礎BL：14個</td>
<td>1 3.3</td>
<td>2 4.5</td>
</tr>
</tbody>
</table>

写真6.2-4 炭酸化養生コンテナ内部の状況
炭酸化養生コンテナにおける温度・湿度の制御ならびに CO₂ガスの給気方法を以下に示す。排気ガスは、写真 6.2-5 に示す緑色の矢印部分から送気され、黄色い矢印のとおりに循環させつつ、温湿度制御装置の部分で調整されたうえでコンテナ内に送られる。コンテナと制御装置を結ぶ下部の吸気部分に火力発電所からの排気ガスを約 3m³/h の流量で送ることで排気ガスをコンテナ内に送る仕組みとした。この際、排気ガスに含まれる SOₓ を除去するために、排気ガスを一度水にくぐらせるようにした。SOₓ 除去装置の拡大図を写真 6.2-6 に示す。排気ガスをコンテナ内に送気する前に、水にバブリングさせるというシステムである。

写真 6.2-5 炭酸化養生システム内の空気の流れ

写真 6.2-6 SOₓ 除去装置の概要
炭酸化養生コンテナにコンクリートを搬入する前に、SOX除去装置の有効性を検証した。事前試験におけるコンテナ内のNOX、SOX濃度の経時変化を図6.2-1に示す。測定開始から2時間以内に、排気ガス中のSOXをほぼ全量、NOXを半分程度除去できることを確認した。一方、除去装置中の水について、イオン濃度の変化は図6.2-2に示すとおりであり、SOXはSO₄²⁻としてほぼ除去できることを確認した。一方で、NOXはほとんどNO₃⁻として存在しないことが分かった。以上のことを踏まえると、本装置においては、SOXはほぼ全量、NOXは若干除去できる機能を有すると考えられる。本検討を踏まえて、水量20リットルの装置において、SOX除去装置内の水は2~3日に1回の頻度で交換した。

図6.2-1 コンテナ内におけるNOXおよびSOX濃度の経時変化（事前確認試験結果）

図6.2-2 SOX除去装置内の水のイオン濃度変化（事前確認試験結果）
6.2.6 試験結果

（1）養生中の環境

養生期間中の温度の履歴を図 6.2-3 に示す。同図には、温湿度制御装置内に設置した温度計にて計測された制御盤の数値と、コンテナ内の計測値を併記した。コンクリートは11/15および11/18から排気ガスによる炭酸化養生を開始しており、養生開始初期にはコンテナ内の温度がやや低めであったが、総じて50℃程度で一定であった。

図 6.2-3 養生期間中のコンテナ内の温度変化

養生期間中の湿度の履歴を図 6.2-4 に示す。同図には、温湿度制御装置内に設置した湿度計にて計測された制御盤の数値と、コンテナ内の計測値を併記した。11/15および11/18から排気ガスによる炭酸化養生を開始しており、養生開始から数日はコンテナ内の湿度がやや高く、その後、制御盤の数値に比べて5%ほど高い45%RHで推移していることが確認された。湿度40%RHに調整したガスをコンテナ内に送ると、コンテナ内の炭酸化養生によってコンクリートから発生した水分が湿度を約5%高くなったものと考えられる。

図 6.2-4 養生期間中のコンテナ内の湿度変化
炭酸化養生中の CO₂ 濃度の変化を図 6.2-5 に示す。同図には、SOₓ 除去装置内にて計測した CO₂ 濃度、および温湿度制御装置内に設置した CO₂ 濃度計による値、およびコンテナ内の CO₂ 濃度を併記した。SOₓ 除去装置内で計測した CO₂ 濃度が平均 16.5% であった。これに対して、制御盤の数値は平均 8.3%、コンテナ内の計測値は平均 10.6% であり、SOₓ 除去装置を通過させることで CO₂ 濃度が 5% 程度低下することが確認された。これは、SOₓ を硫酸イオンとして除去するために水に排気ガスを接触させた際に、CO₂ も炭酸イオンや重炭酸イオンとして水に溶けてしまったためと考えられる。

以上のことから、コンクリートの養生環境としては、温度は想定通りに制御でき、湿度については想定よりも制御盤にて設定した値よりも 5% 程度高めに制御され、排気ガスに含まれる CO₂ の一部が SOₓ 除去装置に溶け込んだことで、CO₂ 濃度は 10% 程度推移したことが確認された。
（2）コンクリートの圧縮強度と炭酸化深さ

コンクリートの強度発現性について、材齢と圧縮強度の関係を図6.2-6に示す。同図には、同配合のコンクリートを室内にて材齢3日から温度50℃、湿度40%RH、CO₂濃度15%の環境でCO₂ガスによる炭酸化養生を行った結果（以下、CO₂ガス養生と称す）を併記した。これによると、排気ガスによる炭酸化養生を行った場合、養生の経過に伴う圧縮強度の増加がCO₂ガス養生に比べて遅い結果となった。これは、後述する炭酸化速度が影響しているものと考えられる。また、排気ガス養生の1回目については、養生終了時の圧縮強度は室内でCO₂ガス養生したものと同程度となった。このことから、適切な養生を行うことで、排気ガスを用いた炭酸化養生を行っても、CO₂ガス養生と同等の性能のコンクリートを製造できると考えられた。

なお、排気ガスにて養生した2回目については、養生終了後の圧縮強度が17.3N/mm²であり、材齢11日以降の強度の伸びが見られなかった。テストピースの密度には異常が見られず、3本のテストピースのばらつきも大きくなかったことから、原因は不明であり、コンテナ内の空間的な養生条件の違いなどを含めて検討が必要と考えられた。
炭酸化養生日数と炭酸化深さの関係を図 6.2-7 に示す。同図には、圧縮強度の考察と同様に、CO₂ガス養生した結果を併記した。これによると、排気ガスによる炭酸化養生を行った場合、炭酸化の進行が CO₂ガス養生に比べて遅い結果となった。前掲の通り、排気ガスを用いた炭酸化養生における CO₂濃度は約 10%であり、CO₂ガス養生の設定値である 15%に比べて約 66%の濃度であったことが確認されている。この CO₂濃度の違いが両者の炭酸化速度の違いに大きく影響しているものと考えられた。

ここで、排気ガス養生 1 回目の養生終了時（炭酸化養生 40 日）において、テストピース全面が炭酸化していない状況が確認された。テストピースの炭酸化状況を写真 6.2-7 に示す。いずれのテストピースも、下面の方に一部未炭酸化領域が確認された。写真 6.2-4 に示すように、品質管理用のテストピースを製品の上に置いたことから、下面からの炭酸化が進みづらくなり、このような結果になったと考えられる。大きなコンテナを用いた炭酸化養生においては、品質管理用テストピースの配置も重要になることが示唆された。

図 6.2-7 材齢と炭酸化深さの関係

写真 6.2-7 排気ガス養生（第 1 回）における材齢 40 日の炭酸化深さ

—165—
同試験結果をもとに、排気ガス養生における炭酸化速度係数を評価した。炭酸化養生日数の平方根と炭酸化深さの関係を図 6.2-8 に示す。同図には、近似直線の傾きとして得られる炭酸化速度係数を併記した。なお、排気ガス養生における炭酸化速度係数は、1 回目と 2 回目のデータをすべて用いたうえで炭酸化速度係数を算出した。その結果、CO2 ガス養生における炭酸化速度係数は 11.6mm/√日であったのに対し、排気ガス養生における炭酸化速度係数は 7.8mm/√日となり、CO2 ガス養生における炭酸化速度係数に比べて約 67% となった。この違いは、排気ガスによる炭酸化養生と CO2 ガス養生における CO2 濃度の違いとはほぼ一致した。

以上のことを踏まえると、火力発電所の排気ガスを用いた場合、SOx 除去装置を用いたことによってコンクリートに悪影響を及ぼすと考えられる硫酸イオンを除去でき、コンクリートの硬化物性には影響しない一方で、SOx 除去装置を通さることで室内での要素試験に比べて CO2 濃度が 5% 程度低下し、その分、炭酸化の進行が遅くなるという関係性が確認された。

<table>
<thead>
<tr>
<th>CO2ガス</th>
<th>排気ガス(1回目)</th>
<th>排気ガス(2回目)</th>
</tr>
</thead>
<tbody>
<tr>
<td>y = 11.567x</td>
<td>R² = 0.978</td>
<td>y = 7.7614x</td>
</tr>
</tbody>
</table>

図 6.2-8 炭酸化速度係数に関する検討結果
（3）排気ガス養生によるコンクリートの CO₂ 固定量と CO₂ 排出量の試算

排気ガス養生 1 回目のテストピースを用いて、無機炭素分析にて硬化体中の無機炭素量を定量し、CO₂ 量に換算することで、コンクリートの CO₂ 固定量として求めた。なお、CO₂ 固定量の測定には、深さ方向の CO₂ 固定量のばらつきを考慮して、表面から深さ 20mm までをサンプリングして用いた。排気ガスを用いた養生を行った CO₂ 固定量を図 6.2-9 に示す。同図には、表 6.2-4 に示した材料起因の CO₂ 排出量も併せて示した。図より、本検討で用いたコンクリートは、材料起因の CO₂ 排出量を 19.7kg/m³ 上回る CO₂ をコンクリートに固定できている結果となった。

図 6.2-9 CO₂ 固定量の評価結果
次に、材料起因以外の CO2 排出量についても試算を行った。実際のプレキャストコンクリート製品を製作するにあたっては、材料起因以外に、コンクリート練混ぜおよび打込み時、初期の蒸気養生に伴って電力やエネルギーが消費され、CO2 が排出される。各項目の試算結果を表 6.2-6 に示す。また、本検討においては炭酸化養生中の温湿度制御装置に大きな電力を消費しており、それにかかる CO2 排出量は表 6.2-7 および表 6.2-8 より、約 3.1t と試算された。

以上のことから、本検討において製造した 1.372m3 のコンクリートにおけるトータルの CO2 排出量を試算すると、以下の様になる。すなわち、炭酸化養生中の温湿度制御にかかるエネルギーを低減しなければ、大量の CO2 を消費してしまうことが分かった。

①材料起因の CO2 排出量：89.5kg-CO2/m3 × 1.372m3 = 122.8kg
②コンクリート製造および養生開始までの CO2 排出量：0.99 + 0.06 + 52.8 = 53.9kg
③炭酸化養生によるコンクリートへの CO2 固定量：-109.2kg-CO2/m3 × 1.372m3 = -149.8kg
④炭酸化養生中の温湿度制御にかかる CO2 排出量：3,125.8kg

<table>
<thead>
<tr>
<th>工程</th>
<th>単位*</th>
<th>CO2 排出量原単位 kg-CO2/*</th>
<th>使用量*</th>
<th>CO2 排出量 kg-CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>練混ぜ</td>
<td>m³</td>
<td>0.72</td>
<td>1.372</td>
<td>0.99</td>
</tr>
<tr>
<td>締固め</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(棒状バイブレータ)</td>
<td>h</td>
<td>0.24</td>
<td>0.25</td>
<td>0.06</td>
</tr>
<tr>
<td>蒸気養生</td>
<td>m³</td>
<td>38.5</td>
<td>1.372</td>
<td>52.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>炭酸化材齢 (時間)</th>
<th>電力 (kW)</th>
<th>消費電力量 (kWh)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>960 (40日)</td>
<td>8</td>
<td>7,680</td>
<td>平均 40A として計算（30〜50A で変動）電圧は 200V、効率は 70%と仮定</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>消費電力量 (kWh)</th>
<th>CO2 排出量 (kg-CO2)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,680</td>
<td>3,125.8</td>
<td>原単位 0.407 kg-CO2/kWh [1]</td>
</tr>
</tbody>
</table>
6.3 熱交換機を導入した省エネルギー型排気ガス炭酸化養生システムの導入

6.3.1 検討概要

前節では、火力発電所の排気ガスに含まれる CO₂を用いて各種混和材をセメント代替として用いたプレキャストコンクリートを炭酸化養生し、CO₂固定量ならびに製造時の CO₂排出量を評価した。その結果、排気ガスに含まれる CO₂をコンクリートに固定できること、およびその量は材料起因のコンクリートの CO₂排出量を上回る規模にできるという結果を得た。一方で、炭酸化養生中の温湿度制御に多大なエネルギーを消費するため、トータルとして製造時の CO₂排出量が非常に大きくなることが分かった。

本節では、エネルギーを出来るだけ用いない形で炭酸化養生中の温湿度を制御するため、火力発電所にある排熱蒸気と工業用水を用いた熱交換機の導入による、省エネルギー型炭酸化養生システムについて検討した。

6.3.2 熱交換システムの概要

本検討で導入した熱交換システムのイメージ図を図 6.3-1 に示す。図の左側から高温・低湿度の排気ガスが送風され、右側から出ていく構造としている。想定される当該箇所における排気ガスの温度は 85℃、湿度は約 17%RH、CO₂濃度は約 15%であった。この排気ガスを、写真 6.3-1 に示すように、内部に工業用水を流せるように配管したプレートフィンクーラー部を通すことによって一度冷却し、排気ガスに含まれる余計な湿分を除去する構造となっている。そのうえで、写真 6.3-1 に示すように、工場排熱による蒸気を送ることができるように配管したヒーター部を通すことによって、炭酸化養生に適した温度まで排気ガスの温度を上げることが可能となる。熱交換機の外観を写真 6.3-2 に示す。
写真 6.3-1 工業用水用クーラー部（左）および蒸気用ヒーター部（右）の配管

写真 6.3-2 熱交換機の外観
6.3.3 試運転による熱交換機の性能評価

(1) 工業用水を用いた排気ガスの冷却による目標温度までの低下確認

系内での水分の出入りが無ければ、排気ガスに含まれる水分（絶対水量）は変わらないため、排気ガスの温度が下がれば湿度は高くなる。これまでの検討結果より、炭酸化養生時において温度は50℃程度、湿度は40%RH程度が適切であり、当該設定値の水分量にするためには、クーラー部で32℃（湿度100%）まで下げる必要がある。本検討では、コンクリートの炭酸化養生中における水分発生まで考慮したうえで、温度50℃、湿度30%RHとなる水分量を目標とし、クーラー部で排気ガスの温度を27℃まで下げられるかどうかを確認した。

写真6.3-3に示すように、排気ガスを熱交換器内に3m³/minで送風し、熱交換器に入る直前の排気ガスの温度、および熱交換機通過後の排気ガスの温度を経時的に計測した。また、工業用水のバルブを少しずつ開放させ、工業用水に作用する圧力指示値（バルブ閉時は0.20MPaの圧力が作用）を変化させつつ、工業用水の流量が排気ガスの温度変化に及ぼす影響を合わせて評価した。

写真6.3-3 熱交換機における排気ガスの温度測定概要
工業用水通水からの時間と熱交換機入口および出口における排気ガスの温度計測結果を図 6.3-2 に示す。熱交換機入口の温度は約 48℃であった。なお、同図中の圧力の値は工業用水のバルブに作用する圧力を示し、圧力が低いほど、バルブを開放して工業用水の流量を増加させたことを意味する。

熱交換器出口の排気ガス温度に着目すると、工業用水を通水してから 30 分程度で排気ガスの温度が定常状態になることが確認された。また、工業用水の圧力指示値に応じて排気ガスの温度が変化することが分かった。同図をもとに、工業用水の圧力指示値（≒流量）と、工業用水通水から 30 分後における熱交換機通過後の排気ガスの温度の関係を図 6.3-3 のように整理した。同図のとおり、工業用水を用いたクーラー部に排気ガスを通すことで、排気ガスの温度を目標以下に下げ、排気ガスに含まれる余計な水分を除去できることが確認された。

図 6.3-2 熱交換機入口と出口の排気ガス温度計測結果

図 6.3-3 工業用水に作用する圧力指示値（≒流量）と排気ガス温度の関係
（2）蒸気を用いた排気ガスの再加熱に関する検討結果

ここでは、熱交換器に流入する蒸気の流量と、熱交換機通過後の排気ガス温度との関係を把握することで、本検討で導入した熱交換システムの妥当性を検証した。熱交換システムの全体運用イメージおよび温度計測位置を写真6.3-4に示す。また、熱交換機のうちヒーター部に流入する蒸気のバルブを写真6.3-5に示す。約8℃の工業用水を圧力指示値が0.18MPaとなるまでバルブを開放させ、クーラー部に工業用水を通水させつつ、熱交換機に排気ガスをブロアにて3m³/minで送風した。ヒーター部では、約92℃の蒸気をヒーター部の管に送り、ヒーター部通過後の排気ガスの温度を計測することとした。なお、蒸気を送る管には圧力計等の流量を検知する機械を設けていなかったため、本検討においては、バルブの回転数をパラメータとしてデータを取得した。

写真6.3-4 工業用水および蒸気を用いた排気ガスの温湿度調整イメージ

写真6.3-5 ヒーター部に流入する蒸気のバルブ
本検討にて得られた、蒸気バルブの回転角度とブロア前（=熱交換機入口）、および熱交換機出口における排気ガス温度の関係を図 6.3-4 に示す。蒸気バルブの回転角度 1 回転までは、回転角度と熱交換器出口の排気ガスの温度に高い相関が得られ、それ以上バルブを開放しても熱交換器出口の温度は変わらない結果となった。すなわち、バルブの回転角度は排気ガスの再加熱後の温度制御に非常に鋭敏に反応することが分かった。また、同設備を用いることで、クーラー部で排気ガスをいったん 30℃程度まで下げた後、蒸気を用いたヒーター部にて目標温度である 50℃以上に排気ガスを再加熱可能であることを確認した。

以上のことから、本検討で導入した熱交換システムによって、火力発電所から排出される排気ガスを、エネルギーを消費することなくコンクリートが炭酸化しやすい環境に制御できることを確認した。

図 6.3-4 蒸気のバルブ開放角度と排気ガス温度の関係
6.4 熱交換機を導入した省エネルギー型排気ガス炭酸化養生システムの運転検証

6.4.1 検討概要

前掲の熱交換機を導入することで、電力エネルギーを用いることなく火力発電所の排気ガスの温度及び湿度を制御できることを確認した。本検討では、この熱交換機を導入した省エネルギー型炭酸化養生システムを用いて、実際に環境配慮型コンクリートを炭酸化養生することで、システムの妥当性を検証した。

6.4.2 炭酸化養生システムの全景

炭酸化養生システムの全景を写真 6.4-1 に示す。排気ガスは流量約 3m³/min 程度で送風し、熱交換機ならびに炭酸化養生槽を経て、ふたたび煙道に戻る形で大気中に排気ガスが放出されないシステムとした。

写真 6.4-1 省エネルギー型炭酸化養生システム
6.4.3 環境配慮型コンクリート製品の製造

(1) 使用材料およびコンクリートの配合

本検討に用いたコンクリートの使用材料を表 6.4-1 に、配合を表 6.4-2 に示す。結合材は早強ポルトランドセメント、高炉スラグ微粉末、γ-C2S の割合を 30：40：30 とした。また、石炭灰は骨材の一部に置換する思想とし、71kg/m³ 用いた。本配合における水粉体比 W/P は 48％とし、ポルトランドセメント、高炉スラグ微粉末、γ-C2S を合わせた結合材 W/B は 60％とした。

表 6.4-1 使用材料

<table>
<thead>
<tr>
<th>使用材料</th>
<th>記号</th>
<th>記号</th>
<th>摘要</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>W</td>
<td></td>
<td>木道水</td>
</tr>
<tr>
<td>セメント</td>
<td>HPC</td>
<td></td>
<td>早強ポルトランドセメント、密度 3.14g/cm³</td>
</tr>
<tr>
<td>混和材</td>
<td>BFS</td>
<td></td>
<td>高炉スラグ微粉末、密度 2.91g/cm³</td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td></td>
<td>ダイカルシウムシリケート γ 相（γ-C₂S）、密度 2.85g/cm³、比表面積 3,000 cm²/g</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td>石炭灰、密度 2.20g/cm³</td>
</tr>
<tr>
<td>細骨材</td>
<td>S1</td>
<td></td>
<td>陸砂、密度 2.61g/cm³</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td></td>
<td>砕砂、密度 2.64g/cm³</td>
</tr>
<tr>
<td>粗骨材</td>
<td>G</td>
<td></td>
<td>砕石、最大寸法 20mm、密度 2.70g/cm³</td>
</tr>
<tr>
<td>混和剤</td>
<td>AD</td>
<td></td>
<td>AE 減水剤（高機能型）、変性リグニンスルホン酸化合物とポリカルボン酸型化合物の複合体</td>
</tr>
<tr>
<td></td>
<td>AE</td>
<td></td>
<td>アニオン及びノニオン系特殊界面活性剤（フライアッシュ用 AE 剤）</td>
</tr>
</tbody>
</table>

表 6.4-2 コンクリートの配合

<table>
<thead>
<tr>
<th>W/P (%)</th>
<th>W/B (%)</th>
<th>s/a (%)</th>
<th>スランプ (cm)</th>
<th>空気量 (%)</th>
<th>単位量 (kg/m³)</th>
<th>AD (P×%)</th>
<th>AE (P×%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.0</td>
<td>60.0</td>
<td>45.0</td>
<td>8±2.5</td>
<td>4.5±1.5</td>
<td>W 172</td>
<td>C 86</td>
<td>BFS 115</td>
</tr>
</tbody>
</table>

※B=HPC+BFS+γ
※P=HPC+BFS+γ+F
（2）コンクリートの製造

このコンクリートを練り混ぜて歩車道境界ブロック C 種（上辺 18cm、下辺 21cm、高さ 30cm、長さ 60cm）製造用型枠に打ち込み、1 日後に脱型した。歩車道境界ブロックの図面を図 6.4-1 に示す。コンクリート施工時の外気温は 26℃、コンクリート温度は 25℃、スランプは 6.5cm および 8.5cm、空気量は 4.2%および 4.9%であった。

図 6.4-1 歩車道境界ブロックの形状

写真 6.4-2 コンクリートのフレッシュ性状
型枠のセット状況を写真 6.4-3 に示す。歩車道境界ブロック C 種には、図 6.4-2 に示すように、中央部に φ24mm の孔が 3 つの孔が空くように、外径 24mm、内径 18mm のシリコンチューブの中に φ15mm の丸鋼を挿入したパイプをセットした。両端部には、丸いパイプ用ゴムキャップをかぶせて、型枠に挟みこむことで位置ずれを防止した。
ブロック内に設ける孔の大きさについて、事前に検討を行った。表 6.2-3 に示した配合のコンクリートを φ100×200mm の円柱供試体、および 150×150×530mm の中心に φ12 〜 φ75mm の孔を設けた円柱供試体を作製し、材齢 1 日にて脱型して温度 50℃、湿度 40%RH、CO₂濃度 20% の環境下で炭酸化養生を行った。炭酸化養生 3 日における炭酸深さから求めた、孔周りの炭酸化速度係数に関する評価結果を図 6.4-3 に示す。また、 φ24mm、φ52mm、φ75mm の孔を設けた角柱供試体の炭酸化養生 3 日における炭酸化状況を写真 6.4-4 に示す。同試験結果より、φ100×200mm の円柱供試体の炭酸化速度とブロック外側からの炭酸化速度はほぼ同等であること、および、型枠に設ける孔の大きさが大きいほど、ブロック外側からの炭酸化速度に近づくことが確認された。この結果をもとに、境界ブロックに設ける孔の径を 24mm と設定した。
（3）コンクリートの養生

この方法で製造したコンクリートを、材齢2日にて脱型し、写真6.4-5に示すように炭酸化養生槽内に搬入して、同日より排気ガスによる炭酸化養生を開始した。なお、炭酸化養生開始時の圧縮強度は3.6N/mm²であった。
6.4.4 製造試験結果

(1) 養生中の環境計測結果

炭酸化養生槽周辺における往生環境の計測位置を写真 6.4-6 に示す。同箇所にて温度・湿度を計測するとともに、養生槽中央部にて CO₂ 濃度を計測した。各測定箇所における温度履歴を図 6.4-5 に示す。養生槽手前で 60〜70℃になるように熱交換機を制御することで、養生槽内においてばらつきもなく温度を 50℃程度に保持できていることが確認された。
次に、炭酸化養生中の湿度履歴を図 6.4-6 に示す。養生槽手前においては、温度を上昇させたことで湿度が大きく低下しており、高温で乾いた排気ガスを養生槽内に送風している状況が確認された。また、養生槽内の湿度は上部と中央部で大きくばらついており、中央部の方が10〜20%程度湿度が高い傾向が確認された。また、養生開始から4日程度までは湿度の高い状態が続いていたことも確認された。この期間においては、温度も高い状態で養生されていることから、コンクリートの強度発現が促進され、その後の炭酸化の進行に影響を及ぼした可能性がある。炭酸化養生中の CO₂濃度履歴を図 6.4-7 に示す。養生槽内の CO₂濃度は13〜18%で推移していた。

図 6.4-6 炭酸化養生中の湿度履歴

図 6.4-7 炭酸化養生中の CO₂濃度履歴
圧縮強度

排気ガスで養生したコンクリートの圧縮強度試験結果を図 6.4-8 に示す。同図には、温度 50℃、湿度 40%RH、CO₂濃度 20%の CO₂ガスボンベを用いた炭酸化養生槽にて養生（以下、CO₂ガス養生と称す）したコンクリートの強度試験結果、ならびに同配合のコンクリートを 20℃水中養生したときの圧縮強度を併記した。これによると、排気ガスで養生したコンクリートにおいても、CO₂ガス養生したコンクリートと同等の圧縮強度が得られる結果となった。すなわち、火力発電所の排気ガスに含まれるその他の成分がコンクリートの強度特性に及ぼす影響は少ないものと考えられる。

図 6.4-8 排気ガス養生したコンクリートの圧縮強度試験結果

テストピースと境界ブロックの炭酸化深さ

排気ガス養生した境界ブロックの養生 14 日における炭酸化状況を写真 6.4-7 に示す。テストピースは養生 14 日時点でほぼ炭酸化しており、V/S がテストピースに比べて大きいこと、槽内で湿度に偏りが見られたことなどが原因と考えられる。大量のコンクリート製品を炭酸化養生するためには、製品の配置や排気ガスの槽内循環なども踏まえて検討が必要と考えられた。

なお、同環境にて追加で炭酸化養生を行うことで、写真 6.4-9 に示すように、境界ブロックであっても全域を炭酸化することが可能であることを確認した。
写真 6.4-7 排気ガス養生した境界ブロックの炭酸化 14 日における炭酸化状況

写真 6.4-8 境界ブロックとともに排気ガス養生したテストピースの炭酸化 14 日における炭酸化状況

写真 6.4-9 材齢 47 日まで排気ガス養生した境界ブロックの炭酸化状況
（4）排気ガスで養生した環境配慮型コンクリートの CO₂固定量と CO₂排出量

本検討で用いたコンクリートの材料起因の CO₂排出量は表 6.4-3 に示す通りであり、85.3kg-CO₂/m³であった。一方、無機炭素分析にて得られた同コンクリートの CO₂吸収量は図 6.4-9 に示すとおり 103-kg-CO₂/m³であった。このことから、環境配慮型コンクリートを火力発電所の排気ガスに含まれる CO₂を用いて炭酸化養生をすることで、材料起因の CO₂排出量を上回る CO₂をコンクリートに固定できる可能性があることが分かった。

なお、本検討は比較的気温の高い時期に行ったため、コンクリートの初期養生として蒸気養生は用いていない。前掲のとおり、コンクリートの練混ぜおよび締固めに係る CO₂排出量は非常に少ないことから、本検討を通じて、各種混和材をセメント代替として用いたコンクリートを省エネルギー型の炭酸化養生システムにて炭酸化養生することで、製造時の CO₂排出量を上回る CO₂をコンクリートに固定できることを実証した。

<table>
<thead>
<tr>
<th>材料</th>
<th>CO₂排出量原単位 kg-CO₂/t</th>
<th>単位量 t/m³</th>
<th>CO₂排出量 kg-CO₂/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>普通ポルトランドセメント</td>
<td>766.6【1】</td>
<td>0.086</td>
<td>65.9</td>
</tr>
<tr>
<td>高炉スラグ微粉末</td>
<td>26.5【1】</td>
<td>0.115</td>
<td>3.05</td>
</tr>
<tr>
<td>石炭灰</td>
<td>0.0</td>
<td>0.071</td>
<td>0</td>
</tr>
<tr>
<td>γ-C₂S</td>
<td>124.5【2】</td>
<td>0.086</td>
<td>10.71</td>
</tr>
<tr>
<td>細骨材</td>
<td>3.7【1】</td>
<td>0.784</td>
<td>2.90</td>
</tr>
<tr>
<td>粗骨材</td>
<td>2.9【1】</td>
<td>0.935</td>
<td>2.71</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td></td>
<td>85.3</td>
</tr>
</tbody>
</table>

図 6.4-9 排気ガスで炭酸化養生したコンクリートの CO₂固定量
6.5 第6章のまとめ

第6章では、実際に火力発電所から排出される排気ガスに含まれる CO₂をコンクリートに固定するための実証実験を行い、その CO₂固定量ならびにコンクリートの物性を評価した。得られた結論は以下のとおりである。

(1) 排気ガスの温度及び湿度を適切に制御することによって、火力発電所の排気ガスに含まれる CO₂をコンクリートに固定することができる。

(2) 炭酸化養生時における温湿度の制御に電力を用いた場合、多大なエネルギーを消費することにより、大量の CO₂が排出されることとなる。

(3) 火力発電所の排熱と工業用水を用いた熱交換システムの導入により、電力エネルギーを使用することなく、排気ガスの温度と湿度の制御が可能となる。

(4) 各種混和材をセメント代替として用いたコンクリートを省エネルギー型の炭酸化養生システムにて炭酸化養生することで、製造時の CO₂排出量を上回る CO₂をコンクリートに固定できることを実証した。
【6章の参考文献】

【1】土木学会:コンクリート構造物の環境性能照査指針（試案），コンクリートライブラリー125，2005

【2】庄司慎，橿口隆行，山本賢司，盛岡実：副生の水酸化カルシウムを用いたC₃Sの製造とCO₂排出量原単位，セメント・コンクリート論文集，Vol.67，pp.553-558，2013
第7章
結論
7. 結論

7.1 本研究のまとめ

本論文では，CO2排出削減という世界規模の環境問題に対し，コンクリート分野においてカーボンリサイクルやCCU（Carbon Capture and Utilization：CO2の有効利用）という観点から注目されている，コンクリートの炭酸化によるCO2固定に着目した。コンクリートを『CO2固定可能な資材』として捉え，各種の混和材を用いたコンクリートを，高濃度のCO2雰囲気下にて炭酸化養生した際のCO2固定量を定量的に評価した。また，コンクリートの炭酸化養生条件が炭酸化速度ならびに硬化物性に及ぼす影響を評価した。本研究にて得られた結論を，章ごとに以下に総括する。

第2章では，コンクリートの炭酸化によるCO2固定量ならびに硬化物性の変化に関する既往の研究成果を取りまとめた。その結果，炭酸化したコンクリートのCO2固定量には熱分析が一般的に用いられているものの，CO2固定量としての，適切な分析手法が定められていないことを明らかにした。また，コンクリートを長期的に炭酸化させることによって，大量のCO2がコンクリートに固定される可能性があることを明らかにした。コンクリートの炭酸化速度に関しては，様々な研究者によってその速度に影響を及ぼす要因が整理されている一方で，材齢初期から強制的に炭酸化させることによって，コンクリートの炭酸化速度に及ぼす要因とその影響度合いが明らかになっていないことを課題として見出した。コンクリートの物性変化に関しても同様に，材齢初期から強制的に炭酸化させたときの物性変化に関しては知見が少ないことを課題として見出した。

第3章では，高炉スラグ微粉末，ならびにCO2と反応して硬化する性質を有するγ型の2CaO・SiO2（γ-C2S）を対象に，各混和材が炭酸化養生したコンクリートのCO2固定量に及ぼす影響を様々な分析手法によって評価した。その結果，無機炭素分析という手法にて得られたCO2固定量は，熱分析にて得られたCO2固定量よりも大きく，CO2はCaCO3以外の形でもコンクリートに固定されていることを明らかにした。また，γ-C2Sは高炉スラグ微粉末よりもやや高いCO2固定能力を示すこと，高炉スラグ微粉末やγ-C2Sをセメントに置換したコンクリートを高温環境下で高濃度のCO2と反応させることで，硬化物性を維持しつ
つ、材料起因の CO₂排出量を相殺できる程度の CO₂をコンクリートに固定できる可能性があることを示した。さらに、コンクリートの CO₂固定領域を簡易的に評価する手法としては、中性化深さの計測に用いられるフェノールフタレイン法が適していることを明らかにした。

第 4 章では、既往の研究を踏まえつつ、材料条件や配合条件、温度・湿度・CO₂濃度などの環境条件、初期養生条件や部材厚さなどの製造条件等の各種条件がコンクリートの炭酸化速度に及ぼす影響を評価した。その結果、炭酸化養生を開始するときの圧縮強度がその後の炭酸化速度に大きく影響し、若材齢から炭酸化させるほど炭酸化の進行が早くなることを明らかにした。また、空気量の増加や骨材周りの遷移帯量の増加によって炭酸化速度は向上するものの、その分圧縮強度も低下し、材料条件や配合条件を変化させても、炭酸化養生条件が同一であれば、炭酸化速度は最終的なコンクリートの圧縮強度に強く依存することを確認した。さらに、炭酸化養生時に圧力を作用させることによって条件によっては炭酸化が促進されるものの、加圧による炭酸化速度向上にはコンクリート中の水分の制御とコンクリートを乾燥させることが不可欠であることを確認した。

第 5 章では、CO₂排出量を極限まで低減できる材料設計として、高炉スラグ微粉末とγ-C₃S をセメント代替として併用した三成分系のセメントを用いて、炭酸化養生を行ったコンクリートを対象に、CO₂固定量を評価した。また、材料起因の CO₂排出量との比較を行い、トータルとしての CO₂排出量に関する評価を行った。さらに、この思想によって材料設計されたコンクリートの硬化特性を評価した。その結果、CO₂排出量の少ない産業副産物等をセメント代替として用いたコンクリートを炭酸化養生することによって、材料起因の CO₂排出量を上回る CO₂をコンクリートに固定できることを実証した。また、混和材を用いつつ、材齢初期から炭酸化養生を行うことで CO₂排出量を上回る CO₂を固定したコンクリートは、基本的には一般的なコンクリートと同等以上の硬化物性を有することを確認した。特に、すり減り抵抗性においては一般的なコンクリートよりも品質がやや高くなることを確認した。さらに、炭酸化によって化学的に安定な状態になり、pH が中性に近づくことから、材齢初期からの炭酸化養生をポーラスコンクリートに適用することによって、植物生育性能が向上し、『強度重視護岸タイプ』の要求性能である 18N/mm² 以上を確保しつつ、『植生重視護岸タイプ』と同等の植物生育能力を有する、これまでにない新しいポー
ラスコンクリートが実現できる可能性を示した。

第6章では、実際に火力発電所から排出される排気ガスに含まれるCO₂をコンクリートに固定するための実証実験を行い、そのCO₂固定量ならびにコンクリートの物性を評価した。その結果、火力発電所の排熱と工業用水を用いた熱交換システムの導入により、電力エネルギーを使用することなく、排気ガスの温度と湿度の制御が可能となることを明らかにした。また、各種混和材をセメント代替として用いたコンクリートを省エネルギー型の炭酸化養生システムにて炭酸化養生することで、製造時のCO₂排出量を上回るCO₂をコンクリートに固定できることを実証した。

7.2 今後の課題

本研究では、コンクリートの炭酸化養生によるCO₂固定量の評価と、材齢初期からの炭酸化養生において炭酸化速度に及ぼす各種条件の影響、ならびに炭酸化したコンクリートの硬化物性について検討を行った。ここでは、本研究を通じて得られた成果を踏まえて、今後の課題を2つの観点から述べる。

7.2.1 CO₂固定量の評価

本研究では、コンクリートの炭酸化によるCO₂固定量の評価において、無機炭素分析という手法が適していることを示した。無機炭素分析は、コンクリートに含まれる炭素の量を定量することから、熱分析に比べると直接炭素を定量している点で、その信頼性は高いものと考えられる。一方で、本論文中にも示したとおり、無機炭素分析、熱分析ともに、分析にかけられる試料の量がとても少なく、取得したデータの再現性を担保するために大量の試料を粉砕して用いた。今後、コンクリートのCO₂固定量を室内試験レベルではなく実際のコンクリート製品のレベルで評価し、CO₂固定量の品質管理手法として採用するには、今後データの蓄積と拡充が不可欠と考えられる。コンクリート製品としてのCO₂固定量の品質管理や検査手法に関しては、その代表性などについても議論が必要と考えられる。

また、強制的に炭酸化養生をすることでCaCO₃以外の形でCO₂が固定されている可能性について言及したが、実際にCO₂がどのような形でコンクリートに固定されているか、粉末X線回折を用いた鉱物組成以外には評価できていない。C-S-HやC-A-S-HへのCO₂固定等が考えられるが、CO₂固定メカニズムならびにその長期的なCO₂固定能力の維持に関
しては、今後分析が必要である。世界の CO₂ 排出削減という観点からは、炭酸化によって固定された CO₂ が長期的にコンクリートから再放出されないことが重要であり、これを実証する上でも、CaCO₃ 以外の CO₂ 固定メカニズムの解明は必要と考える。

さらに、CO₂ 排出量の評価という点では、本文中にも示したとおり、使用材料の CO₂ 排出量をどのように算定するか、その境界の与え方によって数値が変わる。本研究にて得られた技術を CO₂ 排出削減のための方策として用いる場合には、原材料から使用材料、製品製造、そして供用後の廃棄にいたるまでのライフサイクル CO₂ (LCCO₂) 評価が必要と考える。

7.2.2 コンクリートの炭酸化速度および硬化物性の変化

本研究では、高炉スラグ微粉末ならびに γ-C₃S を混和材として用いたコンクリートを対象に、材齢初期から高温、高濃度 CO₂ の環境下で炭酸化養生したコンクリートについて、炭酸化速度や硬化物性を評価した。このうち、温度については、50℃の高温にすることで、高炉スラグ微粉末の反応性を高めることを前提として検討を進めたため、養生温度が変わった時の反応系についてはデータが乏しい。養生中の温度が変わることでセメントならびに各混和材、特に高炉スラグ微粉末の反応性が大きく変化し、また、水結合材比 W/B や混和材置換率が異なると、温度の影響も大きく変わっている可能性があると考えられる。本研究においては、各材料の反応率に着目した分析や整理が不十分であったことから、温度の影響を踏まえつつ、結合材を構成する各材料の反応率に着目した検討を行うことによって、コンクリートに要求される性能に応じた適切な材料設計が可能になるものと考えられる。特に、本検討ではシリカ Si を含む水和物の変化について分析が出来ていないことから、各材料の反応率や Si の結合状態などの分析を踏まえつつ、硬化物性に及ぼす影響を今後詳細に評価していく必要があると考える。
主論文に関連する参考論文

1. γ-2CaO・SiO₂を混入して強制炭酸化したセメント系材料による環境負荷の低減
 取違剛, 横関康祐, 盛岡実, 山本賢司
 セメント・コンクリート論文集, No.63, pp.161-167, 2009
 第3章

2. 工業原料を用いたγ-2CaO・SiO₂の製造とその二酸化炭素排出量の評価
 盛岡実, 山本賢司, 取違剛, 横関康祐
 セメント・コンクリート論文集, No.64, pp.29-34, 2010
 第3章

3. 炭酸化養生を行ったコンクリートのCO₂収支ならびに品質評価
 取違剛, 横関康祐, 盛岡実, 山本賢司
 第5章

4. ポーラスコンクリートの植物生育能力向上に関する研究
 横関康祐, 取違剛, 高山晴夫, 極口隆行
 第3章

5. Physical and chemical properties of new ecological concrete reducing CO₂ emissions below zero level by carbonation curing
 取違剛, 横関康祐, 吉岡一郎, 中本健二, 盛岡実, 極口隆行
 3rd International Conference on Sustainable Construction Materials and Technologies, 2013

6. Physical properties and manufacturing method of the concrete extremely reducing CO₂ emissions by using C₂S and carbonation curing
 取違剛, 横関康祐, 吉岡一郎, 森本一郎
 Proceedings of the International Workshop CO₂ Storage in Concrete, pp.212-220, 2019

7. Study on efficient absorption method of CO₂ to concrete by carbonation curing
 取違剛, 横関康祐, 小林聖, 関健吾
 6th International Conference on Construction Materials, 2020

8. 炭酸化したセメント系材料におけるCO₂固定量の評価手法および物性変化に関する研究
 取違剛, 横関康祐, 吉岡一郎, 盛岡実
 土木学会論文集 E2, Vol.77, No.2, pp.37-54, 2021

第3章, 第5章
謝辞

本研究を遂行するにあたり、九州大学大学院工学研究院社会基盤部門・濱田秀則教授には、論文審査における主査を務めていただきましたとともに、ご多忙にも関わらず終始温かく懇切丁寧なご指導を賜りました。先生のご厚情に対し、心より感謝の意を表します。広島大学大学院先進理工系科学研究科・河合研至教授、九州大学大学院人間環境学研究院都市・建築学部門・小山哲幸准教授、九州大学大学院工学研究院社会基盤部門・佐川康貴准教授には、論文審査における副査として貴重なご助言とご示唆をいただきました。ご高配に対し心よりお礼申し上げます。特に、佐川康貴准教授には、筆者が建設材料システム工学研究室（鉄筋研）に在籍していた頃から今まで、様々な面でご指導を頂きました。重ねて御礼申し上げます。

本研究は、2008年から実施された中国電力、デンカ、ランデスと鹿島建設の共同研究の成果が基礎となっております。これまで前例のないコンクリートへの大量のCO2固定というテーマに対し、社外の皆様と数多くの議論を重ねてまいりました。中国電力・吉岡一郎氏（現中国高圧コンクリート）には、本研究の推進における牽引役を担っていただきました。中国電力・河内友一博士、小畑大作氏、中本健二博士、南條英夫氏、向原敬史氏には、火力発電所構内での実験に際し、様々なご協力を賜りました。デンカ・盛岡実博士、山本賢司氏、植口隆行博士、森藤一郎氏には、セメント化学の知識から様々なご助言を賜りました。ランデス・中村稔氏、藤木明彦博士、カジマ・リノベイト・中川和孝氏には、プレキャストコンクリート製品の製造試験に際し、多大なご協力を賜りました。また、10年以上にわたる長期の研究推進に際し、このほかにも社外の様々な方々にご指導・ご助言を賜りました。皆様の温かいご指導に心から感謝の意を表したいと思います。

本研究テーマのスタート時に、主担当者として研究の場を設けて頂き、常に懇切丁寧なご指導を頂いた、鹿島建設土木管理本部土木技術部 執行役員 部長・坂田昇博士には心より御礼申し上げます。元鹿島建設、現 東洋大学理工学部都市環境デザイン学科・横関康祐教授には、筆者が鹿島建設に入社以来、研究者としての姿勢やコンクリート技術者としてのあるべき姿をご指導いただくとともに、公私に渡って様々なご指導を賜りました。鹿島技術研究所 主席研究員・坂井吾郎博士、同所 土木材料グループ長・渡邊賢三博士には、
研究指導をはじめ、様々な面から研究のしやすい環境を作って頂きました。心より感謝申し上げます。実験の遂行にあたっては、同所主任研究員の小林聖氏、関健吾氏、同所研究員の藤岡彩永佳氏、研究遂行時に研究所に在籍していた武地真一博士（現 土木管理本部）、佐々木敏幸氏（現 土木設計本部）、高柳達徳氏（現 東北支店）に多大なご協力とご助言を頂きました。この場を借りて御礼申し上げます。元鹿島技術研究所副所長・五十嵐寛昌博士、鹿島建設中国支店専任役・佐々木邦之氏には、共同研究における所外や社外との調整に際し、貴重なご助言とご指導を賜りました。深く御礼申し上げます。

最後に、筆者が論文執筆で休日や深夜に家を不在にすることが多かったなか、家庭を守り支えてくれた妻 聡美、いつも居心地のない笑顔で筆者の心を癒してくれる娘 真帆、息子の自分を信じてここまでたどり着かせてくれた父 辰美、母 芙美に心から感謝し、謝辞といたします。

令和3年6月

取違 剛