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Abstract

Topic modeling is an unsupervised method which takes a set of documents as input
and automatically clusters word groups and similar expressions that best characterize
a set of documents, which is widely used for dealing with sparse high-dimensional
features of text data and finding latent semantic relationships between documents. De-
spite its significant progress in various tasks and applications, for some more com-
plicated text analysis tasks such as sequential documents processing and word sense
analysis, the crucial information is finer-grained semantic relationships between words
(e.g., polysemy and synonyms) or documents (e.g., semantic relevance of sequential
documents). These fine-grained semantic relations are normally hidden in the context
information of the dataset, such as the surrounding documents for each sequential doc-
ument of a document sequence (document-level context) and the surrounding words
for each word in a document (word-level context). Most existing methods either ig-
nore the context information or simply introduce them without considering the intrinsic
relationship with the target task.

In this thesis, we mainly consider two types of contextual information: document-
level context information and word-level context information. For the type of the
document-level context information, its usage in topic modeling is intuitive, i.e., using
the topics of the proper surrounding documents to clarify the topic distribution of each
target document. This usage is suitable for the task of topic modeling of sequential
documents. Specifically, we first consider the document-level context information and
propose a new topic modeling methods for sequential documents with topic evolution
based on hybrid inter-document topic dependency. For the sequential documents, we
focus on modeling topic evolution, i.e., various and frequent emergences, growths and
fades of topics, which is commonly applied to emerging topic detection tasks, such as
emerging topic clustering and novel topic detection.

For the word-level context, there are at least two aspects of usages in the topic
modeling process: (1) using the topics of the context words to assist the topic assign-
ment for each word in a document; (2) generate both the word and its context words
based on an assigned topic. For (1), it is suitable for handling the topic segmentation
task for each document, i.e., dividing a document into a sequence of topically coherent
segments. For (2), it is more suitable for dealing with the word sense disambiguation
task in topic modeling, since the unit contained in the document is no longer a word,
but a combination of each word and its corresponding context words. Based on the
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two aspects of word-level contexts, we propose two topic models for two tasks: topic
segmentation task and word sense disambiguation (WSD) task. The former task is to
divide a document into a sequence of topically coherent segments, while preserving
long topic change-points and keeping short topic segments from getting merged. The
latter aim is to discover finer-grained word semantic differences in the topic model-
ing process, such as different entities or standpoints, and handle the disambiguation
problem.

The experiments for our models on the three tasks are conducted on their corre-
sponding standard datasets, respectively. For the sequential topic modeling task, our
experiments conducted on six standard datasets on topic modeling show that our pro-
posals outperform the state-of-the-art models, in terms of the accuracy of topic mod-
eling, the quality of topic clustering, and th effectiveness of outlier detection. For
the topic segmentation task, experimental results show that our proposal also produces
significant improvements in both topic coherence and topic segmentation on three stan-
dard datasets. For the WSD task in topic modeling, our experiments on three standard
datasets show that our proposal outperforms other state-of-the-art methods in terms of
word sense estimation, topic modeling, and document classification.
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Chapter 1

Introduction

1.1 Background and Motivation

Topic modeling is an unsupervised method which takes a set of documents as input

and automatically clusters word groups and similar expressions that best characterize

the documents. It is widely used for dealing with sparse high-dimensional features of

text data and finding latent semantic relationships between documents, such as Latent

Dirichlet Allocation (LDA) [7]. It takes a global view of the word distributions across

the corpus to assign a topic to each word occurrence and generate a topic distribu-

tion for each document. With the progressive prevalence of mobile devices in recent

decades, massive text data are continuously generated in various forms, e.g., news and

tweets. For these different kinds of text data, we consider more about fine-grained

semantic relationships between words (e.g., polysemy and synonyms) or documents

(e.g., semantic relevance of sequential documents). These fine-grained semantic re-

lations are normally hidden in the context information of the dataset. The context

information can consist of two aspects: (1) document-level context, and (2) word-level

context. The former refers to the surrounding documents for each sequential docu-
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(a) (b) (c) (d)

Figure 1.1: Illustrations for (a) plate notation of Latent Dirichlet Allocation (LDA [7]),

(b) diagram of topic model which uses document-level context, (c) diagram of topic

model which uses word-level context for topic assignment, and (d) diagram of topic

model which uses word-level contexts in document generation, where w′ refers to a

context word, S is the size of context window, θd refers to the topic distribution of

document d, φ is the word distribution for each K topics, α and β are their hyper

parameters.

ment of a document sequence, while the latter represents the surrounding words for

each word in a document. The usage of context information in topic modeling varies

according to different target tasks.

For the type of the document-level context information, its usage in topic modeling

is intuitive, i.e., using the topics of the proper surrounding documents to clarify the

topic distribution of each target document. This usage is suitable for the task of topic

modeling of sequential documents. However, for the type of the word-level context,

there are typically two variables inside the document in a topic model: the word and
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its corresponding topic, such as the variables w and z in LDA (Figure 1.1 (a)), which

is a popular form of statistical topic modeling. LDA mainly consists of four parts,

the word w, the topic assignment z for w, the topic distribution for a document θd

and the probability of words belonging to each topic φ, which are what needs to be

calculated. The algorithm tries to determine, for a given document, how many words

belong to a specific topic. Documents are represented as a mixture of topics and a

topic is a set of words. Therefore, there are at least two aspects of usages in the

topic modeling process: (1) using the topics of the context words to assist the topic

assignment for each word in a document (Figure 1.1 (c)); (2) generate both a word and

its context words based on an assigned topic (Figure 1.1 (d)). For (1), it is suitable for

handling the topic segmentation task for each document, i.e., dividing a document into

a sequence of topically coherent segments. For (2), it is more suitable for dealing with

the word sense disambiguation task in topic modeling, since the unit contained in the

document is no longer a word, but a combination of each word and its corresponding

context words. Different word senses of identical words can be learned by different

contexts in which they are combined in the modeling process. In this study, we focus

on three tasks, sequential document topic modeling, document topic segmentation and

word sense-aware topic modeling, to study how to effectively use different context

information to improve fine-grained semantic discovery in topic modeling.

1.1.1 Sequential Document Topic Modeling

For these sequential documents, we focus on modeling topic evolution, i.e., various

and frequent emergences, growths and fades of topics, which is commonly applied

to emerging topic detection tasks, such as emerging topic clustering1 and novel topic

1The emerging topic clustering task is to group the sequential documents belonging to the same
emerging topic into a set known as cluster without knowing their category [25].
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Figure 1.2: Example of a part of topic evolution in sequential documents. Blocks in

different colors represent documents belonging to various topics. We assume that Di−1

and Di belong to topics 2 and 1, respectively and Di+1 is an outlier. Note that, in this

example, we assume each document belongs to only one topic.

detection1 [25, 37]. For these tasks, the critical issue in modeling is to capture fades

and emergences of each topic and discriminate outliers from each emerging topic.

Unlike batch datasets, sequential documents are collected in chronological order

and usually exhibit a phenomenon called “bursty feature”, which refers to a tendency

that a large amount of sequential documents about a particular topic is generated over

a relatively short time period [34]. Therefore, the topic of each document may be

strongly related to those of its previous ones, and thus to preserve the sequential infor-

mation among inter-documents in modeling is particularly essential. Recently, many

topic models have been proposed for sequential documents by considering topic de-

pendencies for each document, where the topic dependency refers to the characteris-

tics that the topic distribution of a document depends on that of its previous one or

the mean of previous document set [1, 38, 56, 99, 103]. Some of these models consider

the topic dependencies between consecutive documents [1,99,103], while others focus

on those between documents and their corresponding previous document sets [38,56].

The former improves the sensitivity of new topic detection while the latter ensures that

1The Novel Topic Detection (also called First Story Detection) refers to detecting the first document
to discuss a topic, which allows to know when to start a new cluster [25].
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each sequential document follows the topic trend, where the topic trend refers to the

dominant topic distribution of the previous document set. They all made significant

progresses in various specific applications, such as DCT [56] in clustering streaming

short texts and s-LDA [1] in novel topic detection. However, these single-dependency

based methods are mainly based on an idealized assumption that the occurrences of

documents belonging to one topic are always continuous. In real sequential docu-

ments such as those on the Internet, topics are often interwoven and outliers which

belong to independent topics are frequently scattered in the sequence. For example, in

texts from “Citizen Journalism”1 such as Twitter, an outlier refers to a non-influential

record, e.g., personal diaries or local anecdotes, which are frequent but not widely

disseminated. Hence, these single-dependency based models have difficulties in dis-

criminating outliers between emerging topics, as well as assigning an appropriate topic

dependency for each document [37, 60].

As shown in Figure 1.2, blocks in black, white, and gray represent documents

belonging to Topic 1, Topic 2 and outlier, respectively. For the case of considering

topic dependencies between consecutive documents, we see that the topic distribution

of Di depends on that of Di−1 and the topic distribution of Di+1 depends on that of

Di. However, in this case, the single-dependency assumption disturbs the estimation

of the topic distributions of Di and Di+1, since Di+1 represents an outlier whose topic

should be independent, while the topic of Di belongs to a fading topic which should

depend on those of its long-term previous documents such as D j ( j = i−4, i−5, ...)

but not Di−1. On the other hand, if we consider the topic dependency of a document

on its previous document set, we see that both Di−1 and Di depend on their respective

previous document sets, which mostly belong to the fading topic of Topic 1. However,

1Citizen Journalism (also known as “We Media”) is a media based on public citizens who collect,
report, analyze and disseminate news or information [8].
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the topic estimations for Di−1 needs special care in this case, since Di−1 is a document

belonging to a new emerging topic that should depend on its recent previous document

Di−2. This interweaving situation of fading and emerging topics often happens in

sequential datasets, e.g., news and tweets [33,34,37]. In these cases, to handle outliers

under such frequent topic changes, the topic dependencies should be adaptable and

flexible.

In this task, we study the problem of topic modeling for sequential documents with

topic evolution. The aim is to assign an appropriate dependency to each sequential

document belonging to emerging topics and reserve independence for the topic distri-

butions of outliers. For the above motivation, we give an assumption which is closer

to the real data, i.e., a document has three probabilities of belonging to a fading topic,

a new emerging topic and an outlier. According to this assumption, we propose two

sequential topic models based on hybrid inter-document topic dependency: Sequential

Outlier Topic Model (SOT) and Fine-grained Sequential Outlier Topic Model (f-SOT).

Specifically, in SOT, we use the three probabilities to assign an appropriate dependency

for each document in modeling. For f-SOT, to deal with more complex topic evolution,

we extend SOT by considering fine-grained dependency relations.

1.1.2 Document Topic Segmentation

Topic segmentation is the task of dividing a document into a sequence of topically

coherent segments [78]. Specifically, besides the topic distribution, the order of topic

segments is also an essential part of document semantic information [75]. Even with

the same topic distribution, different orders might represent different or even opposite

standpoints. For example, a commentary at the end often determines the guidance of

the public opinion, such as the coverage of politics, in particular, election campaigns
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[10, 40]. The challenge of this task is to ensure both the coherency and the saliency of

the topic segments, where the coherency refers to keeping long topic segments without

being split, while the saliency reserving short topic segments without being absorbed

with longer ones.

Conventional topic modeling, such as Latent Dirichlet Allocation (LDA) [7], has

made significant progress in various specific applications by handling sparse high di-

mensional features and finding latent semantic relationships [54, 108]. Nevertheless,

the “bag of words” based models are unable to capture the order of topics within each

document. A simple solution is to consider the physical structure [3] (e.g., sentences

and paragraphs) of each document and use a Hidden Markov Model (HMM) struc-

ture [6, 21, 82, 97, 100] or predefine a common canonical topic ordering to model the

order of topics [20]. However, in recent decades, massive document data are contin-

uously generated in various forms (e.g., news and postings) and from multiple modes

(e.g., voice and video). The above models cannot handle these documents with no

physical structure information.

Another way is to use high-frequency words as keywords of topics [83]. Detecting

and utilizing keywords on the topic assignments improve the coherency of topic seg-

ments, especially in documents with well-proportioned topic distribution and sufficient

keywords. However, relying heavily on extracted keywords limits the saliency of topic

segments. For example, for a document with an uneven topic distribution, extracting

enough keywords for all the segments is difficult. As a result, less proportionate topic

segments are likely to be absorbed by topic segments with higher proportions, due to

insufficient keywords.

The fundamental reason for the limited saliency and coherency is that the topic

assignment of each word is highly uncertain. Most words can represent multiple topics,

due to their polysemy. The distributional hypothesis [81], which states that words in
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similar contexts have similar meanings, is one of the primary theories used to quantify

the meaning of words according to their context (e.g., Word2vec [30]). Inspired by

it, we assume that the topic of each word in a document is related to its context, that

is, similar contexts correspond to similar topics. Intuitively, even if a word can be

assigned to multiple topics, given its context, we can assign a corresponding topic

more certainly. For example, the word “Liverpool” can belong to a topic of sports,

geography or art, etc. However, if we combine it to the words in its context (e.g.,

“Liverpool” & “football” or “Liverpool” & “Beatles”), the assignment is much clearer.

In this task, we study the problem of how to balance saliency and coherency in

topic modeling and propose a new generative model, Contextual Latent Dirichlet Al-

location (Contextual-LDA). Instead of relying on keywords or the HMM structures,

in the topic assignment of each word, we consider both the topic distributions and the

co-occurrence distributions of context words under each topic. Besides, we also design

a post-processing algorithm to optimize the generated topic segments. The proposed

model enjoys two substantial merits over the state-of-the-art methods: (1) the topic of

each word is generated by both topic distribution and a set of word pairs in its con-

text, which ensures both satisfactory saliency and coherency in topic segmentation;

(2) it is independent of the physical structure, such as sentences or paragraphs, and the

predefined canonical topic ordering, which enhances the applicability to more datasets.

1.1.3 Word Sense-Aware Topic Modeling

Word sense-aware topic modeling is to identify the senses of polysemic words in the

topic modeling process, i.e., Word Sense Disambiguation (WSD) [102] in topic mod-

eling. Conventional solutions typically introduce an external standard knowledge li-

brary (e.g., Wikipedia, WordNet [64]) as machine-readable sense inventories for data
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enrichment1 [9, 14, 18, 23, 35]. However, in most lexicographic practice, word senses

are abstractions from clusters of corpus citations, i.e., the category and the explana-

tion for each sense strongly depend on the semantic coverage2 of the related dataset.

A more extensive semantic coverage corresponds to a coarser granularity of the word

semantic division [47]. Moreover, words may also have new senses over time [9, 47].

Therefore, in these knowledge libraries, word senses which are rare, emerging, or con-

fined to a specific domain are typically ignored [47]. For instance, for the word “re-

ligion” in a politics-related dataset, we may be more concerned about a finer-grained

semantic division of different religious groups, e.g., “the Islam” and “the Christian”,

rather than just handling them abstractly as “a belief in one or more gods”. Besides,

the semantics understanding of words in a dataset may also exhibit a unique perspec-

tive. For example, for the word “homosexual” in a social network corpus, the position

it stands for might be more valuable than its original meaning. This kind of unique

perspective on semantic understanding is always dateset specific and implicitly con-

tained in the co-occurrence pattern of each word and its context [46, 47]. Therefore,

handling these fine-grained WSD problems without data enrichment is a critical issue

in the document representation task. The challenge for this disambiguation problem

is to divide various senses of each polysemous word while preserving the differences

between different words, especially synonyms.

Several researchers model multiple word senses without data enrichment by sepa-

rate context clusters [36,66,77]. Specifically, they group the contexts of all occurrences

for each word into discriminated sense clusters, use these clusters to re-label the words

based on the contexts of each occurrence, and then learn word or document repre-

sentations based on these re-labeled words. These context clustering-based methods

1Data enrichment is defined as merging third-party data from an external authoritative source with
an existing database of first-party customer data [62].

2Semantic coverage is the coverage of themes relative to a dataset.
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can capture different usages of word senses in a dataset without external knowledge

libraries. However, relying solely on each clustered contexts is likely to decrease the

differences between synonyms, since they often occur in highly similar contexts when

representing similar or identical senses, such as the sense “belief ” for words “faith”

and “religion”. Besides, the context in which a word occurs is not necessarily suffi-

cient to specify its sense. For example, “kick” contributes more to clarifying the sense

of the word “ball” than “play” because “play” has a broader sense than “kick”.

Another kind of solution is to introduce an auxiliary module which is linked through

an intermediate variable t, e.g., the topic assignment for each word [9, 57, 86]. Iden-

tical words combined with different values of t correspond to different senses. This

approach can take advantage of the complementarity of different models and improve

document representation performance. However, there are two risks for the applica-

bility of the word sense division: (1) the differences in senses of identical words with

the same value of t could be ignored, and (2) identical words with different t values

could be misinterpreted as representing different senses. For example, the word “key”

in the topic of “electronic”, might has at least two senses of “buttons on a keyboard”

and “string of bits for scrambling and unscrambling”, and the sense “buttons on a key-

board” may correspond to at least two topics of “electronic” and “music”. Therefore,

it is not always appropriate to impose such a semantic division for each word.

Either of these two kinds of solutions seems unable to construct a common word

sense disambiguation standard in document representation. The fundamental reason

is that the different senses of a word are mainly assumed to be independent and their

intrinsic relationships are ignored. These relationships are an essential basis to clarify

the usage differences in other words. For example, the difference between the senses of

“belief ” for “religion” and “faith” lies in that ”faith” in something does not necessarily

pre-suppose that the belief could not be proven wrong, while “religion” is not [67].
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Such internal differences of synonyms are challenging to be captured only according

to the sense related to their contexts in which they occur, and should also depend on

their other senses, e.g., another sense “ceremonies and duties related to a belief ” of

“religion” may help clarify its difference to “faith” [95]. Therefore, in estimating a

word sense, the context of the word where it occurs, and the contexts of its other

senses should both be considered in a weighted integrating manner. The former gives

a semantic division for identical words, while the latter provides discrimination for

different words with the same (or similar) senses. Moreover, the context window length

of each word also needs a special care since only the context related to the word sense

should be taken into account in sense estimation.

In this task, we focus on the problem of fine-grained word sense disambiguation

in topic modeling. We propose a hybrid context based word sense aware topic model

(named HCT), where each sense of a word is estimated by integrating their topic distri-

butions of both the context words in which it occurs and those of its other occurrences.

Besides, we introduce the “Bag-of-Senses” (BoS) assumption that a document is a

multiset of word senses, based on which HCT generates a word sense instead of the

words themselves. The proposed model enjoys two substantial merits over the state-

of-the-art methods: (1) no data enrichment or auxiliary module is needed, (2) it is an

end-to-end model in which the topic vectors for hybrid contexts as well as their weights

for each word are all considered as variables and learned jointly.

1.2 Contribution of This Thesis

In this doctoral thesis, we make three main contributions on the problems of document

topic modeling based on context information. The contributions are briefly summa-

rized as follows.
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• In the task of sequential documents topic modeling, we consider the document-

level context information and propose a new topic model for sequential docu-

ments with topic evolution based on hybrid inter-document topic dependency.

Topic modeling for sequential documents is the basis of many attractive appli-

cations such as emerging topic clustering and novel topic detection. Sequential

documents such as news and social media information streams prevail on the

Internet and gain increasing importance. Most of the existing topic models in-

troduce their inter-document dependencies between topic distributions for these

tasks. Considering such dependencies enables preserving sequential relation-

ships between documents and effectively capturing fades or emergences of each

topic. However, they basically consider only one kind of dependency, e.g., the

topic distribution of a document solely depends on that of its previous one or the

mean of the fixed number of the previous documents. In a real situation, adjacent

emerging topics are often intertwined, and outliers which belong to independent

topics are scattered in the sequence. These single-dependency based models

have difficulties in handling the topic evolution in such multi-topic and outlier

mixed sequential documents. To solve this problem, our method considers three

kinds of topic dependencies for each document to handle documents belonging

to a fading topic, an emerging topic, or an independent topic. Moreover, to deal

with more complex topic evolution, we extend SOT by considering fine-grained

dependency relations.

• In the task of topic segmentation, we use the word-level context information to

assist topic assignment. Specifically, we propose a new generative model for

topic segmentation based on Latent Dirichlet Allocation. The task is to divide a

document into a sequence of topically coherent segments, while preserving long
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topic change-points (coherency) and keeping short topic segments from getting

merged (saliency). Most of the existing models either fuse topic segments by

keywords or focus on modeling word co-occurrence patterns without merging.

They can hardly achieve both coherency and saliency since many words have

high uncertainties in topic assignments due to their polysemous nature. To solve

this problem, we introduce topic-specific co-occurrence of word pairs within

contexts in modeling, to generate more coherent segments and alleviate the in-

fluence of irrelevant words on topic assignment. We also design an optimization

algorithm to eliminate redundant items in the generated topic segments.

• In the task of handling WSD problem in topic modeling, we use the word-level

context information to document generation. Specifically, we propose a hybrid

context based topic model for word sense disambiguation in document represen-

tation. Traditional methods mainly rely on knowledge libraries for data enrich-

ment; however, semantics division for a word may vary from different domain-

specific datasets. We aim to discover more particular word semantic differences

for each input dataset and handle the disambiguation problem without data en-

richment. The challenge for this disambiguation is to (1) divide various senses

for each polysemous word while (2) preserve the differences between synonyms.

Most of the existing models are either based on separate context clusters or in-

tegrating an auxiliary module to specify word senses. They can hardly achieve

both (1) and (2) since different senses of a word are assumed to be independent

and their intrinsic relationships are ignored. To solve this problem, we estimate

a word sense by both the context in which it occurs and the contexts of its other

occurrences. Besides, we introduce the “Bag-of-Senses” (BoS) assumption: a

document is a multiset of word senses, and the senses are generated instead of
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the words.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we first introduce a se-

quential topic model based on hybrid inter-document topic dependency: Sequential

Outlier Topic Model (SOT) and Fine-grained Sequential Outlier Topic Model (f-SOT).

In Chapter 3, we introduce a new generative model, Context-Aware Latent Dirichlet

Allocation (C-LDA), for topic segmentation. In the topic assignment, we consider both

the topic distributions and the topic-specific occurrence of word pairs in contexts. In

Chapter 4, we introduce a hybrid context based word sense aware topic model (named

HCT), where each sense of a word is estimated by integrating their topic distributions

of both the context words in which it occurs and those of its other occurrences. In

Chapter 5, we conclude the thesis and discuss future work.
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Chapter 2

Topic Modeling for Sequential

Documents Based on Hybrid

Inter-Document Topic Dependency

2.1 Overview

In this chapter, we restrict our attention to the document-level context based topic mod-

eling for sequential documents. For sequential topic modeling, Dynamic Topic Model

(DTM) [5] is one of the first proposals which handle topic drifts by modeling the topic

dependencies between consecutive documents via Gaussian process. Based on DTM,

many related studies have been proposed, such as Topic Tracking Model (TTM) [38],

Temporal Latent Dirichlet Allocation (TM-LDA) [101] and Topic over Time Model

(ToT) [99]. These dependencies are however obtained through Gaussian distributions,

the expectation of which corresponds to the previous parameters. To more sensitively

capture the topic evolutions and transitions, Streaming Latent Dirichlet Allocation (s-
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LDA) [1] uses Dirichlet distributions to model the document-specific topic distribu-

tions and offers flexibilities over the consecutive topic dependencies. Nevertheless,

relying solely on the consecutive documents might not supply rich enough content to

infer a per-document multinomial distribution of topics [56]. To solve this problem,

several studies extend the scope of the topic dependency on long-term history [55,56].

Dynamic Clustering Topic Model (DCT) [56] considers the dependency between topic

distributions of documents and their corresponding previous document sets. Emerging

Topic Tracking Model (ETT) [37] models topic evolution by generating latent topics

from word co-occurrences and estimating novelty for each word from the sequence

with a given time decay. They all have made significant progress in several directions,

e.g., short-text data clustering and semantic correlation detection. However, they are

more suitable for datasets with clear transitions of emerging topics and with outliers

filtered out beforehand [1, 56].

Several neural network based methods can also be utilized in sequential documents

modeling, such as GT-Sem [109], Transformed-W2V [49], Aligned-W2V [32] and

Dynamic Word2vec [107]. These methods capture the topic evolution of sequential

documents by learning the semantic changes of words in the document sequence. The

word semantic changes are basically learned by a similar two-step pattern: (1) learning

static word embeddings in each time slice separately, and (2) constructing a transfor-

mation function of words between any two time slices to associate each dimension of

word embeddings across time slices. All of them have provided powerful performance

in many sequential document related NLP tasks. However, these time-slicing based

embedding methods are difficult to detect outlier documents, since outliers are mixed

into each time slice and used to learn word vectors together with other documents.

Dividing a corpus into separate time slices may also result in a too-small training set

to train an accurate word embedding. Besides, the word embedding models are based
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on a view of the local word collocation patterns that are observed in a text corpus

while the latent topic models take a more global view of the word distributions across

the corpus to assign a topic to each word occurrence. Many studies have shown that

these two paradigms are complementary in how they represent the semantics of docu-

ments [58, 87].

In this chapter, we study the problem of topic modeling for sequential documents

with topic evolution. The aim is to assign an appropriate dependency to each sequen-

tial document belonging to emerging topics and reserve independence for the topic

distributions of outliers. For the above motivation, we give an assumption which is

closer to the real data, i.e., a document has three probabilities of belonging to a fading

topic, a new emerging topic and an outlier. According to this assumption, we propose

two sequential topic models based on hybrid inter-document topic dependency: Se-

quential Outlier Topic Model (SOT) and Fine-grained Sequential Outlier Topic Model

(f-SOT). Specifically, in SOT, we use the three probabilities to assign an appropriate

dependency for each document in modeling. For f-SOT, to deal with more complex

topic evolution, we extend SOT by considering fine-grained dependency relations. We

compare them to state-of-the-art methods [1,37,56] on six standard datasets and show

that our proposals are superior in terms of the accuracy of topic modeling, the quality

of topic clustering, and the effectiveness of outlier detection. The rest of this section is

organized as follows. Section 2.2 briefly summarizes the related work of topic models

used for sequential documents. Section 2.3 presents the details of the proposed two

methods and their model inference. We evaluate the method in Section 2.4 and draw a

conclusion in Section 2.5.
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2.2 Sequential Topic Modeling

This section describes our methodology in detail. In Section 2.2.1, we describe the

target and related problems as well as details of how the dependencies affect the topic

modeling for sequential documents. Section 2.2.2 and Section 2.2.3 describe our Se-

quential Outlier Topic Model, SOT, and its corresponding parameter estimation. Sec-

tion 2.2.4 extends SOT to fine-grained SOT (f-SOT) to deal with more complex cases,

such as datasets with a large number of topics occurring in each period.

2.2.1 Sequential Documents Dependencies

As a topic model, the basic task is, for a sequence of n documents D= (D0,D1, ...,Dn),

to obtain the topic distribution θDi for each document Di and word distribution φDi of

Di over K topics, where θDi and φDi,k are both assumed to obey Dirichlet distribution

with hyper parametersα and β, respectively. The number K of topics is assumed fixed

and one word occurrence in a document corresponds to one topic [7]. For sequential

documents, the target problem is to improve the sensitivity of novel topic detection and

the quality of emerging topic clustering. The sensitivity to a novel topic detection is

measured by Novelty [105] score, which quantifies the freshness of a word or a topic

in the sequence and we will explain it in detail in the experiment part.

To distinguish among documents belonging to each emerging topic and outlier in

the modeling, there are three related problems: (1) to increase the intra-topic similarity

for document topic distributions belonging to each topic, (2) to preserve the inter-

topic dissimilarity between each pair of topic clusters, and (3) to discriminate outliers

automatically from topic evolution. Referring to the definitions in studies [22, 88], the

intra-topic simialrity Sk for a topic k and inter-topic dissimilarity Ik1,k2 for two topics
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k1 and k2 are defined as1:

Sk =
1
|Dk| ∑

Di∈Dk

f (θDi,θDk), (2.1)

Ik1,k2 =
1

f (θDk1
,θDk2

)
, (2.2)

where Dk refers to the set of documents belonging to topic k2. θDk is the mean topic

distribution of all documents in Dk. f (·) refers to a similarity degree between two

distributions such as the inverse of Euclidean distance, Kullback-Leibler divergence, or

cross entropy. We use these evaluation measures when the ground truth is available. An

outlier in sequential data is more regarded as a contextual outlier, which is anomalous

in a specific context but not otherwise [13, 27]. Therefore, we define an outlier as a

document belonging to a rare-occurring topic in a given time period.

Traditionally, the total probability of a topic model, e.g., LDA, is:

P(W ,Z,Θ,Φ|α,β)

=
K

∏
k=1

P(φd,k|β)
|D|

∏
d=1

P(θd|α)
Vd

∏
m=1

P(Zd,m|θd)P(Wd,m|φd,Zd,m),
(2.3)

where W refers to the word set in D and Z refers to their corresponding topics. Θ

represents the distributions of the documents in D. Φ is the word distributions over

K topics. Wd,m refers to the mth word in document d. Zd,m represents the generated

topic of Wd,m. φd,k refers to the word distribution for document d of topic k. For

1These two equations are our definitions for the target problems based on the similar definitions in
those two studies [22, 88].

2The topic k in these equations is the ground-truth topic of a document, which is determined by the
topic label or topic keyword of the dataset.
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Figure 2.1: Schematic illustration of the estimated topic distributions of documents

without considering dependency, with single-dependency and with hybrid dependency.

Gray points refer to outliers and the other points represent documents belonging to dif-

ferent topics. Single-dependency based methods are likely to decrease the dissimilarity

of the two topic clusters. By considering the hybrid topic dependencies, the intra-topic

similarity of each topic becomes higher and the dissimilarity of the two topic clusters

are preserved.
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sequential topic modeling, topic distributions of the previous documents are typically

used as prior information for topic estimation. Specifically, P(θd|α) is replaced by

P(θd|θ∗d,α) in total probability, where θ∗d is the topic distribution calculated based on

the previous documents.

Assigning topic dependencies for documents can increase the intra-topic similar-

ity of topic distributions for documents belonging to the same topic. Suppose that, as

Figure 2.1 shows, the documents Di−1 and Di−2 both consist of 8 words and 3 latent

topics (Topic 1, Topic 2 and Topic 3). Moreover, in Di−1, we assume that there are 2

words belonging to Topic 1, 4 words belonging to Topic 2, and 2 words belonging to

Topic 3. For Di−2, we assume there is 1 word belonging to Topic 1, 6 words belong-

ing to Topic 2, and 1 word belonging to Topic 3. According to the “Bag-of-Words”1

assumption, the topic distributions θDi−1 and θDi−2 of Di−1 and Di−2 are estimated by

the topic histograms of all their contained words, respectively, where θDi−1=(2/8, 4/8,

2/8)=(0.25,0.5,0.25) and θDi−2=(1/8, 6/8, 1/8)=(0.125,0.75,0.125). For simplicity,

we use Euclidean distance to evaluate the similarity between the two topic distribu-

tions. The distance dis(θDi−1 ,θDi−2) between θDi−1 and θDi−2 is 0.31. On the other

hand, if we consider their topic dependency and assume the new topic distribution

of Di−1 (denoted by θ′Di−1
) depends on θDi−2 , based on the the conjugate nature of the

Dirichlet and the Multinomial distribution [52], θ′Di−1
becomes (2+0.125

9 , 4+0.75
9 , 2+0.125

9 )≈

(0.23,0.54,0.23) and the new distance dis′(θ′Di−1
,θDi−2)≈ 0.26 is shorter than dis(θDi−1,θDi−2).

However, the problem is how to assign appropriate topic dependency to preserve

the inter-topic dissimilarity of each topic cluster. For methods based on single-dependencies,

this problem is always unavoidable, since a document may depend on either the topic

distribution of the previous document or the overall mean of the previous ones. Sim-

1The “Bag-of-Words” (BoW) assumes that a document is a multiset of words, disregarding grammar
and even word order but keeping multiplicity [89].
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ilarly, we take the six documents in Figure 1.2 and Figure 2.1 as examples. Suppose

that, the rest of topic distributions of Di, Di−3, Di−4 and Di−1 are θDi =(0.75,0.125,0.125)

(6 words of Topic 1, 1 word of Topic 2 and 1 word of Topic 3), θDi−3 =(0.125,0.875,0)

(1 words of Topic 1, 7 words of Topic 2 and 0 word of Topic 3), θDi−4 =(0.875,0.125,0)

(7 words of Topic 1, 1 word of Topic 2 and 0 word of Topic 3), θDi−5 =(0.875,0,0.125)

(7 words of Topic 1, 0 word of Topic 2 and 1 word of Topic 3), respectively. Therefore,

the center of the two topic clusters are θD1 ≈ (0.84,0.08,0.08) and θD2 ≈ (0.17,0.71,0.12).

Besides, we assume the mean topic distribution of Di+1 is θ<Di+1 = (0.9,0.05,0.05)

since Topic 1 dominates the topics of the previous document set. We see the original

distance dis(θD1,θD2) is 0.92. If we let θDi be dependent on θDi−1 , then the topic

distribution for the Di becomes θDi = (6+0.25
9 , 1+0.5

9 , 1+0.25
9 ) ≈ (0.69,0.17,0.14), and

the new centers θ
′
D1
≈ (0.68,0.21,0.11) as well as θ

′
D2
≈ (0.12,0.83,0.05), and thus

the new distance dis′(θ
′
D1
,θ
′
D2
) decrease to 0.72. On the other hand, if we let θDi−1

depend on θ<i−1 (where θ<i−1 ≈ θ<i+1), we obtain the same result since θDi−1 will be

assigned to the topic of θD1 that it does not belong to.

Based on these results, we see that if the topic of a document is different from that

of the one it depends, its topic distribution is probably assigned to a wrong topic and

thus the inter-topic dissimilarities for each pair of topics are decreased. Therefore, the

topic distribution of a document which belongs to a new emerging topic should be de-

pendent on its previous one while that of a document which belongs to a fading topic

should depend on the previous document set. Moreover, outliers should be indepen-

dent of any previous topic distributions. According to this motivation, we introduce a

variable named dependency type ed which takes one of 0, 1, 2 as its value to specify the

appropriate kind of dependency for a document d, and a variable ηd = (ηd,0,ηd,1,ηd,2)

to handle the probabilities for three kinds of dependencies: (1) Consecutive Depen-

dency (ηd,0), (2) Trend Dependency (ηd,1), and (3) Independency (ηd,2). Consecutive
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Dependency refers to the dependency of a document topic distribution on that of its

previous one while the Trend Dependency refers to the dependency of a topic distribu-

tion on the overall mean of its corresponding previous L documents, where L is named

Trend Dependency factor. Independencies represent the degree to what extent those

topic distributions are independent of the ones for their consecutive documents and

trends.

Let θd be the topic distribution of document d, θd−1 be the topic distribution of

its previous document and θ<d−1 be the mean of the distributions of the previous doc-

ument set D<d−1 = Dd−L, ...,Dd−1. The probabilities for the three dependencies are

obtained by comparing θd with θd−1 and θ<d−1. Specifically, ed obeys a Categorical

distribution Cat(ηd) to determine whether d depends on its consecutive document, its

trend or neither of them. The detailed definitions are as follows:

ed ∼Cat(ηd), (2.4)

ηd = (ηd,0,ηd,1,ηd,2), (2.5)

where

ηd,0 =
f (θd,θd−1)

f (θd,θ<d−1)+ f (θd,θd−1)+ ε
,

ηd,1 =
f (θd,θ<d−1)

f (θd,θ<d−1)+ f (θd,θd−1)+ ε
,

ηd,2 =
ε

f (θd,θ<d−1)+ f (θd,θd−1)+ ε
.

(2.6)

In our experiments, we choose the inverse of symmetric Kullback-Leibler divergence

as f (·) for Eq. (2.6). The parameter ε refers to an outlier sensitivity factor, which
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enables ed to generate ηd,2 at a certain probability. We formalize the Consecutive

Dependency as

P(θd|α,θd−1)∼ Dir(α+θd−1), (2.7)

and the Trend Dependency as

P(θd|α,θ<d−1)∼ Dir(α+θ<d−1), (2.8)

and the Independency as

P(θd|α)∼ Dir(α), (2.9)

where Dir refers to Dirichlet distribution and α is its fixed prior parameter.

Therefore, the topic distributions can be more accurate in terms of their ground-

truth topics in estimation. When there is no topic evolution, both f (θd,θ<d−1) and

f (θd,θd−1) of current document d are high and thus d has high probabilities of both

the Trend Dependency and Consecutive Dependency. In this case, there is no differ-

ence between the two kinds of dependencies, i.e., θd−1 and θ<d−1 are highly similar,

since they share the same topic at present. On the other hand, when topic evolution

occurs, there are three cases: (1) higher f (θd,θ<d−1) and lower f (θd,θd−1); (2) lower

f (θd,θ<d−1) and higher f (θd,θd−1); (3) lower f (θd,θ<d−1) and lower f (θd,θd−1).

The first case indicates that the current document is more likely to belong to a fad-

ing topic, the second one indicates it has a high probability to belong to an emerging

topic, and the third case indicates that it is more likely to be an outlier. Based on the

above definitions, only if both of f (θd,θ<d−1) and f (θd,θd−1) are of lower values,

document d can be regarded as an outlier.

Also, take the documents Di−1, Di, Di+1 as an example. Suppose that the topic dis-

tribution of outlier Di+1 is θDi+1 = (0.1,0.2,0.7), and the mean topic distributions of
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Figure 2.2: Schematic illustration of hybrid inter-document topic dependencies. The

arrows represent the Consecutive Dependency, the Trend dependency, and the Inde-

pendency, where the thickness of each arrow corresponds to its probability.

their previous document sets are the same θ<Di+1 ≈ θ<Di ≈ θ<Di−1 ≈ (0.9,0.05,0.05)

since Topic 1 dominates the topics of the previous document set. Based on Eq. (2.6),

we obtain the ηDi−1 ≈ (0.91,0.02,0.07), ηDi ≈ (0.03,0.90,0.07) and ηDi+1 =(0.21,0.16,0.63)

for Di−1, Di, and Di+1, respectively, with the parameter ε = 2. As shown in Fig-

ure 2.2, we see that the topic distribution of Di−1 has the highest probability ηDi−1,0,

depending on that of its previous one Di−2, the topic distribution of Di has the high-

est probability ηDi,1, depending on the mean topic distribution of their previous ones

θ<Di , and Di−2 has the highest probability ηDi+1,2, being independent. Coming back

to the example in Figure 2.1, if θDi−1 depends on θDi−2 , then the center of the two

topic clusters are θ
′′
D1
≈ (0.84,0.08,0.08) and θ

′′
D2
≈ (0.17,0.73,0.1). The new dis-

tance dis′′(θ
′′
D1
,θ
′′
D2
) = 0.93, which keep the original distance between the two cluster

centers(0.92). These results all fit our intuition that the topic distribution for each doc-

ument, e.g., Di−1, Di−2, is likely to be close to those of the documents with the same

topic and keep outlier documents (e.g., Di+1) being independent during the estimation

steps.
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Figure 2.3: Graphical Models for Sequential Outlier Topic Model (SOT).

2.2.2 Sequential Outlier Topic Model

As Figure 2.3 shows, our Sequential Outlier Topic model (SOT) contains two new vari-

ables ed and ηd , where ed represents the dependency type, which is either Consecutive

Dependency, Trend Dependency or Independency, and ηd refers to their corresponding

probabilities. For a sequence of documents D with a vocabulary of size V and latent

topics indexed in {1, ...,K}, SOT is associated to the following generative model:

1. Generate documents according to a standard LDA model.

2. For each document d:

(a) Calculate ηd based on (1) and (2).

(b) Draw dependency type ed: ed ∼Cat(ηd).

(c) Draw topic distribution θd of document d:
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θd ∼


Dir(α+θ<d−1), ed = 0

Dir(α+θd−1), ed = 1

Dir(α), ed = 2

(d) Draw word distribution φd,k from φd for each topic k of d:

φd,k ∼ Dir(β+φd−1,k)

(e) For each word W in d (index by m):

i. Choose a topic Zd,m assignment: Zd,m ∼Cat(θd).

ii. Draw Wd,m: Wd,m ∼Cat(φd,zd,m),

whereφd,k is the word distribution of d over topic k. In the process of topic generation,

ηd is adjusted by the similarities between θd with θd−1 and θ<d−1.

2.2.3 Parameter Estimation

For complex probability models, to obtain the optimal parameters directly by point

estimation is difficult, therefore, except for α and β, the parameters of our model are

approximately estimated by Gibbs sampling [29], which is one of the widely used

sampling methods based on Markov Chain Monte Carlo (MCMC) [11]. In the proce-

dure, we need to calculate the conditional distribution Pd,m,k = P(Zd,m = k|Zd,−(d,m)

,Wd,θd−1,φd−1,θ<d−1,α,β,ηd), whereZd,−(d,m) refers to the topic assignments for

all words in d except word Wd,m. Pd,m,k is computed as follows:

Pd,m,k =
∫

P(Wd,m = t|φd)P(φd|W−(d,m),Zd,−(d,m),φd−1,β)dφd∫
P(Zd,m = k|θd)

∫
P(θd|W−(d,m),Zd,−(d,m),ed,α)P(ed|ηd)dθdded.

27



Since ed is a discrete variable and generated from a multinomial distribution with pa-

rameter ηd , the integral of ed is the summation of its different values.

Pd,m,k ∝
(
ηd,0 ·ϒd,0 +ηd,1 ·ϒd,1 +ηd,2 ·ϒd,2

)
∫

P(Wd,m = t|φd)P(φd|W−(d,m),Zd,−(d,m),φd−1,β)dφd,

where

ϒd,0 =
∫

P(Zd,m = k|θd)P(θd|W−(d,m),Zd,−(d,m),θ<d−1,α)dθd,

ϒd,1 =
∫

P(Zd,m = k|θd)P(θd|W−(d,m),Zd,−(d,m),θd−1,α)dθd,

ϒd,2 =
∫

P(Zd,m = k|θd)P(θd|W−(d,m),Zd,−(d,m),α)dθd.

By the definition of Dirichlet distribution, conditional distribution Pd,m,k can be further

simplified as a sum of expectations of Dirichlet distributions as (10).

Pd,m,k =EDir(φd−1+β)(φd,k,t)

[
ηd,0EDir(θ<d−1+α)

(θd,k)

+ηd,1EDir(θd−1+α)(θd,k)+ηd,2EDir(α)(θd,k)

] (2.10)

The conditional probability is finally obtained by computing the expectations of the

four Dirichlet distributions. According to the definition of the expectation of Dirichlet

Distribution, we obtain the conditional probability Pd,m,k:

Pd,m,k ∝

nt
k,−(d,m)+φd−1,k,t +β

∑
V
f=1 n f

k,−(d,m)+φd−1,k, f +β

[
ηd,0(nd,k,−(d,m)+θ<d−1,k +α)

+ηd,1(nd,k,−(d,m)+θd−1,k +α)+ηd,2(nd,k,−(d,m)+α)

]
,

(2.11)
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Algorithm 1: Gibbs sampling algorithm for SOT
Input: Sequence of D documents of length Nd; number Niter of training

iterations

Output: Topic distribution θd of each document d; word distribution φd

specific to topics; probabilities ηd of different dependency types

1 Initialize topic assignments randomly for all words in document set D

2 for iteration = 1 to Niter do

3 for d = 1 to |D| do

4 Calculate probabilities of document types ηd by Eq. (2.6)

5 for m = 1 to Nd do

6 Generate a topic zd,m from Pd,m by Eq. (2.11)

7 Update nd,zd,m and nd,m
d,zd,m

8 Compute the posterior estimates θd and φd for each document d
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where nt
k,−(d,m) is the number of word t belonging to topic k except Wd,m. nd,k,−(d,m)

represents the number of all words in document d belonging to topic k. Based on Pd,m,k,

we can obtain the topic distribution Pd,m. From Eq. (2.11) and Eq. (2.6), we see that

each word generation is more likely to be influenced by documents with similar topic

distributions. Our Gibbs sampling algorithm is shown in Algorithm 1.

2.2.4 Fine-grained SOT

The frequency of topic changes varies in different kinds of datasets. Some sequences

may contain multiple topic evolution. For example, for a news data sequence, there

might be multiple topics of different domains (e.g. politics, economics and art) in the

same period. For this kind of cases, the mean of the previous document set is uninfor-

mative and it is hard to obtain an obvious trend. To assign appropriate dependencies,

it is necessary to split the original interval of length L into fine-grained subintervals

and specifically compare the similarities of topic distributions for each subinterval.

In this case, we extend the variable ηd to the probability of dependencies of the cur-

rent document on each subinterval and its Independency. For the dth document under

subinterval length l, the probability of dependency on the ith subinterval is calculated

as

ηd,i =
f (θd,θd,i),)

∑

⌈
L
l

⌉
s=1 f (θd,θd,s))+ ε

, (2.12)

where s refers to the index of subintervals. Similar to SOT, the probability of Indepen-

dency is calculated by

ηd,ε =
ε

∑
S
s=1 f (θd,θd,s))+ ε

. (2.13)
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However, to select an appropriate length for subintervals is difficult, since the com-

plexity of topic evolution depends on the sequences. Since our goal is to assign an

appropriate dependency for a document by comparing its topic distribution with the

mean topic distribution for each subinterval, the uncertainty of the topics in the subin-

terval should be as low as possible. Therefore, we can determine the optimal subin-

terval length by calculating the uncertainty of ηd under different lengths. Information

Entropy [85] is a widely used method to evaluate the uncertainty [84] for a set of dis-

tributions. Moreover, to exclude the influence of the number of sub-intervals on the

entropy, we use the Mean Information Entropy [79] H in our method to evaluate the

uncertainty for ηd . Therefore, we can estimate the optimal subinterval length by cal-

culating H l under different lengths l. Specifically, we define Id,l as the inverse of the

mean entropy for ηd under subinterval length of l (l ∈ [1,L−1]) as follows:

Id,l =
1

H l(ηd)
, (2.14)

where H l(ηd) is the Mean Information Entropy for ηd of subinterval length l:

H l(ηd) =−
1

logS

[ S

∑
s=1

ηd,s logηd,s +ηd,ε logηd,ε

]
, (2.15)

where S=
⌈L

l

⌉
is the number of subintervals and s is its index.

Based on the above definitions, we introduce a new variable λd to control the subin-

terval length, where λd obeys a Categorical distribution:

λd ∼Cat(Id),

where Id = (Id,1, ..., Id,L−1).

31



Therefore, for such sequential data flooded with frequent topic drifts, we propose

Fine-grained SOT (f-SOT) model. There are two improvements of f-SOT over SOT: (1)

to generate an optimal length of the fine-grained interval for each document by vari-

able λd; (2) with the generated subinterval length, to replace the Trend Dependency

and Consecutive Dependency by S-pairwise dependencies, where S is the number of

subintervals for the previous L documents. Specifically, we increase the number of

dependencies from 2+1 (Consecutive Dependency, Trend Dependency and Indepen-

dency) to S+1.

In parameter estimation, except for modifying the calculation of Pd,m,k, we need to

integrate new hidden variable λd in the posterior probability. The rest of the estimation

algorithm is the same. We can obtain the posterior probability in two steps. First,

we calculate the posterior probability Pd,m,k,l with a given subinterval length l. Since

we just use each specific pairwise dependency to replace the mean one, we can easily

obtain its formula as

Pd,m,k,l ∝

[ S

∑
s=1

ηd,s(nd,k,−(d,m)+θd,s,k +α)+ηd,ε(nd,k,−(d,m)+α)

]
·

nt
k,−(d,m)+φd−1,k,t +β

∑
V
f=1 n f

k,−(d,m)+φd−1,k, f +β
,

(2.16)

where θd,s,k is the mean topic distribution for the documents in the subinterval s. Then

the required posterior probability Pd,m,k can be obtained by

Pd,m,k =
∫

λdPd,m,k,ldλd =
L−1

∑
l=1

Id,1Pd,m,k,l. (2.17)

From Eqs. (2.12) and (2.13), the difference of f-SOT from SOT is that the former

considers the dependencies of subintervals in each given window L, which makes it
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possible to cope with more complex document sequences. Nevertheless, compared

with other methods (including SOT), more parameters need to be estimated in f-SOT,

which might increase the risk of overfitting.

2.3 Experiments

Firstly, we evaluate the modeling accuracy by analyzing the perplexities under different

datasets (TDT2, Reuters, Twitter Event Detection Dataset and Weibo-84168) and topic

numbers (K = 50, 100 and 200). In the second part, we verify the effects of our

topic evolution modeling in two aspects: (1) the outlier detection capabilities under

the varying complexity of the topic changes, and (2) the quality of emerging topic

detection in real datasets. The analysis of the parameter sensitivity is given in the last

part.

2.3.1 Datasets

• Reuters-21578 Corpus (REU)1 Reuters contains 21578 documents in 135 cat-

egories. The documents in the collection appeared on the Reuters newswire in

1987.

• Multilingual Text and Annotations Dataset (TDT)2 TDT2 has 11201 on-topic

documents, which are extracted from different broadcasts. The number of unique

words per document is 100 in average.

• THUCNews (THU)3 THUC is collected from the historical data of Sina News

from 2005 to 2011. It contains 740000 news documents and is divided into 14
1http://www.daviddlewis.com/resources/testcollections/reuters21578/
2https://catalog.ldc.upenn.edu/LDC2001T57
3thuctc.thunlp.org
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candidate categories.

• PubMed1 PubMed is a corpus which contains journal citations and abstracts for

biomedical literature from around the world since 1970s.

• Weibo-84168 (WEI)2 Weibo is a Chinese micro-blog dataset collected in 2014,

which includes short texts in 12 topics from 63641 users.

• Twitter Event Detection Dataset (TWI)3 Twitter is a collection of 120 million

tweets, with relevance judgements for over 500 events.

Each dataset was sorted by time stamps and all the results were calculated with

eight-fold cross-validation.

2.3.2 Baseline Models

To validate the proposed models SOT and f-SOT (available on Github4), we test the fol-

lowing five methods including a traditional topic model LDA, two single-dependency

based methods s-LDA [1] and DCT [56], a time decay based topic model ETT [37]

as well as a time-slicing based word embedding method D-W2V [107]: (a) LDA (La-

tent Dirichlet Allocation), which trains a topic model on the whole training data. (b)

s-LDA (Streaming-LDA), which takes into account consecutive document dependen-

cies for the task of topic tracking [1]. (c) DCT (Dynamic Clustering model), which

focuses on modeling the dependencies of previous documents on a longer time-step

history [56]. (d) ETT (Emerging Topic Tracking Model), which models latent topics

in the word co-occurrence space and estimates word novelty based on weighted word

1https://www.nlm.nih.gov/databases/download/pubmed_medline.html
2https://github.com/liliverpool/Dataset
3http://mir.dcs.gla.ac.uk/resources/
4https://github.com/liliverpool/SOT.git
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tables with time decay [37]. (e) D-W2V (Dynamic Word2vec), which is a time-slicing

based dynamic embedding methods for temporal documents [107]. For D-W2V, we

respectively set three values (5, 10, 20) as the total number of its slice and call them

D-W2V-5, D-W2V-10 and D-W2V-20. We use the generated topic distributions as in-

puts of clustering and outlier detection experiments. For the clustering experiments,

we chose the kernel k-Means1 as the clustering method, which is one of the widely

used methods for clustering tasks [19]. For the outlier detection experiments, the out-

lier detection method of our choice is Micro-Cluster Based Algorithm (MCOD) [48].

For all these models, both hyper parameters α and β were fixed to 0.05, the Trend De-

pendency factor L = 10 by following a previous study [56] and the outlier sensitivity

factor ε = 0.15. The sensitivities to the parameters are given in the last part.

2.3.3 Perplexities

We first evaluate the performance of our model and the topic modeling based baselines

in terms of perplexity, which is widely used as an evaluation metric in conventional

topic or language modeling works [7, 16]. Intuitively, it quantifies the degree of un-

certainty for a topic model of assigning topics to words of each document. The value

of perplexity reflects the ability of a model to generalize to unseen data. A lower per-

plexity score indicates better modeling performance.The perplexity is given as below.

Perplexity(C) = exp
(−∑d ∑n log∑k θd,k ·φd,k,vd,n

V

)
, (2.18)

where C refers to the test dataset, V is the number of total words and vd,n represents

the nth word of document d.
1We used the Gaussian kernel function and set σ = 0.5.
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Table 2.1: Comparison of perplexities with different latent topic numbers K. Bold

fonts highlight the best results.

Models
REU TDT PUB

K=50 K=100 K=200 K=50 K=100 K=200 K=50 K=100 K=200

LDA 921 854 861 2578 2247 2169 2533 2066 1914

DCT 874 764 747 2314 1841 1760 2371 1863 1782

s-LDA 843 691 669 1837 1635 1572 2248 1729 1696

ETT 856 788 762 1894 1645 1749 2380 1927 1865

SOT 838 710 675 1768 1575 1558 2128 1982 1918

f-SOT 815 676 620 1726 1464 1442 2047 1816 1742

Models
THU WEI TWI

K=50 K=100 K=200 K=50 K=100 K=200 K=50 K=100 K=200

LDA 1874 1628 1661 2854 2265 2347 3359 2819 2967

DCT 1486 1325 1330 2512 2078 2126 3160 2647 2737

s-LDA 1237 1092 1152 2388 1959 2043 3088 2558 2624

ETT 1291 1134 1169 2470 2048 2106 3105 2628 2695

SOT 1138 1024 1057 2428 1982 2018 2739 2401 2517

f-SOT 1115 971 986 2347 1866 1902 2744 2282 2369
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(a) S0.2 (b) S0.6 (c) S0.8

Figure 2.4: ROC curves in four datasets of MOP = 0.2 (a), 0.6 (b) and 0.8 (c).

We conducted experiments by varying the number of topics in set {50,100,200}.

Table 2.1 shows the evolution of perplexities of different models on all test datasets

with varying topic numbers. The best results are obtained with SOT or f-SOT since

our models consider the dependency with other documents when generating a doc-

ument topic distribution. This dependency is determined by the similarity with the

topic distribution of other documents. According to Eq. (2.6), a document topic dis-

tribution is highly likely to depend on a distribution similar to itself, thus reducing its

uncertainty. Moreover, the outliers are discriminated from various topic evolutions in

modeling, which also contributes to the decrease of perplexities. All the testing models

on Twitter and Weibo are less effective, due to the difficulty of latent topic modeling

for short texts, which might cause errors when comparing similarities of topic distribu-

tions. In addition, all models performed better when the number of topics are increased

from 50 to 100. For 200 latent topics, their results on the Twitter dataset began to fluc-

tuate, and the improvements on the TDT2 and Reuters also tend to saturate; thus in the

latter experiments, we set the number of latent topics to K = 100 and kept the other

parameters unchanged.
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Figure 2.5: AUCs over datasets of different MOP rates.

2.3.4 Outlier Detection

We conducted experiments for outlier detection based on the generated topic distribu-

tions for all the baseline methods. The testing datasets with different complexities are

all sampled from TDT2. Following the outlier sampling principle of related studies

about document outlier detection [44, 45], we randomly selected 20 themes of TDT2

from 4 different domains of politics, economy, society and entertainment. For each

topic we chose 800 documents to construct our datasets, for a total of 16000 docu-

ments. Besides, we randomly selected 3500 documents from other different topics as

outliers.

To fit the “Bursty Feature” of sequential documents, we assume that each sampled

theme in the sequence belongs to a continuous sub-period, and each sub-period is over-

lappable. Moreover, to simulate the interleaving phenomenon of documents belonging

to different sampled themes when topic change occurs, we assume that the documents

in the overlapping parts of the sub-periods are randomly distributed. The construct-

ing process consists of two phases: topic period generation and document sequence

construction. For generating a sequence S with a period Ps, firstly, we randomly se-
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(a) MOP=0.2 (S0.2)

(b) MOP=0.8 (S0.8)

Figure 2.6: Values of generated subinterval length λ (λ∈ [1,9]) for each document and

visualization for outlier detection results in two cases of (a) MOP = 0.2 and (b) MOP

= 0.8. The second line of each subfigure is the test sequences and different topics are

distinguished by color. The following lines represent the positions of true positives and

are labeled in red.
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lected sub-period PDk within Ps according to a uniform distribution for document set

Dk of each topic k, where every sub-period PDk is an overlapping and continuous inter-

val. Secondly, all the documents are loaded to their corresponding sub-periods, where

those in the overlapped intervals are shuffled before the loading. Therefore, the com-

plexity of the topic evolution for a document sequence can be quantified as the ratio

of the overlapping length of the subintervals to the total period. We name this ratio

Minimum Overlapping Period (MOP) of topics.

For a document sequenceS, MOP is defined as MOP(S)= (∑k
∣∣PDk

∣∣−|Ps|)/∑k
∣∣PDk

∣∣,
where | · | denotes the number of documents in the period. MOP, which ranges from

0 to 1.0, is used to quantify the degree of topic evolving complexity, where the larger

MOP, the more complex is the topic evolution. By changing Ps, we generate datasets

of MOP from 0.2 to 0.8 to test the outlier detection performance. Note that the period

Ps here does not refer to any temporal information, as we only simulate the sequences

in our datasets but do not add any lag in each continuous document.

Figure 2.4 shows the Receiver Operating Characteristics (ROC) curves of the es-

timated models on datasets with MOP = 0.2, 0.6 and 0.8. In all the three cases, SOT

and f-SOT show drastic improvements over all the baseline models. SOT outperforms

other methods when MOP = 0.2 and f-SOT performs better in the other two cases. Be-

sides, from Figure 2.5, except for LDA, the Areas Under the ROC curve (AUC) of all

methods decrease as MOP increases, since there are more overlapping periods, which

correspond to increasingly complicated topic evolution. LDA model neglects the de-

pendencies of distributions between documents, and thus sequential changes made no

difference to their performance. For the D-W2V methods, outliers are neglected in

training; it is difficult to disambiguate these outliers from systematic topic evolution

between subsequent times, in particular over short slice spans (D-W2V-20), the impact

of outliers may be more notable than those in long slice spans. In addition, as shown
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(a) MOP = 0.2 (b) MOP = 0.8

Figure 2.7: Intra-class and inter-topic distances on sequences with MOPs of 0.2 and

0.8.

in Figure 2.6, we visualize the topic sequences of MOP = 0.2 and 0.8 and their cor-

responding true positive results with 0.5 false positive rate. For sequential documents

with smaller MOP, the performance are all of lower differences, while for the docu-

ments with larger MOP, our models outperform the baselines at intervals with more

topics. Moreover, we see that shorter subinterval lengths are estimated in the sequen-

tial documents with more complex topic evolution. This observation also conforms

with our original motivation, which is to determine the dependencies between docu-

ments through a more fine-grained pairwise comparison. However, in sequences with

relatively less topic evolution, f-SOT still suffers from overfitting, which affects its

accuracy in outlier detection.

Furthermore, in the cases of MOP = 0.2 and 0.8, we evaluate the average intra-topic

and inter-topic similarities of topic distributions for all baseline models under different

sampled themes. For intra-topic evaluation, we compute the mean Euclidean distance

to the center from all documents belonging to the same theme, while the inter-topic

distances are evaluated by the mean Euclidean distances between centers of all sampled

themes. The shorter the distance, the higher the similarity. The normalized results

are shown in Figure 2.7. By assigning appropriate weights of dependencies to each

document, though there is no significant change of inter-topic similarities, our model

effectively improves the intra-topic similarities, so as to emphasize the prominence of
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Figure 2.8: Novelties on different datasets (100 topics).

outliers in documents of various emerging topics.

2.3.5 Emerging Topic Detection

Firstly, to investigate the sensitivity of the baseline models for novel topics, we cal-

culated novelties for our model and other topic modeling based methods in real data.

Novelty [105] is used to measure the freshness of a word or a topic, which is widely

applied in the tasks of emerging topic clustering and novel topic detection [25]. We

adopt it to evaluate how sensitive a topic model is in detecting an emerging topic. The

definition is as follows:

Novelty(d(t)) =

∣∣∣W(t)
∣∣∣− ∣∣∣W(t)⋂W(t−1)

∣∣∣
T K

,
(2.19)

where | · | denotes the cardinality of a set and W(t) is a word set of the top-T high

frequent words in document d(t) based on its topic distribution and word distribution.

In these experiments, we choose T = 10.

In Figure 2.8, we show the novelty detection performance. SOT, f-SOT and ETT

significantly outperform DCT and LDA. ETT shows the highest score by weighting

42



fading and emerging words, which largely improves the sensitivity of novel topic de-

tection. However, by the results shown in the outlier detection experiments, both doc-

uments of outliers and emerging topics are of higher novelty for ETT, documents in

emerging topics are likely to be misdetected as outliers. For SOT and f-SOT, the be-

ginning of every emerging topic is of both weak Consecutive and Trend Dependencies,

which enables documents of emerging topics be seperated from others. Besides, doc-

uments of emerging topics from the beginning can still depend more on each other

according to their stronger Consecutive Dependencies, based on which the outliers are

able to be discriminated from documents of emerging topics.

To further study their accuracies of emerging topic detection, we compared the

performance of all baselines on clustering qualities according to their generated topic

distributions. The experiments were conducted on six sampled sequences of 10 topic

clusters from TDT, REU, PUB, THU, TWI and WEI, where 8000 documents are con-

tained in TDT, REU, PUB and THU, as well as 15000 documents in Twitter, and

Weibo. For these datasets, they naturally contain outlier documents, therefore, we gen-

erated another group of datasets (TDT∗, REU∗, PUB∗, THU∗, TWI∗ and WEI∗) with

outliers filtered out for comparative experiments. The metrics we used are Purity [61]

and Normalized Mutual information (NMI) [74]. Purity is a simple clustering evalua-

tion measure, which is defined as the proportion of the number of documents correctly

clustered to the total and NMI is an information theoretic measure of the shared in-

formation between a clustering and a ground-truth classification. Both of them range

from 0 to 1, the higher the better.

We calculated the average Purity and NMI values for cluster numbers from 10

to 20, and the results are reported in Table 2.2. SOT and f-SOT are superior to the

others on all the datasets without outliers filtering. These results prove the rationality

of our assumption, that a document is possibly independent of other documents, where
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Table 2.2: Comparison of Purities and NMIs (the mean and the standard deviation).

Bold fonts highlight the best results (K = 100).

Models
Purity (100%)

TDT/TDT∗ REU/REU∗ PUB/PUB∗ THU/THU∗ TWI/TWI∗ WEI/WEI∗

LDA 0.663/0.684 0.606/0.621 0.612/0.636 0.649/0.673 0.512/0.533 0.557/0.571

DCT 0.684/0.707 0.638/0.662 0.645/0.671 0.696/0.718 0.547/0.561 0.578/0.591

s-LDA 0.692/0.718 0.642/0.665 0.653/0.668 0.705/0.734 0.542/0.554 0.572/0.586

ETT 0.675/0.696 0.604/0.628 0.646/0.663 0.683/0.704 0.525/0.539 0.554/0.575

D-W2V-5 0.656/0.679 0.596/0.628 0.623/0.641 0.655/0.676 0.504/0.521 0.542/0.558

D-W2V-10 0.672/0.694 0.632/0.652 0.631/0.647 0.681/0.703 0.538/0.558 0.565/0.577

D-W2V-20 0.665/0.681 0.609/0.617 0.607/0.625 0.652/0.674 0.514/0.531 0.553/0.569

SOT 0.714/0.725 0.644/0.653 0.667/0.674 0.725/0.731 0.561/0.567 0.582/0.588

f-SOT 0.728/0.737 0.641/0.649 0.661/0.668 0.722/0.728 0.585/0.592 0.598/0.606

Models
NMI

TDT/TDT∗ REU/REU∗ PUB/PUB∗ THU/THU∗ TWI/TWI∗ WEI/WEI∗

LDA 0.815/0.839 0.726/0.751 0.653/0.675 0.778/0.791 0.653/0.672 0.677/0.695

DCT 0.857/0.882 0.759/0.779 0.683/0.702 0.805/0.826 0.677/0.698 0.692/0.714

s-LDA 0.877/0.902 0.772/0.798 0.691/0.716 0.811/0.845 0.672/0.686 0.688/0.695

ETT 0.831/0.855 0.743/0.767 0.653/0.686 0.792/0.807 0.679/0.693 0.682/0.693

D-W2V-5 0.805/0.824 0.717/0.733 0.665/0.689 0.767/0.792 0.645/0.656 0.669/0.681

D-W2V-10 0.847/0.875 0.749/0.775 0.671/0.694 0.789/0.813 0.671/0.684 0.683/0.692

D-W2V-20 0.817/0.833 0.726/0.742 0.643/0.671 0.762/0.791 0.654/0.661 0.671/0.679

SOT 0.884/0.891 0.787/0.793 0.718/0.725 0.837/0.841 0.675/ 0.681 0.687/0.695

f-SOT 0.892/0.898 0.784/0.791 0.715/0.724 0.834/0.841 0.692/0.698 0.705/0.711
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the independent probability depends on the similarities to the topic distributions of its

previous ones. For SOT and f-SOT, the case of outliers is considered and the generated

topic clusters are of lower intra-topic distance, which leads to the reduction of the

occurrence of “false positive” in the clustering. For other models, such as s-LDA

and DCT, they assume that each document either belong to topics or an emerging

topic, which leads to the inaccuracies of dependencies for documents in topics. On the

other hand, for the dataset group with outlier filtering, the accuracy of all models is

improved. Compared with SOT and f-SOT, the improvements of the others are more

significant. Nevertheless, our proposals are still superior to the other methods in most

cases. For REU* and THU∗ collected from two single media sources (Reuters and

Sina), documents belonging to the same topic usually appear continuously with outliers

filtering, and s-LDA considers the topic similarities between consecutive documents;

thus, s-LDA outperforms the other methods in REU* and THU∗. For the factors which

affect topic modeling for sequence documents, there are frequently intertwined topics

besides outliers. Although removing the interference of outliers can improve emerging

topic detection performance, the single-dependency based models are still unable to

deal with frequent and complex topic evolutions effectively.

For the results of the short text datasets (TWI/TWI∗ and WEI/WEI∗), we see that

the improvements in our models are still slightly better compared with the baseline

models. However, compared to the performance for long document datasets, the over-

all performance in all models is degraded. Topic modeling or document embedding

can alleviate the problem of semantic representation for documents, by mapping the

high dimensional sparse text feature to the shared topic space and capturing the co-

occurrence pattern of words in each document. Therefore, when the document size

becomes smaller and the documents contain lower word counts, those models would

be difficult to obtain accurate word co-occurrence patterns. Moreover, if the distri-
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Table 2.3: Time Cost (Seconds) per Iteration on TDT Collection

Models
Running Time (s)

K=10 K=50 K=100 K=150 K=200 K=250

LDA 5.07 32.21 71.63 102.64 137.52 168.18

DCT 8.77 49.95 105.49 157.41 207.85 254.25

s-LDA 9.32 54.65 116.17 173.78 228.96 281.78

ETT 7.65 42.58 92.77 129.49 164.31 208.92

SOT 11.08 61.42 127.59 188.26 251.17 306.75

f-SOT 15.27 82.52 224.47 326.14 412.81 495.33

bution of documents for the topic is heavily skewed, they tend to learn more general

topics supported by many documents rather than rare topics [111]. These might be the

reasons of their inferior performance.

2.3.6 Running Time

For efficiency comparison, we list the average running time (per iteration) of our pro-

posals and other baseline topic models on TDT dataset with K = 10,50,100,150,200,250.

The experiments were conducted on a PC with Intel i9 processor and 128GB mem-

ory. As shown in Table 2.3, we see that the time cost of all the models increases

monotonously as the topic number K grows and the topic models for sequential data

cost more time than the traditional topic models. The reason is that they need to esti-

mate the inter-document topic dependencies in modeling, especially SOT, it considers

three types of topic dependencies. Moreover, we see that the running time of f-SOT is

always about three times of LDA over different topic numbers, because f-SOT consid-
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(a) MOP = 0.2 (b) MOP = 0.8

Figure 2.9: AUC under different values of L in both datasets (MOP=0.2 (a) and 0.8

(b)).

ers different sub-interval cases in each iteration. However, either the inter-document

dependency types or the number of different subinterval lengths are independent of the

topic numbers. Therefore, we can see that the change rate of running time for f-SOT

and SOT is consistent with LDA as K increases.

2.3.7 Parameter Sensitivities

For investigating the sensitivity to different values of L in our models, we tested their

outlier detection performance in datasets of MOP = 0.2 and MOP = 0.8. All parameters

are fixed as the previous settings except for L and the datasets are generated the same

as in the outlier detection experiments.

Figure 2.9 shows the AUCs of f-SOT, SOT and LDA with L ranging from 2 to 25.

We see that in the dataset of MOP = 0.2, the AUCs of both SOT and f-SOT improve

quickly with the increase of L. For f-SOT, the AUC saturates around L = 10, and starts

to decrease when L larger than 10. Smilarly, for the results in the dataset of MOP

= 0.8, the performance of the both proposed models are improved with the increase

in L. However for f-SOT, saturation of the performance is observed at around L = 5.

Moreover, the maximum values of AUCs are lower than that in the case of MOP = 0.2.

LDA model is independent of the length L and thus exhibits stable performance.
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(a) SOT (b) f-SOT

Figure 2.10: F1-Score under different outlier sensitivity factor ε in both datasets.

For SOT model, L determines the number of documents which are included in the

calculation of the overall mean of the topic distributions in the previous document set.

The more documents are included, the closer the overall mean is to the trend of the

current topic. For the case of a dataset with frequent topic changes, a larger number

of topics are aggregated within a given interval; thus, it is more difficult to quantify

the overall trend accurately for datasets with high MOP. Besides, compared to SOT,

f-SOT just needs to include at least one document of the same topic in the smallest

possible interval. From (13) and (14) in Section 3.4, we see that if a document with

the same topic has appeared in the scope of length L, continuing to grow the length

only increases the risk of overfitting, especially in the case of high MOP. Therefore, in

datasets with complex topic evolution, it is inappropriate to set a large value of L.

Similarly, for investigating the outlier sensitivity factor ε, we calculate the average

precisions and recalls by using F1-Score [61] as the metric. The results are shown

in Figure 2.10. ε determines how sensitive the model is to the outlier documents.

However, excessive sensitivity results in a lower recall, which affects the performance

of outlier detection as well.
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2.4 Summary

In this Chapter, we proposed two topic models in topic evolution modeling based on

hybrid inter-document dependencies. The first model considers Consecutive Depen-

dency, Trend Dependency and Independency in contextual documents. For a sequence

of more complex topic evolution, we improved it by considering fine-grained local

dependency relations. Our experiments show that our proposals outperform baseline

models, in terms of accuracy of topic modeling, clustering quality and effectiveness of

outlier detection.
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Chapter 3

Context-Aware Latent Dirichlet

Allocation for Topic Segmentation

3.1 Overview

In this chapter, we focus on the word-level context based topic modeling for document

topic segmentation task. Topic segmentation has long been studied in various topic

models [6,20,21,82,97,100], such as segHMM [6] and Bayesseg [21]. The traditional

methods mainly rely on the document physical structure, which refers to the text-spans

in each document, such as sentences or paragraphs [3]. They basically assume that

words in the same text-span share the same topic or topic distribution. They conduct

segmentation by introducing HMM structure in their topic models and modeling de-

pendencies between consecutive text-spans. However, these approaches are unable to

handle data with no structural information, which significantly limits their applicabil-

ity. Moreover, in most cases, topics might evolve in long paragraphs or sections, and

thus a text-span might contain multiple topics.

Recent studies have been focusing on physical structure-independent segmenta-
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tion [2, 16, 83, 105]. Topic Keyword Model (TKM) [83] is a topic model based on

keywords and their contexts. Its main weakness lies in handling short topic segments,

which are likely to be absorbed by long topic segments due to their small numbers

of keywords. Biterm Topic Model (BTM) [16] learns topics by modeling the genera-

tion of word co-occurrence patterns, which improves the sensitivity of the discovery

of phrases in short text data. On the basis of the former, Bursty Biterm Topic Model

(BBTM) introduces a new variable to discover bursty topics1 [105]. These phrase-level

topic modeling methods can achieve good results in discovering word co-occurrence

patterns in individual short documents and require no physical structure information.

However, high-frequency phrases only make up a tiny proportion of the corpus, which

limits their ability to generate coherent topics in topic segmentation tasks. The main

difference from our model is that they consider all distinct word pairs of each fixed-size

window, while we focus on the topic-specific word pairs, which only concern the target

word in the corresponding context. Copula LDA with Segmentation (SegLDA) [2] is

an LDA-based model which automatically segments documents into topically coherent

sequences of words. SegLDA predefines segments for each document before model-

ing. For each word in a segment, a topic is assigned either from the segment-specific

topic distribution or the document-specific topic distribution. These distributions dif-

ferentiate the main topics of a document from potential segment-specific topics, which

improves the saliency of short segments. However, the two distributions are indepen-

dent. Specifically, in the former distribution, a topic assignment depends only on the

words within the segment, which leads to a loss of much context information in the

original document.

In addition, context information is also utilized in other topic models to solve var-

1In their study [105], a topic is considered to be bursty in a time slice if it is heavily discussed, but
not in most of the other slices.
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ious specific problems in document semantic analysis [71, 106], such as Contextual

Topic Model (CTM) [106] and Contextual Latent Dirichlet Allocation (Contextual-

LDA) [71]. CTM considers the dependencies of topics between each sentence in doc-

ument summarization while Contextual-LDA uses the topic position of each physical

structure-based segment for key information detection. Different from them, we focus

on solving the problem of topic segmentation by considering topic-specific word pairs

in contexts.

In this chapter, we propose a new generative model, Context-Aware Latent Dirich-

let Allocation (C-LDA), for document segmentation. In the topic assignment, we con-

sider both the topic distributions and the topic-specific occurrence of word pairs in

contexts. Our model enjoys two substantial merits over the state-of-the-art methods:

(1) a word is generated by both the document-specific topic distribution and the topic

distribution associated with each word and its context; (2) it is independent of physical

structures.

3.2 Context-Aware Topic Modeling

3.2.1 Context Word Pairs-Topic Distribution

For conventional LDA and its extended models, topic assignment for each word mostly

relies on topic distribution and word distribution. Although the constraints of topic

distribution can alleviate the uncertainty in the topic assignment, it is still insufficient

to handle documents containing multiple main topics. For example, a document on

the study of modern football and the geographical distribution of England, should at

least belong to two topics (geography and sports). We study the topic assignment of

the word “Liverpool” in a specific location and consider its 3 related topics: sports,
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Figure 3.1: Schematic illustration of a topic assignment for word “Liverpool” with

and without considering its context words (respectively labeled by red and blue). We

see that if “Liverpool” co-occurs with word “football” in the same context, it is more

likely to be assigned to the topic of “sports”, while “geography” if co-occurs with

“population”.

geography, and art. As shown in Figure 3.1, for traditional topic models, although the

topic distribution reduces the probability of being assigned to the topic of “art”, there

is still a large uncertainty between “sports” and “geography”. However, by considering

the frequency of co-occurrence of context words on various topics, this uncertainty can

be further reduced, which also coincides with the distributional hypothesis1 [24, 30].

Therefore, in our model, we give each word w a context window of length L and

define a set of words within the window as context words~cw. For the topic assignment

of w, we consider the topics of word pairs bw which consist of w and~cw. bw is defined

as:

bw , {(w,w′)|w′ ∈~cw}.

Following LDA [7], we also assume that the topic distribution λw of all the sets of

1The Distributional Hypothesis is that words that occur in the same contexts tend to have similar
meanings [24].
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Figure 3.2: Graphical model for Context-Aware LDA.

word pairs follows a Dirichlet distribution and name it Context Word Pairs-Topic Dis-

tribution (CWTD):

λw ∼ Dir(γ).

λw depends on the topic distribution of the word pairs of bw in all other documents.

By the definition of Dirichlet distribution [7], the expectation can be calculated as:

EDir(γ)(λw,k) =
nbw

k,−(d,l)+ γk

∑
K
s=1(n

bw
s,−(d,l)+ γs)

, (3.1)

where nbw
s,−(d,l) is the total number of word pairs which are in bw and belong to topic k

in all documents without containing the lth word of document d. In the topic assign-

ment, we reorganize the topic distribution θd of a document based on the context of

each word and name the reorganized topic distribution as Context-Aware Topic Distri-

bution (CTD), denoted by πd,w. Therefore, the topic Zd,w for word w in d follows a

Categorical distribution which is from the Dirichlet distribution πd,w with the prior of

both the topic distribution θd and the CWTD λw:

πd,w ∼ Dir(θd +λw),Zd,w ∼Cat(πd,w).
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3.2.2 Context-Aware Latent Dirichlet Allocation

As Figure 3.2 shows, we introduce four variables πd,w, λw, w′ and γ based on tra-

ditional LDA, where πd,w represents the CTD for word w in document d, λw is the

corresponding CWTD with prior of γ and w′ refers to a context word of w. Besides,

θd represents the topic distribution of document d with prior α and φk is the word

distribution of topic k with prior β. For a dataset of D documents with a vocabulary

of size V and latent topics indexed in {1, ...,K}, C-LDA is associated to the following

generative model.

1. Generate the word-topic distribution φk for each topic k: φk ∼ Dir(β).

2. For each document d:

(a) Generate the topic-word distribution θd of document d: θd ∼ Dir(α).

(b) For each word w in d (index by l):

i. Get context word pairs bw and generate the CWTD λw based on Eq.

(3.1): λw ∼ Dir(γ).

ii. Generate the CTD πd,w of word w according to θd and λw: πd,w ∼

Dir(λw +θd).

iii. Choose a topic Zd,l assignment according to πd,w: Zd,l ∼Cat(πd,w).

iv. Generate wd,l based on the topic Zd,l and φk: wd,l ∼Cat(φZd,l).

The topic distribution and the context words are combined to further reduce the uncer-

tainty of the topic assignment. As we explain in Section 3.4, this reduction ensures a

high probability that consecutive words are assigned to the same topic.
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Algorithm 2: Gibbs sampling algorithm
Input: A setD of documents with length Nd (d ∈D); number of iterations

Niter; number of topics K

Output: For each document d ∈D, topic distribution θd; for each topic k,

word distribution φk (1≤ k ≤ K); word co-occurrence matrix Λ

1 Initialize topic assignments randomly for all words inD

2 for iteration = 1 to Niter do

3 for d = 1 to |D| do

4 for l = 1 to Nd do

5 Generate a topic Zd,l from Pd,l according to Eq. (3.2).

6 Update θd , φk and Λ

7 return φk for each topic k, θd for each document d and Λ.

3.2.3 Parameter Estimation

We also use Gibbs sampling [29] to estimate parameters. In our sampling procedure,

we need to calculate the conditional probability of topic assignment Pd,l,k = P(Zd,l =

k|Wd,l,Zd,−(d,l),W
′
d,l,α,β,γ) for each word, where Wd,l represents the lth word in

d. Zd,−(d,l) refers to the topic assignments for all words in d except for word Wd,l .

W ′
d,l are the context words of Wd,l . The result of Pd,l,k is computed as follows (See

Appendix A in Supplementary for detailed derivation):

Pd,l,k ∝

[
(nbw

k,−(d,i)+ γt)+(nd,k,−(d,l)+αk)

] nt
k,−(d,l)+βt

∑
V
f=1(n

f
k,−(d,l)+β f )

, (3.2)

where nd,k,−(d,l) is the number of words in d which belongs to topic k without Wd,l ,

nt
k,−(d,l) represents the number of word t of topic k without Wd,l . Compared with the
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conditional probability of traditional topic models, such as LDA (as Eq. (3.3)), we

see the difference is the probability of topic k for each word, which is affected by the

frequency of its context word pairs on topic k in other documents.

P′d,l,k ∝(nd,k,−(d,l)+αk)
nt

k,−(d,l)+βt

∑
V
f=1(n

f
k,−(d,l)+β f )

. (3.3)

According to Eq. (3.2), we obtain the conditional probabilities of topic assignment

Pd,l,k of each word in document d, so as to compute their corresponding topic distribu-

tion Pd,l . Our sampling algorithm is shown in Algorithm 2. The word co-occurrence

matrix Λ recording the number of word pairs in each topic is utilized to compute λ,

where the first two dimensions of Λ are all the unique words and the third dimension

records the accumulated shared topic counts.

3.2.4 Topic Coherency Ratio

To further study how C-LDA affects the coherency and saliency in modeling, we cal-

culate the joint probability of consecutive words which share the same topic in two

cases: with and without considering context word pairs. For consecutive wordsWd,i: j

from Wi to Wj in document d, we denote the joint probability of sharing topic k by

P(Wd,i: j,k) in the former case and the one in the latter case by P′(Wd,i: j,k). Taking

their logarithms and computing their ratios as well as removing constant terms, we

obtain the result as shown in Eq. (3.4). We retain the fraction of the right-hand side

and name it Topic Coherency Ratio (TCR) as Eq. (3.5), denoted by Rt (See Appendix
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B in Supplementary for detailed derivation).

logP(Wd,i: j,k)
logP′(Wd,i: j,k)

∝ 1+
∑w∈Wd,i: j

lognbw
k,−Wd,i: j

∑w∈Wd,i: j
lognw

k,−Wd,i: j

(3.4)

Rt(Wd,i: j,k),
∑w∈Wd,i: j

lognbw
k,−Wd,i: j

∑w∈Wd,i: j
lognw

k,−Wd,i: j

. (3.5)

For a set of consecutive words, the TCR is a ratio of occurrence number in the

same topic between the context word pairs and words. The ratio ranges from [0,1]

and reflects the intensity of coherency for a set of consecutive words1. A higher ratio

corresponds to a stronger coherency. Based on Eq. (3.4), we see P(Wd,i: j,k) is always

greater than P′(Wd,i: j,k), which proves that C-LDA is more likely to generate coherent

topic segments than other conventional topic models, including LDA and most of its

extended versions2. For short segments consisting of a tiny proportion of words in a

document, they can still be assigned to topic k with a higher probability than others if

they contain frequent word pairs in topic k. Thus C-LDA ensures both better coherency

and saliency in topic segmentation.

Since the number K of topics is a given empirical value, it is inevitable to generate

redundant topic segments in each document. Although we might be able to specify

a good K value beforehand, the difference in the number of topics contained in each

document also leads to the inevitability of generating redundant segments. Therefore,

merging redundant segments with frequent ones is indispensable, where the key is to

judge whether the resulting segment has a higher coherency than the original ones.

TCR is a coherency measurement based on the ratio of word pairs and words instead

1For the words in Wd,i: j belonging to topic k, if and only if they all occur as context word pairs of
topic k in all the documents, TCR gets the maximum value 1, while it gets the minimum value 0 if and
only if none of them occurs in a context.

2The fraction on the right-hand side is always positive.
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of relying solely on their frequencies. This property ensures the coherency of segments

are independent of their lengths; thus, we design a TCR based Redundant Topic Merg-

ing (RTM) algorithm to optimize the generated topic segments. The steps of RTM

are: for each topic segment, we consider three cases: (1) merging with the previous

segment; (2) merging with the next segment; (3) non-merging. For these three cases,

TCRs are calculated separately and the case with the highest ratio is selected. We

repeat the above steps until the number of segments stays unchanged.

3.3 Experiments

We evaluate our model by a series of experiments. The results were obtained with

eight-fold cross-validation on a machine with Intel i9 processor and 128GB memory.

The hyper-parameters (α,β,γ) were all fixed to 0.05.

We tested our model on three standard datasets1 (Wikicities (Wici), Cellphones

Reviews (Cell) and Wikielements (Wiel)) and three extended datasets based on the

former three. Wikicities contains Wikipedia articles about the world 100 largest cities

by population, Cellphones Reviews contains 100 cellphone reviews and Wikiele-

ments contains 118 English Wikipedia articles about chemical elements. Labeled topic

segments of the 3 standard datasets are all of the similar lengths (about 3000 words per

document) and uniformly distributed; thus, to simulate the cases of more diverse topic

structures, we increase their original total number of documents to 2000 and generated

various sizes of topic segments for each document. The detailed generating steps for a

document are: (1) select the number of segments based on a uniform distribution from

10 to 50; (2) for each segment, set its length from a uniform distribution of 10 to 100

and randomly assign it to a topic from the topic labels; (3) choose sentences of the

1http://groups.csail.mit.edu/rbg/code/mallows/
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corresponding assigned topics from the labeled documents to fill the segments until all

segments are loaded.

We compare C-LDA (available on Github1) against four topic models: LDA [7],

BTM [16], TKM [83] and SegLDA [2]. BTM is a topic model based on word co-

occurrence modeling. TKM is a method to generate coherent topics by considering the

influence of keywords on their contexts. SegLDA is a LDA-extended model for topic

segmentation by introducing an independent topic distribution for each predefined seg-

ment.

We use Normalized Point-wise Mutual Information (NPMI)2 to measure the topic

coherence scores [73]. It assumes that a topic is more coherent if the most probable

words in the topic co-occur more frequently in the corpus [50]. NPMI scores are in

[−1,1] and a higher value indicates that the topic distributions are semantically more

coherent. The performance of topic segmentation is evaluated with two metrics: PK

3 and Window Diff (WD) 4. They both refer to error rates which are calculated by

comparing the inferred segmentation with the gold-standard (ground truth) for each

window based on moving a sliding window over the document. Lower scores refer to

better segmentation performance.
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(a) Standard Datasets (c) Wici (e) Wiel (g) Cell

(b) Extended Datasets (d) Wici+ (f) Wiel+ (h) Cell+

Figure 3.3: NPMIs of different L values (a-b) and different topic numbers k (c-h).

3.3.1 Topic Coherence

Firstly, we calculated NPMIs of C-LDA under different window sizes L (from 1 to 30)

with topic number K = 100. The results are shown in Figure 3.3 (a-b). We see that, in

both standard and extended datasets, NPMIs increase sharply until around L = 10 then

begin to decline. Moreover, we see there is a sharp decline in the extended datasets

when L > 15. This might be because of their more complex topic structures and longer

window sizes are more likely to contain irrelevant content. Therefore, we set L = 10

in the rest of our experiments.

The results of NPMIs (with K = 50,100,200) for all baseline models are shown

in Figure 3.3 (c-h). We see that C-LDA shows the best results on all six datasets and

1https://github.com/liliverpool/C-LDA.git
2NPMI(k) = ∑1≤i< j≤T

1
− logP(wi,w j)

log P(wi,w j)

P(wi)P(w j)
, where P(wi,w j) and P(wi) are the occurrence

probabilities of word pair (wi,w j) and word wi, respectively.
3Pk(ref,hyp) = P(false|refer,hyp,same,k)P(same|refer,k) + P(miss|refer,hyp,diff,k)

P(diff|refer,k), where “refer” is the ground truth and “hyp” is the generated segments. k is usu-
ally the half of the average gold-standard segment size (k=15 in our experiments). More details are
in [4].

4WD(ref,hyp) = 1
N−k ∑

N−k
i=1 (|b(refi, refi+k)−b(hypi, hypi+k)|>0), where b(i, j) represents the num-

ber of boundaries between positions i and j in the text and N is the number of sentences in the docu-
ment [73].
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Table 3.1: Topic segmentation results. PK and WD scores are in %. Bold fonts indicate

best scores yielded by the models except for C-LDA-R and ∗ indicates the best scores

among all the models.

K Models
PK WindowDiff Time Cost (hours)

Wici. Wiel. Cell. Wici+ Wiel+ Cell+ Wici. Wiel. Cell. Wici+ Wiel+ Cell+ Wici. Wiel. Cell. Wici+ Wiel+ Cell+

50

BTM 35.9 33.6 41.2 42.2 38.7 47.1 38.2 34.5 41.0 45.6 42.1 49.8 9.2 7.2 7.7 4.9 4.2 4.2

TKM 28.6 23.9 37.8 33.8 28.5 43.2 28.7 33.4 38.7 35.8 31.8 46.4 1.1∗ 0.7∗ 0.8∗ 0.4∗ 0.3∗ 0.3∗

SegLDA 26.1 22.7 35.2 30.5 27.2 38.9 27.1∗ 25.6 35.8 33.4∗ 28.3 39.3 4.5 3.1 3.3 1.7 1.4 1.5

C-LDA 25.3 22.2 35.3 29.9∗ 26.3 37.6 27.7 25.7 34.1∗ 33.7 28.2 38.1∗ 1.9 1.2 1.5 0.9 0.8 0.8

C-LDA-R 24.8∗ 20.6∗ 34.9∗ 30.3 26.2∗ 37.5∗ 27.3 24.8∗ 33.5 33.8 27.9∗ 38.5 2.0 1.3 1.6 1.0 0.9 0.9

100

BTM 32.5 30.2 37.5 40.1 36.5 44.3 35.7 33.4 40.2 41.4 39.8 45.7 15.7 12.6 11.5 8.6 8.2 8.5

TKM 26.7 21.2 30.6 31.3 27.4 37.2 29.9 24.6 36.6 32.8 29.8 41.7 2.1∗ 1.5∗ 1.7∗ 0.9∗ 0.7∗ 0.8∗

SegLDA 23.2 20.4 31.3 27.4 24.1 34.8 28.5 23.9 33.5 29.8 24.6 36.3 8.8 6.5 7.6 3.1 2.4 2.6

C-LDA 22.1 19.7 29.8 25.8 23.2 31.7 27.5 22.6 32.2 27.4 24.5 33.9 4.2 3.2 3.8 2.4 2.3 2.4

C-LDA-R 21.9∗ 19.2∗ 27.6∗ 24.5∗ 22.6∗ 30.4∗ 25.2∗ 21.6∗ 30.7∗ 26.8∗ 23.7∗ 32.4∗ 4.3 3.3 3.9 2.5 2.4 2.5

more significant improvements in datasets with more complex topic structures (Wici+,

Wile+, Cell+), which proves the validity of our model for generating coherent topics.

A possible reason is that C-LDA combines the frequency of context word pairs for

each topic in modeling, while the other models (such as TKM) either consider only the

word frequency in each topic or the frequency of all word pairs in individual documents

(such as BTM). Moreover, semantic expressions in a document are usually coherent

and segmented, e.g., paragraphs and sections, and thus, considering the context in a

topic assignment can clarify the semantics of the word, so as to reduce the risk of

splitting a coherent semantic segment.

3.3.2 Topic Segmentation

The results in topics of K = 50 and K = 100 are shown in Table 3.1, where the C-LDA-

R is the C-LDA with RTM optimization algorithm. We see that C-LDA and C-LDA-R
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perform the best in all cases of K = 100 and dominate in most cases when K = 50,

which validates their performance for coherency and saliency of different segments in

topic segmentation tasks.

BTM aims to generate all the distinct word pairs within a fixed window given a

topic. Therefore, its effect on the topic coherency is achieved by increasing the joint

probability of each word pair and topics. The high frequent word pairs in a corpus are

of high joint probabilities. However, in a corpus, the majority are ordinary words but

not word pairs, and their topic assignments are still of high uncertainty. Besides, the

computation of all distinct word pairs significantly increases its training time. TKM

improves the coherency of topic segmentation by considering the influence of key-

words on the topic assignment of surrounding words and costs the least time. However,

short topic segments with insufficient keywords are likely to be absorbed by long topic

segments, which is a possible reason of its low performance. In some cases of insuf-

ficient topic number (K = 50), SegLDA outperforms other methods. However, as K

increased from 50 to 100, its performance growth is inferior to C-LDA. For SegLDA,

the topics for words in a segment can be assigned from the segment-specific topic dis-

tribution, which improves the saliency of topic segments. However, assigning topics

without considering the original document can lead to a loss of context information

and degrade the accuracy of topic modeling. That is, a word is possibly assigned to

an incorrect topic even if it is not absorbed by others. C-LDA considers both the con-

textual word pairs and topic distribution. Based on the reorganized topic distribution

CTD, it reduces the uncertainty of the topic assignment and increases the joint prob-

ability of consecutive words sharing the same topic at the expense of increasing the

time consumption. Moreover, comparing the results of the original and their extended

datasets, we see our method has stronger robustness to more complex topic structures,

which also leads to better applicability.
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(a) Wici+ (b) Wiel+ (b) Cell+

Figure 3.4: PK and WindowDiff scores in terms of the number K of topics in (a)

Wikicities+, (b) Wikielements+ and (c) CellphoneReviews+. The stacked part above

each bar is the improvement from RTM algorithm.

For C-LDA-R, we see that the effect of the RTM algorithm is limited in the case

when K = 50 since it is insufficient to cover all the occurred topics. When K = 100,

RTM effectively improves the performance of topic segmentation. To further study

the effect of RTM, we calculated the changes of PK and WindowDiff with different

numbers K of topics (from 25 to 200). The experiments were conducted on the 3 ex-

tended datasets and the results are shown in Figure 3.4. We see the measures of both

C-LDA and C-LDA-R decrease quickly with the increase in length of K until K = 100.

For C-LDA, the performance starts to decrease around K = 150, while for C-LDA-

R, it tends to saturate as K keeps on increasing. The improvement by RTM becomes

increasingly remarkable with the increase of K, which also proves the robustness of

C-LDA-R for redundant topics. In addition, the time complexity of RTM for each

document is O(L∑S′∈S |S′|), where L is the context window size, S is the list of seg-

ments for a document and |S′| represents the length of each segment S′ in S. The time

consumption of the RTM is acceptable, since L is set less than 30. Besides, the opti-

mization process of each document is independent, which is easy for parallelization.
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3.4 Summary

We proposed a new generative model for topic segmentation. By combining topic

distribution and context word pairs-topic distribution, our model improves the certainty

of the topic assignment and ensures high coherency and saliency in topic segmentation.

Besides, we designed an optimization algorithm to merge redundant topic segments for

each document. Our experiments show that our proposal outperforms baseline models,

in terms of the segmentation scores of PK and WD in topic segmentation.
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Chapter 4

Adaptive and Hybrid Context-Aware

Fine-Grained Word Sense

Disambiguation in Topic Modeling

Based Document Representation

4.1 Overview

Document representation has long been studied in various areas [51] and widely used

in real-life applications, e.g., public sentiment analysis [70], chat-bot [17] and e-

learning [12]. Topic modeling and word embedding are two important paradigms for

this task. The former takes a global view of the word distributions across the corpus

to assign a topic to each word occurrence. The latter is based on a view of the local

word collocation patterns observed in a text corpus. For the traditional versions of the

two paradigms, such as LDA [7] and Word2vec [63], despite their significant progress
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in various tasks and applications, there is a common issue that one word corresponds

to one topic distribution or embedded vector, while in many cases, the semantics of a

word may vary from different senses.

In recent years, lots of studies have been proposed for word sense disambiguation

in the document representation task [9, 18, 23, 35]. Conventionally, they mainly rely

on data enrichment, e.g., using knowledge libraries or pre-training datasets, for word

sense induction, such as the WordNet [64] based Seeded-LDA [9] and SemLDA [23],

the Wikipedia based Token-SDM [53] and LTTM [90]. All of them have achieved

significant progress in word disambiguation performance in document representation.

Moreover, the recent neural network based language models such as ELMO [72], GPT

[76] and BERT [18], have rapidly improved the state-of-the-art on many NLP tasks.

Despite their empirical success, the requirements for scales of pre-training datasets

and computational efficiency are widely recognized issues due to their large numbers

of parameters (94M for ELMO [72], 340M for BERT [18], and 1542M for GPT [76])

[92]. More importantly, for most of the data enrichment based methods, they assume

that word senses are within the scope of the auxiliary text data, while senses in the

auxiliary data may not constantly match the ones in a specific dataset. In contrast, we

aim to discover more particular word semantic differences for a dataset related to a

specific domain, in which we cannot always obtain sufficient scales of domain-specific

data for the enrichment.

One solution to solve the WSD problem without data enrichment is context cluster-

ing [36,66,77]. DPMM [77] and EHModel [36] both obtain multi-prototype word em-

beddings by conducting clustering on all context word features for each word. Though

useful, they generate multi-prototype word vectors in isolation, ignoring complicated

correlations between word senses and their contexts [58]. MSSG [66] improves them

by providing flexibility for the number of context clusters, allowing that the cluster
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number varies according to the different distances of contexts in which each word oc-

curs to their nearest sense cluster. Clustering contexts for each word can effectively

divide their senses; however, it is challenging to clarify the differences between syn-

onyms due to their similar contexts. Moreover, because of the independence between

different clusters, the degree of the relationship between a sense and a specific context

is ignored.

Another solution is to introduce an additional module to support the word sense

disambiguation in document representation. SA-SLDA [94] integrated a Word Sense

Induction (WSI) model and a topic model, and the two modules are linked by the topics

corresponding to each word. CRFTM [28] captures the senses of a target word based

on document-specific semantic correlated words, whose distances to the contextual

words of the target word are lower than a given threshold. CGTM [104] and LF-LDA

[68] are topic models using word embedding as an additional component. Topic2Vec

[69] and TWE [58] introduce topic vectors in the embedding process, in which the

word vector is embedded by concatenating the corresponding word and topic. NCLM

[15] and TCNLM [98] incorporate the topic proportion of the text segment in which

each word occurs, e.g., the document topic distribution, in the embedding framework,

to distinguish different word senses. In more recent years, studies focus more on joint

learning word embedding and topic modeling [26, 87, 110]. STE [87] holds the same

basic idea as TWE [58] which combines both the latent topics and word embeddings,

but the difference is to learn topical word embeddings in a unified manner. MMSG [26]

assumes a word topic is drawn for word embeddings. Each context and the word in the

context is drawn from the logbilinear model based on the topic embeddings. JTW [110]

also assumes that each word embodies a finite set of senses which can be interpreted

as topics, and each word sense representation can be transformed into a probabilistic

distribution over topics.
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Essentially, they all attempt to link each word occurrence to a specific sense through

topics or topic proportions. Compared with the methods using topics, the methods

based on topic proportions have better generalization. They provide more choices for

a word sense in modeling than the methods limited to a given number of topics. Nev-

ertheless, they both imply an assumption that there is a one-to-one correspondence be-

tween the word senses and the topics or the topic proportions.This assumption is some-

what an excessively strict constraint since a sense which corresponds to multiple top-

ics or topic proportions is common, especially in the high topic dimension cases. One

topic or similar topic proportions may also correspond to different senses of a word.

This explicit and compulsory division for word semantics also inevitably overlooks the

influence of other senses on further clarifying the differences to other words. On the

other hand, many studies have shown that the two paradigms of word embedding and

topic modeling are complementary in how they represent the semantics of documents;

thus, improving either of them can contribute to optimizing the performance of their

integrated model in document representation [26, 58, 68, 69, 87, 98, 104, 110].

In this chapter, we propose a hybrid context based word sense aware topic model

(named HCT), where each sense of a word is estimated by integrating their topic distri-

butions of both the context words in which it occurs and those of its other occurrences.

Besides, we introduce the “Bag-of-Senses” (BoS) assumption that a document is a

multiset of word senses, based on which HCT generates a word sense instead of the

words themselves. The proposed model enjoys three substantial merits over the state-

of-the-art methods: (1) no data enrichment or auxiliary module is needed, (2) it is an

end-to-end model in which the topic vectors for hybrid contexts as well as their weights

for each word are all considered as variables and learned jointly, and (3) the context

window length of each word is learned adaptively.
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4.2 Sense Aware Topic Modeling

This section describes in detail our “Bag-of-Senses” (BoS) model. We explain how a

word sense and its context window length is generated in our BoS based topic model

using the hybrid context, and then how the parameters are estimated based on the Gibbs

Sampling [29].

4.2.1 Bag-of-Senses

As a topic model, the basic task is, for a set of n documents D = {D0,D1, ...,Dn},

to obtain the topic distribution θDi for each document Di and word distribution φk

for each topic k. Following most traditional topic models [7], θDi and φk are both

assumed to follow Dirichlet distributions. The number K of topics for each document

is assumed fixed and known. Each word corresponds to a K-dimensional topic vector.

For the “Bag-of-Words” (BoW)1 based models, all the word occurrences are mapped

to one topic vector, whereas the vector cannot reflect the difference between various

senses. Therefore, we propose the “Bag-of-Senses” (BoS) hypothesis: a document d in

a dataset, is represented as a multiset of word senses sw, d = {sw: nsw |w ∈Wd}, where

nsw is the counts of sw in d, Wd refers to a sequence of word occurrences in d. Each

word occurrence corresponds to a word sense and each sense corresponds to a topic

vector. For example, suppose that a document Di consists of three words “religion”

where two of them refer to the sense of “the Islam” (s1) and the other one refers to

“the Christian” (s2). In the BoW model, Di is represented as {religion: 3}, whereas in

BoS, it is {religions1: 2, religions2: 1}.
1The ”Bag-of-Words” (BoW) is the most widely used simplifying model in document representa-

tion, which assumes a document is a multiset of words, disregarding the grammar and even the word
order but keeping multiplicity [89].
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(a) Sense Clusters in a Dictionary

(b) Dataset-Specific Sense Clusters

Figure 4.1: Comparison examples of the sense clusters in a dictionary (Figure 4.1 (a))

and the dataset-specific sense clusters (Figure 4.1 (b)).

4.2.2 Hybrid-Context based Sense Estimation

The primary problem is how to define the topic vector of the sense for a word oc-

currence. Based on the compilation rules of a dictionary that each group of similar

usage corresponds to a sense cluster (Figure 4.1 (a)) [72], we can reasonably assume

that the senses of each word in a specific dataset hold the similar clustered properties

(Figure 4.1 (b)). Moreover, the usage differences of senses for each word are reflected

by their corresponding different contexts. Therefore, we give the definitions of the

Dataset-Specific Word Sense and the Context Words as follows.

Definition 1. Dataset-Specific Word Sense In BoS, the Dataset-Specific Word Sense

for a word is defined as a cluster of similar usages of all its senses in a specific dataset.
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Definition 2. Context Words For word w in a document, given window length h, the

context words wh of word w refers to a set of words within the window.

To ensure both differences between various senses for each polysemy as well as

those between synonyms, based on Definitions 1 and 2, a sense vector vwh,w for a word

w in a specific context wh is estimated by a hybrid of all its sense clusters, where wh

is the context words of w. Specifically, let each sense cluster s′ of word w correspond

to a specific vector vs′
w; thus, vwh,w is obtained by a mixture as:

vwh,w = ∑
s′∈S

µs′
wh,wv

s′
w, (4.1)

where S is a set of all sense clusters of word w and µs′
wh,w is its corresponding weight

(∑s′∈S µs′
wh,w = 1). Now the problem is how to define vs′

w in a topic space. Explicitly

estimating all the sense clusters of each word is difficult, since the cluster number for

each word is quite different; thus, estimating the word sense vector directly by Eq. (1)

is difficult. To solve this problem, inspired by the “Distributional Hypothesis” [24]

which states that words in similar contexts have similar meanings, we can assume that

sense clusters can be reflected in different sets of contexts. Therefore, given a set of

contexts of each sense cluster, the vector vs
w for cluster s can be represented by the

average of the vectors for the words in the set of its contexts:

vs
w = ∑

wh∈wh,s

vg
wh
, (4.2)

where wh,s refers to the set of words occurring in the context of all senses in cluster s

and vg
w′ is the global topic vector of word w′.

Nevertheless, obtaining wh,s is also difficult since we cannot know all the possible

contexts of each sense cluster in a dataset beforehand. Therefore, we rewrite Eq. (1)
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as:

vwh,w = µs
wh,wv

s
w + ∑

s′∈S−s

µs′
wh,wv

s′
w,

where S−s is the set of all sense clusters except for s. We see that vwh,w can be

represented as a combination of one sense cluster vector and a weighted sum of other

cluster vectors, while the latter can be approximately regarded as a general vector

of w since it contains most of its senses. Hence, we can always find a combination

of weights to let vwh,w be represented as a weighted sum of a local sense vector vl
w

and a global topic vector vg
w, where vl

w is only concerned about the current contextwh

(vl
w =∑w′∈wh

v
g
w′). Hence, the sense vector vwh,w in a specific context can be calculated

as:

vwh,w = µwh,wv
l
w +(1−µwh,w)v

g
w, (4.3)

where µwh,w is the corresponding weight. Eq. (3) avoids obtaining all the sense clusters

of each word beforehand since the calculation of vw is independent of sense clusters.

We name the topic vector of a word Global Word Sense Vector (denoted by vg), the

mean vector of its context words Local Word Sense Vector (denoted by vl), the topic

vector of word sense Word Sense Vector (denoted by vw), and the weight of vl Local

Sense Weight (denoted by µwh,w). Therefore, vwh,w for a word w within context words

wh can be estimated by its vg
w and vl

wh,w. Their definitions are as follows.

Definition 3. Global Word Sense Vector For a K dimensional topic space, the Global

Word Sense Vector vg
w is the probability distribution of w for the K topics.

Definition 4. Local Word Sense Vector For a word w in a context of wh, the Local
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Word Sense Vector vl
wh,w of w is a mean of vgs of its context words:

vl
wh,w = ∑

w′∈wh

v
g
w′.

Definition 5. Word Sense Vector For a word w with context wordswh, its sense vwh,w

is a weighted average of its vg and vl:

vwh,w = µwh,wv
l
wh,w +(1−µwh,w)v

g
w,

where µwh,w is named Local Sense Weight.

4.2.3 Word Sense Generation

Based on the above definitions, for a BoS based topic model, a document is generated

by word senses, while a specific sense consists of a word and its context words. There-

fore, given topic to the ith word of document d, not only a word is generated but also

its context words.

According to Definition 4, using joint probabilities to estimate the generation of

context words is inappropriate because the Local Word Sense Vector of a word is de-

fined as the mean topic vector of the context words. Therefore, we assume the set

of context words wh of word w to be a pseudo word cwh as an observed variable,

and takes the average of topic vectors for all the involved words as its own vector.

Following LDA [7], the topic-word distribution φk for w and the topic-pseudo word

distribution πh,k for cwh follow their respective Dirichlet distributions as:

φk ∼ Dir(β),πh,k ∼ Dir(γ).
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Therefore, given a topic k, the word w and its corresponding pseudo word cwh follow

their respective Categorical distributions:

w∼Cat(φk),cwh ∼Cat(πh,k).

According to the conjugate of Dirichlet distribution and Categorical (or Multinomial)

distribution [42], their expectations are calculated as follows:

Eβ(φk,w) =
nw

k,−(d,i)+βw

∑
V
f=1(n

f
k,−(d,i)+β f )

(4.4)

Eγ(πh,k,cwh
) =

∑t∈wh
(nt

k,−(d,i)+ γt)

L∑
V
f=1(n

f
k,−(d,i)+ γ f )

, (4.5)

where φk,w and πh,k,cwh
refer to the probabilities of generating word w and cwh given

topic k, respectively. h is the size of context window. nt
k,−(d,i) is the number of word

t belonging to topic k without the ith word in document d. Based on Definition 5, we

introduce a hidden variable swh,w, named word sense, to present the sense of word w

in context wh, where swh,w is generated from:

swh,w ∼ (1−µwh,w)φk,w +µwh,wπh,k,wh.

For weight µwh,w, based on Definition 5, swh,w can be regarded as the probability for

vl
wh,w in a mixture of topic distributions of vg

w and vl
wh,w. Therefore, given topic k,

µwh,w can be estimated by the Conditional Probability Formula [39]. Specifically, for

the ith word w in document d, we obtain µwh,w by the probabilities of topic k in vg
w and
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vl
wh,w, as Eq. (6):

µwh,w , P(vl
wh,w|k) =

P(k|vl
wh,w)P(v

l
wh,w)

P(k)
=

P(k,vl
wh,w)

P(k,vg
w)+P(k,vl

wh,w)
, (4.6)

where P(k,vg
w) refers to the probability of topic k in vg and P(k,vl

wh,w) refers to that

in vl
wh,w. Their calculations are:

P(k,vg
w) =

φk,w

∑
K
s=1(φs,w)

∝

nw
k,−(d,i)+βw

∑
K
s=1(n

w
s,−(d,i)+βw)

,

P(k,vl
wh,w) =

πk,wh

∑
K
s=1(πs,wh)

∝

1/L∑t∈wh
nt

k,−(d,i)+ γt

∑
K
s=1
[
1/L(∑t∈wh

nt
k,−(d,i)+ γt)

] ,
where nw

k,−(d,i) is the number of word w which belongs to topic k without the ith word

in document d.

4.2.4 Adaptive Context Estimation

Since using a fixed context window length for different usages of each word is inappro-

priate in the WSD tasks, we introduce another new variable ηd,w to adaptively control

the window length for each word. In BoS, the context words of each word reflects

one of its sense, therefore, the context words related to the sense should be consistent

with the topic assignment of the corresponding word in topic modeling. Specifically,

given a topic k of a word, the probability P(h|k) of selecting a context window with

size h can be estimated according to the probability of k in the average topic vector

of context words under each possible size, since P(h|k) is reduced when the window

covers words which are not related to the word sense. Similar to µwh,w, we obtain the
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Figure 4.2: Plate notation of HCT.

probability P(h|k) by the Conditional Probability Formula [39] as follows:

P(h|k) =
P(k,vl

wh,w)

∑
H
h=1 P(k,vl

wh,w)
, (4.7)

and the optimized context window length η is generated by a Categorical distribution:

η∼Cat(P(1|k), ...,P(L|k)), (4.8)

where h ∈ [1,H] and H is an empirical value which represents the possible maximum

value of the context window length in a given dataset. We see that the higher the

proportion of the context words related to the topic of the involved word, the greater

the probability of generating the corresponding window length.

4.2.5 Model Description

The plate notation is shown in Figure 4.2. We introduce six new variables π, γ, cwη
,

η, swη,w and µwη,w to traditional LDA, where πη represents the topic-pseudo word

distribution with a parameter of γ. cwη
refers to a pseudo word for the average of

context words. swη,w represents the sense of word w in context wη. µwη,w refers to
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the Local Sense Weight. For the other variables, θd represents the topic distribution

of document d with parameter α. φk is the topic-word distribution of topic k with

parameter β. w is a word in a document and z is its corresponding topic. For a dataset

of D documents with a vocabulary of size V and latent topics indexed in {1, ...,K}, the

generative process of HCT is described as follows:

1. Generate φk for each topic k: φk ∼ Dir(β).

2. For each document d:

(a) Generate θd for document d: θd ∼ Dir(α).

(b) For each word w in d (index by i):

i. Assign topic z(d,i) by θd: z(d,i) ∼Cat(θd).

ii. For each context window length h ∈ [1,H]:

A. Obtain the context words wh.

B. Generate the topic-pseudo word distribution πh,z(d,i):

πh,z(d,i) ∼ Dir(γ).

C. Calculate P(h|z(d,i)) of selecting the context window with size h

based on Eq. (7).

iii. Generate the optimized context window length η:

η∼Cat(P(1|z(d,i)), ...,P(H|z(d,i))).

iv. Generate cwη
by πη,z(d,i): cwη

∼Cat(πη,z(d,i)).

v. Generate w by φz(d,i): w∼Cat(φz(d,i)).

vi. Calculate µwη,w by Eq. (6).

vii. Generate swη,w by z(d,i), φz(d,i),w and πη,z(d,i),cwη
:

swη,w ∼ (1−µwη,w)φz(d,i),w +µwη,wπh,z(d,i),η,wη
.
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φk and πη,k share the same topic-word matrixM which records the number of occur-

rence for each word in different topics. Based on M , φk and πη,k are calculated with

reference to their respective Dirichlet parameters β and γ. Each row and column of

M respectively corresponds to a topic-word distribution and a topic vector of a word.

4.2.6 Parameter Estimation

Except for α, β and γ, the parameters of our model are approximately estimated by

Gibbs sampling [29]. In the estimation procedure, we need to calculate conditional dis-

tribution P(d,i),k= P(z(d,i)=k|wd,i,zd,−(d,i),w1,(d,i), ...,wh,(d,i), ...,wH,(d,i),µ(d,i),α,β,γ),

for each document d, where w(d,i) represents the ith word in d and zd,−(d,i) refers to the

topic assignments for all words in d except word w(d,i). wh,(d,i) is the context words

of w(d,i) with a window length of η (η ∈ [1,H]) and µη,(d,i) refers to the Local Sense

Weight of w(d,i). P(d,i),k is computed as follows:

P(d,i),k ∝ P(z(d,i) = k,swη,(d,i),w(d,i) = st |w1,w(d,i), ...,wH,w(d,i),α,β,γ)

= P(z(d,i) = k,w(d,i) = t,cw1,(d,i) = ct1, ...,cwH,(d,i) = ctH |α,β,γ)

= P(z(d,i) = k|α)
∫
(1−µη,(d,i))P(w(d,i) = t|β)

+µη,(d,i)P(cwη,(d,i) = ctη|γ)P(η|k)dη

=
∫

P(z(d,i) = k|θd)P(θd|α)dθd∫
P(η|k)

[
(1−µη,(d,i))

∫
P(w(d,i) = t|φk)P(φk|β)dφk

+µη,(d,i)

∫
P(cwη,(d,i) = ctη|πη,k)P(πη,k|γ)dπη,k

]
dη
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=
∫

P(z(d,i) = k|θd)P(θd|α)dθd

∑
η∈[1,L]

P(η|k)
[
(1−µη,(d,i))

∫
P(w(d,i) = t|φk)P(φk|β)dφk

+µη,(d,i)

∫
P(cwη,(d,i) = ctη|πη,k)P(πη,k|γ)dπη,k

]

Based on the definition of Dirichlet distribution, conditional distribution P(d,i),k can be

simplified as

P(d,i),k ∝ Eα(θd,k) ∑
η∈[1,H]

P(η|k)
[
(1−µη,(d,i))Eβ(φk,t)+µη,(d,i)Eγ(πh,k,wh,(d,i))

]
, (4.9)

where Eα(θd,k) refers to the expectation of the probability for topic k in document d,

which can be estimated by

Eα(θd,k) ∝ (nd,k,−(d,i)+α), (4.10)

where Eβ(φk,t) and Eγ(πh,k,wh,(d,i)) are the expectations of the probabilities for word

wt and the pseudo word of context words wh,(d,i). They are calculated by Eqs. (4) and

(5). µη,(d,i) and P(η|k) are estimated by Eqs. (6), (7) and (8). Based on Eq. (9), we

obtain topic assignment probability P(d,i),k for each word in d, so as to compute their

corresponding topic distribution P(d,i). Detailed steps are shown in Algorithm 1.
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Algorithm 3: Parameter Estimation Algorithm
Input: A set of D documents of length Nd; number Niter of iterations; number

K of topics; Dirichlet parameters α, β and γ

Output: For each document d, topic distribution θd; for each topic k, word

distribution φk (1≤ k ≤ K);

1 Initialize topic assignments randomly, context window length as 5 for each

word, and µwη,w = 0.5 for all words in documents D with context words of

wη

2 for iteration = 1 to Niter do

3 for d = 1 to D do

4 for i = 1 to Nd do

5 Update the context window length η by Eq. (7) and Eq. (8).

6 Update µwη,(d,i),w(d,i) by Eq. (6).

7 Assign a topic z(d,i) from P(d,i) by Eq. (9).

8 Update θd and topic-word matrixM .

9 return topic-word matrixM , θd for each document d as well as µwη,(d,i),w(d,i)

for each word.
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4.3 Experiments

We conducted both quantitative and qualitative analyses. Firstly, we use three bench-

mark datasets 20Newsgroups1 (20NG), Toxic Comments2 (T-COM) and Sanders Tweet3

(Tweet) in the quantitative analysis for evaluating the word sense estimation qualities,

document classification effects, topic modeling accuracy, the adaptive context window

length effectiveness, and model efficiency. In the qualitative analysis, we use 20NG,

T-COM and PubMed4 to verify the effects of our model in fine-grained word sense

detection.

20NG is a collection of approximately 20,000 newsgroup documents, organized

into 20 different newsgroups, each corresponding to a different topic. T-COM is a

dataset of Wikipedia comments which human raters have labeled for toxic behavior,

i.e., comments which are rude, disrespectful, or controversial. Tweet is a twitter sen-

timent corpus created by Sanders Analytics, which consists of 5513 hand-classified

tweets. Each tweet was classified for one of four different topics. PubMed database

contains more than 30 million journal citations and abstracts for biomedical literature

from around the world since the 1970s. For all the datasets, stop words were removed

in advance.

To validate the proposed model HCT, we test the following baseline methods: a

traditional topic model LDA [7], four word embedding methods combined with topic

modeling, JTW [110], STE [87], TWE-1 [58] and NCLM [15], where STE and JTW

learn word embeddings and topics jointly, two topic models CGTM [104] and LF-

LDA [68], which are combined with a Skip-gram based word embedding model, as

well as two sense cluster based embedding methods EHModel [36] and MSSG [66].
1http://qwone.com/˜jason/20Newsgroups/
2http://kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
3https://github.com/zfz/twitter_corpus
4https://www.nlm.nih.gov/databases/download/pubmed_medline.html
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Moreover, in the quantitative analysis, we combine our model HCT with a skip-gram

based word embedding framework [63] as another testing method (denoted by HCT-S).

Its integration principle is similar to TWE-1 [58], where the difference is that we take

the sense vector for each word occurrence rather than its topic assignment as additional

input features.

4.3.1 Experimental Setup

We use Support Vector Machines (SVM) [89] to predict ground truth labels from the

topic vectors of documents and used WEKA [31] for learning a classifier. These results

are the average of ten-fold cross-validation. The detailed parameters for SVM are set

as follows: (1) the type of SVM model is C-SVC; (2) the type of kernel function is

RBF; (3) the degree in kernel function is 3; (4) the gamma in kernel function is 1/k

(k is the number of different labels); (5) the parameter C of C-SVC is set by 1 (C

determines the influence of the misclassification on the objective function).

In both of the qualitative and quantitative analyses, we use kMeans [59] to cluster

the word sense vector and visualize them with t-SNE [96]. The cluster number are

determined by Silhouette Coefficient1. We chose the cluster number (from 2 to 10)

with the highest Silhouette Coefficient as the parameter for kMeans. Moreover, we set

the maximum empirical value of context window length H = 20. The hyper-parameters

(α, β and γ) were all fixed to 0.05.

4.3.2 Quantitative Analysis

The quantitative experiments are conducted on 20NG, T-COM and Tweet, in terms of

three aspects: classification effect, sense estimation quality and topic modeling accu-
1The Silhouette Coefficient ranges in [−1,1], where a higher value indicates that the object is better

matched to its own cluster and poorly matched to other clusters [53].
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Table 4.1: Comparison of the average similarities between the sense clusters of each

word (Csc).

K EHModel MSSG TWE-1 NCLM STE JTW LF-LDAt CGTMt HCTt HCT-S

Csc
100 0.819 0.822 0.849 0.841 0.832 0.857 0.887 0.876 0.847∗ 0.826

200 0.835 0.814 0.837 0.833 0.821 0.815 0.867 0.864 0.835∗ 0.823

(a) K=100 (b) K=200

Figure 4.3: Comparison of average similarities between vectors of each word and its

Top-n (n ∈ [1,2000]) nearest words based on the cosine similarity on 20NG dataset.

racy.

4.3.2.1 Sense Estimation Quality

To investigate sense estimation qualities, we evaluate the differences among various

senses for each word and those among its synonyms on 20NG. In this analysis, the

differences are measured by the cosine similarity. A lower value reflects higher dis-

crimination between different senses or words, corresponding to a better sense esti-

mation quality. We used kMeans [96] to cluster the sense vectors, where the detailed

parameter settings are as described in Section 4.1.

We calculated: (1) the average cosine similarities between sense clusters for all oc-

currences of each word (denoted by Csc, as shown in Table 4.1), as well as (2) the aver-

84



age cosine similarities between each word vector and its Top-n (n ∈ [1,2000]) nearest

word vectors (denoted by Cw, as shown in Figure 4.3), where the word vector is calcu-

lated by the mean of all its sense vectors. ∗ indicates the best scores yielded by topic

models (labeled by t), and bold fonts indicate the best ones of all the baselines. We see

that the lowest Csc are achieved by the clustered based methods (EHModel and MSSG).

In all cases, HCT-S is superior to most of the others, and HCT performs the best in the

topic models. The word semantic divisions by contexts clustering can directly clarify

the distinctions between different senses of a word. However, it may obscure the dif-

ferences to other words, especially those with similar usages. There is a trade-off for

the two goals in WSD task: (1) division for different senses of the same word, and (2)

discrimination for different words with the similar or same sense. Ignoring the differ-

entiation to other words while dividing the word semantics is likely to confuse their

similar sense clusters, and thus reducing the differences between synonyms. Further-

more, for the word embedding based methods, their Cw are lower than the topic models

as the number of nearby words involved increases. One possible reason is that the op-

timization targets of these two paradigms are different. The embedding models focus

on optimizing word vectors, while topic models aim at optimizing the topic distribu-

tions of documents. This difference directs the embedding vectors more sufficiently to

reflect the semantic similarities and differences between words. In the following ex-

periments, we will discuss their complementary nature in the document representation

task.

4.3.2.2 Document Classification

To evaluate the quality of document representation vectors, we conducted classification

experiments on three benchmark datasets. We randomly sampled 12000 documents
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Table 4.2: Comparison of the classification performance and NPMI on “Tweet”, “T-

COM” and “20NG”.

Method K
T-COM 20NG TWEET

Precision Recall F-Score NPMI Precision Recall F-Score NPMI Precision Recall F-Score NPMI

LDAt

100

0.774 0.767 0.771 -12.2 0.721 0.695 0.707 -8.2 0.650 0.651 0.651 -15.3

CGTMt 0.828 0.825 0.827 -8.4 0.841 0.835 0.838 -6.7 0.690∗ 0.686 0.688∗ -11.3∗

LF-LDAt 0.826 0.822 0.824 -9.6 0.839 0.831 0.835 -7.7 0.683 0.682 0.682 -12.8

EHModel 0.771 0.763 0.767 - 0.799 0.797 0.794 - 0.668 0.664 0.665 -

MSSG 0.783 0.779 0.781 - 0.814 0.812 0.813 - 0.677 0.675 0.675 -

TWE-1 0.819 0.824 0.821 - 0.848 0.847 0.847 - 0.682 0.681 0.682 -

STE 0.825 0.828 0.826 -9.1 0.851 0.857 0.854 -7.2 0.691 0.687 0.689 -11.7

NCLM 0.823 0.827 0.825 - 0.852 0.849 0.851 - 0.685 0.682 0.683 -

JTW 0.829 0.832 0.831 -8.6 0.858 0.861 0.860 -6.6 0.692 0.689 0.689 -12.3

HCTt 0.838∗ 0.839∗ 0.838∗ -7.6∗ 0.862∗ 0.859∗ 0.861∗ -6.4∗ 0.689 0.687∗ 0.688 -11.5

HCT-S 0.856 0.861 0.857 - 0.880 0.881 0.881 - 0.717 0.716 0.716 -

LDAt

200

0.806 0.788 0.797 -13.6 0.738 0.727 0.731 -9.4 0.651 0.653 0.653 -16.6

CGTMt 0.835 0.832 0.832 -10.3 0.848 0.841 0.845 -7.8 0.697 0.695 0.695 -12.2

LF-LDAt 0.831 0.830 0.830 -11.5 0.845 0.838 0.841 -8.3 0.687 0.686 0.686 -13.7

EHModel 0.808 0.801 0.804 - 0.811 0.807 0.808 - 0.671 0.675 0.672 -

MSSG 0.814 0.811 0.812 - 0.824 0.821 0.823 - 0.682 0.679 0.680 -

TWE-1 0.825 0.823 0.824 - 0.857 0.855 0.856 - 0.687 0.685 0.685 -

STE 0.831 0.834 0.832 -9.8 0.863 0.859 0.861 -7.7 0.702 0.697 0.697 -12.8

NCLM 0.828 0.832 0.831 - 0.859 0.857 0.858 - 0.686 0.687 0.686 -

JTW 0.837 0.836 0.836 -10.1 0.867 0.866 0.866 -8.5 0.693 0.691 0.692 -13.2

HCTt 0.855∗ 0.857∗ 0.855∗ -9.6∗ 0.872∗ 0.875∗ 0.872∗ -7.1∗ 0.699∗ 0.703∗ 0.701∗ -11.9∗

HCT-S 0.866 0.871 0.869 - 0.885 0.887 0.885 - 0.727 0.731 0.728 -
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from 20NG, 10000 documents from T-COM, and all the four classes in Tweet. The

precision and recall as well as the macro averaged F1-Score [61] (K=100, 200) are

presented as the evaluation metrics for this task. The results are reported in Table 4.2,

where ∗ indicates the best scores achieved by the topic models, and bold fonts indicate

the best scores achieved by all the models. Topic models are labeled by t . We see that

HCT shows the best results in the topic modeling based methods in most cases, and the

integrated method HCT combined with skip-gram is superior to all the other baseline

models on the three datasets.

Classification performance reflects the ability to distinguish different classes of

documents in their representation spaces. HCT considers the relationships between the

different senses of each word in topic modeling, and thus achieves a better trade-off

between the differentiation of various senses of each word and the semantic differences

of synonyms. For short text datasets, the context words for each word may occupy the

vast majority of the document; thus, their influence on the word sense may counteract

the role of the document itself, such as the topic distribution. Therefore, our model

has limited improvement in classification accuracy on short text datasets compared to

other baselines. On the other hand, the integrated models, which combine both the

topic modeling and word embedding, are more effective than the other baselines. The

methods of jointly learning word embeddings and document topics perform better than

the models integrating the two modules independently. However, they all assume that

word senses under each topic dimension are different, or senses belong to one topic or

topic proportion are the same. Nevertheless, it is common that a sense could belong to

multiple topics, and the number of senses for each word is different. The senses of a

word and its topics, or the word senses and the topic proportion of the text segment in

which it occurs are not always in one-to-one correspondence. Therefore, this explicit

and compulsory division for word senses is likely to decrease the accuracy of their
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embedded vectors. Another significant issue is that all the baseline models neglect the

degree of dependency for a word sense on its context words. However, these degrees

of the dependencies of a sense varies from its usage frequency. For example, a non-

standard use of a word is more dependent on its context than its standard use [47, 76].

These problems might be the leading causes of their performance bottlenecks.

Besides, the complementarity of topic modeling and word embedding improves

the performance of the integrated methods. For most topic modeling based methods,

embeddings are mainly used to improve the accuracy of the topic assignment for each

word (CGTM and LF-LDA). This indirect influence on topic modeling cannot suf-

ficiently reflect the context information captured by the embedding models. For the

embedding based models (JTW, NCLM, TWE-1, STE, and HCT-S), the topic model-

ing results are inputted as additional features and directly utilized in the word vector

estimation, which might be the main reason for the embedding-based integrated meth-

ods being generally better than other integrated ones in this analysis.

4.3.2.3 Topic Modeling Accuracy

As a topic modeling method, we evaluate the accuracy of the discovered topics by

calculating the average normalized pointwise mutual information (NPMI) for each

method. NPMI is a popular metric of the topic modeling quality by measuring the co-

herence of a topic based on point-wise mutual information [80]. It assumes that a topic

is more coherent if the most probable words in the topic co-occur more frequently [65].

Besides, topic coherence can also reflect the matching between the topic assignment

and semantics for each word, since semantic expressions in a document are usually

coherent and segmented (such as paragraphs and sections) [75]. A higher NPMI score

indicates that the topic distributions are semantically more coherent. Given the T most
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probable words of topic k, NPMI is:

NPMI(k) = ∑
1≤i< j≤T

1
− logP(wi,w j)

log
P(wi,w j)

P(wi)P(w j)
,

where P(wi,w j) and P(wi) are the probabilities of word pair (wi,w j) and word wi,

respectively, and are both estimated from an external dataset1.

The results of topic models (HCT, LDA, LF-LDA, and CGTM) and joint learning

based integrated methods (STE and JTW) are shown in Table 4.2, where bold fonts

highlight the best results. We see HCT shows the best results in most cases, which

confirms that our model can generate more coherent topics than baselines. HCT gen-

erates both words and context words as well as uses the context and adaptive weights

to clarify word semantics, reducing the uncertainty of the word topic assignment. The

others use embedding vectors to clarify the word topic assignment [68]. They give

semantically related words a better chance to share the same topic label, considering

semantic similarities of word embeddings. However, as mentioned before, it is not

always appropriate to give the same topic to the semantically similar words in the em-

bedding based vector space. Moreover, the word embedding vectors are learned by all

their contexts, which is also difficult to help specify a rare sense for a word in a specific

context.

4.3.2.4 Effectiveness of the Adaptive Context Window Length

For investigating the effectiveness of the Adaptive Context Window Length, we tested

our model in terms of their classification performance in 20NG, T-COM, and Tweet

using a uniform context window length of h ∈ [1,30], denoted by HCT-L. In these

1We use the January 2020 English Wikipedia dump as the external dataset, and collected words that
co-occur in a window of ±5 (https://dumps.wikimedia.org/enwiki/).
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(a) T-COM (b) 20NG (b) Tweet

Figure 4.4: F1-Scores of HCT and HCT-L with different values of h on T-COM, 20NG

and Tweet.

experiments, we set the topic number K=200 and fixed other parameters as previous

settings. The results are shown in Figure 4.4. We see that the F1-Scores of HCT-Ls

increase sharply as h increases and tend to saturate when h reaches around 12 to 20.

As h continues to increase, F-Score starts to gradually decline. Moreover, the optimal

context window length in the short text dataset (Tweet) is smaller than those of the

other two datasets (T-COM and 20NG). Although the best value of h varies with the

dataset, the optimal result of each dataset of HCT-L is still inferior to the results which

are obtained by the adaptive context-based HCT. These observations verify that the

adaptive context window is effective in the topic modeling process and are also the

reasons that the maximum empirical size is set to 20 in our experiments.

4.3.2.5 Efficiency Comparison

We list the average running time (per iteration) for 1000 iterations of our proposals and

other baseline topic models on 20NG with K = {10,50,100,150,200, 250}. Moreover,

we also compared the efficiency of HCT with three cases of fixed context window

lengths h = 5,10,20. The experiments were conducted on a machine with Intel i9

processor and 128GB memory.
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Figure 4.5: Running time per iteration (s) on 20NG of all the baselines and HCT-L

with h = 5,10,20 (denoted by HCT-L5, HCT-L10 and HCT-L20, respectively).

As shown in Figure 4.5, we see that the time cost of all the models increases

monotonously as topic number K grows and all the integrated topic models as well

as HCT and HCT-Ls cost more time than the traditional topic model LDA. The rea-

sons are, for the integrated models, they use an auxiliary module in topic assignments,

which increases their time in computing the topic distribution of each word occurrence;

while for HCT-Ls, they generate both words and their corresponding context words,

which consumes more time in obtaining each word distribution given a topic. For HCT,

due to its consideration of various probable context window lengths within a maximum

empirical value, its increase in time consumption is more evident than HCT-Ls. We

can derive that the time complexity of HCT-l and traditional LDA are both O(NDSK),

where ND is the total number of documents in the dataset, S = ∑i Si/ND is the average

size of documents and Si refers to the length of the ith document. For HCT, its time

complexity is O(NDSKL), where L is the context window length. Although the con-

sideration of h in HCT increases its time consumption, the given maximum empirical

value is typically less than 20 and independent of the topic numbers. Moreover, based

on Algorithm 1 and the generating steps of HCT, we see that the processing related to

h contributes a small part of the internal loop. Therefore, the time consuming for HCT
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is acceptable, and we see that, as K increases, the change rate of time consumption for

HCT and HCT-L is consistent with LDA.

4.3.3 Qualitative Analysis

We analyzed the effectiveness of our model in fine-grained word sense detection from

two aspects: (1) the discovering of dataset-specific word sense and (2) the capturing of

word sense evolution in the specific topic dimensions. Secondly, we verified how the

“Bag-of-Senses” assumption positively affects the topic modeling.

4.3.3.1 Dataset-Specific Word Sense Discovery

Firstly, we verify whether our model can capture useful domain-specific senses by

the estimated sense vectors. We randomly sampled 10000 documents from 20NG

with 20 classes1 and 7000 comments from T-COM covering three sensitive themes

of “religion”, “race” and “homosexual”. We respectively select three high frequent

words which are likely to cover the most related themes of each datasets according to

the Longman Dictionary2 (“power”, “card”, “key” for 20NG and “religion”, “race”,

“homosexual” for T-COM) as examples and compute the Word Sense Vector vwη,w

of each word w within each context wη by Definition 5. We used the same settings

as those in the quantitative analysis for sense vectors clustering, and visualized the

results by t-SNE [96]. Silhouette Coefficients for each example word with different

cluster numbers are as shown in Figure 4.7. The number of clusters with the highest

Silhouette Coefficient is set as the clustering parameter of the corresponding word

sense vectors.
1These 20 classes mainly cover the themes of “electronics”, “sports”, “religion”, “politics” and

“industry” (http://qwone.com/˜jason/20Newsgroups/).
2https://www.ldoceonline.com/dictionary/
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(a) vpower (b) vcard (c) vkey

(d) vreligion (e) vrace (f) vhomosexual

(g) µpower (h) µcard (i) µkey

(j) µreligion (k) µrace (l) µhomosexual

Figure 4.6: Visualization for each example word w by their Word Sense Vectors (vw)

and the corresponding Local Sense Weights (µw) in the 20NG. Each point in (a-f) or

bar in (g-l) refers to a word item in the dataset, where each color corresponds to a sense

cluster.

As shown in Figure 4.6 (a-f), each point represents a sense vector, and each color

refers to a sense cluster. We see that the sense vectors exhibit varying degrees of clus-
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tered properties. This observation verifies our hypothesis in Definition 1. For further

study of the semantics for each cluster, we then counted the high frequent context

words for each cluster and presented the interpretations which are likely to be relevant

to these clusters based on the Longman Dictionary, as shown in Tables 4.3 and 4.4.

From Table 4.3, we see that although not all groups of context words can be abstracted

to an exact meaning, the differences between them are clear. For instance, the two

sense clusters of “power” possibly correspond to “a kind of energy” (c1) and “a super-

natural ability” (c2), respectively. The two clusters (c1 and c2) of “card” respectively

refer to “a computer-related equipment” and “a person identification certificate”. For

the word “key”, the differences between the clusters are obvious, where the senses of

c1 are possibly relevant to the sense “encryption”, the ones of c2 may refer to “the

keyboard buttons”, c3 possibly refer to “a tool to lock or unlock a door”, and c4 may

represents “a kind of password or serial number”. Combining Tables 4.3 and 4.4, we

see that the interpretations for the above senses might be found in the knowledge li-

brary, while the following three examples show more particular and fine-grained senses

for a specific dataset. For example, our model captured three entities that the word “re-

ligion” refers to: “the Christianity” (c1), “the Islam” (c2) and “the communist” (c3).

Moreover, we can also recognize the positions or tendencies represented by different

clusters according to obviously uncomfortable or discriminatory context words, such

as c2 and c3 of the word “race”, as well as c2 of “homosexual”. These results confirm

our assumptions about the word sense vector, e.g., Definition 5, and the effectiveness

of obtaining domain-specific senses.

Besides, we further analyzed the relationships between the Local Sense Weight

µwη,w and vwη,w. Figure 4.6 (g-l) shows the weights for each example word, where

the colors of bars correspond to those of the clusters in Figure 4.6 (a-f). We observe

that clusters with fewer sense vectors have higher weights than others, and vectors
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(a) “power” (b) “card” (a) “key” (b) “religion” (a) “race”(b) “homosexual”

Figure 4.7: Silhouette Coefficients for each example words with different clustering

numbers of kMeans.

that belong to the same cluster correspond to similar weights. These observations

signify that µwη,w reflects a difference between a sense cluster and its corresponding

general one. The higher the weights, the more different from its general sense and the

more dependent on its context words. These phenomena also confirm a viewpoint of a

lexicography sect about the formation of word senses, that corpus citations of a word

fall into one or more distinct but related clusters. Each of these clusters, if large enough

and distinct enough from others, forms a distinct word sense [47].

4.3.3.2 Word Sense Evolution Detection

Compared with the embedding-based methods, one advantage of the topic models is

the explainability of each generated vector dimension. Specifically, according to the

topic-word distribution, the Top-n most probable words of each topic can be obtained,

based on which the general explanation of each topic dimension can be inferred. There-

fore, the other group of experiments are conducted on PubMed, to verify our model on

the effectiveness of capturing the evolution of word senses over time in specific topic

dimensions.

We sampled two sets of 5000 abstracts from 1975 to 2018, which are respec-

tively related to two cases: (1) “Fish-oil” and “Raynaud”; (2) “Alzheimer” and “In-

domethacin”. Both cases include the evolution of word senses, where “Fish-oil” was
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Table 4.3: Context words for each sense cluster of the example words. Bold fonts

indicate the high-frequency context words which help clarify the semantic difference.

The color for each cluster symbol c corresponds to that of each cluster in Figure 4.6.

Word Cluster Selected 5 Words in Top-10 High Frequent Ones in Context

power
c1 “people”, “supply”, “connector”, “nuclear”, “battery”

c2 “god”, “lord”, “christ”,“jesus”, “believe”

card

c1 “video”, “drive”, “system”, “graphic”, “vga”

c2 “people”,“identify”, “nationality”, “number”, “authority”

c3 “key”, “tool”, “guess”, “hold”, “game”

key

c1 “escrow”, “system”, “public”, “encryption”, “number”, “security”

c2 “character”, “application”, “code”, “program”, “system”

c3 “home”, “car”, “door”, “lock”, “available”

c4 “drive”, “machine”, “number”, “printer”, “series”

religion

c1 “god”, “jewish”, “christian”, “judaism”, “faith”

c2 “islam”, “god”, “faith”, “politics”, “muslim”

c3 “god”, “eastern”, “socialist” , “communist”, “ethnicity”

race

c1 “people”, “religion”, “ethnicity”, “language”, “human”

c2 “nazi”, “holocaust”, “victims”, “sex”, “family”

c3 “white”, “ethnic”, “black”, “asian”, “nationalism”

homosexual
c1 “gay”, “sex”, “children”, “female”, “male”

c2 “man”, “fuck”, “shit”, “dog”, “ass”

found to prevent “Raynaud” disease in 1986 [93] and “Indomethacin” has gradually

been used as a non-steroidal anti-inflammatory drugs in the treatment of “Alzheimer”

disease since 1990s [41, 91]. The detailed experiment steps are: (1) we estimated all

the sense vectors of the four words, (2) their sense vectors were sorted by time-stamps
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Table 4.4: Interpretations in the Longman Dictionary for the generated sense clusters.

ci(s) in each row represents the possibly related cluster(s).

Word Cluster(s) Interpretation

power c1 “energy that make a machine work”

card

c1 “a piece of equipment in a computer”

c2
“a small piece of plastic or paper that

contains information about a person”

key

c2 “the buttons on a computer keyboard”

c3
“a specially shaped piece of metal to

lock or unlock a door, start a car etc”

religion c1, c2 “a belief in one or more gods”

race c1, c2, c3

“one of the main groups that humans

can be divided into by their colour of

skin or other physical features”

homo-

sexual
c1, c2

“someone, especially a man, is sexually

attracted to people of the same sex”

97



(a) “Fish-Oil” and “Raynaud Disease”

(b) “Indomethacin” and “Alzheimer Disease”

Figure 4.8: Visualization for topic vectors of word pairs “Fish-Oil” and “Raynaud” (a)

and “Indomethacin” and “Alzheimer”, with only the topic dimensions whose top-10

high-frequency topic words contain word families of “prevent” and “treat”.

and divided into groups by year, respectively, (3) we calculated the average of the

sense vectors for each word in years, (4) for the four sequences of the average sense

vectors, we selected the topic dimensions whose top-10 high probable topic words con-

tain word families of “prevent” and “treat” and use t-SNE to visualize them into one

dimension on the timeline from 1975 to 2018. The results are as shown in Figure 4.8.

We see that the two pairs “Fish-oil” and “Raynaud”, “Alzheimer” and “Indomethacin”

begin to coincide in the late 1980s and 1990s, respectively, which confirms the sense

evolution of words “Fish-oil” and “Indomethacin” in the history and show that HCT is

sensitive to the new emerging word senses over time in modeling.

4.3.3.3 Effectiveness of “Bag-of-Senses”

The essential difference between “Bag-of-Words” and “Bag-of-Senses” in the docu-

ment representation is that a document is represented as a multiset of word senses
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(a) “Bag-of-Words” (b) “Bag-of-Senses”

Figure 4.9: Comparison of document vectors on 20NG of the traditional“Bag-of-

Words” based topic model (LDA [7]) and the “Bag-of-Senses” based HCT. Each point

corresponds to a document, where the red, blue, and yellow ones refer to the doc-

uments containing the word “key” with its top-3 high frequent word sense clusters,

respectively. Note that, documents containing multiple senses are labeled by the color

of the sense with the largest number.

instead of words, which alleviates the problem of low semantic discrimination caused

by shared identical words among documents. In the quantitative analysis, we have ver-

ified the effectiveness of the ”Bag-of-Senses” based word sense vectors and document

topic vectors. In this part, we visualize the generated topic vectors of 20NG and show

the relationship between the word senses and the document topics.

In the visualization of the document topic vectors for 20NG, as shown in Figure 4.9,

we see that compared to the traditional “Bag-of-Words” based topic model (LDA [7]),

the diversity of these fine-grained senses has positive effects on document vectors,

which improves the discrimination between topic clusters and keeps documents with

similar topics be more compact in the topic space. The improved linear separability

among documents belonging to different topics can also contribute to the performance

of these topic vectors in classification tasks. Moreover, we labeled the documents

that contain different senses of the word “key”. Due to the different semantic division
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standard of words in each baseline, we took the Top-3 frequent senses for visualization.

We see that most documents containing the same sense are clustered in the same topic

cluster. These observations verify the validity of the hypothesis of the “Bag-of-Senses”

in the improvement of document topic modeling.

4.4 Summary

In this chapter, we proposed an adaptive and hybrid context based topic model for

handling the WSD problem in document representation without data enrichment. By

integrating topic distributions of both the context in which a word occurs and those of

its other occurrence in the sense estimation, the proposed model effectively captures

domain-specific word senses and preserves the differences between synonyms. Be-

sides, we proposed the “Bag-of-Senses” hypothesis, based on which our model gen-

erates senses instead of words. Topic modeling based on “Bag-of-Senses” is more

effective in dealing with word sense disambiguation than the methods based on “Bag-

of-Words”. Our experiments confirm the effectiveness of our model to obtain the fine-

grained word sense vectors and showed that our proposal outperforms the baseline

models in terms of the sense estimation quality, the classification performance, and the

topic modeling accuracy.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we focused on studying the topic modeling methods based on two types

of context information, the document-level context and the word-level context. We

investigated three specific topic modeling tasks, i.e., sequential topic modeling, topic

segmentation, and word sense-aware topic modeling to analyze the effect of the con-

text information on their performance, respectively. In Chapter 2, we first considered

the document-level context information in topic modeling and proposed a topic model

in topic evolution modeling based on hybrid inter-document dependencies. The first

model considers Consecutive Dependency, Trend Dependency and Independency in

contextual documents. For a sequence of more complex topic evolution, we improved

it by considering fine-grained local dependency relations. According to our experi-

ments, we see that our proposals outperform baseline models, in terms of the accuracy

of topic modeling, the clustering quality and the effectiveness of outlier detection.

In Chapters 3 and 4, we studied the word-level context based topic models from

two tasks: topic segmentation and word sense-aware topic modeling. The difference
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is that, for the former task, we use the context words to improve the accuracy of topic

assignment for each word, while the latter focuses on integrating the context words

of different senses for each identical word. For Topic Segmentation Task, we pro-

posed a new generative model for topic segmentation. By combining topic distribution

and context word pairs-topic distribution, the proposed model improves the certainty

of the topic assignment and ensures high coherency and saliency in topic segmenta-

tion. Besides, by introducing the Topic Coherency Ratio, we designed an optimization

algorithm to merge redundant topic segments for each document. Our experiments

show that our proposal outperforms baseline models, in terms of both Perplexity and

PMI-Score in topic modeling as well as the scores of PK, WD and WDE in topic

segmentation.

For word sense-aware topic modeling, we proposed an adaptive and hybrid context

based topic model for handling the WSD problem in document representation with-

out data enrichment. By integrating topic distributions of both the context in which

a word occurs and those of its other occurrence in the sense estimation, the proposed

model effectively captures domain-specific word senses and preserves the differences

between synonyms. Besides, we proposed the “Bag-of-Senses” hypothesis, based on

which our model generates senses instead of words. Topic modeling based on “Bag-

of-Senses” is more effective in dealing with the word sense disambiguation than the

methods based on “Bag-of-Words”. The experiments confirm the effectiveness of our

model to obtain the fine-grained word sense vectors and showed that our proposal out-

performs the baseline models in terms of the sense estimation quality, the classification

performance, and the topic modeling accuracy.
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5.2 Future Work

In future work, we will further investigate the effects of finer-grained context infor-

mation, e.g., the order of words, and the labeled information on topic modeling. For

example, since even one dataset or task may also have different perspectives for word

sense division, it is intuitive and essential to study supervised word sense aware topic

modeling to restrict the specific perspective of word sense division, such as document

labels on word sense disambiguation. Besides, we will further optimize the parameter

estimation steps and use more efficient algorithms (e.g., the Variational Inference [43])

to improve the adaptiveness of our model for more substantial scale datasets.
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Appendix A. Derivation of our Gibbs Sampling

For the Gibbs sampling procedure in Section 3.2.3, we need to calculate the condi-

tional probability of topic assignment Pd,l,k = P(Zd,l = k|Wd,l,Zd,−(d,l),W
′
d,l,α,β,γ)

for each word, where Wd,l represents the lth word in d, Zd,−(d,l) refers to the topic

assignments for all words in d except for word Wd,l , W ′
d,l are the context words of

Wd,l . Pd,l,k is computed as follows:

Pd,l,k ∝ P(Zd,l = k,Wd,l = t|W ′
d,l,α,β,γ)

=
∫ ∫ ∫

P((Zd,l = k|πd,l)P(πd,l|θd,λd,l)dπd,lP(λd,l|W ′
d,l,γ)P(θd|α)dλd,ldθd∫

P(Wd,l = t|φk)P(φk|β)dφk.

Based on the definition of Dirichlet distribution, the conditional distribution Pd,l,k can

be simplified as:

Pd,l,k ∝ EDir(β)(φk,t)
∫ ∫

EDir(θd+λd,l)(πd,l,k)P(λd,l|W ′
d,l,γ)P(θd|α)dλd,ldθd

= EDir(β)(φk,t)
∫ ∫

λd,l,k +θd,k

∑
K
s=1(λd,l,s +θd,s)

P(λd,l|W ′
d,l,γ)P(θd|α)dλd,ldθd.

Since the sums of λd,l,k and θd,k as well as the integrals of φk and λd,l are constants,

Pd,l,k can be further simplified as:

Pd,l,k ∝EDir(β)(φk,t)
∫ ∫

(λd,l,k +θd,k)P(λd,l|W ′
d,l,γ)P(θd|α)dλd,ldθd

=EDir(β)(φk,t)

[∫
λd,l,kP(λd,l|W ′

d,l,γ)dλd,l +
∫

θd,kP(θd|α)dθ
]

=EDir(β)(φk,t)

[
EDir(γ)(λd,l,k)+EDir(α)(θd,k)

]
.
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According to the definition of expectation of Dirichlet Distribution, we have:

EDir(α)(θd,k) =
nd,k,−(d,l)+αk

∑
K
s=1(nd,s,−(d,l)+αs)

,

EDir(β)(φk,t) =
nt

k,−(d,l)+βt

∑
V
f=1(n

f
k,−(d,l)+β f )

,

where nd,k,−(d,l) is the number of words in document d which belongs to topic k without

Wd,l , nt
k,−(d,l) represents the number of word t which belongs topic k without Wd,l .

Substituting the results of EDir(γ)(λw), EDir(α)(θd,k) and EDir(β)(φk,t) into Eq. (1) and

removing constant terms, we obtain the conditional probability Pd,l,k as below:

Pd,l,k ∝

[
(nbw

k,−(d,i)+ γt)+(nd,k,−(d,l)+αk)

] nt
k,−(d,l)+βt

∑
V
f=1(n

f
k,−(d,l)+β f )

.

Appendix B. Derivation of Topic Coherency Ratio

We provide here the complete derivation of the Topic Coherency Ratio in Section 3.2.4.

For consecutive wordsWd,i: j from Wi to Wj in document d, we denote the joint proba-

bility of sharing topic k by P(Wd,i: j,k) in the former case and the one in the latter case

by P′(Wd,i: j,k). According to Eq. (1), the two joint probabilities can be respectively

computed by:

P(Wd,i: j,k) ∝ ∏
w∈Wd,i: j

EDir(β)(φd,w)

[ S

∑
s=1

Id,l,sEDir(γ)(λ
s
d,l,k)+EDir(α)(θd,k)

]
,

P′(Wd,i: j,k) ∝ ∏
w∈Wd,i: j

EDir(β)(φd,w)EDir(α)(θd,k).
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Taking their logarithms and computing their ratio as well as removing constant terms:

logP(Wd,i: j,k)
logP′(Wd,i: j,k)

=

log∏w∈Wd,i: j
EDir(β)(φd,w) ·

[
EDir(γ)(λd,l,k)+EDir(α)(θd,k)

]
log∏w∈Wd,i: j

EDir(β)(φd,w) ·EDir(α)(θd,k)

=

∑w∈Wd,i: j
logEDir(β)(φd,w)+∑w∈Wd,i: j

log
[

EDir(γ)(λd,l,k)+EDir(α)(θd,k)

]
∑w∈Wd,i: j

logEDir(β)(φd,w)+ logEDir(α)(θd,k)
.

Since the topic distribution is constant for words in the a document, we obtain:

logP(Wd,i: j,k)
logP′(Wd,i: j,k)

∝
∑w∈Wd,i: j

logEDir(β)(φd,w)+∑w∈Wd,i: j
logEDir(γ)(λd,l,k)

∑w∈Wd,i: j
logEDir(β)(φd,w)

= 1+
∑w∈Wd,i: j

logEDir(γ)(λd,l,k)

∑w∈Wd,i: j
logEDir(β)(φd,w)

.

According to Eqs. (1), (3) and (4):

logP(Wd,i: j,k)
logP′(Wd,i: j,k)

∝ 1+
∑w∈Wd,i: j

lognbw
k,−(d,i)

∑w∈Wd,i: j
lognw

k,−(d,l)
.

Removing the constant term, we obtain the Topic Coherency Ratio:

Rt(Wd,i: j,k) =
∑w∈Wd,i: j

lognbw
k,−(d,i)

∑w∈Wd,i: j
lognw

k,−(d,l)
.
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Appendix C.Redundant Topic Merging (RTM) Algorithm

The pseudo code in Section 3.2.4 is shown as below.Each segment Si is a set of words

in the ith segment and Ti represents its topic. To express the algorithm concisely, we

implicitly handle the cases of the list items at the head and the tail in Si+1 or Si−1.

Algorithm 4: Redundant topic merging algorithm
Input: List S of topic segments in a document and their corresponding topic

sequence T ; the size L of context window

Output: Optimized segment list S′

1 Initialize S′ as a null list

2 n = |S|

3 while |S′| 6= n do

4 Clear S′

5 for i = 1 in |S| do

6 if Rt(Si−1∪Si,Ti−1)> Rt(Si+1∪Si,Ti+1) and

Rt(Si−1∪Si,Ti−1)> Rt(Si,Ti) then

7 Append Si∪Si−1 to S′

8 else if Rt(Si+1∪S′i,Ti+1)> Rt(Si−1∪Si,Ti−1) and

Rt(Si+1∪Si,Ti+1)> Rt(Si,Ti) then

9 Append Si∪Si+1 to S′

10 else

11 Append Si to S′

12 n = |S|

13 S← S′

14 return S′
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