
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Space-Efficient Algorithms for Computing Unique
Substrings

三重野, 琢也

https://hdl.handle.net/2324/4496070

出版情報：九州大学, 2021, 博士（情報科学）, 課程博士
バージョン：
権利関係：

Space-Efficient Algorithms
for Computing Unique Substrings

Takuya Mieno

July, 2021

Abstract

With the rapid development of network and sensor technologies in recent years, a large amount

of digital data is being generated every day. The importance of creating new values by analyzing

such large-scale data has been pointed out in many fields. However, when the size of the data is

huge, efficient processing becomes difficult because of the pressure on memory and communi-

cation bandwidth. Therefore, it is important to develop space-efficient data processing methods

for large-scale data. Any computer-readable digital data can be represented as a sequence of

symbols, i.e., a string. In this thesis, we develop space-efficient data structures and algorithms

for string data processing and clarify combinatorial properties on strings for the developments.

A substring of a string T that occurs exactly once in T is said to be unique in T . In this

thesis, we focus on the problems of computing unique substrings, and aim to (A) clarify com-

binatorial properties on unique substrings, (B) develop space-efficient data structures for com-

puting unique substrings, and (C) develop algorithms for computing unique substrings in semi-

dynamic strings.

(A) We study the number of shortest unique substrings (SUSs) in a string and the relation-

ship between run-length encoded strings and minimal unique substrings (MUSs) in a string. For

a string T , a unique substring u of T is called a MUS of T if any shorter substring of u is not

unique in T . Also, for an interval [s, t] in T , a unique substring v of T is called a SUS of T

for interval [s, t] if v contains interval [s, t] and any shorter substring of v containing [s, t] is

not unique in T . We show the tight bounds on the maximum of the total number of substrings

which can be a SUS for some text position in a string. This is the first non-trivial result for com-

binatorial properties on SUSs. We next focus on the well-known string compression method

run-length encoding (RLE), and study relations between run-length encoded strings and unique

substrings. We show that the number m of MUSs of a string is less than twice the size r of

the string compressed with RLE. Furthermore, we show the upper bound is tight, that is, there

exists a family of strings that satisfies m = 2r − 1.

(B) We propose space-efficient data structures for computing SUSs based on RLE or tech-

i

niques of succinct data structures. Given a query interval [s, t] in a string T of length n, the

interval SUS problem is to output all the SUSs of T for [s, t]. When s = t, a query [s, t] refers

to a single position in T , and the problem is specifically called the point SUS problem. For the

interval SUS problem, we propose a new data structure of size O(r) where r is the RLE size

of the input string T . This is based on the aforementioned result of the number of MUSs in

RLE strings. All known methods for solving SUS problems require O(n) words of space. We

emphasize that the size O(r) of our data structure is not worse than O(n) since r ≤ n holds for

any string, and thus, it can be sub-linear when the input string is well-compressible by RLE. We

also give an alternative data structure of size 4n + o(n) bits for the problem utilizing succinct

data structures. Furthermore, we give a smaller data structure of size 2.6n + o(n) bits for the

point SUS problem. Both of these O(n) bits data structures can be constructed in O(n) time,

and the working space is also small.

(C) We address the problem of computing MUSs and minimal unique palindromic sub-

strings (MUPSs) in semi-dynamic strings. For a string T , a unique substring u of T is called

a MUPS of T if u is a palindrome and any shorter palindromic substring of u is not unique in

T . Our problems aim to maintain MUSs and MUPSs in a semi-dynamic string, where we can

append a character to the right-end of the string or delete the left-most character from the string.

We propose algorithms for maintaining MUSs and MUPSs in a semi-dynamic string running

in amortized O(log σ) time for each append / delete operation, using O(n) space where σ is

the size of the alphabet. For the static setting, linear-time algorithms for computing MUSs and

MUPSs of a string over an integer alphabet are known. Our algorithms are the first results to

compute them efficiently when both sides of a given string are dynamically changing. As a

bonus, we also propose a sliding-window-algorithm for maintaining a data structure called the

palindromic tree (a.k.a. eertree) of a string that stores all distinct palindromes in the string.

ii

Acknowledgments

I would like to express my gratitude to everyone who supported my research life at Kyushu

University.

First of all, I would like to show my greatest appreciation to Professor Masayuki Takeda, my

supervisor, and my thesis committee member. He taught me about the attitude towards research

and the fun of research activities. I would also like to express my appreciation to Professor

Eiji Takimoto, my thesis committee chair, and Associate Professor Daisuke Ikeda, my thesis

committee member.

I also thank all of the staff in Department of Informatics, Kyushu University for their gen-

erous support. I would particularly like to thank Professor Hideo Bannai, Associate Profes-

sor Shunsuke Inenaga, Assistant Professor Yuto Nakashima, and Assistant Professor Dominik

Köppl. They taught me how to do research and gave me a great deal of knowledge and many

valuable ideas. I would also like to thank the work of the past and present members of our

laboratory.

This research was partly supported by JSPS (Japan Society for the Promotion of Science).

The results in the thesis were partially published in the Proc. of MFCS’16, the Proc. of CPM’17,

the Proc. of SPIRE’19, and the Proc. of SOFSEM’20. Also, the journal version of SPIRE’19

was published in Theoretical Computer Science by Elsevier. I am thankful for all editors, com-

mittees, anonymous referees, and publishers.

Last but not least, I thank my family for their support.

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Shortest Unique Substring Problems . 1

1.2 Our Contributions . 3

1.3 Organization . 4

2 Preliminaries 6
2.1 Notations . 6

2.2 Algorithmic Tools . 8

3 Tight Bounds on the Maximum Number of Shortest Unique Substrings 12
3.1 Preliminaries . 13

3.2 Bounds on the Number of Point SUSs . 13

3.3 Bounds on the Number of Interval SUSs . 21

3.4 Conclusions and Open Questions . 21

4 Shortest Unique Substring Queries on Run-Length Encoded Strings 23
4.1 Preliminaries . 24

4.2 Computing MUSs from RLE Strings . 27

4.3 Solution to the SUS Problem . 30

4.4 Conclusions and Open Question . 32

5 Space-Efficient Algorithms for Computing Minimal/Shortest Unique Substrings 33
5.1 Computing MUSs in Compact Space . 33

5.2 Compact Data Structure for the Interval SUS Problem 35

iv

CONTENTS

5.3 Compact Data Structure for the Point SUS Problem 37

5.4 Auxiliary Data Structure . 48

5.5 Conclusions . 49

6 Computing Minimal Unique Substrings for a Semi-Dynamic String 51
6.1 Preliminaries . 52

6.2 Combinatorial Results on MUSs for a Sliding Window 53

6.3 Algorithm for computing MUSs for a Sliding Window 59

6.4 Conclusions and Future Work . 69

7 Computing Minimal Unique Palindromic Substrings for a Semi-Dynamic String
via Palindromic Tree 71
7.1 Preliminaries . 73

7.2 Combinatorial Properties on Palindromes for a Sliding Window 74

7.3 Eertree for a Sliding Window . 77

7.4 Applications of Eertrees for a Sliding Window 83

7.5 Conclusions and Future Work . 85

8 Conclusions 87

v

Chapter 1

Introduction

With the rapid development of network and sensor technologies in recent years, a large amount

of digital data is being generated every day. The importance of creating new values by analyzing

such large-scale data has been pointed out in many fields. However, when the size of the data is

huge, efficient processing becomes difficult because of the pressure on memory and communi-

cation bandwidth. Therefore, it is important to develop space-efficient data processing methods

for large-scale data. Any computer-readable digital data can be represented as a sequence of

symbols, i.e., a string. In this thesis, we develop space-efficient data structures and algorithms

for string data processing and clarify combinatorial properties on strings for the developments.

A substring of a string T that occurs exactly once in T is said to be unique in T . In this

thesis, we focus on the problems of computing unique substrings, and aim to (A) clarify com-

binatorial properties on unique substrings, (B) develop space-efficient data structures for com-

puting unique substrings, and (C) develop algorithms for computing unique substrings in semi-

dynamic strings.

1.1 Shortest Unique Substring Problems

First of all, we show the definition of our main problem; shortest unique substring problem, as

well as related work on the problem. A substring u = T [i..j] of a string T is called a shortest

unique substring (SUS) for an interval [s, t] if (a) u occurs exactly once in T , (b) u contains the

interval [s, t] (i.e., i ≤ s ≤ t ≤ j), and (c) every substring v of T with |v| < |u| containing [s, t]

occurs at least twice in T . Given a query interval [s, t] ⊂ [0, n− 1], the interval SUS problem is

to output all the SUSs for [s, t]. When a query interval consists of a single position (i.e., s = t),

the SUS problem becomes the so-called point SUS problem.

1

CHAPTER 1. INTRODUCTION

Point SUS Problems. The point SUS problem was introduced by Pei et al. [49]. This problem

is motivated by applications in bioinformatics like genome comparisons [25] or PCR primer

design [49]. Pei et al. tackled this problem with an O(n) words data structure that can return

one SUS for a given query position in constant time. They can compute this data structure

in O(n2) time with O(n) space. Based on that result, Tsuruta et al. [55] provided an O(n)

words data structure answering the same query (returning one SUS) in constant time. Their

data structure can be constructed in O(n) time. İleri et al. [28] independently showed another

data structure with the same time complexities. For a general point SUS problem, Tsuruta et

al. [55] can also resort to their proposed data structure returning all SUSs for a query position

in optimal O(k) time, where k is the number of returned SUSs.

The aforementioned data structures all take Θ(n) words. This space can become prob-

lematic for large n. This problem was perceived by Hon et al. [26], who proposed a data

structure consisting of the input string T and two integer arrays, each of length n. Both arrays

store, respectively, the beginning and the ending position of a SUS for each position i with

0 ≤ i ≤ n − 1. Hon et al. provided an algorithm that can construct these two arrays in linear

time with O(log n) bits of additional working space, given that both arrays are stored in 2n log n

bits and that σ ≤ n. Instead of building a data structure, Ganguly et al. [21] proposed a time-

space trade-off algorithm using O(n/τ) words of additional working space, answering a given

query in O(nτ 2 log n
τ
) time directly, for a trade-off parameter τ ≥ 1. They also proposed the

first compact data structure of size 4n+o(n) bits that can answer a query in constant time. They

can construct this data structure in O(n log n) time using O(n log σ) bits of additional working

space.

Interval SUS Problems Hu et al. [27] were the first to consider the interval SUS problem.

They proposed a data structure answering a query returning all SUSs for the respective query

interval in O(k) optimal time after O(n) time preprocessing.

Minimal Unique Substrings A unique substring u of T is said to be a minimal unique sub-

string (MUS) of T if any proper substring of u is not a unique substring. Ilie and Smyth [29]

formalized MUSs and proposed a linear time algorithm to compute all MUSs of a given string

T . MUSs has been heavily utilized for solving the SUS problems. Note that all the above al-

gorithms for the SUS problems compute all MUSs of the given string (or some data structure

which is essentially equivalent to MUSs) in the preprocessing.

2

CHAPTER 1. INTRODUCTION

1.2 Our Contributions

1.2.1 Combinatorial Properties on Unique Substrings

(A-1) Total Number of SUSs in String.

We show the tight upper bound (3n−1)/2 for the maximum number of substrings which can be

a SUS for some text position in a string of length n. We also introduce the notion of non-trivial

SUS and show an asymptotically-tight upper bound 2n of the number of non-trivial SUSs in a

string. These are the first non-trivial results for combinatorial properties on the SUS problems.

(A-2) Relationship between Run-Length Encoded String and MUSs in String.

We focus on the well-known string compression method run-length encoding (RLE), and study

relations between run-length encoded strings and unique substrings. We show that the number

m of MUSs of a string is less than twice the size r of the string compressed with RLE. Fur-

thermore, we show the upper bound is tight, that is, there exists a family of strings that satisfies

m = 2r − 1.

1.2.2 Space-Efficient Data Structures for Computing Unique Substrings

(B-1) RLE Based Data Structure for Computing SUSs.

For the interval SUS problem, we propose a new data structure of size O(r) that can answer any

SUS query in O(
√

log r/ log log r + k) time, where r is the RLE size of the input string T and

k is the number of SUSs to output. This is based on the aforementioned result of the number

of MUSs in RLE strings. All known methods for solving SUS problems require O(n) words of

space. We emphasize that the size O(r) of our data structure is not worse than O(n) since r ≤ n

holds for any string, and thus, it can be sub-linear when the input string is well-compressible by

RLE.

(B-2) Compact Data Structures for Computing SUSs.

We also give an alternative data structure of size 4n + o(n) bits which can answer any interval

SUS query in optimal O(k) time utilizing succinct data structures. Furthermore, we give a

smaller data structure of size 2.6n + o(n) bits for the point SUS problem with the same query

time. These O(n) bits data structures can be constructed in O(n) time, and the working space

is also small.

3

CHAPTER 1. INTRODUCTION

1.2.3 Computing Unique Substrings in Semi-Dynamic Strings

For a string T , a unique substring u of T is called a minimal unique palindromic substring

(MUPS) of T if u is a palindrome and any shorter palindromic substring of u is not unique in

T . We treat the problems of maintaining MUSs and MUPSs in a semi-dynamic string, where

we can append a character to the right-end of the string or delete the left-most character from

the string. Note that our semi-dynamic setting is also known as the sliding window model; that

is a type of stream processing where we are interested in information such as regularities or

statistics within each window, not the whole string.

(C-1) Algorithms for Computing MUSs for a Semi-Dynamic String.

We propose an algorithm for maintaining MUSs in a semi-dynamic string running in amortized

O(log σ) time per edit operation, using O(n) space where σ is the size of the alphabet. For the

offline setting, a linear-time algorithm for computing MUSs of a string over an integer alphabet

are known. Our algorithm is the first result to compute them efficiently when both sides of a

given string are dynamically changing.

(C-2) Algorithms for Computing MUPSs for a Semi-Dynamic String.

We propose an algorithm for maintaining MUPSs in a semi-dynamic string running in amortized

O(n log σ) time per edit operation using O(n) space. Similar to the case of MUSs, it is known

that all MUPSs of a string over an integer alphabet can be computed offline in linear time.

Also, our algorithm is the first result to compute them efficiently when both sides of a given

string are dynamically changing. As a bonus, we also propose a sliding-window-algorithm for

maintaining the data structure called palindromic tree (a.k.a. eertree) of a string that stores all

distinct palindromes in the string.

1.3 Organization

The rest of this thesis is organized as follows. In Chapter 2, we give some notations and defini-

tions. In Chapter 3, we study the maximum number of SUSs in a string. Then we show the tight

upper bound for the point SUSs and an upper bound for the interval SUSs that is asymptotically

tight. In Chapter 4, we tackle the SUS problems described above and propose a data structure

of size linear to the size of RLE string. In Chapter 5, we again consider the SUS problems, and

propose compact data structures of O(n) bits of space. In Chapter 6, we consider the problem

4

CHAPTER 1. INTRODUCTION

of computing MUSs in semi-dynamic strings and propose an efficient algorithm. In Chapter 7,

we consider the problem of computing MUPSs in semi-dynamic strings. For the sake of main-

taining MUPSs, we propose an algorithm for maintaining the palindromic tree in semi-dynamic

strings. Then, we show that we can maintain the set of MUPSs in a semi-dynamic string by

applying the semi-dynamic algorithm for palindromic trees.

5

Chapter 2

Preliminaries

2.1 Notations

Strings. Let Σ be an alphabet of size σ. An element of Σ is called a character. An element

of Σ∗ is called a string. For |Σ| = 2, we call a string also a bit array. The length of a string T

is denoted by |T |. The empty string ε is the string of length 0. For any 0 ≤ i ≤ |T | − 1, T [i]

denotes the i-th character of T . If T = xyz, then x, y, and z are called a prefix, substring, and

suffix of T , respectively. They are called a proper prefix, proper substring, and proper suffix

of T if x �= T , y �= T , and z �= T , respectively. If a non-empty string b is both a proper

prefix and a proper suffix of T , then b is called a border of T . For any 0 ≤ i ≤ j ≤ |T | − 1,

T [i..j] denotes the substring of T starting at position i and ending at position j. For any 0 ≤
i ≤ |T | − 1, T [i..] denotes the suffix starting at position i, i.e., T [i..] = T [i..|T | − 1]. For

convenience, let T [i′..j′] = ε for any i′ > j′. For a non-empty string w, the set of beginning

positions of occurrences of w in T is denoted by occT (w) = {i | T [i..i + |w| − 1] = w}. Let

#occT (w) = |occT (w)|. For convenience, let #occT (ε) = |T | + 1. For any strings X and Y ,

let lcp(X, Y) denote the length of the longest common prefix of X and Y . For any string T and

any 0 ≤ i ≤ j ≤ |T | − 1, let lceT (i, j) denote the longest common extension of i and j in T ,

i.e., lceT (i, j) = lcp(T [i..], T [j..]). If a string X is lexicographically smaller than another string

Y , then we write X ≺ Y or Y � X .

In what follows, we consider an arbitrarily fixed string T of length n ≥ 1 over an alphabet

Σ of size σ ≥ 2.

Minimal/Shortest Unique Substrings. For any substring w of T , w is called unique in T if

#occT (w) = 1, quasi-unique in T if 1 ≤ #occT (w) ≤ 2, and repeating in T if #occT (w) ≥ 2.

6

CHAPTER 2. PRELIMINARIES

Since every unique substring u = T [i..j] of T occurs exactly once in T , we will sometimes

identify u with its corresponding interval [i, j]. We also say that the interval [i, j] is unique if

the corresponding substring T [i..j] is a unique substring of T . A unique substring u = T [i..j]

is said to be right minimal unique if for any i ≤ j′ < j, T [i..j′] is a repeat of T . A unique

substring u = T [i..j] is said to be left minimal unique if for any i < i′ ≤ j, T [i′..j] is a repeat

of T .

A substring u = T [i..j] is said to be a minimal unique substring (MUS) of T if u is right

minimal unique and left minimal unique. Let MUST = {[i, j] | T [i..j] is a MUS of T} be the

set of all intervals corresponding to the MUSs of T . From the definition of MUSs, the next

lemma follows:

Lemma 2.1 ([29]). No element of MUST is nested in another element of MUST , i.e., two differ-

ent MUSs [i, j], [k, l] ∈ MUST satisfy [i, j] �⊂ [k, l] and [k, l] �⊂ [i, j]. Therefore, 0 < |MUST | ≤
|T |.

For any substring T [i..j] of T and an interval [s, t] ⊂ [0, n − 1], T [i..j] is said to be a

shortest unique substring (SUS) of T for interval [s, t] if (1) T [i..j] is a unique substring of T ,

(2) [s, t] ⊂ [i, j], and (3) T [i′..j′] is a repeating substring of T for any i′, j′ with [s, t] ⊂ [i′, j′]

and j′ − i′ < j − i. In particular, a SUS for some interval [p, p] of length 1 is said to be a SUS

for position p and is sometimes referred to as a point SUS of T . Also, a SUS for some interval

(including those of length 1) is sometimes referred to as an interval SUS in T . Given an interval

[s, t] ⊂ [0, n − 1], SUST ([s, t]) denotes the set of interval SUSs of T for interval [s, t]. Also,

given a text position p ∈ [0, n− 1], SUST (p) denotes the set of point SUSs of T for the point p.

Given a query position p ∈ [0, n− 1] (resp. a query interval [s, t] ⊂ [0, n− 1]), the point (resp.

interval) SUS problem is to compute SUST (p) (resp. SUST ([s, t])). See Fig. 2.1 for an example

depicting MUSs and SUSs.

Covers. For two intervals [i, j] and [x, y], let cover([i, j], [x, y]) = [min{i, x},max{j, y}]
denote the shortest interval that contains the text positions i, j, x, and y. If the interval [x, y]

consists of a single point, i.e., x = y, cover([i, j], [x, y]) is denoted by cover([i, j], x) when we

want to emphasize on the fact that x = y.

Semi-Dynamic String and Sliding Window. In our semi-dynamic setting on strings, we can

perform limited editing operations on the input string. Specifically, we can append a character

to the right-end of the string, or delete the leftmost character from the string.

7

CHAPTER 2. PRELIMINARIES

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T = b c a a c a a b c a a a b a b c a

MUST

SUST ([7, 9])

SUST (6)

Figure 2.1: The string T = bcaacaabcaaababca and the set MUST = {[3, 4], [4, 7], [5, 8],
[6, 10], [9, 11], [12, 13]}. MUST corresponds to the set {ac, caab, aabc, abcaa, aaa, ba} of all

MUSs of T . The substrings T [5..9] = aabca, T [6..10] = abcaa, and T [7..11] = bcaaa are

SUSs for the query interval [7, 9]. Also, the substrings T [3..6] = acaa, T [4..7] = caab, and

T [5..8] = aabc are SUSs for the query position 6.

Noticing that our semi-dynamic setting is essentially the same as the sliding window model,

which is a type of streaming data processing. Because we will often refer to semi-dynamic

strings as sliding windows over a long string T , we now formalize sliding windows over T . For

each time t = 0, 1, . . ., we consider the substring T [it..jt] called the window at time t. The

windows must satisfy the following conditions: (1) i0 = j0 = 0 for the initial window at time

0; and (2) 0 ≤ it ≤ jt ≤ n− 1 and either (it, jt) = (it−1 + 1, jt−1) or (it, jt) = (it−1, jt−1 + 1)

for every time t > 0. In other words, the second condition means that we can either delete the

leftmost character from the current window, or append a character to the right end of the current

window at each time.

Given a sequence of windows (or equivalently, a sequence of delete/append operations), the

aim of our sliding window problems is processing the windows in space proportional to the size

of each window.

Model of Computation. Our model of computation is a standard word RAM with machine

word size Ω(log n).

2.2 Algorithmic Tools

In this section, we introduce data structures needed for our approach to compute unique sub-

strings efficiently.

8

CHAPTER 2. PRELIMINARIES

Range Minimum/Maximum Query. Given an integer array X of length n and an interval

[i, j] ⊂ [0, n − 1], the range minimum query RmQX(i, j) (resp. the range maximum query

RMQX(i, j)) asks for the index p of a minimum element (resp. a maximum element) of the

subarray X[i..j], i.e., p ∈ argmini≤k≤j X[k], or respectively p ∈ argmaxi≤k≤j X[k]. We use

the following well-known data structure to handle these kind of queries:

Lemma 2.2 ([15]). Given an integer array X of length n, there is an RmQ (resp. RMQ) data

structure taking 2n + o(n) bits of space that can answer an RmQ (resp. RMQ) query on X in

constant time. This data structure can be constructed in O(n) time with o(n) bits of additional

working space.

Rank/Select Query. Given a string Y of length n over the alphabet [0, σ − 1]. For an integer

i with 0 ≤ i ≤ n − 1 and a character c ∈ [0, σ − 1], the rank query rankY (c, i) returns the

number of the character c in the prefix Y [0..i] of Y . Also, for an integer i with 1 ≤ i ≤ n and

a character c ∈ [0, σ − 1], the select query selectY (c, i) returns the position of Y containing the

i-th occurrence of the character c (or returns the invalid symbol nil if such a position does not

exist). For σ = 2 (i.e., Y is a bit array), we can make use of the following lemma:

Lemma 2.3 ([31, 11]). We can endow a bit array Y of length n with a data structure answering

rankY and selectY in constant time. This data structure takes o(n) bits of space, and can be

built on Y in O(n) time with O(log n) bits of additional working space.

Predecessor/Successor Query. Let Z be an array of length m whose entries are non-negative

integers in strictly increasing order. Further suppose that these integers are less than n. Given

an integer d with 0 ≤ d ≤ n − 1, the predecessor and the successor query on Z with d are

defined as PredZ(d) = max{i | Z[i] ≤ d} and SuccZ(d) = min{i | Z[i] ≥ d}, where we

stipulate that min{} = max{} = nil . There exists an O(m) words data structure that can be

built in O(m
√
logm/ log logm) time, such that later, for any given 0 ≤ d ≤ n − 1, PredZ(d)

and SuccZ(d) can be answered in O(
√

logm/ log logm) time [6].

Let BITZ be a bit array of length n marking all integers present in Z, i.e., BITZ [i] = 1

iff there is an integer j with 0 ≤ j ≤ m − 1 and Z[j] = i, for every i with 0 ≤ i ≤ n − 1.

By endowing BITZ with a rank/select data structure, we yield an n + o(n) bits data structure

answering PredZ(d) = selectBITZ
(1, rankBITZ

(1, d)) and SuccZ(d)
1 in constant time for each

d with 0 ≤ d ≤ n− 1.

1SuccZ(d) can be computed similarly by considering the case whether BITZ [d] = 1.

9

CHAPTER 2. PRELIMINARIES

Suffix Array and Related Arrays. We define six integer arrays SAT [0..n − 1], ISAT [0..n −
1], LCPT [0..n], PLCPT [0..n − 1], RankPredT [0..n − 1] and RankSuccT [0..n − 1]. The suffix

array SAT of T is the array with the property that T [SAT [i]..] is lexicographically smaller than

T [SAT [i + 1]..] for every i with 0 ≤ i ≤ n − 2 [43]. The inverse suffix array ISAT of T

is the inverse of SAT , i.e., SAT [ISAT [i]] = i for every i with 0 ≤ i ≤ n − 1. The longest

common prefix array LCPT of T is the array with the property that LCPT [0] = LCPT [n] = 0

and LCPT [i] = lcp(T [SAT [i]..n], T [SAT [i−1]..n]) for every i with 1 ≤ i ≤ n−1. The permuted

LCP array PLCPT of T is the array storing the values of LCPT in text position order (instead of

suffix array order), i.e., PLCPT [i] = LCPT [ISAT [i]] for every i with 0 ≤ i ≤ n − 1. The rank

predecessor array RankPredT of T is the array with the property that RankPredT [SAT [0]] = nil

and RankPredT [SAT [i]] = SAT [i− 1] for every i with 1 ≤ i ≤ n− 1. This array is also known

as the Φ array in literature (e.g., [32, 22]). The rank successor array RankSuccT of T is the array

with the property that RankSuccT [SA[n− 1]] = nil and RankSuccT [SAT [i]] = SAT [i+ 1] for

every i with 0 ≤ i ≤ n− 2.

Suffix Tree. The suffix tree of string T , denoted STree(T), is a compacted trie that represents

all suffixes of T . We consider a version of suffix trees a.k.a. Ukkonen trees [56]: Namely,

STree(T) is a rooted tree such that

1. each edge is labeled by a non-empty substring of T ,

2. each internal node has at least two children,

3. the out-going edges of each node begin with mutually distinct characters, and

4. the suffixes of T that are unique in T are represented by paths from the root to the leaves,

and the other suffixes of T that are repeating in T are represented by paths from the root

that end either on internal nodes or on edges.

To simplify the description of our algorithm, we assume that there is an auxiliary node ⊥
which is the parent of only the root node. The out-going edge of ⊥ is labeled with Σ; This

means that we can go down from ⊥ by reading any character in Σ. See Fig. 2.2 for an example

of STree(T).

For each node v in STree(T), parent(v) denotes the parent of v, str(v) denotes the path

string from the root to v, depth(v) denotes the string depth of v (i.e., depth(v) = |str(v)|), and

subtree(v) denotes the subtree of STree(T) rooted at v. For each leaf � in STree(T), start(�)

denotes the starting position of str(�) in T . For each non-empty substring w of T , hed(w) = v

10

CHAPTER 2. PRELIMINARIES

a
b

a b
a
a
b
b

a
a
b
b

b
a
b
a
a
b
b

a
a
b
b

b
a

a b

a
b
b

b
a
b
b

b

b
a
a
b
b

v

ℓ

u

⊥

a
a
a
b
b

b
a
b
b

b

b
a
a
b
b

v

ℓ

u

subtree(u)

suffix link

par(ℓ) = v
str(ℓ) = 𝚊𝚋𝚊𝚊𝚋𝚋
depth(ℓ) = 6
start(ℓ) = 4

 hed(w) = ℓ
locus(w) = ⟨ℓ, 1⟩

par(v) = u
str(v) = 𝚊𝚋
depth(v) = 2

implicit suffix node

tertiary active point

secondary active point

primary active point

Figure 2.2: The suffix tree of string T = babbabaabb, where the suffix links are depicted by

broken arrows, the implicit suffix nodes are depicted by black circles, as well as the three kinds

of active points, which will be defined in Chapter 6, are marked. For example of other notions

on the suffix tree, substring w = abaab of T is considered here.

denotes the highest explicit descendant where w is a prefix of str(v) and depth(parent(v)) <

|w| ≤ depth(v). For each substring w of T , locus(w) = 〈u, h〉 represents the locus in STree(T)

where the path that spells out w from the root terminates, such that u = hed(w) and h =

depth(u) − |w| ≥ 0. Namely, h is the off-set length from the child u of the locus for w when

w is on an edge, and h = 0 when w is on a node (namely u). We say that a substring w of T

with locus(w) = 〈u, h〉 is represented by an explicit node if h = 0, and by an implicit node if

h ≥ 1. We remark that in the Ukkonen tree STree(T) of a string T , some repeating suffixes

may be represented by implicit nodes. An implicit node which represents a suffix of T is called

an implicit suffix node. For any internal node v except for the root, the suffix link of v is a

reversed edge from v to the explicit node that represents str(v)[1..]. The suffix link of the root

that represents ε points to ⊥.

11

Chapter 3

Tight Bounds on the Maximum Number of
Shortest Unique Substrings

As we showed in Chapter 1, there are many algorithmic results on the SUS problems, however,

structural properties of SUSs are not well understood. A trivial upper bound for the maximum

number of intervals that correspond to point SUSs is 3n, since every MUS can be a SUS for

some position of the input string T , and for each query position p (1 ≤ p ≤ n), there can be at

most 2 SUSs that are not MUSs (one that ends at position p and the other that begins at position

p).

The main contribution of this chapter is matching upper and lower bounds for the maximum

number of SUSs for the point SUS problem, which translate to “less than 1.5n point SUSs”.

Namely, we prove that any string of length n contains at most (3n − 1)/2 SUSs for the point

SUS problem. We give a series of strings which contains (3n− 1)/2 SUSs for any odd number

n ≥ 5. Therefore, our bound is tight, and to our knowledge, this is the first non-trivial result for

structural properties of SUSs. We also consider the maximum number of SUSs for the interval

SUS problem. In so doing, we exclude a special case where a query interval [s, t] itself is a

unique substring that occurs exactly once in T . This is because we have Θ(n2) bounds for such

trivial SUSs. We then prove that any string of length n contains less than 2n non-trivial SUSs

for the interval SUS problem. We also prove that there exists a string of length n which contains

(2− ε)n non-trivial SUSs for any small number ε > 0.

12

CHAPTER 3. TIGHT BOUNDS ON THE MAXIMUM NUMBER OF SHORTEST UNIQUE SUBSTRINGS

3.1 Preliminaries

Clearly, if [i, j] is unique, then [i, j] is the only SUS for the interval [i, j]. For any interval [i, j]

with i < j, if [i, j] is unique and there is no other interval [s, t] ⊂ [i, j] for which [i, j] is a SUS,

then we say that [i, j] is a trivial interval SUS. Also, we say that [i, j] is a non-trivial interval

SUS if [i, j] is not a trivial SUS.

For any interval [s, t] ⊂ [0, |T | − 1], let SUST ([s, t]) denote the set of interval SUSs of T

that contain query interval [s, t], and IST the set of all non-trivial interval SUSs of T . Also,

for any position p ∈ [0, |T | − 1], let PST denote the set of all point SUSs of T , namely,

PST =
⋃n−1

p=0 SUST (p).

3.2 Bounds on the Number of Point SUSs

Here we show a tight bound for the maximum number of point SUSs in a string. In this section,

whenever we speak of SUSs, we mean point SUSs (those for the point SUS problem).

3.2.1 Upper Bound A

In this subsection, we show our first upper bound on the number of SUSs in a string T . In so

doing, we define the subsets LST , MST , and RST of the set PST of all SUSs of string T by

LST = PST ∩ {[x, y] �∈ MUST | x < ∃i ≤ y [i, y] ∈ MUST},
MST = PST ∩MUST , and

RST = PST ∩ {[x, y] �∈ MUST | x ≤ ∃j < y [x, j] ∈ MUST}.

Intuitively, LST is the set of SUSs of T which are not MUSs of T and can be obtained by

extending the beginning positions of some MUSs to the left up to query positions, MST is the

set of SUSs of T which are also MUSs of T , and RST is the set of SUSs of T which are not

MUSs of T and can be obtained by extending the ending positions of some MUSs to the right up

to query positions. It follows from their definitions that LST ∩MST = φ, MST ∩RST = φ,

RST ∩ LST = φ and that PST = LST ∪MST ∪RST . Fig. 3.2 in the next subsection shows

examples of LST , MST , and RST for string T = aabbaababaa.

In the proof of the following theorem, we will evaluate the sizes of these three sets LST ,

MST , and RST separately.

Theorem 3.1. For any string T , |PST | ≤ 2|T | − |MUST |.

13

CHAPTER 3. TIGHT BOUNDS ON THE MAXIMUM NUMBER OF SHORTEST UNIQUE SUBSTRINGS

bi ei bi+1 ei+1

・・・

・・・
Intervals not in RST

Candidates for
the elements of RST

T
n − 10

Figure 3.1: Illustration for Theorem 3.1. Consider two adjacent MUSs [bi, ei] and [bi+1, ei+1]

depicted as the two intervals on the top. For any ei < e < ei+1, [bi, e] can be an element of

RST . On the other hand, for any e′ ≥ ei+1, [bi, e
′] can never be an element of PST since [bi, e

′]

contains two distinct MUSs [bi, ei] and [bi, ei+1], and hence [bi, e
′] can never be an element of

RST as well.

Proof. Let n = |T | and m = |MUST |. For any 0 ≤ i ≤ m− 1, let [bi, ei] denote the MUS of T

that has the i-th smallest beginning position in MUST .

It is clear that |MST | ≤ m. Note that the inequality is due to that fact that some MUS

may not be a point SUS for any position in T (such a MUS is called meaningless in the litera-

ture [55]).

Next, we consider the size of RST . By definition, for any [x, y] ∈ RST , x is equal to the

beginning position of a MUS of T . Therefore, we can bound |RST | by summing up the number

of SUSs that begin with bi for every [bi, ei] ∈ MUST . For any 0 ≤ i ≤ m − 2, consider two

adjacent MUSs [bi, ei], [bi+1, ei+1] ∈ MUST . Recall that bi < bi+1. Then, for any j ≥ ei+1, the

interval [bi, j] contains both MUSs [bi, ei] and [bi+1, ei+1]. This implies that [bi, j] �∈ PST (see

Fig. 3.1), since otherwise both [bi, j] and [bi+1, j] are SUSs for position j, a contradiction. Thus,

for any [bi, ei] ∈ MUST with 0 ≤ i ≤ m− 2, the number of SUSs that begin with bi and belong

to RST is at most ei+1 − ei − 1. Also, the number of SUSs that begin with bm and belong to

RST is at most n−em. Consequently, we get |RST | =
∑m−2

i=0 (ei+1−ei−1)+n−1−em−1 =

em−1 − e0 − (m− 1) + n− 1− em−1 ≤ n−m.

A symmetric argument gives us the same bound for |LST |, namely, |LST | ≤ n−m. Overall,

we obtain |PST | = |LST |+ |MST |+ |RST | ≤ 2(n−m) +m = 2n−m.

14

CHAPTER 3. TIGHT BOUNDS ON THE MAXIMUM NUMBER OF SHORTEST UNIQUE SUBSTRINGS

3.2.2 Upper Bound B

In this subsection, we provide another upper bound on the size of PST .

Theorem 3.2. For any string T , |PST | ≤ |T |+ |MUST | − 1.

In order to show Theorem 3.2, we will use a function f : PST → {0, 1, . . . , n− 1} and its

inverse image f−1 : {0, 1, . . . , n− 1} → 2PST . The next lemma is useful to define f and f−1.

Lemma 3.1. For any string T and interval [x, y] such that 0 ≤ x ≤ y ≤ |T |−1, if [x, y] ∈ RST

then [x, y] ∈ SUST (y), and if [x, y] ∈ LST then [x, y] ∈ SUST (x).

Proof. We first prove the former case. Assume on the contrary that some [x, y] ∈ RST satisfies

[x, y] �∈ SUST (y). This implies that there exists a position p in T such that x ≤ p < y and

[x, y] ∈ SUST (p). In addition, since [x, y] ∈ RST , there exists a position q such that x ≤ q < y

and [x, q] ∈ MUST . Let z = max{p, q}. Then, T [x..z] is a unique substring of T which is

shorter than T [x..y] and contains position p. However, this contradicts that T [x..y] is a SUS for

position p. Thus, if [x, y] ∈ RST then [x, y] ∈ SUST (y). The latter case is symmetric and thus

can be shown similarly.

We are now ready to define f :

f([x, y]) =

⎧⎨
⎩

x if [x, y] ∈ LST ∪MST ,

y if [x, y] ∈ RST .

Intuitively, the function f charges a given interval [x, y] to its beginning position x if [x, y] is an

element of MUST ∩PST or if [x, y] is an element of SUST (p) for some query position p which

is obtained by extending the left-end of a MUS to the left up to p. On the other hand, it charges

[x, y] to its ending position y if the interval is an element of SUST (p) for some query position

p which is obtained by extending the right-end of a MUS to the right up to p. Fig. 3.2 shows

examples for how the function f charges given interval [x, y] ∈ PST .

We also define the inverse image f−1 of f as follows:

f−1(u) = {[x, y] ∈ PST | f([x, y]) = u}.

For positions u for which there is no element [x, y] in PST satisfying f([x, y]) = u, let

f−1(u) = ∅. See also Fig. 3.2 for examples of f−1.

By the definition of f−1, it is clear that |PST | =
∑|T |−1

u=0 |f−1(u)|. Hence, in what follows

we analyze |f−1(u)| for all positions u in string T .

15

CHAPTER 3. TIGHT BOUNDS ON THE MAXIMUM NUMBER OF SHORTEST UNIQUE SUBSTRINGS

0 1 2 3 4 5 6 7 8 9 10

T = aabbaababaa
All MUSs in T

Intervals in RST

Intervals in MST

Intervals in LST

Figure 3.2: Illustration for functions f and f−1 of string T = aabbaababaa. The upper part

of this diagram shows all MUSs in T , and the lower part shows all SUSs for all positions

in T . Each star shows the position to which the function f maps the corresponding interval.

Here, RST = {[2, 4], [2, 5], [6, 9]}, MST = {[2, 3], [3, 6], [4, 7], [6, 8], [7, 10]}, and LST =

{[0, 3], [1, 3], [5, 8]}. Hence, we have f([2, 4]) = 4, f([2, 5]) = 5, f([6, 9]) = 9, f([2, 3]) = 2,

f([3, 6]) = 3, f([4, 7]) = 4, f([6, 8]) = 6, f([7, 10]) = 7, f([0, 3]) = 0, f([1, 3]) = 1, and

f([5, 8]) = 5. For the inverse image, f−1, we have f−1(0) = {[0, 3]}, f−1(1) = {[1, 3]},

f−1(2) = {[2, 3]}, f−1(3) = {[3, 6]}, f−1(4) = {[2, 4], [4, 7]}, f−1(5) = {[2, 5], [5, 8]},

f−1(6) = {[6, 8]}, f−1(7) = {[7, 10]}, f−1(8) = f−1(10) = ∅, and f−1(9) = {[6, 9]}.

Lemma 3.2. For any string and position 0 ≤ u ≤ |T | − 1, |f−1(u)| ≤ 2.

Proof. Assume on the contrary that |f−1(u)| ≥ 3 for some position u in T . Let [x1, y1], [x2, y2]

be any distinct elements of f−1(u). We firstly consider the following cases.

(1) Case where [x1, y1], [x2, y2] ∈ LST : It follows from the definition of f−1 that f([x1, y1])

= f([x2, y2]) = u, and it follows from the definition of f that x1 = x2 = u. Since [x1, y1]

and [x2, y2] are distinct, y1 �= y2. Assume w.l.o.g. that y1 < y2. Then, [x2, y2] = [u, y2] is

a SUS for position u but it is longer than another SUS [x1, y1] = [u, y1] for position u, a

contradiction.

(2) Case where [x1, y1], [x2, y2] ∈ MST : It follows from the definition of f−1 that f([x1, y1])

= f([x2, y2]) = u, and it follows from the definition of f that x1 = x2 = u. Since [x1, y1]

16

CHAPTER 3. TIGHT BOUNDS ON THE MAXIMUM NUMBER OF SHORTEST UNIQUE SUBSTRINGS

and [x2, y2] are distinct, y1 �= y2. Assume w.l.o.g. that y1 < y2. Then, [x2, y2] = [u, y2] is

a MUS, but it contains another MUS [x1, y1] = [u, y1], a contradiction.

(3) Case where [x1, y1], [x2, y2] ∈ RST : This is symmetric to Case (1) and thus we can obtain

a contradiction in a similar way.

Hence, none of the above three cases is possible, and thus the remaining possibility is the

case where |f−1(u)| = 3 and each element of f−1(u) belongs to a different subset of PST ,

namely, f−1(u) = {[x1, y1], [x2, y2], [x3, y3]} for some [x1, y1] ∈ LST , [x2, y2] ∈ MST , and

[x3, y3] ∈ RST . It follows from the definition of f−1 that f([x1, y1]) = f([x2, y2]) = u, and

it follows from the definition of f that x1 = x2 = u. Since [x1, y1] and [x2, y2] are distinct,

y1 �= y2. There are two sub-cases.

(i) If y1 < y2, then a MUS [x2, y2] = [u, y2] contains a shorter SUS [x1, y1] = [u, y1] for

position u, a contradiction.

(ii) If y1 > y2, then a SUS [x1, y1] = [u, y1] for position u contains a shorter MUS [x2, y2] =

[u, y2], a contradiction.

Hence, neither of the sub-cases is possible.

Overall, we conclude that |f−1(u)| ≤ 2.

By Lemma 3.2, for any position u in string T we have |f−1(u)| ≤ 2. Now let us consider

any position u for which |f−1(u)| = 2. We have the next lemma.

Lemma 3.3. For any position u in string T for which |f−1(u)| = 2, let f−1(u) = {[x1, y1],

[x2, y2]} and assume w.l.o.g. that x1 ≤ x2. Then, x1 �= x2, [x1, y1] ∈ RST and [x2, y2] ∈
LST ∪MST .

Proof. Suppose x1 = x2 and assume w.l.o.g. that y1 < y2. Then, from the definition of f ,

we have that (x1 = u or y1 = u) and (x2 = u or y2 = u) and thus x1 = x2 = u. Since

[x2, y2] ∈ f−1(u) is not a MUS since it includes [x1, y1], it must be that [x2, y2] ∈ SUST (u).

This is a contradiction, because there exists a shorter unique substring [x1, y1] that contains u.

Thus we have x1 �= x2. Assume on the contrary that [x1, y1] ∈ LST ∪MST . Then, it follows

from the definition of f that f([x1, y1]) = x1. In addition, since [x1, y1] ∈ f−1(u), we have

u = x1. This implies that u = x1 < x2, but it contradicts that [x2, y2] ∈ f−1(u). Thus,

[x1, y1] �∈ LST ∪ MST , namely, [x1, y1] ∈ RST . Now, it follows from the arguments in the

proof of Lemma 3.2 that [x2, y2] �∈ RST , and hence [x2, y2] ∈ MST ∪ LST .

17

CHAPTER 3. TIGHT BOUNDS ON THE MAXIMUM NUMBER OF SHORTEST UNIQUE SUBSTRINGS

Let m = |MUST |, and MUST = {[b1, e1], . . . , [bm, em]}. The next corollary immediately

follows from Lemmas 3.1 and 3.3.

Corollary 3.1. For any position u in string T with |f−1(u)| = 2, there exist two integers

1 ≤ i < j ≤ m such that SUST (u) = {[bi, u], [u, ej]}.

For any position u in string T before b1 or after bm, we have the next lemma.

Lemma 3.4. For any position u in string T s.t. 0 ≤ u ≤ b1 or bm < u ≤ n− 1, |f−1(u)| ≤ 1.

Proof. Assume on the contrary that |f−1(u)| = 2 for some 0 ≤ u ≤ b1. By Lemma 3.3, there

exists [x, y] ∈ f−1(u) such that [x, y] ∈ RST . By the definitions of f and f−1, we have y = u.

Also, by the definition of RST , there exists a position e < y in T such that [x, e] ∈ MUST .

Now we have x ≤ e < y = u ≤ b1, however, this contradicts that b1 is the beginning position

of the first (leftmost) MUS in MUST . Thus |f−1(u)| ≤ 1 for any 0 ≤ u ≤ b1.

Assume on the contrary that |f−1(u)| = 2 for some bm < u ≤ n− 1. By Lemma 3.3, there

exists [x′, y′] ∈ f−1(u) such that [x′, y′] ∈ MST ∪ LST . By the definition of f and f−1, we

have x′ = u. There are two cases to consider:

• If [x′, y′] ∈ MST , then [x′, y′] ∈ MUST . Thus x′ = u > bm is the beginning position of

a MUS in MUST , however, this contradicts that bm is the beginning position of the last

(rightmost) MUS in MUST .

• If [x′, y′] ∈ LST , then by the definition of LST there exists a position b > x′ such that

[b, y′] ∈ MUST . Now we have b > x′ = u > bm, however, this contradicts that bm is the

beginning position of the last (rightmost) MUS in MUST .

Consequently, |f−1(u)| ≤ 1 for any bm < u ≤ n− 1.

Lemma 3.5. For any non-empty string T , let U = {u | |f−1(u)| = 2}. Then, |U | ≤ |MUST |−1.

Proof. Let n = |T | and m = |MUST |. Recall that for any 0 ≤ i ≤ m − 1, [bi, ei] denotes the

i-th element of MUST .

Let B = {bi | 0 ≤ i ≤ m − 2}. We define function g : U → B as g(u) = max{b < u |
b ∈ B}. By the definition of U and Lemma 3.4, any position u ∈ U satisfies b0 < u ≤ bm−1.

Therefore, g(u) is well-defined for any position u ∈ U , and g(u) returns the predecessor of u

in the set B. It is clear that |B| = m− 1. Thus, if g is an injection, then we immediately obtain

the claimed bound |U | ≤ |B| = m− 1.

18

CHAPTER 3. TIGHT BOUNDS ON THE MAXIMUM NUMBER OF SHORTEST UNIQUE SUBSTRINGS

bk u1 bi+1 ei+1
T

u2 ≤<<

MUS MUS

l2
l2

l1

Figure 3.3: Illustration for Lemma 3.5. The two intervals show two MUSs [bk, ek], [bi+1, ei+1]

∈ MUST , where bk ≤ bi. Both [bk, u2] and [u2, bi+1] are SUSs for position u2, and [u1, ei+1] is a

SUS for position u1. Since u1 < u2, it holds that l1 > l2, where l1 and l2 are the lengths of SUSs

for positions u1 and u2, respectively. Then, the interval [bk, u2] of length l2 contains position u1

and T [bk..u2] is a unique substring of T . However, this contradicts that l1 is the length of each

SUS for position u1.

In what follows, we show that g is indeed an injection. Assume on the contrary that g is not

an injection. Let u1 and u2 be elements in U such that u1 < u2 and g(u1) = g(u2). Let bi ∈ B

such that bi = g(u1) = g(u2). Then, by the definition of g, we have bi < u1 < u2 ≤ bi+1. See

Fig. 3.3 for illustration.

Let l1 and l2 be the lengths of the SUSs for positions u1 and u2, respectively. Since

|f−1(u2)| = 2, it follows from Corollary 3.1 that there exists bk ∈ B such that bk ≤ bi and

SUST (u2) = {[bk, u2], [u2, ei+1]}. This implies l2 = u2 − bk + 1 = ei+1 − u2 + 1. On the other

hand, since |f−1(u1)| = 2, it follows from Corollary 3.1 that [u1, ei+1] ∈ SUST (u1), which

implies l1 = ei+1 − u1 + 1. Since u1 < u2, we have l1 > l2.

Now focus on a SUS [bk, u2] for position u2. Since bk ≤ bi < u1 < u2, [bk, u2] contains

u1. However, [bk, u2] is a SUS for position u2 and is of length l2 < l1. This contradicts that

[u1, ei+1] of length l1 is each SUS for position u1. Hence g is an injection.

We are ready to prove the main result of this subsection, Theorem 3.2.

Proof. Let n = |T |, m = |MUST |, U = {u | |f−1(u)| = 2}, and V = {0, . . . , n − 1} \ U . It

is clear that |U | + |V | = n. By Lemma 3.2, V = {u | |f−1(u)| ≤ 1}. Also, by Lemma 3.5,

|U | ≤ m − 1. Recall that |PST | =
∑n

u=1 |f−1(u)|. Putting all together, we obtain |PST | =∑n−1
u=0 |f−1(u)| ≤ |V |+ 2|U | = n+ |U | ≤ n+m− 1.

19

CHAPTER 3. TIGHT BOUNDS ON THE MAXIMUM NUMBER OF SHORTEST UNIQUE SUBSTRINGS

3.2.3 Matching Upper and Lower Bounds

We are ready to show the main result of this chapter.

Theorem 3.3. For any non-empty string T , |PST | ≤ (3|T |−1)/2. This bound is tight, namely,

for any odd n ≥ 5 there exists a string T of length n s.t. |PST | = (3n− 1)/2.

Proof. By Theorem 3.1, we have |MUST | ≤ 2|T | − |PST |. Also, by Theorem 3.2, we have

|PST | − |T |+ 1 ≤ |MUST |. Thus |PST | − |T |+ 1 ≤ 2|T | − |PST |, which immediately leads

to the claimed bound |PST | ≤ (3|T | − 1)/2.

We show that the above upper bound is indeed tight. For any odd number n = 2k − 1 ≥ 5,

consider string T = a0xa1x · · · ak−2xak−1, where a0, . . . , ak−1, x ∈ Σ, ai �= aj for all 0 ≤ i �=
j ≤ k − 1, and x �= ai for all 0 ≤ i ≤ k − 1. For any 0 ≤ i ≤ k − 1, T [2i] = ai is a unique

substring of T , and thus [2i, 2i] ∈ SUST (2i). Also, for any 0 ≤ i ≤ k − 2, T [2i + 1] = x is a

repeating substring of T while T [2i..2i + 1] = aix and T [2i + 1..2i + 2] = xai+1 are unique

substrings of T . This implies that [2i, 2i+ 1], [2i+ 1, 2i+ 2] ∈ SUST (2i+ 1). Hence, we have

|PST | = k + 2(k − 1) = 3k − 2 = 3(n+ 1)/2− 2 = (3n− 1)/2.

3.2.4 Lower Bound for Fixed-Size Alphabet

The lower bound of Theorem 3.3 is due to a series of strings over an alphabet of unbounded

size. In this subsection, we fix the alphabet size σ and present a series of strings that contain

many point SUSs.

Theorem 3.4. Let n ≥ 2 and 2 ≤ σ ≤ (n + 3)/2. There exists a string T of length n over an

alphabet of size σ such that |PST | = n+ σ − 2.

Proof. Let Σ = {a0, . . . , aσ−2, x} and T = a0xa1x · · · aσ−2x
n−2σ+3. For any 0 ≤ i ≤ σ − 2,

T [2i] = ai is a unique substring of T , and thus [2i, 2i] ∈ SUST (2i). For any 0 ≤ j ≤ σ − 3,

T [2j + 1] = x is a repeating substring of T while T [2j..2j + 1] = ajx and T [2j + 1..2j + 2] =

xaj+1 are unique substrings of T . This implies that [2j, 2j+1], [2j+1, 2j+2] ∈ SUST (2j+1).

For any 2σ−3 ≤ k ≤ n−2, T [2σ−3..k] = xk−2σ+3 is a repeating substring of T while T [2σ−
4..k] = aσ−2x

k−2σ+3 is a unique substrings of T . This implies that [2σ−4, k] ∈ SUST (k). Also,

T [2σ − 2..n − 1] = xn−2σ+2 is a repeating substring of T and T [2σ − 3..n − 1] = xn−2σ+3 is

a unique substring of T , and thus [2σ − 3..n − 1] ∈ SUST (n − 1). Summing up all the point

SUSs above, we obtain |PST | = σ − 1 + 2(σ − 2) + n− 2σ + 2 + 1 = n+ σ − 2.

20

CHAPTER 3. TIGHT BOUNDS ON THE MAXIMUM NUMBER OF SHORTEST UNIQUE SUBSTRINGS

3.3 Bounds on the Number of Interval SUSs

In this section, we show almost tight bounds for the maximum number of non-trivial interval

SUSs IST of a string T . The following upper bound for |IST | can be obtained in an analogous

way to Theorem 3.1.

Lemma 3.6. For any non-empty string T , |IST | ≤ 2|T | − |MUST |.

We also have the following lower bound for |IST |.

Lemma 3.7. For any ε > 0, there exists a string T of length n such that |IST | > (2− ε)n.

Proof. Let x = �3/(2ε)�, T = c0a
xc1a

xc2 and n = |T | = 2x + 3. Clearly, c0, c1 and c2 are

MUSs of T and are in IST . For all 1 ≤ i ≤ x, T [0..i] and T [i..x + 1] are unique substrings of

T , and T [1..i] and T [i..x] are repeating substrings of T . This implies T [0..i] ∈ SUST ([1, i]) and

T [i..x+1] ∈ SUST ([i, x]). Similarly, for all x+2 ≤ j ≤ 2x+1, T [x+1..j] ∈ SUST ([x+2, j])

and T [j..2x+2] ∈ SUST ([j, 2x+1]). Then, we have |IST | = 4x+3. Hence, |IST |−(2−ε)n =

4x+ 3− (2− ε)(2x+ 3) = 2εx+ 3ε− 3 = 2ε�3/(2ε)�+ 3ε− 3 ≥ 3ε > 0.

As is shown in the following theorem, the number of non-trivial interval SUSs contained in

the string T of Lemma 3.7 “almost coincides” with the upper bound of Lemma. Namely:

Theorem 3.5. For any ε > 0, there is a string T such that (2|T | − |MUST |)− (2− ε)|T | ≤ 5ε.

Proof. For any ε > 0, consider the string T of Lemma 3.7. We remark that T contains 3 MUSs,

namely, |MUST | = 3. Hence, we obtain (2|T | − |MUST |) − (2 − ε)|T | = ε|T | − |MUST | =
ε|T | − 3 = ε(2�3/(2ε)�+ 3)− 3 = 2ε�3/(2ε)�+ 3ε− 3 ≤ 2ε(3/(2ε) + 1) + 3ε− 3 = 5ε →
0 (ε → 0).

3.4 Conclusions and Open Questions

In this chapter, we presented matching upper and lower bounds for the maximum number of

SUSs for the point SUS problem. Namely, we proved that any string of length n can contain at

most (3n−1)/2 SUSs for the point SUS problem, and showed that this bound is tight by giving

a string of length n containing (3n− 1)/2 SUSs. For a fixed alphabet size σ, we also presented

a string of length n containing n+ σ − 2 SUSs. Moreover, we showed that any string of length

n which contains m MUSs can have at most 2n−m non-trivial interval SUSs, and that for any

ε > 0 there is a string of length n which contains (2− ε)n non-trivial interval SUSs.

21

CHAPTER 3. TIGHT BOUNDS ON THE MAXIMUM NUMBER OF SHORTEST UNIQUE SUBSTRINGS

An interesting future work is to show a non-trivial upper bound of the maximum number of

point SUSs for a fixed alphabet size σ. We conjecture that the tight upper bound matches our

lower bound n + σ − 2. Another future work is to close the small gap between the upper and

lower bounds on the maximum number of non-trivial interval SUSs shown in Theorem 3.5.

22

Chapter 4

Shortest Unique Substring Queries on
Run-Length Encoded Strings

In this chapter, we consider the interval SUS problem in the case where the string is given

in run-length encoding (RLE). String processing on the compressed representation of a string

without explicit decompression [1] is a heavily studied topic, and can lead to time and space

efficient processing [53]. There have been many studies on efficient algorithms for processing

RLE strings [7, 8, 2, 3, 40, 34, 10, 39, 4]. We show that given a run-length encoding of size r

of a string, we can construct a data structure of size O(r + πs(n, r)) in O(r log r + πc(n, r))

time such that all SUSs that contain the query interval can be answered in O(πq(n, r)+k) time,

where k is the number of such SUSs and πs(n, r), πc(n, r), πq(n, r) are, respectively, the size,

construction time, and query time for a predecessor/successor query data structure of r elements

for the universe of [0, n − 1]. Using the data structure by Beam and Fich [6], this results in a

data structure of size O(r) space that is constructed in O(r log r) time, and answers queries in

O(
√
log r/ log log r+k) time. Thus, compared to previous work [27], our algorithm allows for

more time and space efficient preprocessing for RLE compressible strings, with a slight increase

in query time.

Our result is an outcome of a non-trivial mixed use of combinatorial properties of RLE

strings and data structures built on RLE strings: All existing solutions [49, 55, 28, 27, 26] to

the SUS problem precompute minimal unique substrings (MUSs) of a given string, which are

minimal substrings of T occurring exactly once in T , and store them in Θ(n) space, since, in

general, there can be Θ(n) MUSs in a given string. However, using combinatorial properties

of MUSs and RLE strings, we show in this chapter that any string of RLE size r contains at

most 2r − 1 MUSs, enabling our space-efficient O(r)-size data structure for the SUS problem.

23

CHAPTER 4. SHORTEST UNIQUE SUBSTRING QUERIES ON RUN-LENGTH ENCODED STRINGS

This bound is indeed tight, namely, some strings contain 2r − 1 MUSs. In our algorithm, we

separately treat MUSs that are completely contained in runs, those that start at the last characters

of runs, and the rest. We then show that all the MUSs can be precomputed in O(r log r) time

using a special type of suffix arrays for RLE strings [54]. Finally, we show how, given all

MUSs, to efficiently compute all SUSs for any given query interval.

4.1 Preliminaries

4.1.1 Run-Length Encoding.

The run-length encoding (RLE) of string T , denoted by RLE (T), is a compact representation

of T which encodes each maximal character run T [i..i + e − 1] by ae, if (1) T [j] = a for all

i ≤ j ≤ i+e−1, (2) T [i−1] �= T [i] or i = 0, and (3) T [i+e−1] �= T [i+e] or i+e−1 = n−1.

E.g., RLE (aabbbbcccaaa$) = a2b4c3a3$1. The size of RLE (T) = ae00 · · · aer−1

r−1 is the number

r of maximal character runs in T and is denoted by |RLE (T)|. For any 0 ≤ i ≤ r − 1, let

bposT (i), eposT (i), and expT (i) respectively denote the beginning position, ending position,

and exponent of the i-th run of RLE (T) in the original string T ; namely, bposT (i) =
∑i−1

k=0 ek,

eposT (i) =
∑i

k=0 ek − 1, and expT (i) = ei.

Sparse Suffix Array and Related Arrays for RLE Strings. Let B ⊆ [0, n−1] be any subset

of positions in T called sampled positions. The sparse suffix array SSAB of a string T w.r.t.

B is an array of size |B| such that SSAB[i] ∈ B for all 0 ≤ i ≤ |B| − 1 and T [SSAB[i]..] ≺
T [SSAB[i+ 1]..] for all 0 ≤ i < n− 1.

Let r = |RLE (T)| and E = {eposT (i) | 0 ≤ i ≤ r − 1}. The truncated RLE suffix

array for RLE (T), denoted tRLESAT , is the sparse suffix array of T w.r.t. E. Namely, for any

0 ≤ i ≤ r − 1, tRLESAT [i] = j iff j ∈ E and the lexicographical rank of the suffix T [j..] is i

among all suffixes of T that begin with positions in E. Let tRLESA−1
T be an array of size r such

that tRLESAT [tRLESA
−1
T [i]] = eposT (i) for all 0 ≤ i ≤ r − 1. Let tRLELCPT be an array of

size r+1 such that tRLELCPT [0] = tRLELCPT [r] = 0 and tRLELCPT [i] = lceT (tRLESAT [i−
1], tRLESAT [i]) = lcp(T [tRLESAT [i − 1]..], T [tRLESAT [i]..]) for all 1 ≤ i ≤ r − 1. Also, let

EXPT be an array of size r such that EXPT [i] = expT (k) where tRLESAT [i] = eposT (k) for all

0 ≤ i ≤ r − 1, namely, EXPT [i] stores the ignored exponent of the first run of the i-th suffix in

tRLESAT . See Fig. 4.1 for concrete examples of these arrays.

24

CHAPTER 4. SHORTEST UNIQUE SUBSTRING QUERIES ON RUN-LENGTH ENCODED STRINGS

0 2 2 9 0
1 5 1 5 1

2 1 3 2 4

3 4 2 11 0

4 0 2 7 0

5 3 2 4 2

6 6 3 14 1

7 7 1 15 0

8 0

𝗍𝖱𝖫𝖤𝖲𝖠−1
T 𝖤𝖷𝖯T 𝗍𝖱𝖫𝖤𝖫𝖢𝖯T𝗍𝖱𝖫𝖤𝖲𝖠T

a(2) b2 c3 $1

a(1) c2 a2 b2 c3 $1

a(3) c2 a1 c2 a2 b2 c3 $1

b(2) c3 $1

c(2) a2 b2 c3 $1

c(2) a1 c2 a2 b2 c3 $1

c(3) $1

$(1)

Figure 4.1: tRLESAT , tRLESA−1
T , tRLELCPT , and EXPT for RLE(T) = a3c2a1c2a2b2c3$1

with r = 8 and n = |T | = 16. We remark that the exponents of the first runs in parentheses

are all regarded as 1. For instance, consider the suffixes of lexicographical ranks 1 and 2.

Although a1c2a2b2c3$1 is lexicographically greater than a3c2a1c2a2b2c3$1, a1c2a2b2c3$1 is

lexicographically smaller than a1c2a1c2a2b2c3$1, and tRLESAT builds on the latter ordering.

Lemma 4.1 ([54]). Given RLE (T) of size r, tRLESAT , tRLESA−1
T , tRLELCPT , and EXPT can

be computed in a total of O(r log r) time with O(r) working space.

The following is a simple observation of these arrays we will exploit.

Observation 4.1. For any 0 ≤ i ≤ r−1, let l = max{tRLELCPT [p], tRLELCPT [p+1]}, where

p = tRLESA−1
T [i]. If l �= 0, then l is the length of the longest repeat of T that starts at eposT (i).

For example of Observation 4.1, see Fig. 4.1. There, for position i = 2, we have p =

tRLESA−1
T [2] = 1. Then, observe that l = max{1, 4} = 4 is the length of the longest repeat

ac2a that starts at position eposT (2) = 5. On the other hand, for position i = 5, we have

p = tRLESA−1
T [5] = 3. Then, l = max{0, 0} = 0, but this is not equal to the length 1

of the longest repeat b that starts at position eposT (5) = 11. In our algorithm, we will use

Observation 4.1 only the case where l �= 0.

In this chapter, we will tackle the following problem:

Problem 4.1 (SUSs on RLE strings).

Preprocess: RLE (T) = ae00 · · · aer−1

r−1 of size r of string T of length n.

Query: An interval [s, t] ∈ [0, n− 1].

Return: All SUSs of T containing the query interval [s, t].

25

CHAPTER 4. SHORTEST UNIQUE SUBSTRING QUERIES ON RUN-LENGTH ENCODED STRINGS

4.1.2 Some Functions Related to tRLESA

In this subsection, we introduce some functions related to tRLESAT and the other arrays, which

will be used in our algorithm to compute SUSs on RLE strings.

Consider RLE (T) of size r. For any pair (i, j) ∈ [0, r− 1]× [0, r− 1], let trle lceT (i, j) =

lceT (tRLESAT [i], tRLESAT [j]). Since

trle lceT (i, j) =

⎧⎨
⎩

RmQtRLELCPT
(i+ 1, j) if i < j,

RmQtRLELCPT
(j + 1, i) otherwise,

after a linear-time preprocessing on tRLELCPT , we can answer trle lceT (i, j) in O(1) time for

any given pair (i, j).

For any 0 ≤ q ≤ r − 1 and e ≥ 1, let exp pos(q, e) denote a query which returns a

position q′ �= q, if it exists, that satisfies EXPT [q
′] ≥ e and T [tRLESAT [q

′]] = T [tRLESAT [q]]

while maximizing trle lce(q, q′), and nil otherwise. Thus, with q′ = exp pos(q, e), we can

obtain the length of the longest repeating substring starting at position tRLESAT [q] − e + 1 as

e− 1 + trle lce(q, q′).

Lemma 4.2. Given EXPT for RLE (T) of size r, we can preprocess EXPT in O(r) time so that

subsequent exp pos(q, e) queries can be answered in O(logm) time for any 0 ≤ q ≤ m − 1

and e ≥ 1.

Proof. We construct an RMQ data structure for EXPT in O(r) time. Since lexicographically

close strings share a longer prefix, exp pos(q, e) is one of the two closest neighbours of q in

EXPT that stores an exponent at least e, corresponding to a run of the same character. Thus,

we can compute exp pos(q, e) using two binary searches on EXP, by comparing e with the

answer of the RMQ queries, starting with the initial range [0, q − 1] and [q + 1, r − 1]. Since

the size of EXPT is r and each RMQ query takes O(1) time, it takes O(log r) time to locate

exp pos(q, e).

For any 0 ≤ q ≤ r − 1 and � ≥ 0, let lce pos(q, �) denote a query which returns a position

q′ �= q, if it exists, such that trle lce(q, q′) ≥ � while maximizing EXPT [q
′], and nil otherwise.

In other words, lce pos(q, �) corresponds to a suffix that has the maximum exponent out of

suffixes which, have a common prefix of length � with the suffix corresponding to q. Note that

if � > max{tRLELCP[q], tRLELCP[q + 1]}, lce pos(q, �) = nil .

Lemma 4.3. Given tRLELCPT for RLE (T) of size r, we can preprocess tRLELCPT in O(r)

time so that subsequent lce pos(q, �) queries can be answered in O(log r) time for any 0 ≤ q ≤
r − 1 and � ≥ 0.

26

CHAPTER 4. SHORTEST UNIQUE SUBSTRING QUERIES ON RUN-LENGTH ENCODED STRINGS

Proof. We construct an RmQ data structure on tRLELCPT . Since, as noted previously, lexi-

cographically close strings share a longer prefix, values of trle lce(q, q′′) are larger when q′′ is

closer to q. Thus, similar to Lemma 4.2, we can conduct two binary searches on tRLELCPT

using RmQ and obtain the maximal range [qp, qn] such that trle lce(q, q′′) ≥ � if and only

if q′′ ∈ [qp, qn]. After finding the range, the larger of the two RMQ queries for the ranges

[qp, q − 1] and [q + 1, qn] on EXPT gives the answer.

4.2 Computing MUSs from RLE Strings

In this section we show how we can compute MUST given RLE (T), which is the main part

of our preprocessing. As will be seen in Section 4.2.1, we partition MUSs into three disjoint

groups; those that are completely contained in runs, those that start at the last characters of runs,

and the rest.

4.2.1 Size of MUST

We begin with the analysis of the size of MUST in terms of r = |RLE (T)|. Let

M(1) ={[x, y] ∈ MUST | bposT (i) ≤ x ≤ y ≤ eposT (i) for some 0 ≤ i ≤ r − 1},
M(2) ={[x, y] ∈ MUST | x = eposT (i) < y for some 0 ≤ i < r − 1}, and

M(3) ={[x, y] ∈ MUST | bposT (i) ≤ x < eposT (i) < y for some 0 ≤ i < r − 1}.

Clearly, MUST = M(1) ∪ M(2) ∪ M(3). For example, for string T = aaaccaccaabbccc$

as in Fig. 4.1, MUST = {[0, 2], [1, 3], [4, 6], [7, 9], [9, 10], [10, 11], [11, 12], [12, 14], [15, 15]} =

{aaa, aac, cac, caa, ab, bb, bc, ccc, $}, M(1) = {aaa, bb, ccc, $}, M(2) = {cac, caa, ab,
bc}, and M(3) = {aac}.

Since, by definition, a MUS cannot be a proper substring of another MUS, there can be at

most one MUS that starts at any given position. Thus, it follows that |M(2)| ≤ r − 1.

For |M(3)|, we have the following lemma.

Lemma 4.4. For any [x, y] ∈ M(3) and p ∈ occT (T [x + 1..y]) \ {x + 1}, we have that

p = bposT (i) for some 0 ≤ i < r − 1.

Proof. Since T [x..y] is a MUS, T [x+1..y] is not unique and thus occT (T [x+1..y])\{x+1} is

not empty. If p �= bposT (i) for any 0 ≤ i < r − 1, then T [p− 1] = T [p] and thus gives another

occurrence of T [x..y] contradicting that it is unique.

27

CHAPTER 4. SHORTEST UNIQUE SUBSTRING QUERIES ON RUN-LENGTH ENCODED STRINGS

We now show |M(3) ∪M(1)| ≤ r. Let R = {bposT (i) | 0 ≤ i ≤ r− 1}. From Lemma 4.4,

we can define a function f : M(3) ∪M(1) → R as follows:

f([x, y]) =

⎧⎨
⎩

min(occT (T [x+ 1..y]) \ {x+ 1}) if [x, y] ∈ M(3)

x if [x, y] ∈ M(1)

Suppose f is not an injective function, i.e., there exist distinct intervals [x1, y1], [x2, y2] ∈
M(3) ∪ M(1) such that x1 �= x2 and p = f([x1, y1]) = f([x2, y2]). Note that by definition,

M(3) ∩M(1) = ∅.

If [x1, y1], [x2, y2] ∈ M(3), assume w.l.o.g. y1 − x1 ≤ y2 − x2. By definition of f , we have

T [x1 + 1..y1] = T [p..p + y1 − x1 − 1] and T [x2 + 1..y2] = T [p..p + y2 − x2 − 1]. Also, from

the definition of M(3), we have T [x1] = T [x1 +1] = T [p] = T [x2 +1] = T [x2]. It follows that

T [x1..y1] is a prefix of T [x2..y2], contradicting that T [x1..y1] is unique. If [x1, y1] ∈ M(3) and

[x2, y2] ∈ M(1), this implies that T [x2..y2] is a prefix of T [x1 + 1..y1] which is not unique, thus

contradicting that T [x2..y2] is unique. Finally, if [x1, y1], [x2, y2] ∈ M(1), p = f([x1, y1]) =

f([x2, y2]) implies that p = x1 = x2 contradicting that x1 �= x2. Thus, f must be an injective

function. Therefore, |M(3) ∪M(1)| ≤ |R| = r.

From the above arguments, we have:

Lemma 4.5. |MUST | ≤ 2r − 1.

We note that the upper bound of Lemma 4.5 is tight, and there exists a string T such that

|MUST | = 2r − 1. Consider T = ae00 ae11 · · · aer−1

r−1 such that for any 0 ≤ i, j ≤ r − 1, ei ≥ 2,

and ai �= aj when i �= j. Clearly, aeii is a MUS for all 0 ≤ i ≤ r − 1, and aiai+1 is a MUS for

all 0 ≤ i < r − 1, giving 2r − 1 MUSs.

4.2.2 Computing MUST

We now show how to obtain MUST in O(r log r) time and O(r) space, by computing the sets

M(1),M(2),M(3) as defined in Section 4.2.1.

Computing M(1)

To compute M(1), we first show a necessary and sufficient condition for an interval [x, y] to be

in M(1).

Lemma 4.6. For any string T where RLE (T) = ae00 · · · aer−1

r−1 , an interval [x, y] ∈ M(1) if and

only if there exists some 0 ≤ i ≤ r − 1 such that bposT (i) = x, eposT (i) = y, and for any

j ∈ [0, r − 1] \ {i}, either ai �= aj or ej < ei.

28

CHAPTER 4. SHORTEST UNIQUE SUBSTRING QUERIES ON RUN-LENGTH ENCODED STRINGS

Proof. (⇒) Since [x, y] is a MUS and any proper substring of [x, y] is not unique, it must be

that x = bposT (i), y = eposT (i) for some 0 ≤ i ≤ r − 1. Furthermore, it must be that ai �= aj

or ej < ei for any j ∈ [0, r − 1] \ {i}, since otherwise, [x, y] will not be unique. (⇐) The

condition implies that T [x..y] is the longest run of character ai in T and is unique. Since any

proper substring of T [x..y] is not unique, [x, y] is a MUS and is thus in M(1).

Let ΣT be the subset of Σ consisting of letters occurring in T . Using Lemma 4.6, we can

compute M(1) by simply checking for each character a ∈ ΣT , whether there exists a run of

character a with a unique (w.r.t. runs of character a) maximum exponent, and if so, include the

interval corresponding to the run in M(1). Since |ΣT | ≤ r, this can be done in O(r log r) time

and O(r) space using any standard sorting algorithm.

Computing M(2)

To compute M(2), we check for each 0 ≤ i ≤ r − 2, whether there exists a MUS that starts

at eposT (i) and insert it in M(2) if there is. More specifically, we first compute y such that

T [eposT (i)..y] is right minimal unique. Next, we check whether T [eposT (i) + 1..y] is unique

or not, and if not, we have that [eposT (i), y] is also left minimal unique and thus is a MUS.

Let q = tRLESA−1
T [i]. By Observation 4.1, we have that l = max{tRLELCPT [q],

tRLELCPT [q + 1]} is the length of the longest repeat of T that starts at eposT (i). This implies

that T [eposT (i)..eposT (i) + l] is right minimal unique. Thus, given the tRLELCPT array, y =

eposT (i) + l can be computed in constant time. Next, to determine whether T [eposT (i) + 1..y]

is unique or not, we compute y′ such that T [eposT (i) + 1..y′] is right minimal unique. Then,

[eposT (i) + 1, y] is unique iff y′ ≤ y. Noticing that eposT (i) + 1 = bposT (i + 1), we

can compute y′ as follows. Let q = tRLESA−1
T [i + 1] and x = EXPT [q]. We compute

l′ = x − 1 + trle lceT (q, q
′), where q′ = exp pos(q, x). By definition, we have that l′ is

the length of the longest repeat of T that starts at bposT (i + 1). Thus, y′ = bposT (i + 1) + l′.

By Lemma 4.2, this can be computed in O(r log r) total time and O(r) space for all i.

Computing M(3)

For each 0 ≤ i < r − 1, we will compute the elements of M(3) that start in the i-th run. Let

s = bposT (i) and we repeat the following while s < eposT (i). First, compute y such that

T [s..y] is right minimal unique. If such y does not exists, i.e., T [s..] is not unique, then we are

done. If y does exist, y ≥ eposT (i) since, as noted earlier, no proper substring of a run can be

unique. If y = eposT (i), we must have that s = bposT (i) and [s, y] is a MUS in M(1) and not

29

CHAPTER 4. SHORTEST UNIQUE SUBSTRING QUERIES ON RUN-LENGTH ENCODED STRINGS

in M(1); thus we simply increment s by 1 and repeat the process. Otherwise, if y > eposT (i),

we try to find x such that T [x..y] is left minimal unique. Then, by definition, [x, y] is a MUS.

If x < eposT (i), then we have that [x, y] is a MUS in M(3), and since there can be no other

MUS that starts in the interval [s, x], we set s = x + 1 and repeat the process. Otherwise, if

x ≥ eposT (i), then [x, y] is either a MUS in M(2) or does not start in the i-th run, so we are

finished for the current value of i. Because we obtain one distinct MUS each time we determine

y and x, the above process is repeated for a total of O(r) times for all i by Lemma 4.5. What

remains is how to determine y and x.

Whether y = eposT (i) or not can be determined by checking if [s, eposT (i)] is a MUS in

M(1) as described in Section 4.2.2. Next, we assume y ≥ eposT (i) + 1 = bposT (i + 1). Let

q = tRLESA−1
T [i], q′ = exp pos(q, eposT (i)− s + 1). If q′ is nil, this implies that no run other

than the i-th one contains a run of character T [eposT (i)] with length at least eposT (i)− s + 1.

Since y > eposT (i), we have that T [s..eposT (i)] is not unique but T [s..bposT (i+ 1)] is unique

and thus, y = bposT (i+1). Otherwise, if q′ is not nil, then, we have that eposT (i)−s+ l, where

l = trle lceT (q, q
′) is the length of the longest repeat of T that starts at s. Therefore, we have

y = eposT (i) + l. From the above arguments and Lemma 4.2, y can be determined in O(log r)

time. Whether x ≥ eposT (i) or not can be determined by the arguments for checking whether

[eposT (i), y] is a MUS in M(2), as described in Section 4.2.2. Next, we assume x < eposT (i).

Then, T [eposT (i)..y] is a repeat. Let q = tRLESA−1
T (i), q′ = lce pos(q, y − eposT (i) + 1).

From the definition of lce pos , we have x = eposT (i) − EXPT [q
′] + 1. Thus, from the above

arguments and Lemma 4.3, x can be determined in O(log r) time.

The arguments from Sections 4.2.2-4.2.2 lead to the following lemma.

Lemma 4.7. For any string T , the set MUST can be computed from RLE (T) in O(r log r) time

using O(r) space, where r = |RLE (T)|.

4.3 Solution to the SUS Problem

4.3.1 Data Structure

Our data structure consists of three arrays: XT , YT , and MUSlenT . Arrays XT and YT are arrays

of size |MUST | such that for any 0 ≤ i ≤ |MUST | − 1, [XT [i],YT [i]] is the i-th MUS in order

of their start position in T . Also, let the array MUSlenT [i] = YT [i] − XT [i] + 1 hold the length

of each MUS. Arrays XT and YT are preprocessed for Succ and Pred queries, and MUSlenT

30

CHAPTER 4. SHORTEST UNIQUE SUBSTRING QUERIES ON RUN-LENGTH ENCODED STRINGS

is preprocessed for RmQ queries. From arguments in previous sections, the preprocessing can

clearly be done in a total of O(r log r) time and O(r) space.

4.3.2 Answering Queries

For any two intervals [s, t] and [x, y], let cover([s, t], [x, y]) be the smallest interval that contains

both [s, t], [x, y], i.e., cover([s, t], [x, y]) = [min{s, x},max{t, y}].
Given a query interval [s, t], let i = PredYT

(t) and j = SuccXT
(s). Clearly, all SUSs that

contain interval [s, t] are contained in the set {|cover([s, t], [XT [r],YT [r]])| | i ≤ r ≤ j}. Thus,

it suffices to find the intervals of smallest size in this set, i.e., if p ∈ argmin{|cover([s, t], [X[r],
Y[r]])| | i ≤ r ≤ j}, then cover([s, t], [XT [p],YT [p]]) is a SUS. Notice that for all i < r < j, we

have that cover([s, t], [XT [r],YT [r]]) = [XT [r],YT [r]]. Thus, the shortest of these can be found

by considering cover([s, t], [XT [i],YT [i]]), cover([s, t], [XT [j],YT [j]]), and performing an RmQ

query on MUSlenT . An example is shown in Fig. 4.2. For finding a single SUS, the query time

is dominated by the Pred and Succ queries. To output all SUSs that contain [s, t], recursive

RmQ on sub-intervals of MUSlenT can be conducted in constant time per output, in order to

find all the shortest intervals in the range [i, j]. Thus, the total query time is the time for a single

predecessor query plus O(k), where k is the total number of SUSs that are output.

Let πs(n, r), πc(n, r), πq(n, r) are, respectively, the size, construction time, and query time

for a predecessor/successor query data structure of r elements for the universe of [0, n − 1].

Putting everything together, we have proved the following theorem:

Theorem 4.1. Given RLE (T) of size r representing a string T of length n, we can compute in

O(r log r + πc(n, r)) time a data structure of size O(r + πs(n, r)) which answers SUS queries

for any interval [s, t] ⊆ [0, n − 1] in O(πq(n, r) + k) time, where k is the number of SUSs to

output.

Using known results for predecessor/successor queries [6], we obtain the following corol-

lary.

Corollary 4.1. Given RLE (T) of size r representing a string T of length n, we can compute

in O(r log r) time a data structure of size O(r) which answers SUSs queries for any interval

[s, t] ⊆ [0, n− 1] in O(
√

log r/ log log r + k) time, where k is the number of such SUSs.

31

CHAPTER 4. SHORTEST UNIQUE SUBSTRING QUERIES ON RUN-LENGTH ENCODED STRINGS

T
n − 10

MUSs of T

s t

1
2

3
4

5
6

7
8

2′
3′

4′
5′SUS Candidates

Figure 4.2: Finding SUSs that contains query interval [s, t]. The SUS must be either a MUS

that completely contains [s, t] (MUS 3,4), or, it must be an interval that covers both [s, t] and the

preceding MUS (MUS 2) or succeeding MUS (MUS 5). Of these, the intervals with shortest

length are the SUSs that contain [s, t].

4.4 Conclusions and Open Question

We considered the problem of finding all shortest unique substrings (SUSs) of a string T given

as the run-length encoding (RLE) of size r. We showed that we can preprocess the RLE in

O(r log r) time and O(r) space so that subsequent SUS queries for T can be answered in

O(
√

log r/ log log r + k) time, where k is the number of outputs for the query interval. Notice

that none of the preprocessing time, space requirement, or query time depends on the original

length n of the string T . This efficiency was achieved by a non-trivial use of the suffix arrays

for RLE strings and by revealing combinatorial properties of MUSs and SUSs on RLE strings.

The
√

log r/ log log r term in our query time is due to the use of the O(r)-space dynamic

predecessor/successor data structure by Beame and Fich [6]. They also showed that for a static

set A of r integers from the universe [0, n − 1], any predecessor/successor data structure for

A of polynomial size in r must use Ω(
√

log r/ log log r) query time (Corollary 3.10 of [6]).

Notice that once we build arrays XT and YT , they will remain static. Hence, we cannot hope

for faster SUS query time as long as we use predecessor/successor queries to find a MUS for a

given interval. Thus, an interesting open question is whether there exists a data structure of size

O(r) that can efficiently answer SUS queries without using predecessor/successor queries.

32

Chapter 5

Space-Efficient Algorithms for Computing
Minimal/Shortest Unique Substrings

In this chapter, we propose the following two data structures for SUS problems:

(A) A data structure of size 2n + 2m + o(n) bits answering an interval SUS query in O(k)

time, where m is the number of minimal unique substrings of the input string, and k is

the number of SUSs of T for the respective query interval (Theorem 5.1).

(B) A data structure of size �(log2 3+ 1)n�+ o(n) bits answering a point SUS query in O(k)

time, where k is the number of SUSs of T for the respective query point (Theorem 5.2).

Instead of outputting the answer as a list of substrings of T , it is sometimes sufficient to

output only the intervals corresponding to the respective substrings. In such a case, both data

structures can answer a query without the need of the input string. The data structure (A) is the

first data structure of size O(n) bits for the interval SUS problem. Also, the data structure (B)

is the first data structure of size O(n) bits for the point SUS problem, returning all SUSs for a

given query position. Notice that the data structure of Ganguly et al. [21] uses 4n+ o(n) bits of

space, but returns only one SUS for a point SUS query.

5.1 Computing MUSs in Compact Space

For computing SUSs efficiently, it is advantageous to have a data structure available that can

retrieve MUSs starting or ending at specific positions, as the following lemma gives a crucial

connection between MUSs and SUSs:

33

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

Lemma 5.1 ([55, Lemma 2]). Every point SUS contains exactly one MUS.

Fig. 5.1 gives an overview of our introduced data structure and shows the connections be-

tween this section and the following sections that focus on our two SUS problems. For our data

structure retrieving MUSs, we propose a compact representation and an algorithm to compute

this representation space-efficiently. Our data structure is based on the following two bit arrays

MBT and MET of length n with the properties that

• MBT [i] = 1 iff i is the beginning position of a MUS, and

• MET [i] = 1 iff i is the ending position of a MUS.

For the rest of this chapter, let m be the number of MUSs in T . We rank the MUSs by their

starting positions in the text, such that the j-th MUS starts before the (j+1)-th MUS, for every

integer j with 0 ≤ j ≤ m− 2.

Since MUSs are not nested (see Lemma 2.1), the number of 1’s in MBT and MET is exactly

m. Hence, the starting position, the ending position, and the length of the j-th MUS can be

computed with rank/select queries for every integer j with 0 ≤ j ≤ m−1. How MBT and MET

can be computed is shown in the following lemma:

Lemma 5.2. Let DT be a data structure that can access ISAT [i] and LCPT [i] in πa(n) time for

every position i with 0 ≤ i ≤ n− 1. Suppose that we can construct it in πc(n) time with πs(n)

bits of working space including the space for DT . Then MBT and MET can be computed in

O(πc(n) + n · πa(n)) total time while using 2n + πs(n) bits of total working space including

the space for MBT and MET .

Proof. Given a text position i with 0 ≤ i ≤ n−1, T [i..i+�i−1] with �i = max{LCPT [ISAT [i]],

LCPT [ISAT [i] + 1]} is the longest repeating substring starting at i. If we extend this substring

by the character to its right, it becomes unique. Thus, T [i..i+�i] is the shortest unique substring

starting at i, except for the case that i+�i−1 = n−1 as we cannot extend it to the right (hence,

there is no unique substring starting at i in this case). Additionally, the substring T [i..i + �i]

is a MUS iff T [i + 1..i + �i] is not unique (we already checked that T [i..i + �i − 1] is not

unique). T [i + 1..i + �i] is not unique iff �i ≤ �i+1 since T [i + 1..i + 1 + �i+1] is the shortest

unique substring starting at i + 1. Since each �i can be computed in O(πa(n)) time for every

0 ≤ i ≤ n − 1, the starting and ending positions of all MUSs (and hence, MBT and MET) can

be computed in O(n · πa(n)) time by a linear scan of the text. Therefore, the total computing

time is O(πc(n) + n · πa(n)) and the total working space is 2n+ πs(n) bits including the space

for MBT and MET .

34

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

Lemma 5.10

Data structure
for the point SUS problem

BT, rank/select on BT
n + o(n) bits

LT[1], Huffman-shaped
wavelet tree for LDT
 + o(n) bits

Data structure
for the interval SUS problem

input string T (n log σ bits)
Lemma 5.2

Lemma 5.3

Lemma 5.8Lemma 5.10

Lemma 5.10

RMQ on LT
2n + o(n) bits

LT[1], LDT
log n + 2n bits

RmQ on MUSlenT
2m + o(m) bits

MBT, MET,
rank/select on MBT, MET

2n + o(n) bits

Lemma 5.9Lemma 5.10

⌈n log2 3⌉

Figure 5.1: Overview of the data structures proposed for solving the interval SUS and point

SUS problem. Nodes are data structures. Edges of the same label (labeled by a certain lemma)

describe an algorithm taking a set of input data structures to produce a data structure.

5.2 Compact Data Structure for the Interval SUS Problem

In this section, we propose a compact data structure for the interval SUS problem. It is based

on the data structure of Chapter 4, which we review in the following. We subsequently provide

a compact representation of this data structure.

Data Structures. The data structure described in Chapter 4 consists of three arrays, each of

length m: XT , YT , and MUSlenT . The arrays XT and YT store, respectively, the beginning

positions and ending positions of all MUSs sorted by their beginning positions such that the

interval [XT [i],YT [i]] is the i-th MUS, for every integer i with 0 ≤ i ≤ m − 1. Further,

MUSlenT [i] = YT [i] − XT [i] + 1 stores the length of i-th MUS. During a preprocessing phase,

XT and YT are endowed with a successor and a predecessor data structure, respectively. Further,

MUSlenT is endowed with an RmQ data structure.

35

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

Answering Queries. Given a query interval [s, t], let L = PredYT
(t) be the index in YT

of the largest ending position of a MUS that is at most t, and R = SuccXT
(s) be the in-

dex in XT of the smallest starting position of a MUS that is at least s. Then, SUST ([s, t]) ⊂
{cover([s, t], [XT [i], YT [i]]) | L ≤ i ≤ R}. That is because the shortest intervals in

{cover([s, t], [XT [i], YT [i]]) | L ≤ i ≤ R} correspond to the shortest unique substrings (SUSs)

among all substrings covering the interval [s, t]. Thus, one of the SUSs for [s, t] can be detected

by considering cover([s, t], [XT [L], YT [L]]) (as a candidate for the leftmost SUS),

cover([s, t], [XT [R], YT [R]]) (as a candidate for the rightmost SUS), and RmQMUSlenT (L+1, R−
1). To output all SUSs, it is sufficient to answer RmQ queries on subintervals of MUSlenT [L+

1..R − 1] recursively. In detail, suppose that there is a MUS in MUSlenT [L + 1..R − 1] that

is a SUS for [s, t]. Further suppose that this is the j-th MUS having length k. Then we query

MUSlenT [L+ 1..j − 1] and MUSlenT [j + 1..R− 1] for all other MUSs of minimal length k.

Compact Representation. Having the two bit arrays MBT and MET of Section 5.1, we

can simulate the three arrays XT , YT , and MUSlenT . By endowing these two bit arrays with

rank/select data structures of Lemma 2.3, we can compute rank/select in constant time, which

allows us to compute the value of XT [p], YT [p], MUSlenT [p], PredYT
(q) and SuccXT

(q) for every

index p with 0 ≤ p ≤ m−1 and every text position q with 0 ≤ q ≤ n−1 in constant time while

using only 2n + o(n) bits of total space. By endowing MUSlenT with the RmQ data structure

of Lemma 2.2, we can answer an RmQ query on MUSlenT in constant time. This data structure

takes 2m + o(m) bits of space. Altogether, with these data structures we yield the following

theorem:

Theorem 5.1. For the interval SUS problem, there exists a data structure of size 2n+2m+o(n)

bits that can answer an interval SUS query in O(k) time, where k is the number of SUSs of T

for the respective query interval.

Also, the data structure can be constructed space-efficiently:

Lemma 5.3. Given MBT and MET , the data structure proposed in Theorem 5.1 can be con-

structed in O(n) time using 2m+ o(n) bits of total working space, which includes the space for

this data structure.

Proof. The data structure proposed in Theorem 5.1 consists of the two bit arrays MBT , MET ,

and an RmQ data structure on MUSlenT , which is simulated by rank/select data structures on

MBT and MET . Since MBT and MET are already given, it is left to endow MBT and MET

36

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T = b c a a c a a b c a a a b a b c a

MUST

SUST (6)

Figure 5.2: The string T = bcaacaabcaaababca and the sets MUST and SUST (6). The sub-

strings T [3..6] = acaa, T [4..7] = caab, and T [5..8] = aabc are SUSs for the query position 6.

The leftmost/rightmost SUS and MUS for p = 6 are lmSUST (p) = [3, 6], lmMUST (p) = [3, 4],

rmSUST (p) = [5, 8], and rmMUST (p) = [5, 8].

with rank/select data structures (using Lemma 2.3), and to compute the RmQ data structure on

MUSlenT (using Lemma 2.2).

5.3 Compact Data Structure for the Point SUS Problem

Before solving the point SUS problem, we borrow some additional notations from Tsuruta et

al. [55] to deal with point SUS queries. This is necessary since some of the MUSs never take

part in finding a SUS such that there is no meaning to compute and store them. Since we want

to provide an output-sensitive algorithm answering a query in optimal time, we only want to

store MUSs that are candidates for being a SUS.

We say that the interval [x, y] ∈ MUST is a meaningful MUS if T [x..y] is a substring of (or

equal to) a point SUS, i.e., cover([x, y], p) ∈ SUST (p) for a position p. Also, we say that the

interval [x, y] ∈ MUST is a meaningless MUS if [x, y] is not a meaningful MUS.

Let lmSUST (p) denote the interval in SUST (p) with the leftmost starting position, and let

lmMUST (p) denote the MUS contained in lmSUST (p). We say that lmSUST (p) is the leftmost

SUS for p, and lmMUST (p) is the leftmost MUS for p. Similarly, we define the rightmost

SUS rmSUST (p) and the rightmost MUS rmMUST (p) for p by symmetry. See Fig. 5.2 for an

example for the leftmost/rightmost SUS and MUS. Let LT be an array of length n such that

LT [i] is the length of a SUS1 of T containing i for each position i with 0 ≤ i ≤ n−1. Let BT be

a bit array of length n such that BT [i] = 1 iff i is the beginning position of a meaningful MUS

of T .

From the definition of LT , we yield the following observation:

1Although there can be multiple SUSs containing i, their lengths are all equal.

37

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T = b c a a c a a b c a a a b a b c a

MUST

BT 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0

LT 5 4 3 2 2 3 4 4 4 3 3 3 2 2 3 4 5

pred1posBT nil nil nil 3 4 5 5 5 5 9 9 9 12 12 12 12 12

succ1posBT 3 3 3 3 4 5 9 9 9 9 11 11 11 nil nil nil nil

predneqLT nil 0 1 2 2 4 5 5 5 8 8 8 11 11 13 14 15

succneqLT 1 2 3 5 5 6 9 9 9 12 12 12 14 14 15 16 nil

meaningless

Figure 5.3: MUST ,BT , LT , and the four functions defined in at the beginning of Section 5.3

for the string T = bcaacaabcaaababca. BT [6] = 0 because the MUS T [6..10] = abcaa is

meaningless.

Observation 5.1. For every position p with 0 ≤ p ≤ n−1 and every interval [x, y] ∈ SUST (p),

p− LT [p] + 1 ≤ x ≤ p ≤ y ≤ p+ LT [p]− 1.

Next, we define the following four functions related to LT and BT . For a position q with

0 ≤ q ≤ n− 1 let

• pred1posBT
(q) = max{i | i ≤ q and BT [i] = 1},

• succ1posBT
(q) = min{i | i ≥ q and BT [i] = 1},

• predneqLT (q) = max{i | i < q and LT [i] �= LT [q]}, and

• succneqLT (q) = min{i | i > q and LT [i] �= LT [q]}.

For all four functions, we stipulate that min{} = max{} = nil . See Fig. 5.3 for an example of

the arrays and functions defined above.

5.3.1 Finding SUSs with L and B

Our idea is to answer point SUS queries with LT and BT . For that, we first think about how to

find the leftmost and rightmost SUS for a given query (Observation 5.1 gives us the range in

38

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

which to search). Having this leftmost and the rightmost SUS, we can find all other SUSs with

BT marking the beginning positions of the meaningful MUSs that correspond to the SUSs we

want to output. Before that, we need some properties of LT that help us to prove the following

lemmas in this section: Lemma 5.4 gives us a hint on the shape of LT , while Lemma 5.5 shows

us how to find SUSs based on two consecutive values of LT with a connection to MUSs.

Lemma 5.4. |LT [p]− LT [p+ 1]| ≤ 1 for every position p with 0 ≤ p ≤ n− 2.

Proof. Let � = LT [p] and �′ = LT [p + 1]. From the definition of LT , there exists a unique

substring of length � containing the position p. If � < �′, there is no unique substring of length

� containing p+1. Thus, T [p− �+1..p] is unique, and consequently T [p− �+1..p+1] is also

unique. Hence, �′ = �+ 1. Similarly, in the case of � > �′, it can be proven that �′ = �− 1.

Lemma 5.5. Let p be a position with 0 ≤ p ≤ n− 2, and let � = LT [p].

If LT [p+ 1] = �+ 1, then

• T [p− �+ 1..p] ∈ SUST (p),

• T [p− �+ 1..p+ 1] ∈ SUST (p+ 1), and

• p− �+ 1 is the starting position of a MUS of T .

If L[p+ 1] = �− 1 then

• T [p..p+ �− 1] ∈ SUST (p),

• T [p+ 1..p+ �− 1] ∈ SUST (p+ 1), and

• p+ �− 1 is the ending position of a MUS of T .

Proof. First, we consider the case that LT [p + 1] = � + 1. From the proof of Lemma 5.4,

T [p−�+1..p] and T [p−�+1..p+1] are unique substrings in T . Thus, T [p−�+1..p] ∈ SUST (p)

and T [p− �+ 1..p+ 1] ∈ SUST (p+ 1). Since every point SUS contains exactly one MUS (cf.

Lemma 5.1), there exists a MUS [b, e] ⊂ [p− �+ 1, p]. Assume that b > p− �+ 1, then T [b..p]

is the shortest unique substring among all substrings containing the text position p. Its length is

p − b + 1 < �. This contradicts that T [p − � + 1..p] ∈ SUST (p), and therefore b = p − � + 1

must hold. The remaining case LT [p+1] = �− 1 can be proven analogously by symmetry.

In the following two lemmas (Lemmas 5.6 and 5.7), we focus on finding the leftmost SUS

and the rightmost SUS for a given query point. That is because the leftmost SUS and the

39

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

… p−5 p b p+5 …

T … …

BT … 0 0 0 0 0 0 0 1 …

LT … 6 …

leftmost SUS for p

… p−5 q p p+5 …

T … …

BT … …

LT … 7 6 6 6 …

leftmost SUS for p

… p−5 b q p p+5 …

T … …

BT … 0 0 1 …

LT … 5 6 6 …

leftmost SUS for p

… p−5 b p p+5 …

T … …

BT … 0 0 1 …

LT … 6 6 6 6 6 6 …

leftmost SUS for p

Case (1a) Case (1b)

Case (1c-1) Case (1c-2)

Figure 5.4: Example of the proof of Lemma 5.6 with LT [p] = � = 6. The example (as well

as all later examples in this section) still works when replacing the number � = 6 with another

number as long as the relative differences to the other entries in LT and the search range in T is

kept.

rightmost SUS give us an interval containing the starting positions of the remaining SUSs we

want to report2.

Lemma 5.6. Let p be a position with 0 ≤ p ≤ n−1, and let � = LT [p], b = succ1posBT
(max{1,

p− �+ 1}), and q = predneqLT (p). Then, b ≤ min{p+ �− 1, n} and

lmSUST (p) =

⎧⎪⎪⎨
⎪⎪⎩

[p, p+ �− 1] if b ≥ p, (5.1a)

[q + 1, q + �] if b < p, q ≥ p− �+ 1, and LT [q] > �, (5.1b)

[b, b+ �− 1] otherwise. (5.1c)

Proof. If � = 1, it is clear that the interval [p, p] of length 1 is a MUS of T , thus b = p and

lmSUST (p) = [p, p]. For the rest of the proof, we focus on the case that � ≥ 2. Since LT [p] = �,

there exists a unique substring of length � containing the position p, and there exists at least one

MUS that is a subinterval of [p− �+1, p+ �−1]. Thus, b ≤ min{p+ �−1, n−1}. See Fig. 5.4

for an illustration of each of the above cases we consider in the following:

(1a) Assume that there exists a unique substring T [p′..p′+�−1] containing the position p with

2The actual reporting of those SUSs is done in Lemma 5.11

40

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

p′ < p. Since b ≥ p > p′, T [p′ + 1..p′ + � − 1] is also unique and contains position p. It

contradicts LT [p] = �; therefore, lmSUST (p) = [p, p+ �− 1].

(1b) From the definition of q and Lemma 5.4, LT [q] = � + 1 and LT [q + 1] = �. From

Lemma 5.5, [q+1, q+�] is unique. Also, [q+1, q+�] ∈ SUST (p) because p ∈ [q+1, q+�].

Since LT [q] = �+1, there is no unique substring that contains the position q and is shorter

than �+ 1. Therefore, lmSUST (p) = [q + 1, q + �].

(1c) We divide this case into two subcases:

(1c-1) b < p and q ≥ p− �+ 1 and LT [q] < �, or

(1c-2) b < p and q < p− �+ 1.

In Subcase (1c-1), from the definition of q and Lemma 5.4, LT [q] = � − 1 and LT [i] = �

for all i ∈ [q + 1, p]. From Lemma 5.5, the interval [q − � + 2, q] of length � − 1 is

unique. Since [p − � + 1, q] ⊂ [q − � + 2, q], LT [i] ≤ � − 1 for all i ∈ [p − � + 1, q]. In

Subcase (1c-2), it is clear that LT [i] = � for all i ∈ [p− �+ 1, p]. Therefore, LT [i] ≤ � for

all i ∈ [p− �+ 1, p] in both subcases.

Let e be the ending position of the meaningful MUS [b, e] starting at the position b, and

�′ = e− b+ 1 be the length of this MUS. We assume �′ > � for the sake of contradiction

(and thus [b, e] cannot be lmMUST (p) whose length is at most �). Since b ≥ p − � + 1

and �′ > �, e > p must hold. Let [b′, e′] = lmMUST (p). Since (a) there is no interval

[x, y] ∈ SUST (p) such that x < min{b, p}, and (b) MUSs cannot be nested, it follows that

b′ > b and e′ > e. Thus, lmSUST (p) = cover([b′, e′], p) = [e′ − � + 1, e′] and LT [i] ≤ �

for all p ≤ i ≤ e′. Since [b, e] ⊂ [p − � + 1, e′], LT [i] ≤ � for all b ≤ i ≤ e. This

contradicts that the MUS [b, e] of length �′ > � is a meaningful MUS. Therefore, �′ ≤ �

and lmSUST (p) = cover([b, e], p) = [b, b+ �− 1].

From Lemma 5.6 we yield the following corollary:

Corollary 5.1. If we can compute LT [i], predneqLT (i) and succ1posBT
(i) in constant time for

each i with 0 ≤ i ≤ n − 1, we can compute lmSUST (p) in constant time for each position p

with 0 ≤ p ≤ n− 1.

41

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

… p−5 p q p+5 …

T … …

BT … …

LT … 6 5 …

… p−5 p q p+5 …

T … …

BT … …

LT … 6 6 6 7 …

… p−5 b p q p+5 …

T … …

BT … 1 0 0 …

LT … 6 6 5 …

… p−5 b p p+5 …

T … …

BT … 1 0 0 …

LT … 6 6 6 6 6 6 …

Case (2a) Case (2b)

Case (2c-1) Case (2c-2)

rightmost SUS for p rightmost SUS for p

rightmost SUS for p rightmost SUS for p

Figure 5.5: Example of the proof of Lemma 5.7 with LT [p] = � = 6.

Lemma 5.7. Let p be a position with 0 ≤ p ≤ n− 1, and let � = LT [p], q = succneqLT (p), and

b = pred1posBT
(p). Then,

rmSUST (p) =

⎧⎪⎪⎨
⎪⎪⎩

[p, p+ �− 1] if q = p+ 1 and LT [q] < �, (5.2a)

[q − �, q − 1] if q ≤ p+ �− 1 and LT [q] > �, (5.2b)

[b, b+ �− 1] otherwise. (5.2c)

Proof. If � = 1, it is clear that the interval [p, p] of length 1 is a MUS of T , thus b = p and

rmSUST (p) = [p, p]. We consider the condition of � ≥ 2. See Fig. 5.5 for an illustration of

each of the above cases we consider in the following:

(2a) From Lemma 5.5, [p, p+ �− 1] is a SUS for p, which is by definition the rightmost one.

(2b) In this case, LT [q] = � + 1 and LT [q − 1] = �. From Lemma 5.5, [q − �, q − 1] is

unique. Since p ∈ [q − �, q + 1], [q − �, q − 1] is a SUS for p. Additionally, there is

no unique interval [x, y] ∈ SUST (p) such that y ≥ q because LT [q] = � + 1. Thus,

rmSUST (p) = [q − �, q − 1].

(2c) We divide this case into two subcases:

(2c-1) p+ 1 < q ≤ p+ �− 1 and LT [q] < �, or

(2c-2) q > p+ �− 1.

42

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

In Subcase (2c-1), LT [p+1] = � and LT [q] = �−1 and LT [i] = � for all p+2 ≤ i ≤ q−1.

From Lemma 5.5, [q, q+�−2] (of length �−1) is unique. Since [q, p+�−1] ⊂ [q, q+�−2],

LT [i] ≤ �−1 for all q ≤ i ≤ p+�−1. In Subcase (2c-2), from the definition of q, LT [i] = �

for all p ≤ i ≤ p + � − 1. Therefore, LT [p + 1] = � and LT [i] ≤ � for all integers i with

p+ 2 ≤ i ≤ p+ �− 1 in both subcases.

For the sake of contradiction, assume that there is a MUS [b′, e′] such that b′ > p and

cover([b′, e′], p) = [p, e′] ∈ SUST (p). Since LT [p] = �, [p, e′] is a unique substring of

length �. Hence, cover([b′, e′], p+1) = [p+1, e′] is a unique substring of length �− 1. It

contradicts LT [p + 1] = �; therefore, the beginning position of the rightmost MUS for p

is at most p. Next, we show that the MUS starting at b is the rightmost meaningful MUS

for p. Let e be its ending position, and �′ = e− b+1 be its length. We assume that �′ > �

for the sake of contradiction (and thus, [b, e] is not rmMUST (p) whose length is at most

�). Since LT [p] = �, b ≥ p − � + 1 and e > p. Let [b′′, e′′] = rmMUST (p). Since MUSs

cannot be nested, b′′ < b. Since e′′−b′′+1 ≤ �, LT [i] ≤ � for all i with b′′ ≤ i ≤ p+�−1.

We consider two cases to obtain a contradiction:

• If e ≤ p+�−1 then it is clear that LT [i] ≤ � for all i with b ≤ i ≤ e. This contradicts

that the MUS [b, e] of length �′ is a meaningful MUS.

• If e > p + � − 1, it is clear that |cover([b, e], p + � − 1)| = |[b, e]| = �′. Since

LT [p+ �− 1] ≤ �, there exists a unique substring [s, t] such that s ≤ p+ �− 1 ≤ t

and t − s + 1 ≤ �. Hence, LT [i] ≤ � for all i with s ≤ i ≤ t. Since [b, e] is a MUS

and p ≤ s, b < s < e < t. Consequently, LT [i] ≤ � for all i with b ≤ i ≤ e and this

contradicts that the MUS [b, e] of length �′ is a meaningful MUS.

Therefore, �′ ≤ � and rmSUST (p) = cover([b, e], p) = [b, b+ �− 1].

Corollary 5.2. If we can compute LT [i], succneqLT (i) and pred1posBT
(i) in constant time for

each i with 0 ≤ i ≤ n − 1, we can compute rmSUST (p) in constant time for each position p

with 0 ≤ p ≤ n− 1.

5.3.2 Compact Representations of L

We now propose a succinct representation of the array LT consisting of the integer array LDT

of length n defined as LDT [0] = 0 and LDT [i] = LT [i]− LT [i− 1] ∈ {−1, 0, 1} for every i with

1 ≤ i ≤ n− 1.

43

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

No. Process
Total working space in bits

(excluding MBT and MET)

1 input MBT , MET -

2 construct RmQ on MUSlenT 2m+ o(n) Lemma 5.3

3 construct LDT , LT [0] 2n+ 2m+ o(n) Lemma 5.8

4 free RmQ on MUSlenT 2n+ o(n)

5
construct Huffman-shaped

2n+ �n log2 3�+ o(n) Lemma 5.9
Wavelet Tree for LDT

6 free LDT �n log2 3�+ o(n)

7 construct RMQ on LT 2n+ �n log2 3�+ o(n) Lemma 5.10

8 construct BT 3n+ �n log2 3�+ o(n) Lemma 5.10

Table 5.1: Working space used during the construction of the data structure proposed in Theo-

rem 5.2. We can free up space of no longer needed data structures between several steps. See

also Fig. 5.1 for the dependencies of the execution, and other possible ways to build the final

data structure. However, these other ways need more maximum working space (at some step)

than the way listed in this table.

Lemma 5.8. The data structure of Theorem 5.1 can compute LT [p] in constant time with

O(log n) bits of additional working space for each p with 0 ≤ p ≤ n− 1.

Proof. Suppose that we have the data structure D of Theorem 5.1 and want to know LT [p]. We

query D with the interval [p, p] to retrieve one SUS for the query interval [p, p] in constant time.

This can be achieved by stopping the retrieval after the first SUS [i, j] ∈ SUST ([p, p]) has been

reported. Since all SUSs for [p, p] have the same length, LT [p] = j − i + 1. The additional

working space is O(log n) bits.

Lemma 5.8 allows us to compute LDT in O(n) time, which we represent as an integer

array with bit width two, thus using 2n bits of space. In the following, we build a compressed

rank/select data structure on LDT . This data structure is a self-index such that we no longer

need to keep LDT in memory. With LDT we can access LT , as can be seen by the following

lemma:

Lemma 5.9. There exists a data structure of size �n log2 3� + o(n) bits that can access LT [i],

and can compute predneqLT (i) and succneqLT (i) in constant time for each position i with 0 ≤
i ≤ n − 1. Given MBT and MET , the data structure can be constructed in O(n) time using

44

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

2n+max{�n log2 3�, 2m}+ o(n) bits of total working space, which includes the space for this

data structure.

Proof. The following equations hold for every text position i with 0 ≤ i ≤ n− 1:

LT [i] = LT [0] + rankLDT
(1, i)− rankLDT

(−1, i),

predneqLT (i) = max{selectLDT
(c, rankLDT

(c, i))− 1 | c ∈ {−1, 1}},
succneqLT (i) = min{selectLDT

(c, rankLDT
(c, i) + 1) | c ∈ {−1, 1}}.

We can compute the value of LT [0] and LDT with Lemma 5.8. With a rank/select data structure

on LDT we can compute the above functions. Such a data structure is the Huffman-shaped

wavelet tree [41]. This data structure can be constructed in linear time and takes �n log2 3� +
o(n) bits of space, since the possible number of different values in LDT is three. Therefore, it

can also provide answers to rank/select queries in constant time.

Finally, we show how to compute BT :

Lemma 5.10. There exists a data structure of size n+o(n) bits that can compute succ1posBT
(i)

and pred1posBT
(i) in constant time for each position 0 ≤ i ≤ n − 1. Given MBT and MET ,

this data structure can be constructed in O(n) time using 3n + �n log2 3� + o(n) bits of total

working space including the space for this data structure.

Proof. Our idea is to compute BT since the following equations hold for every text position i

with 0 ≤ i ≤ n− 1 (cf. BITZ in Section 2.2):

pred1posBT
(i) =

⎧⎨
⎩

i if BT [i] = 1,

selectBT
(1, rankBT

(1, i)) if BT [i] = 0.

succ1posBT
(i) =

⎧⎨
⎩

i if BT [i] = 1,

selectBT
(1, rankBT

(1, i) + 1) if BT [i] = 0.

In the following we show how to compute BT from MBT and MET in linear time with linear

number of bits of working space. Let bi = selectMBT
(1, i) and ei = selectMET

(1, i) be the

starting position and the ending position of the i-th MUS respectively, for each 0 ≤ i ≤ m− 1.

Given xi = RMQLT (bi, ei), LT [xi] ≤ ei − bi + 1 since bi ≤ xi ≤ ei and [bi, ei] is unique. If

LT [xi] < ei − bi + 1, there is no position p with cover([bi, ei], p) ∈ SUST (p), i.e., [bi, ei] is a

meaningless MUS. Otherwise (LT [xi] = ei − bi + 1), cover([bi, ei], xi) = [bi, ei] ∈ SUST (xi),

45

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

i.e., [bi, ei] is a meaningful MUS. Hence, it can be detected in constant time whether a MUS

is meaningful by an RMQ query on LT . We can compute the compact representation of LT

described in Lemma 5.9. The data structure takes �n log2 3�+ o(n) bits and can be constructed

with 2n + max{�n log2 3�, 2m} + o(n) bits of total working space. Subsequently, we endow

it with the RMQ data structure of Lemma 2.2 in O(n) time using 2n + o(n) bits of space.

Therefore, the computing time of BT is O(n) and the working space is, aside from the space

for MBT and MET , 3n + �n log2 3� + o(n) bits, including the space for BT . Finally, we can

endow BT with rank/select data structures, which allows us to compute each of the above two

functions pred1posBT
and succ1posBT

in constant time.

Actually, having MBT and MET available, we can simulate an access to LT [i] in constant

time with Lemma 5.8 by using the RmQ data structure on MUSlenT . This allows us to compute

the RMQ data structure on LT directly without the need for computing BT in the first place,

i.e., we can replace the working space of Lemma 5.10 with 2n + 2m + o(n) additional bits of

working space. However, since our final data structure needs LDT , computing BT before LDT

would require more working space in the end than the other way around, since we no longer

need the RmQ data structure on MUSlenT after having built the rank/select data structure of

Lemma 5.9.

Before stating our final theorem, we need a property for meaningful MUSs:

Lemma 5.11. On the one hand, cover([si, ei], p) ∈ SUST (p) for every meaningful MUS [si, ei]

starting with or after the leftmost MUS for p and starting before or with the rightmost MUS

for p. On the other hand, each element (i.e., an interval) of SUST (p) starting with or after the

leftmost MUS for p and starting before or with the rightmost MUS for p contains exactly one

distinct MUS.

Proof. The first part is shown by Tsuruta et al. [55, Lemma 3]. The second part is due to

Lemma 5.1.

Theorem 5.2. For the point SUS problem, there exists a data structure of size n+ �n log2 3�+
o(n) bits that can answer a point SUS query in O(k) time, where k is the number of SUSs of T

for the respective query point. Given MBT and MET , the data structure can be constructed in

O(n) time using 3n + �n log2 3� + o(n) bits of total working space, which includes the space

for this data structure.

Proof. Let p be a query position, and suppose that the number of SUSs for p is k. Like the

MUSs in Section 5.1, we rank the SUSs for p by their starting positions. Let [sj, ej] be the j-th

46

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

Time

data
Lemma

Access Construction Space in bits

structure πa(n) πc(n) πs(n)

succinct
5.12 O(ε−1) O(ε−2n) (1 + ε)n log n+O(n)

suffix tree

compressed
5.13 O(logεσ n) O(n logεσ n) O(ε−1n log σ)

suffix tree

RLBWT 5.14 O(log r̃ logO(1) n)
O(n log r̃

r̃ logO(1) n+O(n)
+r̃ logO(1) n)

Table 5.2: Efficient representations of DT described in Lemma 5.2, i.e., data structures with

access to ISAT [i] and LCPT [i]. ε is a constant with 0 < ε ≤ 1. r̃ denotes the number of single

character runs in the BWT.

SUS for p with 0 ≤ j ≤ k − 1 such that [s0, e0] and [sk−1, ek−1] are the leftmost SUS and the

rightmost SUS for p, respectively. If s0 = p then [s0, e0] = [sk−1, ek−1], and thus the output

consists of this single interval. Otherwise (s0 �= p), we can compute si iteratively from si−1 by

si = selectBT
(1, rankBT

(1, si−1) + 1) in constant time for each i with 1 ≤ i ≤ k − 2, allowing

us to answer the query in time linear to the number of SUSs. As k is not known in advance,

we stop the iteration whenever we computed an si that is larger than the starting position of the

rightmost SUS for p. A detailed analysis of the claimed working space is given in Table 5.1.

Corollary 5.3. The data structure of Theorem 5.2 can compute the number of SUSs for a query

position in constant time.

Proof. Let [sl, el] and [sr, er] be the leftmost and the rightmost SUS for a given query position,

respectively. All MUSs starting between sl and sr (excluding sl and sr) are SUSs for this query

position. Let k′ be their number. Therefore, the number we want to output is k = k′ + 2. With

Lemmas 5.6 and 5.7, we can find [sl, el] and [sr, er] in constant time. Further, we can compute

k′ in constant time since k′ = rankBT
(1, sr − 1)− rankBT

(1, sl).

47

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

5.4 Auxiliary Data Structure

In the following, we present three different representations of the data structure required by

Lemma 5.2. See Table 5.2 for a juxtaposition of their characteristics. Also, we present an

algorithm for computing MUSs by using RankSuccT and a succinct representation of PLCPT .

In this subsection, we assume that Σ is an integer alphabet of size σ = nO(1).

Lemma 5.12 ([19, Section 2.2.3]). Given a constant ε with 0 < ε ≤ 1, there is a data structure

that can access ISAT [i] and LCPT [i] in πa(n) = O(ε−1) time using πs(n) = (1+ε)n log n+O(n)

bits of working space. It can be constructed within this working space in πc(n) = O(ε−2n) time.

Lemma 5.13. Given a constant ε with 0 < ε ≤ 1, there is a data structure that can access

ISAT [i] and LCPT [i] in πa(n) = O(logεσ n) time using πs(n) = O(ε−1n log σ) bits of working

space. It can be constructed within this working space in πc(n) = O(n logεσ n) time.

Proof. We use the compressed suffix tree presented in [45]. While the succinct suffix tree

naturally supports the required access queries, the compressed suffix tree needs to be enhanced

with a sampling data structure to support access to ISAT [i] and LCPT [i]. In detail, it provides

access to the PLCP array PLCPT . Our idea is to provide access to SAT and ISAT in O(logε n)

time. For the former, we use a sampling of SAT with O(ε−1n log σ) bits to obtain access to SAT

with O(logεσ n) time [23, Section 3.2]. For the latter, having this SAT representation, we create a

representation of ISAT using O(ε−1n log σ) space in O(n logεσ n) time [46]. This representation

can access ISAT [i] in O(logε n) time.

Lemma 5.14. There is a data structure that can access ISAT [i] and LCPT [i] in πa(n) =

O(log r̃ logO(1) n) time using πs(n) = r̃ logO(1) n + O(n) bits of working space. It can be

constructed within this working space in πc(n) = O(n+ r̃ logO(1) n) time.

Proof. Like in the proof of Lemma 5.13, we provide access to LCPT by PLCPT and SAT :

First, we compute the run-length encoded BWT in O(n log r̃) time stored in O(r̃ log n) bits of

space [47]. Next, we build a data structure answering SAT [i] and ISAT [i] in O(logO(1) n log r̃)

time while using O(r̃ log n + n) bits of space [33, Theorem 5.1]. It can be constructed in

O(n+ r̃ logO(1) n) time with O(n+ r̃ logO(1) n) bits of working space.

Lemma 5.15. We can compute MBT and MET in O(n) time using n log n+O(σ log n) + 4n+

o(n) bits of total working space including the space for MBT and MET .

48

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

Proof. First, we construct RankPredT from T using additional O(σ lg n) bits of working space

[22]. Our second target is the succinct representation of the PLCP array succPLCPT of

Sadakane [51] using 2n + o(n) bits of space while allowing constant time random access to

each PLCP value. We can compute it from RankPredT [32]. After computing succPLCPT , we

delete RankPredT . Subsequently, we construct RankSuccT from T similarly to Goto et al. [22]3.

Finally, we obtain succPLCPT and RankSuccT . All the steps can be executed in O(n) time.

In the following, we describe an algorithm for computing all MUSs of T by using PLCPT

(in the succinct representation succPLCPT) and RankSuccT . As described in the proof of

Lemma 5.2, if we can compute �i = max{LCPT [ISAT [i]], LCPT [ISAT [i] + 1]} in π′
a(n) time

for each text position i with 1 ≤ i ≤ n, then we can compute MBT and MET in O(n · π′
a(n))

time. Actually, we can achieve that π′
a(n) = O(1) by using the fact that �i = max{PLCPT [i],

PLCPT [RankSuccT [i]]}. Therefore, we can compute MBT and MET in O(n) time. Also, the

total working space for the above procedure is n log n + O(σ lg n) + 4n + o(n) bits including

the space for MBT and MET .

5.5 Conclusions

In this chapter, we proposed compact data structures for the interval SUS problem and the point

SUS problem. Our data structure is the first data structure of size O(n) bits for the interval SUS

problem (resp. the point SUS problem). On the one hand, for the interval SUS problem, we

proposed a data structure of size 2n+2m+o(n) bits answering a query in output-sensitive O(k)

time, where n is the length of the input string, m is the number of MUSs in the input string, and

k is the number of returned SUSs. On the other hand, for the point SUS problem, we proposed a

data structure of size �(log2 3+1)n�+ o(n) bits answering a query in the same output-sensitive

time. The construction time and the working space of each data structures depends on the

complexity of simulating the inverse suffix array and the LCP array of the input string. For

example, by using the succinct suffix tree [19], we can achieve O(n) time and 2n log n+O(n)

bits of working space to construct our data structures.

3They proposed a construction algorithm only for RankPredT . However, we can modify the algorithm to

construct RankSuccT . Their algorithm simulates a suffix array construction algorithm, but uses O(σ lg n) pointers

to positions in RankPredT at which new values are inserted. By these pointers, they represent RankPredT as 2σ

linked lists. In [22, Step 4 in Section 4.2.2], they show how to invert these lists. Consequently, we can use this step

to invert all lists after all elements have been inserted.

49

CHAPTER 5. SPACE-EFFICIENT ALGORITHMS FOR COMPUTING MINIMAL/SHORTEST UNIQUE SUBSTRINGS

5.5.1 Open Problems

We are unaware of an algorithm computing RankPredT or RankSuccT from the text T in-place

for integer alphabets. Since it is possible to store RankPredT in unary with the same repre-

sentation as the succinct PLCP representation [51] in O(r) space [35], where r is the number

of runs in the BWT, we wonder whether we can compute RankPredT in compressed space. A

possibility seems to adapt the in-place suffix array construction algorithm of Li et al. [38].

As future work, we want to extend our algorithm to compute SUSs with k edits (or k mis-

matches). A SUS with k edits is a substring that is unique even when changing k arbitrary

characters (allowing deletions, insertions and character exchanges). Similarly, a SUS with k

mismatches is unique even when exchanging k arbitrary characters. It is known that SUSs with

k edits (resp. mismatches) contain SUSs with k− 1 edits (resp. mismatches), where SUSs with

no edits (resp. no mismatches) are the ordinary SUSs.

50

Chapter 6

Computing Minimal Unique Substrings
for a Semi-Dynamic String

In this chapter, we tackle the problem of computing minimal unique substrings in a semi-

dynamic string. As we mentioned in Chapter 2, our semi-dynamic setting allows us to append

a character to the right-end of the input string or delete the leftmost character from the string.

Alternating these two operations immediately realizes the sliding-window operation. Hence, in

what follows, we will regard a problem in semi-dynamic strings as a problem in the sliding win-

dow model. A typical application to the sliding window model is data compression; examples

are the famous Lempel-Ziv 77 (the original version) [58] and PPM [12]. Recently, Crochemore

et al. [13] introduced the problem of computing Minimal Absent Words for a sliding window,

and proposed an O(nσ)-time and O(dσ)-space algorithm using suffix trees for a sliding window

where d is the window size and σ is the alphabet size.

We begin with combinatorial results on MUSs for a sliding window. Namely, we show

that the number of MUSs that are added or deleted by one slide of the window is always con-

stant (Section 6.2). We then present the first efficient algorithm that maintains the set of MUSs

for a sliding window of length d over a string of length n in a total of O(n log σ′) time and

O(d) working space where σ′ ≤ d is the maximum number of distinct characters in every win-

dow (Section 6.3). Our main algorithmic tool is the suffix tree for a sliding window that requires

O(d) space and can be maintained in O(n log σ′) time [17, 37, 52]. Our algorithm for comput-

ing MUSs for a sliding window is built on our combinatorial results, and it keeps track of three

different loci over the suffix tree, all of which can be maintained in O(log σ′) amortized time

per each sliding step.

51

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

0 1 2 3 4 5 6 7 8 9 10 11 12 13

T = b a b a b b a b a a b b b a

lrSuf2,11

sqSuf2,11
sqPref2,11

𝖬𝖴𝖲(T[2..11])

The current window: T[2..11]

Figure 6.1: String T = bababbabaabbba of length 14 and its substrings lrSuf 2,11, sqSuf 2,11,

and sqPref 2,11 for the current window T [2..11].

We emphasize that our algorithms work for any valid1 sequence of windows of arbitrary

lengths. However, for simplicity, we consider the case where a fix-sized window of length d

shifts to the right one-by-one throughout the rest of this chapter (and the next chapter as well).

6.1 Preliminaries

For any 0 ≤ i ≤ j ≤ |T | − 1, lrSuf i,j denotes the longest repeating suffix of T [i..j], sqSuf i,j

denotes the shortest quasi-unique suffix of T [i..j], and sqPref i,j denotes the shortest quasi-

unique prefix of T [i..j]. While lrSuf i,j can be the empty string, both sqSuf i,j and sqPref i,j are

always non-empty strings for any i, j with 0 ≤ i ≤ j ≤ |T | − 1. See Fig. 6.1 for examples.

See Fig. 6.1 for examples of MUSs.

In this chapter, we tackle the problem of computing MUSs for a sliding window of fixed

length d over a given string T , formalized as follows:

Input: String T of length n and positive integer d (< n).

Output: MUST [i..i+d−1] for all 0 ≤ i ≤ n− d.

This chapter deals with the problem of computing MUSs for a sliding window

1C.f., the definition of sliding windows in Section 2.1

52

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

6.2 Combinatorial Results on MUSs for a Sliding Window

Throughout this section, we consider positions i and j with 0 ≤ i ≤ j ≤ n − 1 such that

T [i..j] denotes the sliding window for the i-th position over the input string T . The following

arguments hold for any values of i and j, and hence, they will be useful for sliding windows of

any length d. The next lemmas are useful for analyzing combinatorial properties of MUSs and

for designing an efficient algorithm for computing MUSs for a sliding window.

Lemma 6.1. The following three statements are equivalent:

(1) |lrSuf i,j| ≥ |sqSuf i,j|,

(2) #occT [i..j](lrSuf i,j) = 2, and

(3) #occT [i..j](sqSuf i,j) = 2.

Proof. (1) ⇒ (2) and (3): Since |lrSuf i,j| ≥ |sqSuf i,j|, sqSuf i,j is a suffix of lrSuf i,j and

thus #occT [i..j](sqSuf i,j) ≥ #occT [i..j](lrSuf i,j). By the definitions of sqSuf i,j and lrSuf i,j ,

#occT [i..j](sqSuf i,j) ≤ 2 and #occT [i..j](lrSuf i,j) ≥ 2. Thus #occT [i..j](lrSuf i,j) =

#occT [i..j](sqSuf i,j) = 2.

(2) ⇒ (1): Since #occT [i..j](lrSuf i,j) = 2, the shortest suffix sqSuf i,j of T [i..j] that occurs at

most twice in T [i..j] cannot be longer than lrSuf i,j , i.e., |lrSuf i,j| ≥ |sqSuf i,j|.
(3) ⇒ (1): Since #occT [i..j](sqSuf i,j) = 2, the longest suffix lrSuf i,j of T [i..j] that occurs at

least twice in T [i..j] is at least as long as sqSuf i,j , i.e., |lrSuf i,j| ≥ |sqSuf i,j|.

Fig. 6.1 shows a concrete example where (1) of Lemma 6.1 holds (and hence both (2) and

(3) also hold.)

Lemma 6.2. |lrSuf i,j+1| ≤ |lrSuf i,j|+ 1.

Proof. Assume on the contrary that |lrSuf i,j+1| > |lrSuf i,j|+1. By the definition of lrSuf i,j+1,

lrSuf i,j+1 = T [j + 2 − |lrSuf i,j+1|..j + 1] occurs at least twice in T [i..j + 1]. Hence, T [j +

2− |lrSuf i,j+1|..j] which is a proper prefix of lrSuf i,j+1 also occurs at least twice in T [i..j]. In

addition, lrSuf i,j = T [j + 2− |lrSuf i,j|..j] is a proper suffix of T [j + 2− |lrSuf i,j+1|..j] since

|lrSuf i,j+1| > |lrSuf i,j| + 1. However, this contradicts the definition of lrSuf i,j . Therefore,

|lrSuf i,j+1| ≤ |lrSuf i,j|+ 1.

53

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

6.2.1 Changes to MUSs When Appending a Character to the Right

In this subsection, we consider an operation that slides the right-end of the current window

T [i..j] with one character by appending the next character T [j + 1] to T [i..j]. We use the

following observation.

Observation 6.1. For any non-empty substring s of T [i..j], #occT [i..j+1](s) ≤ #occT [i..j](s)

+1. Also, #occT [i..j+1](s) = #occT [i..j](s) + 1 if and only if s is a suffix of T [i..j + 1].

MUSs to be Deleted When Appending a Character to the Right

Due to Observation 6.1, we obtain Lemma 6.3 which describes MUSs to be deleted when a new

character T [j + 1] is appended to the current window T [i..j].

Lemma 6.3. For any [s, t] with i ≤ s < t ≤ j, [s, t] ∈ MUST [i..j] and [s, t] �∈ MUST [i..j+1] if

and only if T [s..t] = sqSuf i,j+1 and #occT [i..j+1](sqSuf i,j+1) = 2.

Proof. (⇒) Let w = T [s..t]. Since [s, t] ∈ MUST [i..j] and [s, t] �∈ MUST [i..j+1], #occT [i..j](w) =

1 and #occT [i..j+1](w) ≥ 2. It follows from Observation 6.1 that #occT [i..j+1](w) = 2 and w is a

suffix of T [i..j+1]. If we assume that w is a proper suffix of sqSuf i,j+1, then #occT [i..j+1](w) ≥
3 by the definition of sqSuf i,j+1, but this contradicts with #occT [i..j+1](w) = 2. If we as-

sume that sqSuf i,j+1 is a proper suffix of w, then #occT [i..j](sqSuf i,j+1) ≥ #occT [i..j](T [s +

1..t]) ≥ 2. Also, #occT [i..j+1](sqSuf i,j+1) = #occT [i..j](sqSuf i,j+1) + 1 ≥ 3 by Observa-

tion 6.1, but this contradicts the definition of sqSuf i,j+1. Therefore, w = sqSuf i,j+1. Moreover,

#occT [i..j+1](sqSuf i,j+1) = 2 since w = sqSuf i,j+1 is a substring of T [i..j].

(⇐) Since w = T [s..t] is a suffix of T [i..j+1] and #occT [i..j+1](w) = 2, w is unique in T [i..j].

By the definition of sqSuf j+1, a proper suffix w[1..] = T [s + 1..t] of w = sqSuf i,j+1 occurs

at least three times in T [i..j + 1], i.e., T [s + 1..t] is repeating in T [i..j] (see also Fig. 6.2 for

illustration). Also, a prefix w[0..|w| − 2] = T [s..t− 1] of w = sqSuf i,j+1 is clearly repeating in

T [i..j]. Therefore, w = T [s..t] is a MUS of T [i..j] and is not a MUS of T [i..j + 1].

By Lemma 6.3, at most one MUS can be deleted when appending T [j + 1] to the current

window T [i..j], and such a deleted MUS must be sqSuf i,j+1.

MUSs to be Added When Appending a Character to the Right

First, we consider a MUS to be added when appending T [j + 1] to T [i..j], which is a suffix of

T [i..j + 1]. The next observation follows from the definition of lrSuf i,j:

54

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

T
s t

sqSufi,j+1sqSufi,j+1

sqSufi,j+1[1..]sqSufi,j+1[1..]sqSufi,j+1[1..]

i j j + 1

Figure 6.2: Illustration for the case where #occT [i..j+1](sqSuf i,j+1) = 2. In this case, T [s..t] =

sqSuf i,j+1 is unique in T [i..j] and T [s+ 1..t] is repeating in T [i..j].

T
j j + 1j + 1 − | lrSufi,j+1 |i

lrSufi,j+1

lrSufi,j lrSufi,j

lrSufi,j+1

Figure 6.3: Illustration for the case where |lrSuf i,j+1| ≤ |lrSuf i,j|. In this case, T [j + 1 −
|lrSuf i,j+1|..j + 1] is a MUS of T [i..j + 1].

Observation 6.2. If [s, j] ∈ MUST [i..j], then s = j − |lrSuf i,j|. Namely, if there is a MUS of

T [i..j] that is a suffix of T [i..j], then it must be the suffix of T [i..j] that is exactly one character

longer than lrSuf i,j .

Lemma 6.4. The interval [j+1−�, j+1] ∈ MUST [i..j+1] if and only if T [j+1−�..j+1] = α�+1

or � ≤ |lrSuf i,j|, where � = |lrSuf i,j+1| and α = T [j + 1].

Proof. (⇒) Assume on the contrary that T [j + 1− �..j + 1] �= α�+1 and � > |lrSuf i,j|. By the

assumptions and Lemma 6.2, |lrSuf i,j| = �− 1, and thus, T [j− |lrSuf i,j|..j] = T [j+1− �..j].

Since T [j+1−�..j+1] is a MUS of T [i..j+1], T [j+1−�..j] = T [j−|lrSuf i,j|..j] occurs at least

twice in T [i..j+1]. On the other hand, T [j−|lrSuf i,j|..j] is unique in T [i..j] by the definition of

lrSuf i,j , hence T [j−|lrSuf i,j|..j] occurs in T [i..j+1] as a suffix of T [i..j+1]. Consequently, we

have T [j−|lrSuf i,j|..j] = T [j+1−|lrSuf i,j|..j+1], i.e., T [j−�..j] = T [j+1−�..j+1] = α�+1

with α = T [j + 1], a contradiction.

(⇐) By the definition of lrSuf i,j+1, T [j+2−�..j+1] = lrSuf i,j+1 is repeating in T [i..j+1], and

T [j+1− �..j+1] is unique in T [i..j+1]. Now it suffices to show T [j+1− �..j] is repeating in

T [i..j+1]. If T [j+1−�..j+1] = α�+1, then clearly T [j+1−�..j] = α� is repeating in T [i..j+1].

If � ≤ |lrSuf i,j|, then T [j + 1 − �..j] is a suffix of T [j + 1 − |lrSuf i,j|..j] (see Fig. 6.3). Thus

#occT [i..j+1](T [j+1−�..j]) ≥ #occT [i..j](T [j+1−�..j])≥ #occT [i..j](T [j+1−|lrSuf i,j|..j]) ≥

55

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

2.

Next, we consider MUSs to be added when appending T [j + 1] to T [i..j], which are not

suffixes of T [i..j + 1].

Lemma 6.5. For each [s, t] ∈ MUST [i..j+1] with t �= j + 1, if [s, t] �∈ MUST [i..j] then

#occT [i..j+1](sqSuf i,j+1) = 2 and sqSuf i,j+1 is a proper substring of T [s..t].

Proof. Since t �= j+1, T [s..t] is not a suffix of T [i..j+1]. Moreover, since [s, t] ∈ MUST [i..j+1],

T [s..t] is unique in T [i..j]. Since T [s..t] is not a MUS of T [i..j], there exists a MUS u of T [i..j]

which is a proper substring of T [s..t]. Assume on the contrary that #occT [i..j+1](sqSuf i,j+1) = 1

or u �= sqSuf i,j+1. Then, it follows from Lemma 6.3 that u is a MUS of T [i..j + 1]. However,

this contradicts that [s, t] ∈ MUST [i..j+1]. Therefore, #occT [i..j+1](sqSuf i,j+1) = 2 and u =

sqSuf i,j+1 is a proper substring of T [s..t].

Namely, a MUS which is not a suffix is added by appending one character only if there is

a MUS to be deleted by the same operation. Moreover, such added MUSs must contain the

deleted MUS.

Lemma 6.6. If #occT [i..j+1](sqSuf i,j+1) = 2, then there are three integers pl, ps, q such that

i ≤ pl ≤ ps ≤ q < j + 1, T [ps..q] = sqSuf i,j+1 and T [pl..q] = lrSuf i,j+1. Also, the following

propositions hold:

(a) If there is no MUS of T [i..j] ending at q + 1, then [ps, q + 1] ∈ MUST [i..j+1].

(b) If there is no MUS of T [i..j] starting at pl−1 and pl ≥ i+1, then [pl−1, q] ∈ MUST [i..j+1].

Proof. Since #occT [i..j+1](sqSuf i,j+1) = 2, it follows from Lemma 6.1 that sqSuf i,j+1 is a

suffix of lrSuf i,j+1 and #occT [i..j+1] (lrSuf i,j+1) = 2. Hence, the ending positions of the

occurrence of sqSuf i,j+1 in T [i..j] and that of lrSuf i,j+1 in T [i..j] are the same (see Fig. 6.4).

Next, we consider MUSs to be added.

(a) For the sake of contradiction, assume that T [ps..q + 1] is repeating in T [i..j + 1]. Then

#occT [i..j+1](T [ps..q]) ≥ 3, and it contradicts the definition of sqSuf i,j+1 (= T [ps..q]).

Hence, T [ps..q + 1] is unique in T [i..j + 1]. Also, it is clear that T [ps..q] = sqSuf i,j+1

is repeating in T [i..j + 1]. In addition, T [ps + 1..q + 1] is repeating in T [i..j] since

[ps, q] ∈ MUST [i..j] (by Lemma 6.3) and there is no MUS of T [i..j] ending at q+1. Thus,

T [ps + 1..q + 1] is also repeating in T [i..j + 1]. Therefore, T [ps..q + 1] is a MUS of

T [i..j + 1].

56

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

T
pl ps q j j + 1

lrSufi,j+1

sqSufi,j+1

Candidates for MUSs of T[i . . j + 1]

i

lrSufi,j+1

sqSufi,j+1

Figure 6.4: Illustration of the situation when sqSuf i,j+1 is repeating in T [i..j + 1]. In this

situation, [pl− 1, q] and [ps, q+1] are the only candidates for MUSs in MUST [i..j+1] \MUST [i..j]

each of which is not a suffix of T [i..j + 1].

(b) For the sake of contradiction, assume that T [pl − 1..q] is repeating in T [i..j + 1]. Then

T [pl − 1] = T [j + 1 − |lrSuf i,j+1|] or #occT [i..j+1](T [pl..q]) ≥ 3. If T [pl − 1] =

T [j + 1 − |lrSuf i,j+1|], it contradicts the definition of lrSuf i,j+1. On the other hand, if

#occT [i..j+1](T [pl..q]) ≥ 3, it contradicts #occT [i..j+1](lrSuf i,j+1) = 2. Thus, T [pl−1..q]

is unique in T [i..j + 1]. Also, it is clear that T [pl..q] = lrSuf i,j+1 is repeating in T [i..j +

1]. In addition, T [pl − 1..q − 1] is repeating in T [i..j], since [ps, q] ∈ MUST [i..j] (by

Lemma 6.3), T [pl..q− 1] is repeating in T [i..j], and there is no MUS of T [i..j] starting at

pl − 1. Thus, T [pl − 1..q− 1] is repeating in T [i..j+1]. Therefore, T [pl − 1..q] is a MUS

of T [i..j + 1].

Now we have the main result of this subsection:

Theorem 6.1. For any 0 ≤ i ≤ j < n − 1, |MUST [i..j+1]

�
MUST [i..j]| ≤ 4 and −1 ≤

|MUST [i..j+1]|−|MUST [i..j]| ≤ 2. Furthermore, these bounds are tight for any σ, i, j with σ ≥ 3,

0 ≤ i ≤ j < n− 1, and j − i+ 1 ≥ 5.

Proof. First, we show that |MUST [i..j+1]

�
MUST [i..j]| ≤ 4. By Lemma 6.3, |MUST [i..j] \

MUST [i..j+1]| ≤ 1. By Observation 6.2 and Lemma 6.6, |MUST [i..j+1] \ MUST [i..j]| ≤ 3.

Thus, |MUST [i..j+1]

�
MUST [i..j]| = |MUST [i..j+1] \MUST [i..j]|+ |MUST [i..j] \MUST [i..j+1]| ≤ 4.

Also, we show that the upper bound is tight if σ ≥ 3. For an integer k ≥ 2, we consider

two strings u and u′ such that u = akbcc of length k + 3 ≥ 5 and u′ = ub = akbccb

of length k + 4 ≥ 6. Then, MUSu = {[0, k − 1], [k, k], [k + 1, k + 2]} and MUSu′ =

{[0, k− 1], [k− 1, k], [k, k+1], [k+1, k+2], [k+2, k+3]}. Therefore, |MUSu′
�

MUSu| = 4.

57

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

Next, we show that −1 ≤ |MUST [i..j+1]| − |MUST [i..j]| ≤ 2. By Lemma 6.3, it is clear that

−1 ≤ |MUST [i..j+1]| − |MUST [i..j]|. By Observation 6.2, the number of added MUSs which

are suffixes of T [i..j + 1] is at most one. Also, by Lemma 6.6, the number of added MUSs

which are not suffixes of T [i..j + 1] is at most two, however, if such an added MUS exists,

exactly one MUS (= sqSuf i,j+1) must be deleted (cf. Lemma 6.3 and Lemma 6.5). Therefore,

|MUST [i..j+1]| − |MUST [i..j]| ≤ 2. Also, we show that each bound is tight when σ ≥ 3. We

consider strings u and u′ that are described in the case (a), and we then obtain |MUSu′ | −
|MUSu| = 2. On the other hand, for any integer � with � ≥ 1, we consider two strings v

and v′; v = a�bcac of length � + 4 ≥ 5 and v = va = a�bcaca of length � + 5 ≥ 6.

If � = 1, then MUSv = {[1, 1], [2, 3], [3, 4]}, and MUSv′ = {[1, 1], [3, 4]}. If � ≥ 2, then

MUSv = {[0, �−1], [�, �], [�+1, �+2], [�+2, �+4]}, and MUSv′ = {[0, �−1], [�, �], [�+2, �+3]}.

Therefore, |MUSv′ | − |MUSv| = −1.

6.2.2 Changes to MUSs When Deleting the Leftmost Character

In this subsection, we consider an operation that deletes the leftmost character T [i − 1] from

T [i − 1..j]. Basically, we can use symmetric arguments to the previous subsection where we

considered appending a character to the right of the window.

Observation 6.3. For each non-empty substring s of T [i − 1..j], #occT [i−1..j](s) ≤
#occT [i..j](s) + 1. Also, #occT [i−1..i](s) = #occT [i..j](s) + 1 if and only if s is a prefix of

T [i− 1..j].

MUSs to be Added When Deleting the Leftmost Character

Lemma 6.7. For any i ≤ s ≤ t ≤ j, [s, t] �∈ MUST [i−1..j] and [s, t] ∈ MUST [i..j] if and only if

T [s..t] = sqPref i−1,j and #occT [i−1..j](sqPref i−1,j) = 2.

Proof. Symmetric to the proof of Lemma 6.3.

MUSs to be Deleted When Deleting the Leftmost Character

Next, we consider MUSs to be deleted by removing T [i− 1] from T [i− 1..j]. If there is a MUS

w of T [i − 1..j] which is a prefix of T [i − 1..j], clearly, w is not a MUS of T [i..j]. Then, we

consider MUSs to be deleted each of which are not a prefix of T [i− 1..j].

Lemma 6.8. For each [s, t] ∈ MUST [i−1..j] with s �= i − 1, if [s, t] �∈ MUST [i..j] then

#occT [i−1..j](sqPref i−1,j) = 2 and sqPref i−1,j is a proper substring of T [s..t].

58

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

Proof. Symmetric to the proof of Lemma 6.5.

Namely, when deleting the leftmost character, a MUS which is not a prefix is deleted only

if an added MUS exists. Moreover, such deleted MUSs must contains the added MUS.

Lemma 6.9. If #occT [i−1..j](sqPref i−1,j) = 2, then following propositions hold:

(a) If there is a MUS w starting at s in T [i− 1..j], w is not a MUS of T [i..j],

(b) If there is a MUS w′ ending at t in T [i− 1..j], w′ is not a MUS of T [i..j],

where T [s..t] = sqPref i−1,j and s �= i− 1.

Proof. Symmetric to the proof of Lemma 6.6.

The main result of this subsection is the following:

Theorem 6.2. For any 0 < i ≤ j ≤ n − 1, |MUST [i−1..j]

�
MUST [i..j]| ≤ 4 and −1 ≤

|MUST [i−1..j]|−|MUST [i..j]| ≤ 2. Furthermore, these bounds are tight for any σ, i, j with σ ≥ 3,

0 < i ≤ j ≤ n− 1, and j − i+ 1 ≥ 5.

Proof. Symmetric to the proof of Theorem 6.1.

The next corollary is immediate from Theorem 6.1 and Theorem 6.2.

Corollary 6.1. Let 0 < d < n. For every 0 ≤ i ≤ n−d−1, |MUST [i..i+d−1]

�
MUST [i+1..i+d]| ∈

O(1).

6.3 Algorithm for computing MUSs for a Sliding Window

This section presents our algorithm for computing MUSs for a sliding window.

6.3.1 Updating Suffix Tree and its Three Loci

First, we introduce some additional notions. Since we use Ukkonen’s algorithm [56] for updat-

ing the suffix tree when a new character T [j + 1] is appended to the right end of the window

T [i..j], we maintain the locus for lrSuf i,j as in [56]. Also, in order to compute the changes of

MUSs, we use sqSuf i,j (cf. Lemma 6.3 and Lemma 6.6). Thus, we also maintain the locus for

sqSuf i,j .

59

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

The locus for lrSuf i,j (resp. sqSuf i,j) in STree(T [i..j]) is called the primary active point

(resp. the secondary active point) and is denoted by ppi,j (resp. spi,j). Additionally, in order

to maintain spi,j efficiently, we also maintain the locus for the longest suffix of T [i..j] which

occurs at least three times in T [i..j]. We call this locus the tertiary active point that is denoted

by tpi,j . See Fig. 2.2 for concrete examples of these three loci in a suffix tree.

Appending One Character

When T [i..j] is the empty string (the base case, where i = 0 and j = −1), we set all the three

active points 〈root , 0〉. Then we increase j, and the suffix tree grows in an online manner until

j = d− 1 using Ukkonen’s algorithm. Then, for each j > d− 1, we also increase i each time j

increases, so that the sliding window is shifted to the right, by using sliding window algorithm

for the suffix tree [52].

When T [j + 1] is appended to the right end of T [i..j], we first update the suffix tree to

STree(T [i..j + 1]) and compute ppi,j+1. Since ppi,j+1 coincides with the active point, ppi,j+1

can be found in amortized O(log σ′) time [52].

After updating the suffix tree, we can compute tpi,j+1 and spi,j+1 as follows:

• Traverse character T [j + 1] from tpi,j , and set w ← str(tpi,j)T [i+ 1].

• While #occT [i..j+1](w) < 3, set w ← w[1..] and search for the locus p for w by using

suffix links in STree(T [i..j + 1]).

• After breaking from the while-loop, obtain tpi,j+1 = p.

• spi,j+1 equals the locus stored in p at the penultimate iteration of the while-loop.

Let us show the correctness of the above algorithm. After the first step, w is the longest suffix

which possibly corresponds to tpi,j+1. In the while loop of the second step, we search for

the suffix corresponding to tpi,j+1 by deleting the first characters from w one-by-one. After

breaking from the while-loop, we store in w the longest suffix of T [i..j +1] which occurs more

than twice in T [i..j + 1], i.e., tpi,j+1 = locus(w). Also, by the definitions of sp and tp, spi,j+1

is the locus for the suffix of T [i..j + 1] which is one character longer than w = str(tpi,j+1).

As is described in the above algorithm, we can locate tpi,j+1 using suffix links, in a similar

manner to the active point ppi,j+1. Thus, the time cost for locating tpi,j+1 for each increasing

j is amortized O(log σ′), again by a similar argument to the active point ppi,j+1. What remains

is, for each candidate w for tpi,j+1, how to quickly determine whether #occT [i..j+1](w) < 3 or

not. In what follows, we show that it can be checked in O(1) time for each candidate.

60

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

0 1 2 3 4 5 6 7 8

T = a a b b a b b a b

a b b a b b a b

a b a b a b

• abbab is repeating in T.
• ab is a prefix of abbab.
• ab is a suffix of abbab.

a
b
b
a
b
b
a
b

b
a
b

a
b

b
a
b

b
a
b

a b

a
b

b
a
b

b

b

Figure 6.5: The suffix tree of string T = aabbabbab as an example of the Case 3.1 in Observa-

tion 6.4. Black circles represent implicit suffix nodes. For two suffixes s = ab and s′ = abbab

of T , hed(s′) = hed(s) and s occurs three times in T .

Observation 6.4. For each suffix s of string T [i..j + 1], let locus(s) = 〈u, h〉.

Case 1. If u is an internal node, s occurs at least three times in T [i..j + 1].

Case 2. If u is a leaf and h = 0, s occurs exactly once in T [i..j + 1].

Case 3. If u is a leaf and h �= 0,

Case 3.1. if there is a suffix s′ of T [i..j + 1] with hed(s′) = hed(s) which is longer than

s, s occurs at least three times in T [i..j + 1] (see Fig. 6.5 for examples).

Case 3.2. otherwise, s occurs exactly twice in T [i..j + 1].

For any suffix s of T [i..j + 1], if we are given locus(s) = 〈u, h〉, then we can obviously

determine in constant time whether s occurs at least three times in T [i..j + 1] or not, except

Case 3. The next lemma allows us to determine it in constant time in Case 3 as well.

Lemma 6.10. Suppose the locus ppi,j+1 in STree(T [i..j+1]) is already computed. Given a leaf

� of STree(T [i..j+1]), it can be determined in O(1) time whether there is an implicit suffix node

on the edge (parent(�), �) and if so, the locus of the lowest implicit suffix node on (parent(�), �)

can be computed in O(1) time.

61

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

ℓ

u

h

| lrSufi,j+1 |

| lrSufi,j+1 | − (tℓ − s)
depth(par(ℓ))

start(u) = s

start(ℓ) = tℓ

h

Figure 6.6: For an example of Lemma 6.10. The situation of this figure is that each of u and � is

a leaf with t� = start(�) ≥ s = start(u) and |lrSuf i,j+1| − (t� − s) > depth(parent(�)) where

〈u, h〉 represents the primary active point. Also, black nodes represent implicit suffix nodes.

Proof. By Observation 6.4, for each leaf �, the suffix corresponding to the lowest implicit suffix

node on (parent(�), �) occurs exactly twice in T [i..j + 1] if such an implicit suffix node exists.

Let x = lrSuf i,j+1 and ppi,j+1 = 〈u, h〉.
If u is not a leaf, there is no implicit suffix node on the edge (parent(�), �) for any leaf �,

since every suffix of T [i..j + 1] which is shorter than |x| occurs more than twice in T [i..j + 1].

If u is a leaf, then #occT [i..j+1](x) = 2. Let s = start(u) and t� = start(�) for each leaf �.

Notice that x is a border of T [s..j + 1]. There are two sub-cases:

• First, we consider the case where t� < s. Suppose that there is an implicit suffix node on

(parent(�), �) for the sake of contradiction. Let w be a string corresponding to the lowest

implicit suffix node on (parent(�), �). Then, w is a proper suffix of x, and occurs exactly

twice in T [i..j+1]. Furthermore, w occurs exactly twice in T [s..j+1] since x is a border

of T [s..j + 1]. However, w is also a prefix of T [t�..j + 1], hence w occurs at least three

times in T [i..j + 1], it is a contradiction. Thus, if t� < s, there is no implicit suffix node

on (parent(�), �).

• Second, we consider the case where t� ≥ s (see Fig. 6.6). In this case, T [t�..s + |x| − 1]

which is a prefix of T [t�..j + 1] matches the suffix of x which is t� − s characters shorter

than x, i.e., x[t� − s..]. Thus, there is an implicit suffix node on (parent(�), �) if and only

62

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

if |T [t�..s + |x| − 1]| = |x| − (t� − s) > depth(parent(�)). Also, if there is an implicit

suffix node on (parent(�), �), the locus of the lowest one is 〈�, h〉.

Deleting the Leftmost Character

When the leftmost character T [i− 1] is deleted from T [i− 1..j], we first update the suffix tree

and compute ppi,j by using the sliding window algorithm for the suffix tree [52]. Each pair of

position pointers for the edge-labels of the suffix tree can be maintained in amortized O(1) time

so that these pointers always refer to positions within the current sliding window, by a simple

batch update technique (see [52] for details). After that, we compute tpi,j and spi,j in a similar

way to the case of appending a new character shown previously.

It follows from the above arguments in this subsection that we can update the suffix tree

and the three active points in amortized O(log σ′) time, each time the window is shifted by one

character.

6.3.2 Computing sqPref i−1,j

In order to compute the changes of MUSs when the leftmost character T [i− 1] is deleted from

T [i − 1..j], we use sqPref i−1,j (cf. Lemma 6.7 and Lemma 6.9) before updating the suffix

tree. In this subsection, we present an efficient algorithm for computing sqPref i−1,j . First, we

consider the following cases (see Fig. 6.7), where � is the leaf corresponding to T [i− 1..j]:

Case A. hed(lrSuf i−1,j) = �.

Case B. hed(lrSuf i−1,j) �= � and subtree(parent(�)) has more than two leaves.

Case C. hed(lrSuf i−1,j) �= � and subtree(parent(�)) has exactly two leaves.

For Case A, the next lemma holds:

Lemma 6.11. Given STree(T [i−1..j]) and ppi−1,j . Let � be the leaf corresponding to T [i−1..j].

If ppi−1,j is on the edge (parent(�), �), the following propositions hold:

(a) occT [i−1..j](sqPref i−1,j) = {i− 1, j − |lrSuf i−1,j|+ 1}.

(b) If there is exactly one implicit suffix node on (parent(�), �), sqPref i−1,j = T [i − 1..i −
1 + depth(parent(�))].

63

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

Lemma 6.12Lemma 6.11

Case A Case C

ℓ ℓ

primary active point

candidate range for
the locus for sqPrefi−1,j

Case B

ℓ

locus for
sqPrefi−1, j

ℓ′

p p p

q
q

q

Figure 6.7: Illustration for the three cases that are described in Section 6.3.2.

(c) If there are more than one implicit suffix node on (parent(�), �), then |lrSuf i−1,j| > �(j−
i+ 2)/2� and sqPref i−1,j = T [i− 1..j − 2h+ 1], where ppi−1,j = 〈�, h〉.

Proof. Let ppi−1,j = 〈�, h〉 and m = |lrSuf i−1,j|.

(a) Since ppi−1,j is on the edge (parent(�), �), sqPref i−1,j is a prefix of lrSuf i−1,j , and

#occT [i−1..j](lrSuf i−1,j) = #occT [i−1..j](sqPref i−1,j) = 2. Therefore, we obtain that

occT [i−1..j](sqPref i−1,j) = occT [i−1..j](lrSuf i−1,j) = {i− 1, j −m+ 1}.

(b) In this case, it is clear that sqPref i−1,j = T [i− 1..i− 1 + depth(parent(�))].

(c) Let 〈�, h′〉 be the locus of the implicit suffix node which is the lowest on the edge

(parent(�), �) except ppi−1,j . Also, let x be the string corresponding to the locus 〈�, h′〉.
In this case, x occurs exactly three times in T [i − 1..j]. Also, x is the longest bor-

der of lrSuf i−1,j . Assume on the contrary that m ≤ �(j − i + 2)/2�. Then, two oc-

currences of lrSuf i−1,j in T [i − 1..j] are not overlapping, and thus #occT [i−1..j](x) ≥
2×#occT [i−1..j](lrSuf i−1,j) = 4, it is a contradiction. Therefore, m > �(j−i+2)/2� (see

Fig. 6.8).

Next, we consider a relation between h and h′. By the definition, h = |T [i− 1..j]|−m =

j− i+2−m. Since m > �(j− i+2)/2�, x matches the intersection of two occurrences

of lrSuf i−1,j , i.e., x = T [j − m + 1..i + m − 2]. Thus, h′ = |T [i − 1..j]| − |x| =

j − i + 2 − (2m − j + i − 2) = 2(j − i + 2 − m) = 2h. Therefore sqPref i−1,j =

T [i− 1..j − h′ + 1] = T [i− 1..j − 2h+ 1].

64

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

ℓ

h

h

start(ℓ) = i − 1

corresponds to x

T
lrSufi−1,j

i − 1 j

corresponds to lrSufi−1,j

x x

sqPrefi−1,j

x

hh

sqPrefi−1,j

lrSufi−1,j

primary active point

h′ h′

Figure 6.8: Illustration for the proposition (c) in Lemma 6.11. For the sake of simplicity,

this figure shows a simple case where there are only two implicit suffix nodes on the edge

(parent(�), �). However, the lemma also holds for the other cases.

In Case B, it is clear that sqPref i−1,j = T [i − 1..i − 1 + depth(p)] since str(p) occurs at

least three times in T [i− 1..j] (see Fig. 6.7).

For Case C, the next lemma holds:

Lemma 6.12. Suppose that STree(T [i − 1..j]) and ppi−1,j have already been computed. Let �

be the leaf corresponding to T [i − 1..j], p = parent(�), and q = parent(p). If subtree(p) has

exactly two leaves and there are no implicit suffix nodes on any edges in subtree(p), then it can

be determined in O(1) time whether there is an implicit suffix node on (q, p). If such an implicit

node exists, then the locus of the lowest implicit suffix node on (q, p) can be computed in O(1)

time.

Proof. Note that the suffix corresponding to the lowest implicit suffix node on (q, p) occurs

exactly three times in T [i − 1..j] from the assumptions. Let ppi−1,j = 〈u, h〉. If h = 0, the

primary active point is an explicit node, and there is no implicit suffix node on every edge in

STree(T [i − 1..j]). If h �= 0 and u = p, the lowest implicit suffix node on (q, p) is clearly the

primary active point. Thus, in the following, we consider the situation with u �= p and h �= 0.

If u is not a leaf and the number of leaves in subtree(u) is greater than two, then the number

of leaves in subtree(hed(v)) is also greater than two for each implicit suffix node v. Thus, there

is no implicit suffix node on (q, p). If u is not a leaf and the number of leaves in subtree(u)

is exactly two, then lrSuf i−1,j occurs at least three times in T [i − 1..j] since u �= p. Thus,

65

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

ℓ

depth(p)

start(ℓ′) = tℓ′

p

q

depth(q)
T

s jt

corresponds to x
x

i − 1

start(ℓ) = i − 1

lrSufi−1,j

sqPrefi−1,j

x x
sqPrefi−1,j

lrSufi−1,j

Figure 6.9: Illustration for Lemma 6.12.

if a suffix s of T [i − 1..j] which is shorter than lrSuf i−1,j occurs as a prefix of T [i − 1..j],

#occT [i−1..j](s) ≥ 4. Therefore, there is no implicit suffix node on (q, p).

If u is a leaf, as in the proof in Lemma 6.10, it can be proven that there is an implicit suffix

node on (q, p) if and only if t ≥ s and depth(p) > |lrSuf i−1,j| − (t − s) > depth(q), where

s = start(u), t = start(�′) with �′ being the sibling of � (see Fig. 6.9).

In addition, if there is an implicit suffix node on the edge (q, p), the length of the string x

corresponding to the lowest implicit suffix node on the edge (q, p) is |lrSuf i−1,j| − (t− s), and

thus, the implicit suffix node is 〈p, depth(p)− |x|〉 = 〈p, depth(p)− |lrSuf i−1,j|+ t− s〉.

We can design an algorithm for computing sqPref i−1,j by using the above lemmas, as fol-

lows. Let � be the leaf corresponding to T [i− 1..j], p = parent(�) and q = parent(p).

In Case A. sqPref i−1,j is computed by Lemma 6.11.

In Case B. sqPref i−1,j = T [i− 1..i− 1 + depth(p)] and #occT [i−1..j](sqPref i−1,j) = 1.

In Case C. We divide this case into some subcases by the existence of an implicit suffix node

on edges (p, �′) and (q, p) where �′ is the sibling of �. We first determine the existence of

an implicit suffix node on (p, �′) (by Lemma 6.10).

• If there is an implicit suffix node on (p, �′), then sqPref i−1,j = T [i − 1..i − 1 +

depth(p)] and #occT [i−1..j](sqPref i−1,j) = 1.

• If there is no implicit suffix node on both (p, �) and (p, �′), we can determine in

constant time the existence of an implicit suffix node on (q, p) (by Lemma 6.12). If

66

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

there is an implicit suffix node on (q, p), sqPref i−1,j = T [i− 1..depth(p)− h + 1]

and occT [i−1..j](sqPref i−1,j) = {i − 1, start(�′)}. Otherwise, sqPref i−1,j = T [i −
1..depth(q) + 1] and occT [i.−1.j](sqPref i−1,j) = {i− 1, start(�′)}.

It follows from the above arguments in this subsection that sqPref i−1,j can be computed in

O(1) time by using the suffix tree and the (primary) active point.

6.3.3 Detecting MUSs to be Added/Deleted

By using the afore-mentioned lemmas in this section, we can design an efficient algorithm for

detecting MUSs to be added / deleted.

Data Structure for Maintaining MUSs

First, we introduce a data structure for managing the set of MUSs for a sliding window. Our

data structure for MUSs consists of two arrays S2E and E2S of length d each. Note that by the

definition of MUSs, any MUSs cannot be nested each other. Thus, for any text position i, if a

MUS starting (resp. ending) at i exists, then its ending (resp. starting) position is unique. From

this fact, we can define S2E and E2S as follows:

Let [p, p+ d− 1] be the current window. For every index i with p ≤ i ≤ p+ d− 1,

S2E[i mod d] =

⎧⎨
⎩

e if [i, e] ∈ MUST [p..p+d−1] exists,

nil otherwise.

E2S[i mod d] =

⎧⎨
⎩

s if [s, i] ∈ MUST [p..p+d−1] exists,

nil otherwise.

Since MUSs cannot be nested each other, these arrays are uniquely defined (see Fig. 6.10). By

using these two arrays, all the following operations for MUSs can be executed in O(1) time;

add/remove a MUS into/from the set of MUSs, and compute the ending/starting position of the

MUS that starts/ends at a specified position.

Algorithm When Appending a Character to the Right

Assume that S2E, E2S and the suffix tree of T [i..j] are computed before reading γ = T [j + 1].

Also, assume that the longest single character run βe as a suffix of T [i..j] is known, where

β = T [j] and e ≥ 1.

67

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

0 1 2 3 4 5 6 7 8 9 10 11 12 13 …

T = b a b b a b a b a b b b b a …
…

nil nil 4 nil 8 nil nil nil 10 11

8 9 nil nil 2 nil nil nil 4 nil

𝖬𝖴𝖲(T[2..11])

𝖲𝟤𝖤

𝖤𝟤𝖲

The current window: T[2..11]

Figure 6.10: A long string T = babbabababbbba · · · and two arrays S2E and E2S. The current

window is T [2..11] of length d = 10, and the MUSs in the window are T [2..4], T [4..8], T [8..10],

and T [9..11].

• First, compute the length of lrSuf i,j .

• Second, read γ, and update the suffix tree and the active points. Then, compute the

lengths of lrSuf i,j+1 and sqSuf i,j+1. Also, update information about the run of the last

character of T [i..j + 1]. Specifically, if γ = β then βe = γe+1, and otherwise βe =

γ1. If |lrSuf i,j+1| ≤ |lrSuf i,j| or T [j + 1 − |lrSuf i,j+1|..j + 1] = γ|lrSuf i,j+1|+1, add

[j + 1− |lrSuf i,j+1|, j + 1] into the set of MUSs (by Lemma 6.4).

• If |lrSuf i,j+1| < |sqSuf i,j+1|, then terminate this step (by Lemma 6.5).

• Otherwise, compute ps and q of Lemma 6.6 by using STree(T [i..j+1]) and spi,j+1. Then,

remove [ps, q] from the set of MUSs (by Lemma 6.3).

• Next, if E2S[t′ mod d] = nil , then add [ps, t
′] into the set of MUSs, where t′ = q + 1.

Also, if s′ ≥ i and S2E[s′ mod d] = nil , then add [s′, q] into the set of MUSs, where

s′ = q − |lrSuf i,j+1| (by Lemma 6.6).

• Terminate this step.

Algorithm When Deleting the Leftmost Character

Assume that S2E, E2S and the suffix tree of T [i − 1..j] are computed before deleting α =

T [i− 1].

68

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

• First, compute #occT [i−1..j](sqPref i−1,j). If #occT [i−1..j](sqPref i−1,j) = 2, compute two

integers s and t with T [s..t] = sqPref i−1,j and s �= i− 1.

• Second, delete T [i − 1] and update the suffix tree and the active points. If S2E[(i −
1) mod d] �= nil , remove the MUS starting at i− 1 from the set of MUSs.

• If #occT [i−1..j](sqPref i−1,j) = 1, terminate this step (by Lemma 6.8).

• Otherwise, if S2E[s mod d] �= nil , then remove the MUS starting at s from the set of

MUSs. Also, if E2S[t mod d] �= nil , then remove the MUS ending at t from the set of

MUSs (by Lemma 6.9).

• Finally, add [s, t] into the set of MUSs (by Lemma 6.7), and terminate this step.

The main result of this section is the following:

Theorem 6.3. We can maintain the set of MUSs for a sliding window of length d on a string T

of length n in a total of O(n log σ′) time and O(d) working space where σ′ ≤ d is the maximum

number of distinct characters in every window.

Corollary 6.2. There exists an online algorithm to compute all MUSs in a string T of length n

in a total of O(n log σ) time with O(n) working space where σ is the alphabet size.

6.4 Conclusions and Future Work

In this chapter, we studied the problem of computing MUSs for a sliding window over a given

string T of length n. We first showed combinatorial properties on MUSs for a sliding window,

i.e., changes of the set of MUSs are at most constant when appending a character to the right

end of the window or deleting the first character from the window. Also, we proposed an

O(n log σ′)-time and O(d)-space algorithm to compute MUSs for a sliding window of size d

over T , where σ′ ≤ d is the maximum number of distinct characters in every window.

As future work, we are interested in developing a data structure for the SUS problems for

a sliding window. As we described in the introduction, MUSs are heavily utilized for solving

the SUS problems. Our sliding window MUS algorithm could be used as a basis for an efficient

SUS query data structure for a sliding window. Also, it would be interesting to extend or gen-

eralize MUSs for a sliding window, e.g., to computing MUSs with k-mismatches for a sliding

window. A substring of T is said to be unique with k-mismatches in T , if it is unique in T even

69

CHAPTER 6. COMPUTING MINIMAL UNIQUE SUBSTRINGS FOR A SEMI-DYNAMIC STRING

when substituting arbitrary k characters of the substring. To the best of our knowledge, only

one deterministic algorithm to compute unique substrings with k-mismatches is known in [26],

and their algorithm runs in O(n2) time for any k ≥ 1 in an offline manner. An interesting

open question is: Can we design an online deterministic algorithm which computes MUSs with

k-mismatches in sub-quadratic time?.

70

Chapter 7

Computing Minimal Unique Palindromic
Substrings for a Semi-Dynamic String via
Palindromic Tree

A palindrome is a string that reads the same forward and backward. Palindromic structures

in strings have been heavily studied in the fields of string processing algorithms and combina-

torics on strings [42, 24, 36, 50, 18, 5]. One of the most famous results related to palindromic

structures is Manacher’s algorithm [42], which computes all maximal palindromes in a given

string T . Manacher’s algorithm essentially computes all palindromes in T , since any palin-

dromic substring of T is a substring of some maximal palindrome in T . Another interesting

topic is enumeration of distinct palindromes in a string. It is known that any string of length n

contains at most n + 1 distinct palindromes including the empty string [16]. Groult et al. [24]

proposed an O(n)-time algorithm which enumerates all distinct palindromes in a given string of

length n over an integer alphabet of size σ = nO(1). For the same problem in the online model,

Kosolobov et al. [36] proposed an O(n log σ)-time and O(n)-space algorithm for a general or-

dered alphabet. Kosolobov et al.’s algorithm is a combination of Manacher’s algorithm and

Ukkonen’s online suffix tree construction algorithm [56]. Rubinchik and Shur [50] proposed

a new data structure called eertree, which permits efficient access to distinct palindromes in a

string without storing the string itself. Eertrees can be utilized for solving problems related to

palindromic structures, such as the palindrome counting problem and the palindromic factoriza-

tion problem [50]. The size of the eertree of T is linear in the number pT of distinct palindromes

in T [50]. Since pT is at most |T |+ 1, the size of the eertree of T can be much smaller than the

length |T | of the string, e.g., for T = (abc)n/3, pT = 4 since all distinct palindromes in T are

71

CHAPTER 7. COMPUTING MINIMAL UNIQUE PALINDROMIC SUBSTRINGS FOR A SEMI-DYNAMIC STRING VIA

PALINDROMIC TREE

a, b, c, and the empty string. Thus, the size of the eertree of T can be much smaller than that

of the suffix tree of T which is Θ(n). Therefore, it is of significance if one can build eertrees

without suffix trees. Rubinchik and Shur [50] indeed proposed an online eertree construction

algorithm running in O(n log σ) time without suffix trees.

Recently, a concept of palindromic structures called minimal unique palindromic substrings

(MUPS) is introduced by Inoue et al. [30]. A palindromic substring w = T [i..j] of a string

T is called a MUPS of T if w occurs in T exactly once, and T [i + 1..j − 1] occurs at least

twice in T . MUPSs are utilized for solving the shortest unique palindromic substring (SUPS)

problem [30], which is motivated by an application in molecular biology. Watanabe et al. [57]

proposed an algorithm to solve the SUPS problem based on the run-length encoding (RLE)

version of eertrees, named e2rtre2.

In this chapter, we consider the problem of computing MUPSs in a semi-dynamic string.

As in Chapter 6, we will identify a problem in semi-dynamic strings with a problem in the

sliding window model. Namely, we tackle the following problem: For each window T [0..d −
1], . . . , T [n − d..n − 1] of length d over a string T , the aim is to maintain the set of MUPSs in

the window.

For the sake of computing MUPSs efficiently, we first consider the problem of maintaining

the eertrees in the sliding window model. We propose an algorithm which maintains eertrees for

a sliding window in a total of O(n log σ′) time using O(d) space. Also, we give an alternative

eertree construction algorithm for a sliding window which runs in O(n + dσ) time with (d +

2)σ +O(d) space.

Furthermore, by utilizing the result for eertrees, we propose an algorithm which main-

tains MUPSs for a sliding window in a total of O(n log σ′) time using O(d) space. In addi-

tion, we introduce a new concept of palindromic structures called minimal absent palindromic

words (MAPW), and consider the problem of maintaining MAPWs for a sliding window. A

string w is called a MAPW of string T if w is a palindrome, w does not occur in T , and

w[1..|w| − 2] occurs in T . MAPWs can be seen as a palindromic version of the notion of mini-

mal absent words (MAWs), which are extensively studied in the fields of string processing and

bioinformatics [14, 44, 9, 48, 20]. We propose an algorithm which maintains MAPWs for a

sliding window in a total of O(n+ dσ) time using O(dσ) space.

72

CHAPTER 7. COMPUTING MINIMAL UNIQUE PALINDROMIC SUBSTRINGS FOR A SEMI-DYNAMIC STRING VIA

PALINDROMIC TREE

7.1 Preliminaries

Palindromes. A string T is called a palindrome if T [i] = T [|T | − i − 1] for every 0 ≤ i ≤
|T | − 1. Note that the empty string is a palindrome. A substring T [i..j] of T is said to be a

palindromic substring of T if T [i..j] is a palindrome. The center of a palindromic substring

T [i..j] of T is i+j
2

. A palindromic substring T [i..j] of T is maximal w.r.t. the center position
i+j
2

if i = 0, j = |T | − 1, or T [i − 1..j + 1] is not a palindrome. We denote by lpp(T) (resp.

lps(T)) the longest palindromic prefix (resp. suffix) of T . We denote by DPal(T) the set of all

distinct palindromes in T . It is known that |DPal(T)| ≤ |T |+ 1 [16].

A substring T [i..j] of T is called a minimal unique palindromic substring (MUPS) of T

if T [i..j] is a palindrome, T [i..j] is unique in T , and T [i + 1..j − 1] is repeating in T . We

denote MUPST the set of intervals corresponding to MUPSs of T , i.e., MUPST = {[i, j] |
T [i..j] is a MUPS of T}. For example, palindromic substring T [9..13] = bbabb of string T =

aaababababbabb is a MUPS of T since T [9..13] = bbabb is unique in T and T [10..12] = bab

is repeating in T .

A string w is called a minimal absent palindromic word (MAPW) of string T if w is a

palindrome, w does not occur in T , and w[1..|w| − 2] occurs in T . For example, palindrome

w = aabbaa is a MAPW of string T = aaababababbabb since w does not occur in T and

w[1..|w| − 2] = abba occurs in T at position 8.

Eertree (Palindromic Tree). The eertree of T denoted by eertree(T) is a tree-like data struc-

ture that enables us to efficiently access each of the distinct palindromes in T [50]. The

eertree(T) consists of m ordinary nodes and two auxiliary nodes, denoted 0-node and −1-node,

where m = |DPal(T)| − 1. Each ordinary node corresponds to each element of DPal(T) \ {ε}.

For each ordinary node v, we denote by pal(v) the palindrome which corresponds to v, and

by len(v) its length. Conversely, for each non-empty palindromic substring p of T , we de-

note by node(p) the node which corresponds to the palindrome p. Namely, node(pal(v)) = v

for each ordinary node v. For convenience, we define pal(0-node) = pal(−1-node) = ε,

len(0-node) = 0, and len(−1-node) = −1. For any nodes u, v in eertree(T), there is an

edge (u, v) if and only if len(u) + 2 = len(v) and pal(u) = pal(v)[1..len(v) − 2]. Each

edge (u, v) is labeled by a character pal(v)[0]. Also, each node v in eertree(T) has a suffix

link denoted by slink(v). For each node v in eertree(T) with len(v) ≥ 2, slink(v) points to

the node corresponding to the longest palindromic proper suffix of pal(v). For each node v in

eertree(T) with len(v) = 1, slink(v) points to the 0-node. Also, slink(0-node) = −1-node and

73

CHAPTER 7. COMPUTING MINIMAL UNIQUE PALINDROMIC SUBSTRINGS FOR A SEMI-DYNAMIC STRING VIA

PALINDROMIC TREE

 = aaababababbabbT

bb

babbab

abba

aa

0

bababab

aaa

ababa bbabb

bab

a

babab

aba

b

−1

abababa

a

a

a

a a

a

a

b

b

b

b

b

b

b

Figure 7.1: The eertree of T = aaababababbabb. The solid and broken arrows represent

edges and suffix links, respectively. Note that pal(v) is written inside each node v in this

figure, however, it is for only explanation. Namely, each node does not explicitly store the

corresponding string.

slink(−1-node) = −1-node. For each node v in eertree(T), inSL(v) = |{u | slink(u) = v}|
denotes the number of incoming suffix links of v. See Fig. 7.1 for an example of eertree(T).

Note that each node v does not store the string pal(v) explicitly. Instead, we can obtain

pal(v) by traversing edges backward, from v to the root, since pal(u) = c pal(u′)c for each

node u with | pal(u)| ≥ 2 where u′ is the parent of u and c is the label of the edge (u′, u). Each

node only stores pointers to its children and a constant number of integers. Thus, the size of

eertree(T) is linear in the number of nodes, i.e., O(|DPal(T)|). It is known that eertree(T) can

be constructed in O(n log σ) time for any string T given in an online manner [50].

7.2 Combinatorial Properties on Palindromes for a Sliding

Window

In this section, we show some combinatorial properties on palindromes for a sliding window,

which is helpful for designing efficient algorithms to maintain eertrees for a sliding window.

74

CHAPTER 7. COMPUTING MINIMAL UNIQUE PALINDROMIC SUBSTRINGS FOR A SEMI-DYNAMIC STRING VIA

PALINDROMIC TREE

Since the nodes of the eertree of a string represent all distinct palindromes in the string, we

obtain the next lemma.

Lemma 7.1. There is a node � in eertree(T [i − 1..j − 1]) to be removed when the leftmost

character T [i−1] is deleted from T [i−1..j−1] if and only if (A) pal(�) is unique in T [i−1..j−1]

and (B) pal(�) = lpp(T [i− 1..j − 1]). Moreover when this holds, (C) � is a leaf node.

Proof. (⇒) (A) Since � is removed, pal(�) does not occur in T [i..j − 1]. Thus, pal(�) occurs in

T [i− 1..j − 1] only as a prefix, i.e., pal(�) is unique in T [i− 1..j − 1]. (B) Assume that pal(�)

is shorter than lpp(T [i−1..j−1]). Then, pal(�) is a proper prefix of lpp(T [i−1..j−1]). Also,

pal(�) is a proper suffix of lpp(T [i− 1..j − 1]) since lpp(T [i− 1..j − 1]) is a palindrome. This

contradicts that pal(�) is unique in T [i− 1..j − 1]. Thus, pal(�) = lpp(T [i− 1..j − 1]). (C) If

we assume that � has a child, then pal(�) has an occurrence in T [i− 1..j− 1] that is not a prefix

of T [i − 1..j − 1], a contradiction. (⇐) Since pal(�) is a palindromic prefix of T [i − 1..j − 1]

and unique in T [i − 1..j − 1], pal(�) does not occur in T [i..j − 1]. Thus, � is removed when

T [i− 1] is deleted.

Namely, when the leftmost character of the window is deleted, at most one leaf will be

removed from the eertree. For example, in Fig. 7.1, the leaf corresponding to aaa will be

removed when the leftmost character of T is deleted, since aaa is the longest palindromic prefix

of T and it is unique in T . Also, in order to detect such a leaf, we need to compute the longest

palindromic prefix of each window and to determine its uniqueness. In the following, we show

some combinatorial properties on unique palindromes and the longest palindromic prefix for a

sliding window.

Unique Palindromes for a Sliding Window. A palindromic substring w of string T is said

to be border-maximal in T if there is no palindromic substring of T , which contains w as a

proper suffix. See Fig. 7.2 for examples. If a palindrome w is not border-maximal in T , then

w is a border of another palindrome w′, i.e., w is not unique in T . In other words, any unique

palindromic substring must be border-maximal.

Longest Prefix Palindrome for a Sliding Window. Next, we consider the longest palin-

dromic prefixes for sliding windows.

Lemma 7.2. Let w be the longest palindromic prefix of the window T [it..jt] at time t. There

exists time t′ ≤ t which satisfies one of the followings:

75

CHAPTER 7. COMPUTING MINIMAL UNIQUE PALINDROMIC SUBSTRINGS FOR A SEMI-DYNAMIC STRING VIA

PALINDROMIC TREE

0 1 2 3 4 5 6 7 8 9 10 11 12

a a b a b b a a b a b a bT =

Figure 7.2: For string T = aababbaababab, its palindromic substring aa is border-maximal in

T . On the other hand, bab is not border-maximal in T since there is a palindromic substring

T [8..12] = babab of T which contains bab as a proper suffix.

1. the longest palindromic suffix of T [it′ ..jt′] is w, or

2. the longest palindromic suffix of lpp(T [it′ ..jt′]) is w.

(See also Fig. 7.3 for concrete examples.)

Proof. Let w = T [s..e]. If w = T [it..jt], then w is also the longest palindromic suffix of the

window. Namely, w satisfies the first condition of the lemma for t′ = t. Otherwise, for the sake

of contradiction, we assume the contrary. Namely, for every time t′ ≤ t, neither the longest

palindromic suffix of T [it′ ..jt′] nor the longest palindromic suffix of lpp(T [it′ ..jt′]) is not equal

to T [s..e]. Consider a window in the past such that its ending position is e. Since the longest

palindromic suffix of the window is not T [s..e], there is another palindromic suffix ending at e,

which is longer than T [s..e]. Now let v = T [s′..e] be the shortest palindrome which is ending

at e and is longer than w = T [s..e]. Namely, w is the longest palindromic suffix of v. Next,

consider a window T [it̃..jt̃] at time t̃ ≤ t with its starting position it̃ = s′. If v is the longest

palindromic prefix of the window T [it̃..jt̃], then w becomes the longest palindromic suffix of

v = lpp(T [it̃..jt̃]), however, it contradicts our assumption. Thus, there is another palindromic

prefix starting at s′, which is longer than v. Now let u = T [s′..e′] be the longest palindromic

substring of the window T [it̃..jt̃].

Further let cw, cv, and cu be respectively the center of w, v, and u. From the assumptions,

cv < cw and cv < cu hold. Next, we consider three sub-cases (see also Fig. 7.4):

(a) If cu < cw, then the palindrome u′ ending at e whose center equals cu, is longer than w

and is shorter than v. This contradicts that w is the longest palindromic suffix of v.

(b) If cu = cw, then |v| = e− s′+1 = e′− s+1. Thus, T [s..e′] = T [s′..e] = v since T [s′..e′]

is a palindrome. This contradicts that w is the longest palindromic prefix of the current

window T [it..jt] = T [s..jt].

76

CHAPTER 7. COMPUTING MINIMAL UNIQUE PALINDROMIC SUBSTRINGS FOR A SEMI-DYNAMIC STRING VIA

PALINDROMIC TREE

1.

2.

lpp(T2[it′
. . jt′

])

T1 = baacbabbbabbabbbbababbbabbabacbaabab

T2 = abbcabaaaaababaaababaaabababcabbaba

jtit′ it jt′

jtit′ it jt′

Figure 7.3: The upper one shows a string T1 and windows T1[it..jt] and T1[it′ ..jt′] with t′ ≤ t.

The longest palindromic prefix bbababb of T1[it..jt] is equal to the longest palindromic suffix

of T1[it′ ..jt′] (i.e., the first case of Lemma 7.2). The lower one shows a string T2 and windows

T2[it..jt] and T2[it′ ..jt′] with t′ ≤ t. The longest palindromic prefix aababaa of T2[it..jt] is

equal to the longest palindromic suffix of lpp(T2[it′ ..jt′]) (i.e., the second case of Lemma 7.2).

(c) If cw < cu, then the palindrome u′′ starting at s whose center equals cu, is longer than

w. This again contradicts that w is the longest palindromic prefix of the current window

T [it..jt] = T [s..jt].

Therefore, we have proved the lemma.

7.3 Eertree for a Sliding Window

In this section, we show how to update a given eertree when we shift the sliding window to the

right by one character. Sliding a given window consists of two operations: deleting the leftmost

character and appending a character to the right end. Namely, when the eertree of T [i−1..j−1]

is given, we first compute the eertree of T [i..j − 1] (deleting the leftmost character), and then,

compute the eertree of T [i..j] (appending a character). To update the eertree when a character

is appended, we can apply Rubinchik and Shur’s algorithm [50] which constructs the eertree of

a given string in an online manner. In this section, we propose new additional data structures

and algorithms which update the eertree when the leftmost character is deleted.

77

CHAPTER 7. COMPUTING MINIMAL UNIQUE PALINDROMIC SUBSTRINGS FOR A SEMI-DYNAMIC STRING VIA

PALINDROMIC TREE

cwcv

s e

it̃ jt̃

s′ e′

w

v

u

cu

u′

s e

it̃ jt̃

s′ e′

w

v

u

cu = cwcv

v

it jt

cw

s e

it̃ jt̃

s′ e′

w

u

cu

u′′

it jt

Figure 7.4: Illustration for contradictions in the proof of Lemma 7.2.

As in Chapter 6, our algorithms also work for a window of variable-length.

7.3.1 Auxiliary Data Structures for Detecting the Node to be Deleted

We introduce auxiliary data structures for computing the longest palindromic prefixes and for

determining the uniqueness of palindromes.

For Computing the Longest Palindromic Prefix. Let prefPal [0..d− 1] be a cyclic array of

size d such that prefPal [it mod d] stores the node which corresponds to the longest palindromic

prefix of the window T [it..jt] at each time t. Namely, for every time t, prefPal [it mod d] =

node(lpp(T [it..jt])) holds.

For Determining Uniqueness of a Palindrome. For each ordinary node v in eertree(T [i..j]),

let rm i,j(v) be the starting position of the rightmost occurrence of pal(v) in T [i..j]. Further let

srm i,j(v) be the starting position of the second rightmost occurrence of pal(v) in T [i..j] if

such a position exists, and otherwise, srm i,j(v) = −1. Throughout the computation of the

eertree for a sliding window, for each node v of eertree(T [i..j]) we keep the following invariant

BegPair i,j(v) which consists of two fields first and second such that: BegPair i,j(v).first =

78

CHAPTER 7. COMPUTING MINIMAL UNIQUE PALINDROMIC SUBSTRINGS FOR A SEMI-DYNAMIC STRING VIA

PALINDROMIC TREE

aa

0

acabab

a

aba

−1

a

a

a

c

b

c

a

b

b

T =
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b c a b a c a b a a c a b a b c

𝖾𝖾𝗋𝗍𝗋𝖾𝖾(T[5..14])

v

u

Figure 7.5: Examples for BegPair i,j(v). For string T = bcabacabaacababc and win-

dow [5, 14], the eertree(T [5..14]) is depicted. Consider node v in eertree(T [5..14]) with

pal(v) = aba. The rightmost and the second rightmost occurrences of aba in the window

T [5..14] are 11 and 6. Namely, rm5,14(v) = 11 and srm5,14(v) = 6. Further, inSL(v) = 0,

and thus, BegPair 5,14(v) = (11, 6). Also, for node u in eertree(T [5..14]) with pal(u) = c,

BegPair 5,14(u) = (10, 5) since rm5,14(u) = 10, srm5,14(u) = 5, and inSL(u) = 0.

When the leftmost character T [5] = c is deleted from the window T [5..14], srm5,14(u)

changes to −1. However, BegPair 6,14(u) = BegPair 5,14(u) = (10, 5) is allowed since

BegPair 6,14(u).second = 5 < 6 is a valid value for our invariant. Namely, we do not have

to update BegPair 6,14(u) explicitly when deleting the leftmost character T [5] from T [5..14].

rm i,j(v) and BegPair i,j(v).second = srm i,j(v) if inSL(v) = 0, and let their values be −1 or

some occurrence of pal(v) in T [0..j] otherwise. Namely, BegPair i,j(v) stores the rightmost

and second rightmost occurrences of pal(v) in T [i..j] when inSL(v) = 0, if such occurrences

exist. Otherwise, it temporarily stores some pair of integers, however, it will never be referred

to in our algorithms. In other words, we employ a kind of lazy maintenance of the rightmost

and second rightmost occurrences of pal(v) in T [i..j] that suffices for our purpose. See Fig. 7.5

for an example of BegPair i,j(v).

The next lemma states that given a node v, we can determine if pal(v) is unique or not by

checking the incoming suffix links of v and BegPair i,j(v).

Lemma 7.3. Let v be any node in eertree(T [i..j]). Then, pal(v) is unique in T [i..j] if and only

79

CHAPTER 7. COMPUTING MINIMAL UNIQUE PALINDROMIC SUBSTRINGS FOR A SEMI-DYNAMIC STRING VIA

PALINDROMIC TREE

Algorithm 1 update bp(v, x).

Require: Node v, and a starting position x of pal(v).

Ensure: Update v.bp appropriately with respect to the position x.

1: if x > v.bp.first then
2: v.bp.second ← v.bp.first

3: v.bp.first ← x

4: else if x > v.bp.second then
5: v.bp.second ← x

6: end if

if inSL(v) = 0 and BegPair i,j(v).second < i.

Proof. (⇒) We show the contraposition. There are two cases: (1) If inSL(v) �= 0, then

there is a palindromic substring P of T [i..j] with lps(P) = pal(v). Namely, pal(v) is not

border-maximal in T [i..j], and thus, pal(v) is not unique in T [i..j]. (2) If inSL(v) = 0 and

BegPair i,j(v).second = srm i,j(v) ≥ i, then pal(v) occurs at least twice in T [i..j] at positions

BegPair i,j(v).second and BegPair i,j(v).first .

(⇐) For the sake of contradiction, we assume that pal(v) is not unique in T [i..j]. Then,

by the definition of srm, i ≤ srm i,j(v) ≤ j. However, since inSL(v) = 0, srm i,j(v) =

BegPair i,j(v).second < i, a contradiction.

Next, we introduce our algorithms to maintain prefPal and BegPair for a sliding window,

which utilizes combinatorial properties shown in Section 7.2.

7.3.2 Maintaining the Auxiliary Data Structures

First, in Algorithm 1, we show subroutine update bp which updates the member variable v.bp

of a given node v where v.bp must be kept equal to BegPair it,jt(v) at each time t. It will be

called in the algorithms that we show later.

Next, we show our algorithms for updating data structures when we slide the given window.

When the leftmost character T [i − 1] is deleted from T [i − 1..j − 1], our data structures are

updated by Algorithm 2. Also, when a character T [j] is appended to T [i..j − 1], our data

structures are updated by Algorithm 3.

Time Complexities. Clearly, Algorithm 1 runs in constant time. In Algorithm 2, all lines ex-

cept for Line 13 can be processed in constant time. Thus, the total running time of Algorithm 2

80

CHAPTER 7. COMPUTING MINIMAL UNIQUE PALINDROMIC SUBSTRINGS FOR A SEMI-DYNAMIC STRING VIA

PALINDROMIC TREE

Algorithm 2 Update BegPair and prefPal when the first leftmost character is deleted.

Require: lpsuf = node(lps(T [i− 1..j − 1])), and v.bp = BegPair i−1,j−1(v) for each node v

in eertree(T [i− 1..j − 1]).

Ensure: lpsuf = node(lps(T [i..j − 1])), and v.bp = BegPair i,j−1(v) for each node v in

eertree(T [i..j − 1]).

1: lppref ← prefPal [i− 1]

2: if lppref = lpsuf then
3: lpsuf ← slink(lpsuf)

4: end if
5: q ← slink(lppref)

6: inSL(q) ← inSL(q)− 1

7: x ← i− 1 + len(lppref)− len(q)

8: update bp(q, x)

9: if len(q) > len(prefPal [x]) then
10: prefPal [x] = q

11: end if
12: if inSL(lppref) = 0 and lppref .bp.second < i− 1 then
13: Remove node lppref from the eertree

14: end if

is dominated by Line 13, i.e., O(log σ′). In Algorithm 3, the first four lines can be processed

in amortized O(log σ′) time by using the online construction algorithm [50]. Also, the remain-

ing lines can be processed in constant time, and thus, the total running time of Algorithm 3 is

amortized O(log σ′).

Correctness. First, it is clear that Algorithm 1 runs correctly. Next, let us consider the cor-

rectness of Algorithm 2. Let us first consider a special case when the window T [i − 1..j − 1]

itself is a palindrome. Then, we need to update lpsuf , which will be used in Algorithm 3.

Lines 2–3 of Algorithm 2 captures such a case. Next, we show that BegPair for all nodes are

updated correctly. By the invariant of BegPair , it suffices to update v.bp for every node v where

inSL(v) = 0, i.e., pal(v) is border-maximal. Let q be the node corresponding to the longest

palindromic suffix of lppref = lpp(T [i − 1..j − 1]). Then, it suffices to update q.bp since the

node q is the only candidate for a node whose corresponding palindrome to be border-maximal

just in this step. Thus, we update only q.bp in Lines 5–8, if it is needed. Further, we show

81

CHAPTER 7. COMPUTING MINIMAL UNIQUE PALINDROMIC SUBSTRINGS FOR A SEMI-DYNAMIC STRING VIA

PALINDROMIC TREE

Algorithm 3 Update BegPair and prefPal when a character is appended.

Require: lpsuf = node(lps(T [i..j − 1])), T [j], and v.bp = BegPair i,j−1(v) for each node v

in eertree(T [i..j − 1]).

Ensure: lpsuf = node(lps(T [i..j])), and v.bp = BegPair i,j(v) for each node v in

eertree(T [i..j]).

1: lpsuf ← node(lps(T [i..j]))

2: if lpsuf is not in eertree(T [i..j − 1]) then
3: Add new node lpsuf to the eertree

4: end if
5: y ← j − len(lpsuf) + 1

6: update bp(lpsuf , y)

7: prefPal [y] ← lpsuf

that prefPal is also updated correctly. By Lemma 7.2, the longest palindromic prefix of a win-

dow must be the longest palindromic suffix of either some window or the longest palindromic

prefix of some window. The palindrome pal(q) is the only one that is to be such a palindrome

just in this step. Thus, prefPal [x] is the only candidate which may be updated in this step

where x is the starting position of the occurrence of pal(q) that is the longest palindromic suffix

of lpp(T [i − 1, j − 1]). Therefore, it suffices to update prefPal [x] and update it if necessary

(Lines 9–11). Line 12 determines the uniqueness of lpp(T [i − 1..j − 1]) correctly by using

Lemma 7.3, and if it is unique, then the corresponding node lppref is removed (in Line 13).

Finally, consider the correctness of Algorithm 3. When a character is appended, we first

check the new longest palindromic suffix, and create a new node corresponding to the palin-

drome if necessary. These procedures in Lines 1–4 are correctly performed by running the

online construction algorithm [50]. Let y be the starting position of the longest palindromic

suffix of the window T [i..j]. The palindrome lps(T [i..j]) is the only candidate for a palindrome

to be border-maximal just in this step, and thus, it suffices to update lpsuf .bp in this step. Also,

lpsuf is the only candidate for the node that we need to newly store into prefPal in this step.

At this moment, lpsuf is clearly the longest palindrome starting at position y. Thus, we set

prefPal [y] ← lpsuf (Line 7).

To summarize this section, we obtain the following theorem.

Theorem 7.1. We can maintain eertrees for a sliding window in a total of O(n log σ′) time using

O(d′) + d space where d′ ≤ d is the maximum number of distinct palindromes in all windows.

Proof. When a character is appended to the right end of the window, we update the eertree

82

CHAPTER 7. COMPUTING MINIMAL UNIQUE PALINDROMIC SUBSTRINGS FOR A SEMI-DYNAMIC STRING VIA

PALINDROMIC TREE

itself by applying the online algorithm [50], and update our auxiliary data structures by using

Algorithm 3. When the leftmost character is deleted from the window, we update the eertree

and the auxiliary data structures by using Algorithm 2. The total running time is O(n log σ′).

The space usage is O(d′) words for the original eertree and the auxiliary member variable v.bp

for each node v of the eertree, plus d words for the array prefPal [0..d− 1].

By applying a subtle modification to the above algorithm, we obtain another variant of the

algorithm (Theorem 7.2 below) which is faster than Theorem 7.1 when d′σ < n log σ′, but using

additional (d′ + 1)σ space.

Theorem 7.2. We can maintain eertrees for a sliding window in a total of O(n + d′σ) time

using (d′ + 1)σ +O(d′) + d ∈ O(dσ) space.

Proof. In the original eertrees, each node stores a binary search tree to maintain branches dy-

namically. Instead, we use an array of integers of size σ, which allows us to add, delete, and

search for a node pointer (i.e., edge) labeled by a given character in constant time. Thus, the

log σ′ factor in our time complexity can be removed. On the other hand, we need σ + O(1)

space to represent each node object, and Θ(σ) time to initialize it. If we naively initialize such

a node object when adding a new node, the total time complexity increases to O(nσ). However,

we can reuse node objects that had been removed when deleting a character since such removed

nodes, and new nodes to be added are leaves, i.e., they do not have any child (Lemma 7.1).

Thus, by reusing node objects, we do not need to initialize an array of size σ when adding a

new leaf node. The total number of node objects to initialize is d′ + 1, and it costs O(d′σ) total

time to initialize them.

7.4 Applications of Eertrees for a Sliding Window

In this section, we apply our sliding-window eertree algorithm of Section 7.3 to computing

minimal unique palindromic substrings and minimal absent palindromic words for a sliding

window.

7.4.1 Computing Minimal Unique Palindromic Substrings for a Sliding

Window

Now, we show Lemma 7.4 which states a relationship between eertrees and MUPSs. Then, in

Lemma 7.5, we show that all MUPS can be computed using eertrees in an offline manner.

83

CHAPTER 7. COMPUTING MINIMAL UNIQUE PALINDROMIC SUBSTRINGS FOR A SEMI-DYNAMIC STRING VIA

PALINDROMIC TREE

Lemma 7.4. A string w is a MUPS of T if and only if there is a node v in eertree(T) such that

pal(v) = w, pal(v) is unique in T and pal(u) is repeating in T , where u is the parent of v.

Proof. (⇒) Since w is a MUPS of T , it is clear that there is a node v such that pal(v) = w and

it is unique in T . Also, since pal(v) = w �= ε, v has the parent u, which represents the string

w[1..|w| − 2]. By the definition of MUPS, pal(u) = w[1..|w| − 2] is repeating in T . (⇐) Since

the palindrome pal(v) = w is unique in T and pal(u) = w[1..|w| − 2] is repeating in T , w is a

MUPS of T .

Lemma 7.5. Given eertree(T), we can compute MUPST in O(|DPal(T)|) time.

Proof. Given a node v, we can detect whether pal(v) is a MUPS or not in constant time by

Lemma 7.4. Also, the starting position of a palindrome pal(v), which is unique in T is stored

in v.bp.first . Therefore, we can compute MUPST by a single traversal on eertree(T).

Moreover, we can efficiently maintain MUPSs for a sliding window.

Lemma 7.6. We can maintain the set of MUPSs for a sliding window in a total of O(n log σ′)

time using O(d) space.

Proof. In addition to the eertree data structure described in Section 7.3, we add 1-bit informa-

tion ismups into each node. This bit ismups is set to 1 if the node corresponds to a MUPS and to

0 otherwise. We first consider to delete the leftmost character T [i− 1] from T [i− 1..j − 1]. In

this case, only prefixes of T [i− 1..j − 1] are those whose number of occurrences in the sliding

window change. We check the nodes corresponding to the longest and the second longest palin-

dromic prefixes, and update ismups of them accordingly. We do not need to care about other

palindromic prefixes since they must be repeating in T [i..j − 1]. Symmetrically, we can easily

maintain ismups in the case when appending a character T [j] to T [i..j − 1].

7.4.2 Computing Minimal Absent Palindromic Words for a Sliding Win-

dow

For a relation between MAPWs and eertrees, the following lemmas hold.

Lemma 7.7. For any non-empty string w ∈ Σ∗, w is a MAPW of a string T if and only if there

is a node u in eertree(T) such that pal(u) = w[1..|w| − 2], len(u) = |w| − 2, and u does not

have an edge labeled by w[0].

84

CHAPTER 7. COMPUTING MINIMAL UNIQUE PALINDROMIC SUBSTRINGS FOR A SEMI-DYNAMIC STRING VIA

PALINDROMIC TREE

Proof. (⇒) Since w is a MAPW, w[1..|w|−2] is a palindromic substring of T , and thus, there is

a node u with pal(u) = w[1..|w| − 2] and len(u) = |w| − 2. Also, since the palindrome w does

not occur in T , u does not have an edge labeled by w[0]. (⇐) Since u is a node in eertree(T),

the string pal(u) = w[1..|w| − 2] occurs in T . Also, since u does not have an edge labeled by

w[0], the string w does not occur in T . Thus, w is a MAPW of T .

Lemma 7.8. Let MAPWT be the set of MAPWs of T . Then |MAPWT | = 2σ + (|DPal(T)| −
1)(σ − 1). Also, given eertree(T), MAPWT can be computed in O(|DPal(T)|σ) time.

Proof. We prove |MAPWT | = 2σ + (|DPal(T)| − 1)(σ − 1) by induction. If S = ε, then

DPal(T) = {ε} and MAPWT consists of a and aa for each character a ∈ Σ. Thus, |MAPWε| =
2σ = 2σ+(|DPal(ε)|−1)(σ−1) holds. We assume that |MAPWT | = 2σ+(|DPal(T)|−1)(σ−1)

holds for any string T of length k ≥ 0. Then consider any string T ′ of length k + 1, and let

T ′ = Tc where c ∈ Σ. If DPal(T) = DPal(Tc), then it is clear that MAPWTc = MAPWT , and

hence, |MAPWTc| = |MAPWT | = 2σ+(|DPal(T)|−1)(σ−1) = 2σ+(|DPal(Tc)|−1)(σ−1).

Otherwise, it is known that DPal(T)\DPal(Tc) = ∅ and DPal(Tc)\DPal(T) = {lps(Tc)} [16].

Let P = lps(Tc) be the only palindrome in DPal(Tc) \ DPal(T). Since P is absent from T

and P [1..|P | − 2] occurs in T (at least as a suffix of T), P is in MAPWT . Also, P occurs in Tc

and aPa is absent from Tc for each character a, and hence, |MAPWTc| = |MAPWT |+ (σ− 1)

holds. Therefore, |MAPWTc| = |MAPWT | + (σ − 1) = 2σ + |DPal(T)|(σ − 1) = 2σ +

(|DPal(Tc)| − 1)(σ − 1).

Next, we prove the time complexity for computing MAPWs with eertree(T). By Lemma

7.7, an ordinary node v does not have an edge labeled by c if and only if c pal(v)c ∈ MAPWT .

Also, a MAPW of length 1 is an absent character. Thus, it is easy to see that the information of

all MAPWs can be computed by traversing eertree(T) only once.

Also, we can maintain MAPWs for a sliding window by applying Theorem 7.2.

Corollary 7.1. We can maintain the set of MAPWs for a sliding window in a total of O(n+dσ)

time using O(dσ) space.

7.5 Conclusions and Future Work

In this chapter, we studied the problem of computing MUPSs for a sliding window of size d over

a given string T of length n. For the sake of computing MUPSs efficiently, we first considered

the problem of maintaining the palindromic trees for a sliding window. We then proposed an

85

CHAPTER 7. COMPUTING MINIMAL UNIQUE PALINDROMIC SUBSTRINGS FOR A SEMI-DYNAMIC STRING VIA

PALINDROMIC TREE

algorithm which maintains eertrees for a sliding window in a total of O(n log σ′) time using

O(d′)+d space, where d′ ≤ d be the maximum number of distinct palindromes in all windows.

Also, we give an alternative eertree construction algorithm for a sliding window that runs in

O(n+ dσ) time with (d+2)σ+O(d) space. Furthermore, we proposed (i) an algorithm which

maintains MUPSs for a sliding window in a total of O(n log σ′) time using O(d′)+d space, and

(ii) an algorithm which maintains MAPWs for a sliding window in a total of O(n + dσ) time

using O(dσ) space.

While the size of the original eertree data structure is O(d′), our first algorithm for maintain-

ing eertrees (that runs O(n log σ′) time) requires additional d-words of space. This is because

we use array prefPal [0..d−1] for maintaining the longest palindromic prefixes of the windows.

Thus, we have an open question: Can we design a sliding-window algorithm for computing

eertrees without using any Ω(d)-space data structure?

86

Chapter 8

Conclusions

In this thesis, we studied the problems of computing unique substrings and proposed space-

efficient data structures based on combinatorial properties on unique substrings.

In Chapter 3, we showed the tight upper bound (3n − 1)/2 for the maximum number of

substrings which can be a SUS for some text position in a string of length n. We also introduced

the notion of non-trivial SUS. Then, we showed that the number of non-trivial SUSs in a string

is less than 2n, and this upper bound is asymptotically tight. These are the first non-trivial

results for combinatorial properties on the shortest unique substring problems.

In Chapter 4, we addressed the SUS problem in the case where the string is given in run-

length encoding (RLE). We first showed that the number m of MUSs of a string is less than

twice the size r of the RLE string, and the upper bound is tight. Based on the combinatorial

results, we proposed a data structure of size O(r) such that we can answer any interval SUS

query in O(
√

log r/ log log r + k) time where k is the number of SUSs to output. Since r ≤ n

always holds, the size of our data structure is not worse than O(n). Notably, our method can be

sub-linear to n when the input string is well-compressible by RLE.

In Chapter 5, we also proposed an alternative data structure of size 4n + o(n) bits for the

interval SUS problem by utilizing succinct data structures. Furthermore, we gave a smaller data

structure of size 2.6n + o(n) bits for the point SUS problem. These O(n) bits data structures

can be constructed in O(n) time, and the working space is also small.

In Chapter 6, we considered the problem of maintaining the set of MUSs in a semi-dynamic

string, that is, we can append a character to the right-end of the string and delete the leftmost

character of the string. We proposed an algorithm running in amortized O(log σ) time per

operation, using O(n) space. Our method immediately yields a sliding-window algorithm for

maintaining MUSs in the windows that runs in a total of O(n log σ) time using O(d) space

87

CHAPTER 8. CONCLUSIONS

where d is the size of the window.

In Chapter 7, we considered the problem of maintaining the set of MUPSs in a semi-dynamic

string. For the sake of maintaining MUPSs, we first proposed an algorithm for maintaining the

palindromic tree (a.k.a. eertree) of a semi-dynamic string that runs in amortized O(log σ) time

per operation, using O(n) space. Then, by utilizing the result, we obtained an algorithm for

maintaining MUPSs in a semi-dynamic string with the same running time and space.

88

Bibliography

[1] A. Amir, G. Benson, and M. Farach. Let sleeping files lie: pattern matching in Z-

compressed files. Journal of Computer and System Sciences, 52(2):299–307, Apr. 1996.

[2] A. Apostolico, G. M. Landau, and S. Skiena. Matching for run-length encoded strings. J.

Complex., 15(1):4–16, 1999.

[3] O. Arbell, G. M. Landau, and J. S. Mitchell. Edit distance of run-length encoded strings.

Information Processing Letters, 83(6):307 – 314, 2002.

[4] G. Badkobeh, G. Fici, S. Kroon, and Z. Lipták. Binary jumbled string matching for highly

run-length compressible texts. Information Processing Letters, 113(17):604 – 608, 2013.

[5] H. Bannai, T. Gagie, S. Inenaga, J. Kärkkäinen, D. Kempa, M. Piatkowski, and S. Sug-

imoto. Diverse palindromic factorization is NP-complete. Int. J. Found. Comput. Sci.,

29(2):143–164, 2018.

[6] P. Beame and F. E. Fich. Optimal bounds for the predecessor problem and related prob-

lems. Journal of Computer and System Sciences, 65(1):38 – 72, 2002.

[7] H. Bunke and J. Csirik. An algorithm for matching run-length coded strings. Computing,

50(4):297–314, 1993.

[8] H. Bunke and J. Csirik. An improved algorithm for computing the edit distance of run-

length coded strings. Information Processing Letters, 54(2):93–96, Apr. 1995.

[9] S. Chairungsee and M. Crochemore. Using minimal absent words to build phylogeny.

Theor. Comput. Sci., 450:109–116, 2012.

[10] K.-Y. Chen, P.-H. Hsu, and K.-M. Chao. Efficient retrieval of approximate palindromes in

a run-length encoded string. Theoretical Computer Science, 432:28 – 37, 2012.

89

BIBLIOGRAPHY

[11] D. R. Clark. Compact Pat Trees. PhD thesis, 1998. UMI Order No. GAXNQ-21335.

[12] J. G. Cleary and I. H. Witten. Data compression using adaptive coding and partial string

matching. IEEE Trans. Communications, 32(4):396–402, 1984.

[13] M. Crochemore, A. Héliou, G. Kucherov, L. Mouchard, S. P. Pissis, and Y. Ramusat.

Absent words in a sliding window with applications. Inf. Comput., 270, 2020.

[14] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Data compression using antidic-

tionaries. Proceedings of the IEEE, 88(11):1756–1768, 2000.

[15] P. Davoodi, R. Raman, and S. R. Satti. Succinct representations of binary trees for range

minimum queries. In Proceedings of the 18th Annual International Computing and Com-

binatorics Conference (COCOON), pages 396–407, 2012.

[16] X. Droubay, J. Justin, and G. Pirillo. Episturmian words and some constructions of de

Luca and Rauzy. Theor. Comput. Sci., 255(1-2):539–553, 2001.

[17] E. R. Fiala and D. H. Greene. Data compression with finite windows. Commun. ACM,

32(4):490–505, 1989.

[18] G. Fici, T. Gagie, J. Kärkkäinen, and D. Kempa. A subquadratic algorithm for minimum

palindromic factorization. J. Discrete Algorithms, 28:41–48, 2014.

[19] J. Fischer, T. I, D. Köppl, and K. Sadakane. Lempel-Ziv factorization powered by space

efficient suffix trees. Algorithmica, 80(7):2048–2081, 2018.

[20] Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda. Computing DAWGs

and minimal absent words in linear time for integer alphabets. In Proceedings of the

41st International Symposium on Mathematical Foundations of Computer Science (MFCS

’16), pages 38:1–38:14, 2016.

[21] A. Ganguly, W.-K. Hon, R. Shah, and S. V. Thankachan. Space-time trade-offs for finding

shortest unique substrings and maximal unique matches. Theoretical Computer Science,

700:75–88, 2017.

[22] K. Goto and H. Bannai. Space efficient linear time Lempel-Ziv factorization for small

alphabets. In Proceedings of 2014 Data Compression Conference (DCC), pages 163–172.

IEEE, 2014.

90

BIBLIOGRAPHY

[23] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to

text indexing and string matching. SIAM Journal on Computing, 35(2):378–407, 2005.

[24] R. Groult, É. Prieur, and G. Richomme. Counting distinct palindromes in a word in linear

time. Inf. Process. Lett., 110(20):908–912, 2010.

[25] B. Haubold, N. Pierstorff, F. Möller, and T. Wiehe. Genome comparison without alignment

using shortest unique substrings. BMC bioinformatics, 6(1):123, 2005.

[26] W. Hon, S. V. Thankachan, and B. Xu. In-place algorithms for exact and approximate

shortest unique substring problems. Theor. Comput. Sci., 690:12–25, 2017.

[27] X. Hu, J. Pei, and Y. Tao. Shortest unique queries on strings. In Proceedings of String

Processing and Information Retrieval (SPIRE), pages 161–172, 2014.

[28] A. M. İleri, M. O. Külekci, and B. Xu. A simple yet time-optimal and linear-space algo-

rithm for shortest unique substring queries. Theoretical Computer Science, 562:621–633,

2015.

[29] L. Ilie and W. F. Smyth. Minimum unique substrings and maximum repeats. Fundam.

Inform., 110(1-4):183–195, 2011.

[30] H. Inoue, Y. Nakashima, T. Mieno, S. Inenaga, H. Bannai, and M. Takeda. Algorithms

and combinatorial properties on shortest unique palindromic substrings. J. Discrete Algo-

rithms, 52-53:122–132, 2018.

[31] G. Jacobson. Space-efficient static trees and graphs. In Proceedings of 30th Annual Sym-

posium on Foundations of Computer Science (FOCS), pages 549–554, 1989.

[32] J. Kärkkäinen, G. Manzini, and S. J. Puglisi. Permuted longest-common-prefix array. In

Proceedings of Combinatorial Pattern Matching (CPM), pages 181–192, 2009.

[33] D. Kempa. Optimal construction of compressed indexes for highly repetitive texts. In Pro-

ceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 1344–1357, 2019.

[34] J. W. Kim, A. Amir, G. M. Landau, and K. Park. Computing similarity of run-length

encoded strings with affine gap penalty. Theoretical Computer Science, 395(2–3):268 –

282, 2008. SAIL – String Algorithms, Information and Learning: Dedicated to Professor

Alberto Apostolico on the occasion of his 60th birthday.

91

BIBLIOGRAPHY

[35] D. Köppl. Computing lexicographic parsings. Technical report, TU Dortmund, 2019.

[36] D. Kosolobov, M. Rubinchik, and A. M. Shur. Finding distinct subpalindromes online. In

Proceedings of the Prague Stringology Conference 2013, pages 63–69, 2013.

[37] N. J. Larsson. Extended application of suffix trees to data compression. In Proceedings of

the 6th Data Compression Conference (DCC ’96), pages 190–199, 1996.

[38] Z. Li, J. Li, and H. Huo. Optimal in-place suffix sorting. In Proceedings of 2018 Data

Compression Conference (DCC), pages 422–422, 2018.

[39] J.-J. Liu, G.-S. Huang, and Y.-L. Wang. A fast algorithm for finding the positions of all

squares in a run-length encoded string. Theoretical Computer Science, 410(38–40):3942

– 3948, 2009.

[40] Mäkinen, Ukkonen, and Navarro. Approximate matching of run-length compressed

strings. Algorithmica, 35(4):347–369, 2003.

[41] V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding. Nordic

Journal of Computing, 12(1):40–66, 2005.

[42] G. K. Manacher. A new linear-time ”on-line” algorithm for finding the smallest initial

palindrome of a string. J. ACM, 22(3):346–351, 1975.

[43] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches.

SIAM Journal on Computing, 22(5):935–948, 1993.

[44] F. Mignosi, A. Restivo, and M. Sciortino. Words and forbidden factors. Theor. Comput.

Sci., 273(1-2):99–117, 2002.

[45] J. I. Munro, G. Navarro, and Y. Nekrich. Space-efficient construction of compressed

indexes in deterministic linear time. In Proceedings of the Twenty-Eighth Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 408–424, 2017.

[46] J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of permutations

and functions. Theoretical Computer Science, 438:74–88, 2012.

[47] T. Ohno, Y. Takabatake, T. I, and H. Sakamoto. A faster implementation of online run-

length Burrows-Wheeler transform. In Proceedings of Combinatorial Algorithms - 28th

International Workshop, IWOCA 2017, pages 409–419, 2017.

92

BIBLIOGRAPHY

[48] T. Ota and H. Morita. On a universal antidictionary coding for stationary ergodic sources

with finite alphabet. In Proceedings of the International Symposium on Information The-

ory and its Applications (ISITA ’14), pages 294–298, 2014.

[49] J. Pei, W. C. Wu, and M. Yeh. On shortest unique substring queries. In Proceedings of

IEEE 29th International Conference on Data Engineering (ICDE), pages 937–948, 2013.

[50] M. Rubinchik and A. M. Shur. EERTREE: an efficient data structure for processing palin-

dromes in strings. Eur. J. Comb., 68:249–265, 2018.

[51] K. Sadakane. Succinct representations of lcp information and improvements in the com-

pressed suffix arrays. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 225–232, 2002.

[52] M. Senft. Suffix tree for a sliding window: An overview. In WDS ’05, pages 41–46, 2005.

[53] M. Takeda. Encyclopedia of algorithms, chapter ”Compressed Pattern Matching”, pages

171–174. Springer US, 2008.

[54] Y. Tamakoshi, K. Goto, S. Inenaga, H. Bannai, and M. Takeda. An opportunistic text

indexing structure based on run length encoding. In Proc. CIAC 2015, pages 390–402,

2015.

[55] K. Tsuruta, S. Inenaga, H. Bannai, and M. Takeda. Shortest unique substrings queries

in optimal time. In Proceedings of SOFSEM 2014: Theory and Practice of Computer

Science, pages 503–513, 2014.

[56] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[57] K. Watanabe, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda. Fast algorithms for

the shortest unique palindromic substring problem on run-length encoded strings. Theory

Comput. Syst., 2020.

[58] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans.

Inf. Theory, 23(3):337–343, 1977.

93

