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Chapter 1 Introduction 

1.1. General Overview 

Good manoeuvring capability of ships is important for marine safety and protection of 

the marine environment. It is crucial that a ship has a good manoeuvrability and can be 

controlled safely whether the ship is operated at open water or restricted water. For these 

reasons, the International Maritime Organization (IMO) has approved the regulations for 

manoeuvring performance of ships. 

From the viewpoint of marine safety, the Interim Standards for Ship Manoeuvrability has 

been accepted by the IMO as Resolution A.751(18) in 1993 to eliminate ships which have 

poor manoeuvrability. In 2002, the IMO updated the Interim Standards for Ship 

Manoeuvrability and the Standards for Ship Manoeuvrability was adopted as Resolution 

MSC.137(76) (IMO, 2002). In particular, the IMO defined ship manoeuvrability as 

essential characteristics of ships to change or maintain their course and speed. The bigger 

ships often have more problems in manoeuvring motion because of the poor 

manoeuvrability. Every ship that is longer than 100 m in ship length must fulfil the criteria 

defined in the IMO manoeuvring standards. 

To confirm that a ship satisfies the IMO manoeuvring standards, sea trials must be 

performed. Sea trials are carried out for newly-built ships. The trials should be conducted 

for ships in fully loaded condition at sea area with enough depth and at calm weather 

conditions as much as possible. It is mandatory for shipyards to conduct the sea trials 

even if time and costs are consumed. However, it is difficult for shipyards to execute the 

sea trials at fully loaded condition for newly-built ships because of empty cargo hold. 

That is why sea trials are usually conducted at ballast condition and only manoeuvring 

data for ballast condition can be measured. Additionally, it is almost impossible to 

conduct the sea trials under the ideal weather conditions specified by the IMO 

manoeuvring standards. Therefore, prediction of manoeuvring performance based on 

numerical simulations is often used. 

Furthermore, it is important to be able to predict the performance indices of ship 

manoeuvrability such as advance, transfer, tactical diameter, the first and the second 

overshoot angles for zigzag manoeuvres, and so on at the design stage of ships in order 
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to secure that ships can be operated safely. Hydrodynamic derivatives play an important 

role in the prediction of manoeuvring motions of ships at the design stage. Hydrodynamic 

derivatives have to be known for any type of ships whose manoeuvring performance is 

under considerations. 

Consequently, reliable prediction methods for manoeuvring performance are required. By 

this reason, verification and validation (V&V) are important related to the accuracy of 

prediction of manoeuvring performance. Predicted results are expected to be compared 

with the results of full scale ship trials or benchmark data.  

However, there are very few public data of full scale trials carried out at a scientific level 

with which validation can successfully be made except for the Esso Osaka (Crane, 1979). 

Full scale trials in shallow and deep waters for the Esso Osaka tanker were carefully 

performed in 1977. This trial is one of the valuable and successful full scale trial data, 

and a lot of researcher have used this vessel as benchmark data. 

In addition, to compare simulation results with the results of full scale trials, it is strongly 

advised to carefully consider scale effects and the influence of external disturbances. 

Wake fraction is different between model ship and full scale ship and sea trials cannot be 

executed without the influence of wind, wave, and current. These effects must be 

excluded from the measured data before the comparison. 

Hence, the quality of simulations is generally evaluated by using model test results. In 

this case, free running model tests which are performed in the same way as full scale trials 

are necessary to evaluate predicted ship manoeuvring motion. On the other hand, captive 

model tests to measure hydrodynamic forces and moments acting on a ship in 

manoeuvring motions are necessary to evaluate predicted hydrodynamic forces.  

Validation of the predicted results depends on methods used to predict the manoeuvring 

performance (Berlekom, 1992). This means, it is essential to make a dedicated 

verification and validation effort related to the prediction or simulation methods and 

hereby asses the accuracy of the methods. 

Moreover, mathematical models of hydrodynamic forces used in prediction of 

manoeuvring motions have many kinds of errors and uncertainties (Wang et al., 2014, 
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Dash et al., 2015). Some of the problems are generally affected by hydrodynamic 

derivatives which are used to express hydrodynamic forces acting on a ship hull (Shenoi 

et al., 2015), model tests (Woodward, 2013), facilities equipment (Woodward, 2014), etc. 

Analyzing and assessing the errors are time consuming and very complex. A knowledge 

of the errors is crucial if any sort of validation is to be done. The relation between 

prediction results and measured hydrodynamic forces used to obtain hydrodynamic 

derivatives can only be correctly assessed if the accuracies of both the prediction results 

and the measured data are known with some uncertainties. 

To achieve accurate prediction results, hydrodynamic derivatives which are good in 

quality must be used. Generally, there are three kinds of methods to obtain the 

hydrodynamic derivatives such as approximate formulae with the parameters of the 

principal dimensions of ships based on existing data, captive model tests, and numerical 

calculation methods based on hydrodynamics. 

Approximate formulae are simple calculation methods which can be used easily, but the 

estimation accuracy of the methods becomes poor if the shape of the hull of a target ship 

is different from ships in mother data which are used to develop the approximate formulae. 

Captive model tests can provide accurate hydrodynamic derivatives by analyzing 

hydrodynamic forces measured in model basins using model ships. However, it is time 

consuming to carry out the measurement of hydrodynamic forces even for one condition. 

Therefore, measurements of the hydrodynamic forces in the same condition are not 

repeated in general.  

As the numerical calculation methods, CFD (Computational Fluid Dynamics) is available 

to predict the hydrodynamic forces acting on ships by directly solving the Navier-Stokes 

equation numerically. However, it requires a lot of computational cost and time. As the 

other kinds of numerical calculation methods, panel methods can also accurately describe 

the shape of a ship hull and predict the hydrodynamic forces. The SQCM (Source and 

Quasi Continuous vortex lattice Method) is one of the panel methods and it has been 

confirmed that the SQCM had good accuracy to calculate hydrodynamic forces produced 

by a propeller (Nakatake et al., 1994). 
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1.2. Literature Review 

The mathematical models of hydrodynamic forces acting on a ship hull are essential 

components in the equations of ship motion. They have been defined in terms of inherent 

values which are different for every type of ship. These terms related to ship hull are 

known as hydrodynamic derivatives which are derived by analyzing measured 

hydrodynamic forces acting on a ship hull. They are equal to the rate of change of the 

force and moment to drift angle, non-dimensional sway velocity, and non-dimensional 

yaw rate. 

The fundamental basis of equations of motion that are used in ship manoeuvring subject 

has been formed by Davidson and Schiff (1946) by using Newton’s second law of motion. 

They made the first attempt at theoretical approach by regarding a ship as a rigid body 

with three degrees of freedom (surge, sway, and yaw motions) and described the 

hydrodynamic forces and moments acting on the ship by the first order derivatives. 

However, it was found that whereas the forces and moments became non-linear due to 

the large values of velocities and cross products of velocities. When a ship is turning with 

a large rudder angle, the non-linear hydrodynamic forces reach the same order of 

magnitude as that of the linear component. Furthermore, the non-linear component of 

yawing moment reaches five to ten times its linear component. These non-linear terms 

are frequently represented by means of cubic or quadratic polynomial expressions. The 

coefficient of which are usually determined through conducting captive model tests. 

Taylor series expansion to represent the nonlinearities, resulting in a polynomial in two 

variables was proposed by Abkowitz (1964). Functions describing hydrodynamic forces 

and moments acting on a ship may involve many motions and orientation parameters. The 

functions can be reduced to useful mathematical form by using the Taylor series 

expansion of a function of several variables. In this case, only odd terms in the Taylor 

series would be required to represent the sway force and yawing moment due to port and 

starboard symmetry. 

On the other hand, the nonlinearities could be calculated for in a different manner, by 

using quadratic polynomial expressions (Fedyaevsky and Sobolev, 1963). Even though 

quadratic polynomial expressions are really unsuited since they are even functions, by 



5 

 

introducing a modulus term and different way of writing the nonlinearities, this problem 

can be avoided. Quadratic functions modulus approach can be shown to represent the 

hydrodynamic concept of cross-flow drag at large angles of incidence, since it does have 

some immediate virtue.  

Non-linear forces and moments had been calculated by Fedyaevsky and Sobolev (1963) 

and Norrbin (1971). Quadratic form was used to represent the non-linear nature of forces 

acting on a ship hull. By assuming lateral force due to drag created by the cross flow 

velocity component, a good representation was obtained. However, the distribution of 

non-linear forces was tending to be concentrated toward the stern (Clarke, 1972). 

A combination of cubic and quadratic terms to represent non-linear terms had been 

proposed by Inoue (1978). Even though the difference was not significant, a cubic model 

could fit the experimental data slightly better than a quadratic model (Ogawa et al., 1980). 

It is clear there is a different result between the cubic model and the quadratic model. For 

the sake of getting more precise mathematical models of hydrodynamic forces, the 

differences between them need to be investigated further. 

Furthermore, mathematical models of hydrodynamic forces acting on a ship can be 

divided into two categories, such as “whole ship models” and “modular models” (ITTC 

Manoeuvring Committee, 1999). In the whole ship models, equations of motion are 

composed by the combinations of hydrodynamic force components related to a hull, a 

propeller, and a rudder. Hydrodynamic coefficients required in the components are 

determined by conducting captive model tests using a model ship equipped with a 

propeller and a rudder. Whole ship models perform very well when a ship is taken as a 

whole but do not allow individual elements to be changed as the design is changed (Dand, 

1987). 

Chudley et al. (1991) found that a linear whole ship model provided acceptable 

predictions when the rudder movements were relatively small, but their results were 

inaccurate when performing a complete turning circle. Compared to full scale trials, their 

non-linear whole ship model seemed to give an accurate representation of the three 

degrees of freedom motion in all manoevring situations. 
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However, the remaining applications in the whole ship models require more flexibility 

and a distinct knowledge of individual forces acting on a hull, a rudder, and a propeller. 

This is because all the remaining applications are often based on trying various alternative 

ship dimensions and/or propeller and rudder geometry to evaluate their influence on 

manoeuvring performance. The physical meaning of each term of the equations for 

hydrodynamic forces in the whole ship models is not completely segregated and most of 

the influence of different elements are hidden or mixed in hydrodynamic derivatives. 

Then, modular models were presented in the late 1970’s (Ogawa and Kasa, 1978, Kose 

and Saeki, 1979) to cope with the whole ship models deficiency. In modular models, 

forces acting on a hull, a propeller and a rudder and forces due to interaction among them 

or modules of the ship are each represented by different terms in equations, and force 

coefficients are measured or predicted separately for the hull, propeller and rudder. 

Interactions among a hull, a propeller and a rudder are sometimes measured in captive 

model tests, but are more typically determined from empirical relationships incorporating 

parameters that depend on the geometry and position of the propeller and the rudder 

relative to the hull. Modular models have to be able to operate in all manoeuvring regime, 

particularly at zero or slow speed, and give a realistic response to a rudder, a thruster, and 

a propeller (McCallum, 1992). 

There are many and various mathematical models of hydrodynamic forces used in 

manoeuvring studies and all are subject to many kinds of errors and uncertainties. The 

scientific process of analyzing and assessing the errors is complex, as well as time 

consuming and costly. As a consequence, most studies compared numerical and 

experimental results but hardly ever analyzed and quantified the errors. The quality 

assessment of the simulated results employed for prediction is then generally given in 

terms of the level of agreement between the prediction itself and measurement results. 

Dand (1992) suggested that error range should always be provided with any prediction or 

measurement and that such range should be standardized at a total width of twice the 

standard error. The term “good agreement”, which it usually assumed that the prediction 

is validated, may be taken as overlap between the error range of the prediction itself. The 

good agreement can be achieved by conducting sensitivity analysis and/or uncertainty 
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analysis to the prediction of manoeuvring performance. By this fact, a lot of researchers 

focusing their research to the sensitivity of manoeuvring performance indices such as 

turning motions and zigzag manoeuvres.  

Son and Nomoto (1981) conducted sensitivity analysis based on the 4DOF mathematical 

model of a container ship S175. They investigated the influence of hydrodynamic 

coefficients on turning motions and zigzag manoeuvres. The results show that linear 

derivatives for yawing moment 𝑁𝑣
′  and 𝑁𝑟

′ are the most impactful parameter on turning 

circle, tactical diameter, and second overshoot angle for 10°/10° zigzag manoeuvre. It 

was found that coefficients with high influence tended to have higher standard deviations 

and coefficients with low influence tended to have lower standard deviations. 

The Manoeuvring Committee in the 28th ITTC carried out sensitivity analysis based on 

whole ship model presented by Shin et al. (2012) and Sung et al. (2014) to investigate the 

dominant coefficients for each characteristic of manoeuvring motion by using Monte 

Carlo simulations (ITTC Manoeuvring Committee, 2017). The results show that turning 

circle are mostly normally distributed while zigzag manoeuvres do not have a symmetric 

distribution. 

Later, Wang et al. (2014) indicated that non-relevant hydrodynamic coefficients could be 

removed by doing sensitivity analysis. According to their comparison between simulation 

results of original and simplified mathematical models for turning motion and zigzag 

manoeuvres, a mathematical model can be simplified significantly based on the 

sensitivity analysis. This means, it is possible to decrease the uncertainty in the 

mathematical model because it was confirmed by Dash et al. (2015) that uncertainties in 

a mathematical model is larger than the experimental uncertainty. However, it does not 

mean that the uncertainty in the experimental or other source can be ignored. 

Woodward (2014) investigated the source of uncertainty on inter-facility tests. In his 

research, Monte Carlo simulations is presented to evaluate the propagation of uncertainty. 

The results of his study on KVLCC1 show that hydrodynamic coefficients in normal 

probability distribution generate overshoot angles of zigzag manoeuvres in a Weibull 

distribution. These results show the same agreement with ITTC Manoeuvring Committee 

(2017). Ayub et al. (2019) also confirmed Weibull distribution on zigzag manoeuvres. 
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The uncertainties in full scale measurements have been investigated by Gavrilin and Steen 

(2015). It was found the uncertainty were caused by changing environmental data. By 

using Monte Carlo simulations, they were able to determine turning trajectories with 

higher accuracy, hence decreasing the uncertainty on the parameters such as tactical 

diameter. Gavrilin and Steen (2016) also determined that one of the most important issues 

to address in future research is the uncertainty of experimental measurements and how it 

affects validation quality. 

Ayub et al. (2021) also investigated the sensitivity of simulated manoeuvring motion to 

hydrodynamic derivatives derived from measured lateral force and yawing moment 

including measurement error. Hydrodynamic derivatives are randomly changed one by 

one, independently. It is considered that the value of each derivative should not be varied 

independently to grasp the sensitivity of manoeuvring performance to hydrodynamic 

derivatives precisely. 

Furthermore, to achieve good agreement in the prediction of manoeuvring performance, 

accurate hydrodynamic derivatives must be obtained. Conducting captive model tests is 

a common way to obtain hydrodynamic derivatives which is derived from measured 

hydrodynamic forces acting on a ship hull. The problem with captive model tests appears 

when measurements of the hydrodynamic forces in the same condition are not repeated, 

because it consumes long time to carry out the measurement even for one condition. 

Extrapolating data also tends to happen when using the results of the mathematical model 

outside the tested range of drift angles and rotation rates (ITTC Manoeuvring Committee, 

2008).  

Based on these reasons, practical application of numerical calculation methods such as 

Computational Fluid Dynamics (CFD) which is available to predict the hydrodynamic 

forces by directly solving the Navier-Stokes equation numerically is expected. RANS 

(Reynolds-Averaged Navier-Stokes equation) calculations are the most used method and 

they are expected as replenishment for captive model tests (ITTC Manoeuvring 

Committee, 2008). A matrix of conditions is simulated and results are analyzed to obtain 

hydrodynamic derivatives in a mathematical model (Cura Hochbaum et al., 2008, 

Toxopeus et al., 2008). However, a large amount of expertise and code development are 
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needed to achieve good results. This method also requires a lot of computer resources and 

time consuming which are inconvenience. 

To cope with these problems, researchers have tried to develop fast and cheap method to 

obtain hydrodynamic forces acting on a hull such as hybrid method which is a 

combination of captive model tests with potential CFD (ITTC Manoeuvring Committee, 

2008). Other than that, panel methods are ideal for calculating the flow field over an 

airfoil executing unsteady time-dependent motion in an inviscid incompressible medium 

(Cebeci et al., 2005). This method can also accurately describe the shape of a ship hull. 

A method to calculate incompressible potential flow about arbitrary, non-lifting, and 

three-dimensional bodies had been introduced by Hess and Smith (1964). In this method, 

the body surface is divided into quadrilateral panels and sources are distributed on the 

panels. To make the normal component of velocity of the fluid becomes zero on the 

surface panels, the distribution of sources is obtained. Quadrilateral surface panels are 

used to replace the integral equation for the source distribution by a set of linear algebraic 

equations. This method has two advantages over the other methods, which is the equations 

that must be solved are two-dimensional over the surface of the body rather than the three-

dimensional over the entire flow field. By working straightly on the body surface, it can 

avoid the difficulty that other methods may encounter when the body surface converge 

the coordinate net in an arbitrary form. 

Lan (1970) developed QCM (Quasi Continuous vortex lattice Method) to solve a thin 

wing problem with considering the wing edge and Cauchy singularities, but it is still 

keeping the flexibility and simplicity of the conventional vortex lattice method. To 

fulfilling the conditions of wing boundary, chord wise vortex integral is lowered to finite 

sum through an altered trapezoidal rule and the theory of Chebychev while the 

distribution of span wise is assumed to be step wise. The result of his research stated that 

the current estimation for two-dimensional and three-dimensional wings are more 

accurate than the conventional vortex lattice method for an airfoil with a flap deflection. 

The results of planar lifting surface are proportionate to those by some continuous loading 

methods, however this method requires much less computing time in some comparison. 
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By combining the Hess and Smith (1964) method and the QCM (Lan, 1970), a calculation 

method for three-dimensional unsteady wing problem has been developed by Nakatake 

et al. (1994). This simple surface panel method named as the SQCM (Source and Quasi 

Continuous vortex lattice Method) is one of the panel method that can easily satisfy the 

Kutta condition in steady and unsteady condition problems. Hess and Smith method is 

used to represent the wing surface and the vortex strength and the source strength are 

determined simultaneously. Furthermore, the Kutta condition is satisfied automatically as 

same as the QCM. It has been confirmed that this calculation method can accurately 

predict hydrodynamic force produced by a propeller. 

Applications of the SQCM to the estimation of hydrodynamic forces have been done by 

a lot of researchers (Ando et al., 1995, Maita et al., 1997a, 1997b, Kanemaru et al., 2013). 

A good agreement with experimental data is presented in these researches. However, 

almost all of them focusing on the hydrodynamic forces acting on a propeller. In fact, the 

SQCM can be applied to calculate hydrodynamic forces acting on a hull by treating ship 

hull as thick wing. 

Ando et al. (1997) investigated the SQCM for estimation of hydrodynamic forces acting 

on a ship in oblique towing. Numerical results for three VLCC models (SR221 A, B, and 

C) which have different aft shapes with each other are shown. The agreements of 

estimated hydrodynamic forces and experimental data are fairly well. 

Hydrodynamic forces acting on a Wigley hull in manoeuvring motion based on the 

SQCM had been calculated by Ayub et al. (2020). It was confirmed that the free vortices 

shed from the bottom of a hull contributed to the improvement of prediction accuracy on 

lateral force and yawing moment. To investigate further the capability of the SQCM on 

the prediction of hydrodynamic forces acting on a hull, Ayub et al. (2021) applied new 

vortex models considering the deformation of free vortices to the calculation of 

hydrodynamic forces. It was confirmed that the hydrodynamic forces can be predicted 

accurately in the range of small drift angle, at first. Then, two kinds of vortex models are 

examined to improve the estimation accuracy of lateral force and yawing moment in the 

range of large drift angle. 
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1.3. Research Objectives 

As described above, the accuracy of predicted manoeuvring motions mainly depends on 

the quality of hydrodynamic coefficients included in mathematical models of 

hydrodynamic forces acting on a ship. Especially, lateral force and yawing moment acting 

on a ship hull have great influence on manoeuvring motions. 

Two kinds of mathematical models of lateral force and yawing moment acting on a ship 

hull are investigated. One is a cubic model which expresses non-linear terms of 

hydrodynamic forces by cubic polynomials on drift angle (or non-dimensional sway 

velocity) and non-dimensional yaw rate. The other is a quadratic model based on 

quadratic polynomials. 

In order to have better understanding about difference between the characteristics of cubic 

model and quadratic model, course stability index which is calculated by using linear 

hydrodynamic derivatives are investigated. Then, to clarify the advantages and 

disadvantages of both models, sensitivity of simulated ship manoeuvring motion to 

hydrodynamic derivatives derived from measured lateral force and yawing moment 

including measurement error coming from the resolution of measurement equipment, 

fluctuation of towing speed and angular velocity of a carriage, setting error in drift angle, 

and so on is investigated.  

Monte Carlo simulation method is used to analyze the sensitivity. Varying the assumed 

values of measurement error randomly, evaluation indices such as advance, transfer and 

tactical diameter for turning motion and the first and the second overshoot angles for 

10°/10° and 20°/20° zigzag manoeuvres are evaluated to quantify the influence of the 

measurement error on manoeuvring performance. By assuming the measurement error, 

close relation between linear and non-linear derivatives can be included in the sensitivity 

analyses. 

The SQCM is applied to predict hydrodynamic forces acting on a ship hull in drift motion. 

A ship hull is treated as a thick wing. To represent the flow field around the hull 

appropriately, vortex models considering the deformation of free vortices are introduced 

and applied for three ship hulls which are Wigley, KCS, and KVLCC2. Predicted results 



12 

 

are compared with experimental data measured by captive model tests to verify the 

effectiveness of the vortex models to improve the accuracy of prediction.  

The aim of this study is to clarify the difference between the characteristics of the cubic 

and quadratic models of hydrodynamic forces acting on a ship hull and to investigate the 

sensitivity of simulated ship manoeuvring motion to hydrodynamic derivatives including 

the influence of measurement error. Furthermore, applicability of the SQCM for the 

prediction of hull forces is investigated introducing two kinds of vortex models with the 

consideration of the deformation of free vortices. 

1.4. Thesis Layout 

This thesis consists of six chapters where Chapter 1 introduces a general overview of 

this study, such as hydrodynamic derivatives, manoeuvring prediction methods and so on. 

A literature review is presented associated with mathematical models of hydrodynamic 

forces acting on a hull, sensitivity analysis related to ship manoeuvring motion. The 

objectives and expected outcome of this research as well as a brief layout of this thesis 

are also presented. 

Chapter 2 starts by presenting the equations of motion for ship manoeuvring motions. 

Mathematical models of hydrodynamic forces which are necessary to simulate ship 

manoeuvring motion are described in this chapter. The differences between the 

characteristics of a cubic model and a quadratic model of hydrodynamic forces acting on 

a ship hull are evaluated and investigation on course stability index is also presented.  

The sensitivity of simulated ship manoeuvring motion using hydrodynamic derivatives to 

measurement error included in measured lateral force and yawing moment is investigated 

in Chapter 3. Furthermore, difference of the sensitivity between hydrodynamic 

derivatives based on a cubic model and a quadratic model is discussed. 

To calculate lateral force and yawing moment acting on a ship hull representing the shape 

of the hull accurately, the SQCM is introduced in Chapter 4. To represent flow field 

around the hull appropriately, vortex models considering the deformation of free vortices 

are also introduced. 
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To investigate the applicability of SQCM, Chapter 5 presents the results of the SQCM 

application to the Wigley hull and real hull such as KCS and KVLCC2. The results of 

hydrodynamic forces obtained from the SQCM are compared with experimental data. 

Pressure distributions for each ship is also presented in this chapter. 

Finally, the conclusions of this research and recommendation for future work are 

presented in Chapter 6. 
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Chapter 2 Mathematical Models for Simulating Ship 

Manoeuvring Motion 

2.1. Introduction 

Mathematical models of hydrodynamic forces acting on a ship hull are essential 

components in the equations of ship motions. They have been defined in terms of inherent 

values which are different for every type of ship. These terms are known as hydrodynamic 

derivatives or hydrodynamic coefficients that have been shown to be equal to the rate of 

change of force and moment to suitable parameters. To derive mathematical models of 

hydrodynamic forces acting on a rigid body moving over the water, various approaches 

can be used. 

In this chapter, the equations of motion for ship manoeuvring are described. Mathematical 

models for hydrodynamic forces acting on a ship are presented based on Manoeuvring 

Modelling Group (MMG) model. This MMG model consists of the individual properties 

of a hull, a propeller, a rudder and other external components. Two kinds of mathematical 

models for lateral force and yawing moment often used in MMG model are presented. 

One of the model is represented in the form of cubic polynomials by Yasukawa (2015) 

and the other model is represented in the form of quadratic polynomials by Kijima et al. 

(1990). Here after, the former is noted as a “cubic model” and the latter is noted as a 

“quadratic model”. 

Furthermore, comparing the cubic model and the quadratic model, it is generally said that 

the cubic model is better for approximating the accuracy of hydrodynamic force including 

the range of large motion (Ogawa et al., 1980). However, since it does not include a term 

proportional to the square of the drift angle 𝛽, it is pointed out that it is inconsistent with 

the theoretical study. Since the cubic model is more advantageous in explaining physical 

phenomena, different kinds of models are used for each research institute or company, 

including the choice of sway velocity 𝑣. 

In order to investigate the differences between the characteristics of hydrodynamic forces 

expressed by the cubic and the quadratic models, hydrodynamic data accumulated 

through captive model tests conducted at Kyushu University were reanalyzed. As the 
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IMO manoeuvring standards cover the course keeping and yaw checking abilities as well, 

course stability has become important. Course stability index is presented to show the 

differences between two kinds of mathematical models. 

2.2. Equations of Manoeuvring Motion 

2.2.1. Equations of Motion in Six Degrees of Freedom 

To inspect the motion of an object, equations of motion can be used. In this section, body 

fixed coordinate system  𝐺 − 𝑥𝑦𝑧  shown in Fig. 2.1 is used to derive equations of 

manoeuvring motion around the centre of gravity of a ship. 

 

Figure 2.1 Body fixed coordinate system 

The positive directions of 𝑥, 𝑦 and 𝑧 axes are defined as shown in Fig. 2.1. 𝑢, 𝑣, and 𝑤 

are ship velocities in 𝑥, 𝑦, and 𝑧 axes and 𝑝, 𝑞, and 𝑟 are angular velocities around 𝑥, 𝑦 

and 𝑧 axes, respectively. Ship motion can be expressed by three transitional motions and 

three rotational motions. 

Equations of motion for the transitional motions of a ship are expressed as follows: 

Surge = 𝑚(𝑢̇ + 𝑤𝑞 − 𝑣𝑟) = 𝑋𝐺0,

Sway = 𝑚(𝑣̇ + 𝑢𝑟 − 𝑤𝑝) = 𝑌𝐺0,

Heave = 𝑚(𝑤̇ + 𝑣𝑝 − 𝑢𝑞) = 𝑍𝐺0,

 } (2.1) 
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where, 𝑚 is the ships mass and 𝑋𝐺0, 𝑌𝐺0, and 𝑍𝐺0 are 𝑥, 𝑦, and 𝑧 components of external 

forces acting on the ship. Assuming 𝑥 , 𝑦 , and 𝑧  axes are principal axes of inertia, 

equations of motion for the rotational motions of the ship are expressed as follows: 

Roll: 𝐼𝑥𝑥𝑝̇ + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑞𝑟 = 𝐿𝐺0,

Pitch: 𝐼𝑦𝑦𝑞̇ + (𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑟𝑝 = 𝑀𝐺0,

Yaw:  𝐼𝑧𝑧𝑟̇ + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑝𝑞 = 𝑁𝐺0,

 } (2.2) 

where, 𝐼𝑥𝑥, 𝐼𝑦𝑦, and 𝐼𝑧𝑧 are the moments of inertia of the ship and 𝐿𝐺0, 𝑀𝐺0, and 𝑁𝐺0 are 

external moments acting on the ship. 

Coupling of turning motion and waves induced drifting motion is not so significant when 

a ship turns in the sea with a small wave. It is expressed by super positioning yawing 

induced by waves on turning motion in still water. Therefore, when ship manoeuvring is 

investigated, motions in horizontal plane such as surge, sway, and yaw must be taken into 

consideration. Coupling of other motions are negligible from a practical point of view. 

By substituting 𝑤 = 𝑝 = 𝑞 = 0  for Eqs. (2.1) and (2.2), the following equations are 

derived; 

Surge:  𝑚(𝑢̇ − 𝑣𝑟) = 𝑋𝐺0,

Sway:  𝑚(𝑣̇ + 𝑢𝑟) = 𝑌𝐺0,
Yaw: 𝐼𝑧𝑧𝑟̇ = 𝑁𝐺0.

 } (2.3) 

Eq. (2.3) shows standard equations of manoeuvring motion. The equation of roll motion 

should be added when the manoeuvrability of a ship of which metacentric height 𝐺𝑀 is 

small and ship speed is fast. The influence of roll motion on the manoeuvrability of such 

ship is not negligible. In the case of high speed vessel, pitch and surge motions may 

couple with other motions. When a ship sails in waves, the effect of wave exciting force 

should be taken into consideration. 
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2.2.2. Derivation of Equations of Manoeuvring Motion 

Equations of motion of a ship in the earth fixed coordinate system 𝑜 − 𝑥0𝑦0 in Fig. 2.2 

are given by; 

𝑚𝑥̈0 = 𝑋0,
𝑚𝑦̈0 = 𝑌0,

𝐼𝑧𝑧𝜓̈ = 𝑁0,

 } (2.4) 

 

Figure 2.2 Body fixed coordinate system for ship manoeuvring motion 

where, 𝑚 and 𝐼𝑧𝑧 are ships mass and moment inertia around a vertical axis through 𝐺 

respectively. 𝑥̈0  and 𝑦̈0  represent components of acceleration in 𝑥0  and 𝑦0  axes 

separately and 𝜓̈(= 𝑟̇) stands for the angular acceleration. 𝑋0 and 𝑌0 are components of 

external forces in 𝑥0 and 𝑦0 axes and 𝑁0 is external moment acting on the ship. 

When 𝑥 and y components of external force acting on a ship is expressed by 𝑋𝐺0 and 𝑌𝐺0 

in the body fixed coordinate system shown in Fig. 2.2, there is the following relation 

between 𝑋𝐺0 , 𝑌𝐺0  and 𝑋0 , 𝑌0  which are 𝑥0  and 𝑦0  components in the earth fixed 

coordinate system. 
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𝑋𝐺0 = 𝑋0 cos𝜓 + 𝑌0 sin𝜓 ,
𝑌𝐺0 = 𝑌0 cos𝜓 − 𝑋0 sin𝜓 .

 } (2.5) 

Substituting Eq. (2.4) for Eq. (2.5), the following equations are obtained; 

𝑋𝐺0 = 𝑚(𝑥̈0 cos𝜓 + 𝑦̈0 sin𝜓),

𝑌𝐺0 = 𝑚(𝑦̈0 cos𝜓 − 𝑥̈0 sin𝜓).
 } (2.6) 

Furthermore, 𝑥̇0, 𝑦̇0  which are 𝑥0  and 𝑦0  components of the velocity of 𝐺  in the earth 

fixed coordinate system is expressed by 𝑢 and 𝑣 which are 𝑥 and 𝑦 components of the 

velocity in the body fixed coordinate system. 

𝑥̇0 = 𝑢 cos𝜓  − 𝑣 sin𝜓 ,
𝑦̇0 = 𝑣 cos𝜓 + 𝑢 sin𝜓 .

 } (2.7) 

Differentiating Eq. (2.7) by time, 𝑥0 and 𝑦0 components of the acceleration of 𝐺 is given 

by; 

𝑥̈0 = 𝑢̇ cos𝜓 − 𝑢𝜓̇ sin𝜓 − 𝑣̇ sin𝜓 + 𝑣𝜓̇ cos𝜓 ,

𝑦̈0 = 𝑣̇ cos𝜓 − 𝑣𝜓̇ sin𝜓 + 𝑢̇ sin𝜓 + 𝑢𝜓̇ cos𝜓 .
 } (2.8) 

Substituting Eq. (2.8) for Eq. (2.6), then taking 𝑟̇ = 𝜓̈ and 𝑁0 = 𝑁𝐺0  into account, the 

following equations of motion are derived as follows; 

𝑋𝐺0 = 𝑚(𝑢̇ − 𝑣𝜓̇),

𝑌𝐺0 = 𝑚(𝑣̇ + 𝑢𝜓̇),

𝑁𝐺0 = 𝐼𝑧𝑧𝑟̇.

 } (2.9) 

The external forces 𝑋𝐺0, 𝑌𝐺0 and moment 𝑁𝐺0 are based on the inertia and viscosity of 

fluid. Separating these components, the forces and moment can be written as follows; 

𝑋𝐺0 = −𝑚𝑥𝑢̇ + 𝑚𝑦𝑣𝑟 + 𝑚𝑦𝛼𝑟
2 + 𝑋,

𝑌𝐺0 = −𝑚𝑦𝑣̇ − 𝑚𝑥𝑢𝑟 −𝑚𝑦𝛼𝑟̇ + 𝑌,

𝑁𝐺0 = −𝑖𝑧𝑧𝑟̇ − 𝑚𝑦𝛼𝑣̇ − (𝑚𝑦 −𝑚𝑥)𝑢𝑣 − 𝑚𝑦𝛼𝑢𝑟 + 𝑁,

 

}
 

 
 (2.10) 

where, 𝑚𝑥  and 𝑚𝑦  are 𝑥  and 𝑦  components of added mass, 𝐼𝑧𝑧  is added moment of 

inertia around 𝐺 and 𝛼 represents distance between the point of application of added mass 

and 𝐺. 𝑋, 𝑌 and 𝑁 stand for the components of forces and moment due to the viscosity of 

fluid. 
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Let us assume that 𝛼 is negligible small and −(𝑚𝑦 −𝑚𝑥)𝑢𝑣 term can be included in 𝑁. 

Substituting Eq. (2.10) for Eq. (2.9), then moving terms with the underline in the right 

side of Eq. (2.10) to the left side of Eq. (2.9), the following equations is derived. 

𝑋 = (𝑚 +𝑚𝑥)𝑢̇ − (𝑚 +𝑚𝑦)𝑣𝑟,

𝑌 = (𝑚 +𝑚𝑦)𝑣̇ + (𝑚 +𝑚𝑥)𝑢𝑟,

𝑁 = (𝐼𝑧𝑧 + 𝑖̇𝑧𝑧)𝑟̇.

 } (2.11) 

Let 𝑈 and 𝛽 be the velocity and the drift angle of a ship at the center of gravity 𝐺. There 

is the following relation between 𝑈, 𝛽 and 𝑢, 𝑣 which are 𝑥 and 𝑦 components of ship 

velocity; 

𝑢 = 𝑈 cos𝛽 ,
𝑣 = −𝑈 sin 𝛽 .

 } (2.12) 

Substituting Eq. (2.12) for Eq. (2.11), the equations of manoeuvring motion using 𝑈 and 

𝛽 instead of 𝑢 and 𝑣 is derived as follows; 

𝑋 = (𝑚 +𝑚𝑥)(𝑈̇ cos 𝛽 − 𝛽̇𝑈 sin 𝛽) + (𝑚 +𝑚𝑦)𝑈𝑟 sin 𝛽 ,

𝑌 = −(𝑚 +𝑚𝑦)(𝑈̇ sin 𝛽 + 𝛽̇𝑈 cos 𝛽) + (𝑚 +𝑚𝑥)𝑈𝑟 cos𝛽 ,

𝑁 = (𝐼𝑧𝑧 + 𝑖̇𝑧𝑧)𝑟̇.

 } (2.13) 

By non-dimensionalizing Eq. (2.13), the following non-dimensionalized equations of 

manoeuvring motion is derived. 

𝑋′ = (𝑚′ +𝑚𝑥
′ ) (

𝐿

𝑈
)(
𝑈

𝑈

̇
cos 𝛽 − 𝛽̇ sin 𝛽) + (𝑚′ +𝑚𝑦

′ )𝑟′ sin 𝛽 ,

𝑌′ = −(𝑚′ +𝑚𝑦
′ ) (

𝐿

𝑈
)(
𝑈

𝑈

̇
sin 𝛽 + 𝛽̇ cos 𝛽) − (𝑚′ +𝑚𝑥

′ )𝑟′ cos 𝛽 ,

𝑁′ = (𝐼𝑧𝑧
′ + 𝑖𝑧𝑧

′ ) (
𝐿

𝑈
)
2

(
𝑈

𝐿

̇
𝑟′ +

𝑈

𝐿
𝑟̇′) ,

 

}
 
 
 

 
 
 

 (2.14) 

where, “ ′ “ indicates non-dimensionalized value according to the following equations; 



20 

 

𝑚′, 𝑚𝑥
′ , 𝑚𝑦

′ =
𝑚,𝑚𝑥, 𝑚𝑦

1
2𝜌𝐿

2𝑑
, 𝐼𝑧𝑧

′ , 𝑖𝑧𝑧
′ =

𝐼𝑧𝑧 , 𝑖𝑧𝑧
1
2𝜌𝐿

4𝑑
 ,

𝑋′, 𝑌′ =
𝑋, 𝑌

1
2𝜌𝐿𝑑𝑈

2
 ,  𝑁′ =

𝑁

1
2𝜌𝐿

2𝑑𝑈2
 ,  𝑟′ =

𝑟𝐿

𝑈
,

 

 

}
 
 

 
 

 (2.15) 

where, 𝐿 and 𝑑 represent ship length and draft and 𝜌 is the density of the water.  

2.3. Mathematical Models for Lateral Force and Yawing Moment 

The non-dimensional external forces and moments presented in the left-hand sides of 

Eq. (2.14) can be expressed by assuming that they consist of hull, propeller, and rudder 

components as follows, 

𝑋′ = 𝑋𝐻
′ + 𝑋𝑃

′ + 𝑋𝑅
′ ,

𝑌′ = 𝑌𝐻
′ + 𝑌𝑃

′ + 𝑌𝑅
′ ,

𝑁′ = 𝑁𝐻
′ + 𝑁𝑃

′ +𝑁𝑅
′ .

  } (2.16) 

Subscripts "𝐻", "𝑃" and "𝑅" indicate non-dimensionalized hydrodynamic forces acting 

on a hull, a propeller, and a rudder, respectively.  In this research, only lateral force 𝑌𝐻
′  

and yawing moment 𝑁𝐻
′  are investigated deeply due to the dominant influence on the 

accuracy of manoeuvring prediction.  

Furthermore, Hydrodynamic forces and moments acting on a ship change with its motion 

and their characteristics are different depending on principal dimensions of a ship or types 

of motions. Therefore, a lot of parameters are necessary to express the hydrodynamic 

forces. By using the Taylor expansion, the characteristics of the hydrodynamic forces can 

be diminished into useful mathematical form with several variables. To use the Taylor 

expansion, the hydrodynamic forces and their derivatives should be continuous and 

should not go to infinity in the region of the values of the variables under consideration. 

This assumption holds very well with respect to hydrodynamic bodies, especially ships. 

Assuming the value of a function 𝑓(𝑥) is desired for a certain value of 𝑥 , it can be 

described in terms of the value of the function and its derivatives at some other value of 

𝑥, say at 𝑥 = 𝑥0. An example of the Taylor expansion for one variable can be described 

as follow, 
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𝑓(𝑥) = 𝑓(𝑥0) + (𝑥 − 𝑥0)
𝑑𝑓(𝑥0)

𝑑𝑥
+
(𝑥 − 𝑥0)

2

2!

𝑑2𝑓(𝑥0)

𝑑𝑥2
+
(𝑥 − 𝑥0)

3

3!

𝑑3𝑓(𝑥0)

𝑑𝑥3
+⋯, (2.17) 

where, 

𝑓(𝑥0)  : The value of the function at 𝑥 = 𝑥0, 

𝑑𝑛𝑓(𝑥0) 𝑑𝑥
𝑛⁄  : The 𝑛-th derivative of the function evaluated at 𝑥 = 𝑥0. 

Here, the following differential operator are introduced, 

𝜕𝑥 =
𝑑

𝑑𝑥
, 𝜕𝑥

𝑛 = 
𝑑𝑛

𝑑𝑥𝑛
, (𝑥 − 𝑥0) = Δ𝑥, (2.18) 

Then substituting Eq. (2.18) to Eq. (2.17), the following expression is obtained, 

𝑓(𝑥) = 𝑓(𝑥0) + Δ𝑥𝜕𝑥𝑓(𝑥0) +
(Δ𝑥𝜕𝑥)

2

2!
𝑓(𝑥0) +

(Δ𝑥𝜕𝑥)
3

3!
𝑓(𝑥0) + ⋯ ,

= [1 + (Δ𝑥𝜕𝑥) +
(Δ𝑥𝜕𝑥)

2

2!
+
(Δ𝑥𝜕𝑥)

3

3!
+ ⋯ ]𝑓(𝑥0).

  

}
 
 

 
 

 (2.19) 

Eq. (2.19) is exactly the form for the Taylor series expansion of the exponential, 

𝑒𝑎 = 1 + 𝑎 +
𝑎2

2!
+
𝑎3

3!
+ ⋯   . (2.20) 

So that, the Taylor series expansion can be expressed as, 

𝑓(𝑥) = 𝑒Δ𝑥𝜕𝑥𝑓(𝑥0). (2.21) 

Moreover, for multiple variables, the Taylor expansion takes the following form, 

𝑓(𝑥1, … , 𝑥𝑘) = ∑
1

𝑎!

𝑛

𝑎=0

(Δ𝑥1𝜕𝑥1 +⋯+ Δ𝑥𝑘𝜕𝑥𝑘)
𝑛
𝑓((𝑥1)0, … , (𝑥𝑘)0). (2.22) 

When the Taylor expansion is applied for hydrodynamic forces acting on a ship hull, a 

combination of non-dimensional sway velocity 𝑣′(= 𝑣/𝑈) and non-dimensional yaw 

rate 𝑟′  or a combination of drift angle 𝛽(≃ sin 𝛽 = −𝑣′) and 𝑟′ are often used as the 

variables such as 𝑥1, ⋯ , 𝑥𝑘. 

Furthermore, there are two kinds of models according to the difference in the adoption of 

terms existing in the right-hand side of Eq. (2.22). If the third order polynomials are 
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selected, the Taylor expansion for the hydrodynamic forces acting on a ship hull would 

be expressed as, 

𝑓(𝑣′, 𝑟′) = [𝑒Δ𝑣′𝜕𝑣′+Δ𝑟′𝜕𝑟′+Δ𝑣′
2 Δ

𝑟′
𝜕
𝑣′𝑣′𝑟′

+Δ
𝑣′
Δ
𝑟′
2 𝜕

𝑣′𝑟′𝑟′
+Δ

𝑣′
3 𝜕

𝑣′𝑣′𝑣′
+Δ

𝑟′
3 𝜕

𝑟′𝑟′𝑟′]

× 𝑓[𝑣0
′ , 𝑟0

′, 𝑣0
′ 2𝑟0

′, 𝑣0
′𝑟0
′2, 𝑣0

′ 3, 𝑟0
′3],

   (2.23) 

or, 

𝑓(𝛽, 𝑟′) = [𝑒
Δ𝛽𝜕𝛽+Δ𝑟′𝜕𝑟′+Δ𝛽

2Δ
𝑟′
𝜕
𝛽𝛽𝑟′

+Δ𝛽Δ𝑟′
2 𝜕

𝛽𝑟′𝑟′
+Δ𝛽

3𝜕𝛽𝛽𝛽+Δ𝑟′
3 𝜕

𝑟′𝑟′𝑟′]

× 𝑓[𝛽0, 𝑟0
′, 𝛽0

2𝑟0
′, 𝛽0𝑟0

′2, 𝛽0
3, 𝑟0

′3],
   (2.24) 

A coupling term 𝑣′𝑟′ (or 𝛽𝑟′), square terms 𝑣′
2
 (or 𝛽2) and 𝑟′

2
 and other higher order 

terms are generally neglected because their contribution is smaller than other terms shown 

in Eqs. (2.23) and (2.24). 

On the other hand, the Taylor expansion with the second order polynomials for the 

hydrodynamic forces acting on a ship hull would be expressed as, 

𝑓(𝑣′, 𝑟′) = [𝑒Δ𝑣′𝜕𝑣′+Δ𝑟′𝜕𝑟′+Δ𝑣′
2 𝜕

𝑣′𝑣′
+Δ

𝑟′
2 𝜕

𝑟′𝑟′
+Δ

𝑣′
2 Δ

𝑟′
𝜕
𝑣′𝑣′𝑟′

+Δ
𝑣′
Δ
𝑟′
2 𝜕

𝑣′𝑟′𝑟′]

× 𝑓[𝑣0
′ , 𝑟0

′, 𝑣0
′ 2, 𝑟0

′2, 𝑣0
′ 2𝑟0

′, 𝑣0
′𝑟0
′2],

   (2.25) 

or, 

𝑓(𝛽, 𝑟′) = [𝑒
Δ𝛽𝜕𝛽+Δ𝑟′𝜕𝑟′+Δ𝛽

2𝜕𝛽𝛽+Δ𝑟′
2 𝜕

𝑟′𝑟′
+Δ𝛽

2Δ
𝑟′
𝜕
𝛽𝛽𝑟′

+Δ𝛽Δ𝑟′
2 𝜕

𝛽𝑟′𝑟′]

× 𝑓[𝛽0, 𝑟0
′, 𝛽0

2, 𝑟0
′2, 𝛽0

2𝑟0
′, 𝛽0𝑟0

′2].
   (2.26) 

As same as the third order polynomials, a coupling term 𝑣′𝑟′ (or 𝛽𝑟′) and other higher 

order terms are generally neglected. 

Therefore, mathematical models based on the Taylor series expansion about 𝑣′ (or 𝛽) and 

𝑟′ are often expressed as follows, 

𝑌𝐻
′ = 𝑌𝑣

′𝑣′ + 𝑌𝑟
′𝑟′ + 𝑌𝑁𝐿

′ (𝑣′, 𝑟′),

𝑁𝐻
′ = 𝑁𝑣

′𝑣′ + 𝑁𝑟
′𝑟′ + 𝑁𝑁𝐿

′ (𝑣′, 𝑟′),
  } (2.27) 

or, 
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𝑌𝐻
′ = 𝑌𝑣

′𝑣′ + 𝑌𝑟
′𝑟′ + 𝑌𝑁𝐿

′ (𝛽, 𝑟′),

𝑁𝐻
′ = 𝑁𝑣

′𝑣′ + 𝑁𝑟
′𝑟′ + 𝑁𝑁𝐿

′ (𝛽, 𝑟′),
  } (2.28) 

where, 𝑌𝑣
′, 𝑌𝑟

′, 𝑁𝑣
′  and 𝑁𝑟

′ (𝑌𝛽
′, 𝑌𝑟

′, 𝑁𝛽
′  and 𝑁𝑟

′ )  are linear hydrodynamic derivatives and 

𝑌𝑁𝐿
′  and 𝑁𝑁𝐿

′  indicate nonlinear terms. Combination of linear terms which are represented 

by the functions of 𝑣′ (or 𝛽) and 𝑟′ and their orders in the nonlinear terms are different 

according to research institutes. 

The third order model based on non-dimensional sway velocity 𝑣′  (Yasukawa and 

Yoshimura, 2015) is expressed by the following equations using the ship fixed coordinate 

system 𝐺 − 𝑥𝑦 shown in Fig. 2.2, 

𝑌𝐻
′ = 𝑌𝑣

′𝑣′ + 𝑌𝑟
′𝑟′ + 𝑌𝑣𝑣𝑣

′ 𝑣′3 + 𝑌𝑣𝑣𝑟
′ 𝑣′2𝑟′ + 𝑌𝑣𝑟𝑟

′ 𝑣′𝑟′2 + 𝑌𝑟𝑟𝑟
′ 𝑟′3,

𝑁𝐻
′ = 𝑁𝑣

′𝑣′ + 𝑁𝑟
′𝑟′ + 𝑁𝑣𝑣𝑣

′ 𝑣′3 + 𝑁𝑣𝑣𝑟
′ 𝑣′2𝑟′ +𝑁𝑣𝑟𝑟

′ 𝑣′𝑟′2 +𝑁𝑟𝑟𝑟
′ 𝑟′3.

  } (2.29) 

Here, 𝑌𝐻
′  and 𝑁𝐻

′  are the non-dimensional values of lateral force and yawing moment. The 

second order model based on drift angle 𝛽 which has been conventionally adopted by 

Kyushu University (Kijima et al., 1990) is expressed by the following equations, 

𝑌𝐻
′ = 𝑌𝛽

′𝛽 + 𝑌𝑟
′𝑟′ + 𝑌𝛽𝛽

′ 𝛽|𝛽| + 𝑌𝑟𝑟
′ 𝑟′|𝑟′| + (𝑌𝛽𝛽𝑟

′ 𝛽 + 𝑌𝛽𝑟𝑟
′ 𝑟′)𝛽𝑟′ ,

𝑁𝐻
′ = 𝑁𝛽

′𝛽 + 𝑁𝑟
′𝑟′ + 𝑁𝛽𝛽

′ 𝛽|𝛽| + 𝑁𝑟𝑟
′ 𝑟′|𝑟′| + (𝑁𝛽𝛽𝑟

′ 𝛽 + 𝑁𝛽𝑟𝑟
′ 𝑟′)𝛽𝑟′.

 } (2.30) 

To express the change in the sign of the hydrodynamic force depending on the direction 

of motion, absolute symbols are added to the second order model terms of 𝛽 and 𝑟′. The 

first model shown in Eq. (2.29) is the “cubic model” and the second model shown in 

Eq. (2.30) is the “quadratic model”, respectively. 

2.4. Calculation Conditions 

Based on the two models shown in Eqs. (2.29) and (2.30), hydrodynamic forces measured 

by captive model tests for 12 model ships shown in Table 2.1 (total of 27 loading 

conditions) were reanalyzed to obtain hydrodynamic derivatives for the cubic model and 

the quadratic model. In Table 2.1, 𝛽 is the range of drift angle where the hydrodynamic 

forces were measured, 𝐿 is the length of a ship, 𝐵 is a ship width, 𝑑𝑚 is an average draft, 

and 𝐶𝐵 is a block coefficient. SR108 and Esso Osaka are ships whose hull shapes, various 

experimental data and calculation results are widely disclosed. Ships A to J are ship types 

used in the captive model tests conducted at Kyushu University. For all these ships, there 



24 

 

are measurement data of hydrodynamic forces for fully loaded and ballast conditions, and 

for Ships D, F, and I, measurement of hydrodynamic forces for half loaded condition is 

also performed. Hydrodynamic derivatives derived from the measurements of the captive 

model tests for all ships for the cubic model and the quadratic model are shown in 

Tables 2.2 and 2.3, respectively. 
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Table 2.1 Principal dimensions of model ships 

Ship 

No. 

Ship 

Name 
Ship Type 

Loading 

Condition 
𝛽 (deg.) 𝐿 (m) 𝐵 (m) 𝑑𝑚 (m) 𝐶𝐵 

1 
SR108 Container C. 

Fully loaded 
-4.0 ~12.0 3.0 0.435 

0.163 0.572 

2 Ballast 0.094 0.518 

3 Esso  

Osaka 
VLCC 

Fully loaded 
-4.0 ~20.0 2.5 0.408 

0.170 0.831 

4 Ballast 0.080 0.793 

5 
Ship A Car C. 

Full loaded 
-4.0 ~10.0 2.5 0.482 

0.134 0.522 

6 Ballast 0.111 0.491 

7 
Ship B Cargo C. 

Fully loaded 
-4.0 ~10.0 2.5 0.419 

0.140 0.698 

8 Ballast 0.082 0.666 

9 
Ship C ULCC 

Fully loaded 
-4.0 ~20.0 2.5 0.466 

0.156 0.835 

10 Ballast 0.076 0.802 

11 

Ship D LNG C. 

Fully loaded 

-4.0 ~20.0 2.5 0.409 

0.100 0.714 

12 Half loaded 0.093 0.707 

13 Ballast 0.086 0.703 

14 
Ship E VLCC 

Fully loaded 
-4.0 ~20.0 2.5 0.436 

0.157 0.802 

15 Ballast 0.077 0.761 

16 

Ship F Container C. 

Fully loaded 

-4.0 ~20.0 2.5 0.386 

0.130 0.566 

17 Half loaded 0.107 0.540 

18 Ballast 0.085 0.516 

19 
Ship G Cargo C. 

Fully loaded 
-4.0 ~20.0 2.5 0.376 

0.158 0.651 

20 Ballast 0.072 0.574 

21 
Ship H Cargo C. 

Fully loaded 
-4.0 ~20.0 2.5 0.408 

0.171 0.773 

22 Ballast 0.071 0.711 

23 

Ship I RO/RO 

Fully loaded 

-4.0 ~20.0 2.5 0.367 

0.102 0.557 

24 Half loaded 0.093 0.537 

25 Ballast 0.083 0.512 

26 
Ship J ULCC 

Fully loaded 
-4.0 ~20.0 2.5 0.556 

0.183 0.821 

27 Ballast 0.089 0.783 
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Table 2.2 Hydrodynamic derivatives for cubic model 

Ship 

No. 
𝑌𝑣
′
 𝑌𝑣𝑣𝑣

′
 𝑌𝑟

′
 𝑌𝑟𝑟𝑟

′
 𝑌𝑣𝑟𝑟

′
 𝑌𝑣𝑣𝑟

′
 𝑁𝑣

′
 𝑁𝑣𝑣𝑣

′
 𝑁𝑟

′
 𝑁𝑟𝑟𝑟

′
 𝑁𝑣𝑟𝑟

′
 𝑁𝑣𝑣𝑟

′
 

1 0.234 3.272 -0.119 0.020 1.128 0.012 0.111 -0.288 -0.044 -0.047 -0.083 -0.579 

2 0.202 2.073 -0.124 0.051 0.938 -0.268 0.062 -0.137 -0.030 -0.056 0.043 -0.554 

3 0.430 1.452 -0.238 0.059 0.498 0.280 0.154 0.058 -0.071 -0.008 -0.117 -0.169 

4 0.335 0.759 -0.235 0.016 0.376 0.134 0.079 0.075 -0.056 -0.011 -0.029 -0.187 

5 0.346 2.437 -0.187 -0.109 1.085 -1.094 0.109 1.061 -0.069 -0.027 0.061 -0.605 

6 0.317 7.566 -0.175 -0.097 0.811 -1.932 0.087 0.723 -0.063 -0.032 0.115 -0.684 

7 0.320 4.768 -0.109 -0.060 0.521 -0.831 0.108 -0.088 -0.054 -0.024 -0.054 -0.228 

8 0.229 3.252 -0.110 -0.165 0.830 -0.878 0.066 -0.088 -0.045 -0.017 0.057 -0.366 

9 0.479 0.975 -0.269 -0.025 0.270 0.569 0.134 0.023 -0.055 -0.013 -0.018 -0.177 

10 0.371 0.613 -0.247 -0.055 0.202 0.182 0.065 0.099 -0.043 -0.005 0.007 -0.168 

11 0.359 0.948 -0.203 -0.005 0.281 0.153 0.076 -0.003 -0.044 -0.007 -0.017 -0.147 

12 0.333 0.644 -0.193 -0.028 0.281 0.192 0.070 0.018 -0.042 -0.006 -0.006 -0.148 

13 0.321 0.574 -0.193 -0.017 0.259 0.234 0.067 -0.033 -0.037 -0.010 -0.008 -0.116 

14 0.381 1.559 -0.221 0.023 0.531 0.047 0.127 0.012 -0.059 -0.013 -0.099 -0.164 

15 0.321 0.591 -0.205 -0.018 0.277 0.303 0.065 0.087 -0.046 -0.018 -0.030 -0.137 

16 0.280 3.498 -0.101 -0.055 1.036 -1.891 0.093 0.089 -0.048 -0.040 0.012 -0.350 

17 0.281 2.177 -0.093 -0.070 0.903 -1.246 0.076 0.067 -0.043 -0.042 0.073 -0.410 

18 0.284 2.156 -0.089 -0.078 0.829 -1.215 0.063 0.169 -0.035 -0.042 0.076 -0.462 

19 0.354 2.167 -0.155 -0.009 0.897 -0.901 0.125 0.095 -0.058 -0.041 -0.066 -0.275 

20 0.247 1.034 -0.128 -0.035 0.600 -0.478 0.056 0.086 -0.031 -0.036 0.043 -0.341 

21 0.295 2.470 -0.176 -0.023 0.546 -0.129 0.145 -0.157 -0.047 -0.026 -0.120 -0.135 

22 0.320 0.484 -0.199 -0.031 0.283 0.273 0.064 -0.062 -0.038 -0.015 -0.072 -0.021 

23 0.238 2.196 -0.124 -0.073 0.854 -1.486 0.075 0.213 -0.035 -0.033 0.123 -0.564 

24 0.231 2.003 -0.144 -0.020 0.781 -1.259 0.067 0.199 -0.032 -0.039 0.146 -0.601 

25 0.215 2.672 -0.124 -0.056 0.917 -1.733 0.058 0.322 -0.034 -0.041 0.166 -0.663 

26 0.476 1.538 -0.278 -0.031 0.269 0.492 0.151 0.139 -0.056 -0.024 -0.056 -0.201 

27 0.352 0.458 -0.285 -0.018 0.109 0.482 0.071 0.115 -0.048 -0.008 0.006 -0.215 
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Table 2.3 Hydrodynamic derivatives for quadratic model 

Ship 

No. 
𝑌𝛽
′
 𝑌𝛽𝛽

′
 𝑌𝑟

′
 𝑌𝑟𝑟

′
 𝑌𝛽𝑟𝑟

′
 𝑌𝛽𝛽𝑟

′
 𝑁𝛽

′
 𝑁𝛽𝛽

′
 𝑁𝑟

′
 𝑁𝑟𝑟

′
 𝑁𝛽𝑟𝑟

′
 𝑁𝛽𝛽𝑟

′
 

1 0.179 0.899 -0.124 0.021 1.280 -0.427 0.118 -0.093 -0.034 -0.044 -0.151 -0.384 

2 0.163 0.591 -0.135 0.049 0.994 -0.451 0.065 -0.047 -0.019 -0.052 -0.007 -0.410 

3 0.372 0.601 -0.251 0.060 0.547 0.138 0.155 0.007 -0.068 -0.011 -0.128 -0.140 

4 0.294 0.344 -0.240 0.020 0.404 0.049 0.074 0.034 -0.052 -0.013 -0.033 -0.174 

5 0.409 -0.008 -0.141 -0.151 1.244 -1.771 0.091 0.279 -0.056 -0.041 0.073 -0.744 

6 0.274 1.484 -0.132 -0.136 0.930 -2.716 0.073 0.203 -0.047 -0.048 0.125 -0.768 

7 0.272 1.060 -0.082 -0.085 0.500 -0.719 0.110 -0.029 -0.043 -0.034 -0.088 -0.018 

8 0.197 0.712 -0.043 -0.225 0.871 -1.143 0.068 -0.027 -0.038 -0.023 0.064 -0.399 

9 0.435 0.405 -0.257 -0.037 0.277 0.541 0.136 -0.004 -0.049 -0.019 -0.023 -0.155 

10 0.345 0.248 -0.223 -0.077 0.240 0.077 0.061 0.039 -0.041 -0.007 0.005 -0.157 

11 0.323 0.383 -0.199 -0.009 0.279 0.146 0.076 -0.005 -0.040 -0.010 -0.012 -0.158 

12 0.300 0.285 -0.179 -0.042 0.250 0.261 0.068 0.006 -0.040 -0.008 -0.011 -0.134 

13 0.288 0.262 -0.185 -0.024 0.260 0.216 0.069 -0.019 -0.033 -0.013 -0.014 -0.093 

14 0.305 0.695 -0.231 0.032 0.604 -0.185 0.125 0.003 -0.052 -0.020 -0.115 -0.111 

15 0.297 0.236 -0.197 -0.025 0.302 0.220 0.061 0.035 -0.038 -0.026 -0.031 -0.126 

16 0.127 1.530 -0.079 -0.075 1.093 -2.077 0.089 0.035 -0.029 -0.057 -0.006 -0.283 

17 0.180 0.969 -0.064 -0.096 0.926 -1.321 0.073 0.026 -0.025 -0.060 0.065 -0.373 

18 0.185 0.953 -0.057 -0.106 0.876 -1.345 0.056 0.071 -0.016 -0.059 0.067 -0.417 

19 0.263 0.930 -0.148 -0.016 0.957 -1.111 0.123 0.027 -0.039 -0.059 -0.071 -0.241 

20 0.203 0.441 -0.112 -0.051 0.624 -0.563 0.053 0.033 -0.014 -0.052 0.025 -0.282 

21 0.179 1.102 -0.167 -0.032 0.591 -0.305 0.156 -0.091 -0.035 -0.038 -0.139 -0.064 

22 0.307 0.170 -0.185 -0.045 0.276 0.271 0.069 -0.037 -0.031 -0.021 -0.085 0.021 

23 0.143 0.956 -0.093 -0.101 0.851 -1.487 0.065 0.095 -0.020 -0.047 0.092 -0.461 

24 0.140 0.890 -0.133 -0.031 0.748 -1.170 0.059 0.082 -0.015 -0.055 0.121 -0.509 

25 0.092 1.192 -0.097 -0.081 0.943 -1.806 0.044 0.139 -0.016 -0.059 0.152 -0.605 

26 0.416 0.633 -0.264 -0.044 0.300 0.371 0.147 0.045 -0.046 -0.034 -0.063 -0.173 

27 0.334 0.179 -0.277 -0.025 0.112 0.445 0.067 0.043 -0.044 -0.011 0.001 -0.194 
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2.5. Course Stability Index 

Based on the linear hydrodynamic derivatives presented in Eqs. (2.29) and (2.30), course 

stability index 𝛥 can be calculated by the following equation, 

𝛥 = −𝑌𝑣
′𝑁𝑟

′ + 𝑁𝑣
′{𝑌𝑟

′ − (𝑚′ +𝑚𝑥
′ )} = 𝑌𝛽

′𝑁𝑟
′ − 𝑁𝛽

′ {𝑌𝑟
′ − (𝑚′ +𝑚𝑥

′ )}. (2.31) 

The condition for determining whether the course stability of a ship is stable or unstable 

is shown by the sign of 𝛥, namely positive 𝛥 means the ship is unstable and negative 𝛥 

means the ship is stable.  

On the other hand, Eq. (2.31) can be rewritten as follows, 

𝛥 = −𝑌𝑣
′{𝑌𝑟

′ − (𝑚′ +𝑚𝑥
′ )} {

𝑁𝑟
′

𝑌𝑟′ − (𝑚′ +𝑚𝑥
′ )
−
𝑁𝑣
′

𝑌𝑣′
}

= −𝑌𝑣
′{𝑌𝑟

′ − (𝑚′ +𝑚𝑥
′ )}(𝑙𝑟

′ − 𝑙𝑣
′ ),

 (2.32) 

𝛥 = 𝑌𝛽
′{𝑌𝑟

′ − (𝑚′ +𝑚𝑥
′ )} {

𝑁𝑟
′

𝑌𝑟′ − (𝑚′ +𝑚𝑥
′ )
−
𝑁𝛽
′

𝑌𝛽
′}

= 𝑌𝛽
′{𝑌𝑟

′ − (𝑚′ +𝑚𝑥
′ )}(𝑙𝑟

′ − 𝑙𝛽
′ ),

 (2.33) 

where, 

𝑙𝑟
′ =

𝑁𝑟
′

𝑌𝑟′ − (𝑚′ +𝑚𝑥
′  )
, 𝑙𝑣

′ =
𝑁𝑣
′

𝑌𝑣′
, 𝑙𝛽

′ =
𝑁𝛽
′

𝑌𝛽
′ . (2.34) 

𝑙𝑟
′  indicates the position of yaw damping force application point and both 𝑙𝑣

′  and 𝑙𝛽
′  

represent the position of sway damping force application point. The course stability of a 

ship can also be evaluated by the relative positions of these force application points. If 

the yaw damping force application point exists in front of the sway damping force 

application point, the ship is stable, otherwise the ship becomes unstable. 

The course stability indices both for the cubic model and the quadratic model are 

compared to see the influence of different model approach based on Eqs. (2.31) to (2.34). 

Fig. 2.3 shows linear hydrodynamic derivatives obtained by analyzing measured 

hydrodynamic forces based on the cubic and the quadratic models. They are used to 

calculate the course stability indices.  
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Fig. 2.4 shows comparison between calculated course stability indices based on the cubic 

and the quadratic models for all model ships and loading conditions shown in Table 2.1. 

The horizontal axis represents the number of ships (1 to 27). It can be observed that some 

ships have different signs of course stability indices for the cubic and the quadratic models. 

There are some factors that may cause the difference between the two models. One of the 

causes is likely happen because of the difference in the mathematical characteristics of 

both models. 

  

  

Figure 2.3 Linear hydrodynamic derivatives based on cubic and quadratic models 

To have better understanding about the phenomenon, relation between course stability 

index and the linear hydrodynamic derivatives of the cubic and the quadratic models for 

all ships are examined. Then, all the 27 ships are divided into three categories for easier 

understanding based on the results of calculated course stability index: 

I. Ships which have the same sign of 𝛥 for the cubic and the quadratic models on all 

loading conditions. 

II. Ships which have the different sign of 𝛥 for the cubic and the quadratic models 

on some loading conditions. 
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III. Ships which have the different sign of 𝛥 for the cubic and the quadratic models 

on all loading conditions. 

Fig. 2.5 shows examples for the three categories. Furthermore, Table 2.4 shows the 

distribution of the ships which are suitable for each category. 

 

Figure 2.4 Course stability index 𝛥 for cubic model vs quadratic model 

Table 2.4 List of ships 

Category I Category II Category III 

SR108 

Ship A 

Ship B 

Ship H 

Ship J 

Esso Osaka 

Ship C 

Ship D 

Ship E 

Ship I 

Ship F 

Ship G 
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(a) Category I – SR108 

  

(b) Category II – Ship C 

  

(c) Category III – Ship F 

Figure 2.5 Examples of course stability index Δ for three 

categories 
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For category I, Fig. 2.6 shows the 𝑌𝐻
′  and 𝑁𝐻

′  curves of SR108 (Ships No. 1 and 2) for 

fully loaded and ballast conditions respectively fit by the cubic and the quadratic models 

in the range of −10° < 𝛽 < 20° at 𝑟′ = 0. The horizontal axis represents drift angle 𝛽. 

Red and blue solid lines show fitting curves using the hydrodynamic derivatives for the 

cubic and the quadratic models derived from captive model test data. Dash lines shown 

in the figures represent the slopes of the lateral force and yawing moment curves at the 

origin. They are equivalent with the linear hydrodynamic derivatives for 𝛽. Hereafter, the 

dash line is noted as a slope line. Furthermore, the experimental data are also presented 

in the figures by circle marks. It is observed that the inclination of the slope line of the 

cubic model for lateral force has a larger value than that of the quadratic model. On the 

other hand, it shows opposite tendency for yawing moment. These tendencies are found 

in both loading conditions. 

There is large difference between 𝑌𝐻
′  and 𝑁𝐻

′  curves fit by the cubic and the quadratic 

models in the large range of drift angle 𝛽. Generally, fitting curve using a cubic function 

based on least square method gives larger value outside the range of input data comparing 

with fitting curve using a quadratic function. Therefore, it is considered that this 

difference is caused by the lack of experimental data in the range of large drift angle. 

For category II, Fig. 2.7 shows the 𝑌𝐻
′  and 𝑁𝐻

′  curves of Ship C (Ships No. 9 and 10) for 

fully loaded and ballast conditions, respectively. The difference of 𝛥 signs between Ships 

No. 9 and 10 are mainly caused by the difference in a slope line of yawing moment with 

respect to drift angle 𝛽. In both ships, the inclination of a slope line of the quadratic model 

for lateral force with respect to 𝛽  has a smaller value than that of the cubic model. 

Different tendency can be observed for yawing moment. On the Ship No. 9, the 

inclination of a slope line of the quadratic model with respect to 𝛽 is slightly larger than 

that of the cubic model. While on the Ship No. 10, the opposite tendency is observed. 

This tendency is not shown in category I, which is all the 𝛥 have the same sign. The 

different sign of 𝛥  caused by the difference in the slope lines is coming from the 

difference of linear hydrodynamic derivative between two models as shown in Fig. 2.10. 
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(a) Fully loaded condition (b) Ballast condition 

Figure 2.6 Category I - 𝑌𝐻
′  and 𝑁𝐻

′  curves of SR108 fit by cubic and quadratic 

models for fully loaded and ballast conditions 
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(a) Fully loaded condition (b) Ballast condition 

Figure 2.7 Category II - 𝑌𝐻
′  and 𝑁𝐻

′  curves of Ship C fit by cubic and quadratic 

models for fully loaded and ballast conditions 
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(a) Fully loaded condition (b) Ballast condition 

Figure 2.8 Category III - 𝑌𝐻
′  and 𝑁𝐻

′  curves of Ship F fit by cubic and quadratic 

models for fully loaded and ballast conditions 
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For category III, Fig. 2.8 shows the 𝑌𝐻
′  and 𝑁𝐻

′  curves of Ship F (Ships No. 16 and 18) for 

fully loaded and ballast conditions, respectively. There is no significant difference 

between 𝑌𝐻
′  and 𝑁𝐻

′  curves for fully loaded and ballast conditions. However, the 

inclination of a slope line of the quadratic model is smaller than that of the cubic model 

for lateral force and yawing moment with respect to drift angle 𝛽. On the other hand, the 

inclination of a slope line of the quadratic model for lateral force and yawing moment 

with respect to non-dimensional yaw rate 𝑟′ is larger than that of the cubic model. This 

tendency can also be observed in Fig. 2.3. 

Previously, comparison between loading conditions to examine the difference of the value 

of course stability index Δ and hydrodynamic derivatives between the cubic and the 

quadratic models with the same ship types are focused on. There is a lot of ships that have 

a different sign of 𝛥 between the cubic and the quadratic models. It is important to know 

the reason why both models have such results of 𝛥. Based on that, ships in each category 

are compared again. 

By checking the values of the first and second terms of course stability index shown in 

Eq. (2.30), which consists of two terms of the combinations of linear hydrodynamic 

derivatives, it can be easily know that the main cause of the different results between the 

cubic and the quadratic models. Fig. 2.9 shows the comparison between the absolute 

values of the first and second terms of course stability index 𝛥 for all ships and both 

models. The ships which have different sign of 𝛥 mainly have different values of linear 

derivatives between the cubic and the quadratic models. For example, Ship No. 17 has a 

different sign of course stability index. Based on Fig. 2.9, the absolute value of 𝑌𝛽
′𝑁𝑟

′ is 

smaller than that of 𝑁𝛽
′ {𝑌𝑟

′ − (𝑚′ +𝑚𝑥
′ )} in the quadratic model, but the cubic model 

shows the opposite. This opposite relation comes from the differences in the 

characteristics of the cubic and the quadratic functions. If the nonlinearity of measured 

data is small, a quadratic function generally has a small linear derivative comparing with 

that of the cubic model. As shown in Fig. 2.9 where almost all the absolute values of the 

first and second terms of course stability index for the quadratic model is smaller than 

those of the cubic model.  
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(a) Cubic model 

 

 

(b) Quadratic model 

Figure 2.9 Comparison of the absolute value of linear derivatives 
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Furthermore, almost all the different signs of 𝛥 between the cubic and the quadratic 

models are observed for ships having fully loaded and ballast conditions such as Esso 

Osaka (Ships No. 3 and 4), Ship C (Ships No. 9 and 10), Ship D (Ships No. 11 to 13), 

Ship E (Ships No. 14 and 15), and Ship I (Ships No. 23 to 25), though there are some 

exceptions like Ship F (Ships No. 16 to 18) and Ship G (Ships No. 19 and 20). Both of 

ship F and ship G have different signs of 𝛥 between the cubic and the quadratic models 

in all loading conditions.  

In the category I, both models always show identical results whether the value of 𝑌𝛽
′𝑁𝑟

′ is 

larger than 𝑁𝛽
′ {𝑌𝑟

′ − (𝑚′ +𝑚𝑥
′ )} or vice versa. Differently, ships in categories II and III 

share the same tendency. The value of 𝑌𝛽
′𝑁𝑟

′ is larger than that of 𝑁𝛽
′ {𝑌𝑟

′ − (𝑚′ +𝑚𝑥
′ )} 

for the quadratic model but not for the cubic model. It suggests that taking more attention 

to the difference between the values of linear hydrodynamic derivatives based on the 

cubic model or the quadratic model when evaluating course stability index for ballast 

condition. 

Next, ships from category I and ships from category II or III for all loading conditions are 

compared. In this case, SR108 (Ships No. 1 and 2) from category I and Ship F (Ships 

No. 16 and 18) from category III are chosen because both ships are container carriers, but 

have different tendency in course stability index to be investigated.  

Fig. 2.10 shows the comparison of the absolute values of the first and the second terms 

of Eq. (2.30) between Ship No. 1 and Ship No. 16. Based on the figure, both of the cubic 

and the quadratic models for Ship No. 1, the absolute value of 𝑌𝛽
′𝑁𝑟

′ is smaller than the 

value of 𝑁𝛽
′ {𝑌𝑟

′ − (𝑚′ +𝑚𝑥
′ )}. On the other hand, only the cubic model for Ship No. 16 

shows the opposite result. As already explained before, this difference in the absolute 

values of the first and second terms of Eq. (2.30) is mainly comes from the lack of 

experimental data and the mathematical characteristics between the two models.  

It is confirmed that existence of measured hydrodynamic forces in the large range of drift 

angle tends to give different result between the cubic and the quadratic models. For the 

purpose to investigate more the difference between the two models when calculating 

course stability index, the application points of yaw damping force and sway damping 
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force for all ships are examined. Fig. 2.11 shows the comparison of course stability index 

evaluated by the relative positions of 𝑙𝑟
′  and 𝑙𝛽

′  or 𝑙𝑣
′  for both models. Noticed that the 

quadratic model tends to have a minus value than the cubic model. 

 

 

(a) Ship No. 1 

 

(b) Ship No. 16 

Figure 2.10 Comparison of 𝑌𝛽
′𝑁𝑟

′ and 𝑁𝛽
′ {𝑌𝑟

′ − (𝑚′ +𝑚𝑥
′ )} 
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Figure 2.11 Comparison of 𝑙𝑟
′ − 𝑙𝑣

′  (for cubic model) and 𝑙𝑟
′ − 𝑙𝛽

′  (for quadratic model) 

2.6. Conclusion 

The equations of manoeuvring motion have been presented. Two kinds of mathematical 

model for lateral force and yawing moment based on cubic polynomials and quadratic 

polynomials are also represented.  

The results of course stability index between the cubic and the quadratic models are 

reviewed. The different sign of course stability index caused by the difference of linear 

hydrodynamic derivative between the two models. The first and second terms of course 

stability index are also investigated. Almost all the absolute values of the first and second 

terms of course stability index for the quadratic model is smaller than those of the cubic 

model. It is confirmed that existence of measured hydrodynamic forces in the large range 

of drift angle tends to give different result between the cubic and the quadratic models. It 

suggests that taking more attention to the difference between the values of linear 

hydrodynamic derivatives based on the cubic model or the quadratic model when 

evaluating course stability index for ballast condition. 
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Chapter 3 Sensitivity Analysis on Simulated Manoeuvring 

Motion 

3.1. Introduction 

Sensitivity analysis is the study of how uncertainty in the output of a model can be 

apportioned to different sources of uncertainty in a model input (Saltelli, 2002). It may 

be used to determine input variables that contribute the most to an output behaviour, and 

non-influential inputs, or to ascertain some interaction effects within the model. The 

process of sensitivity analysis leads to the analysis and computation of the indicator 

influence of input variables with respect to the output of the model. The measurement of 

each undetermined input variable on the response uncertainty provides a deeper 

understanding of the modelling to reduce the response uncertainties in the most effective 

way (Helton et al., 2006, Kleijnen, 1997, Saltelli et al., 2000). 

There are several approaches to sensitivity analysis. One approach to sensitivity analysis 

is global sensitivity analysis, often implemented using probabilistic tools and numerous 

statistical such as regression, statistical learning, and Monte Carlo Simulations. A 

sensitivity analysis is considered to be global when all the input factors are varied 

simultaneously and the sensitivity is evaluated over the entire range of each input factor 

(Zhou and Lin, 2008). Global sensitivity analysis does not distinguish any initial set of 

model input values, but considers the numerical model in the entire domain of possible 

input parameter variations (Saltelli et al., 2000). 

Another approach is local sensitivity analysis, which is derivative based (numerical or 

analytical). Mathematically, the sensitivity of the cost function with respect to certain 

parameters is equal to the partial derivative of the cost function with respect to those 

parameters (Turanyi, 1990). The term local refers to the fact that all derivatives are taken 

at a single point. For simple cost functions, this approach is efficient. However, this 

approach can be infeasible for complex models, where formulating the cost function (or 

the partial derivatives) is nontrivial. For example, models with discontinuities do not 

always have derivatives. 
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There are various uses of sensitivity analysis; one can mention model verification and 

understanding, model simplifying, factor prioritization, model calibration, and assisting 

with the decision-making process.  

In manoeuvring studies, sensitivity analysis provides a basis for determining the 

importance and the required accuracy of the individual terms in the mathematical model. 

This is done through analysis of simulations performed with systematic variations of each 

term. Such studies have been stimulated by the need for more accurate manoeuvring 

predictions at the design stage. 

In this chapter, sensitivity of simulated ship manoeuvring motion to hydrodynamic 

derivatives derived from measured lateral force and yawing moment including 

measurement error coming from the resolution of measurement equipment, fluctuation of 

towing speed and angular velocity of a carriage, setting error in drift angle, and so on is 

investigated for a model ship of KVLCC2. The Monte Carlo simulation method is used 

to analyze the sensitivity. Varying the assumed values of measurement error randomly, 

evaluation indices such as advance, transfer and tactical diameter for turning motion and 

the first and the second overshoot angles for 10°/10° and 20°/20° zigzag manoeuvres are 

evaluated to quantify the influence of the measurement error on manoeuvring 

performance. By assuming the measurement error, close relation between linear and non-

linear derivatives can be included in the sensitivity analyses. 

Furthermore, it is well known that linear hydrodynamic derivatives based on a cubic 

polynomials and a quadratic polynomials have different values even if same dataset of 

measured hydrodynamic forces are used to drive the derivatives due to the difference of 

fitting characteristics between the two models. Therefore, the author also focuses on the 

difference of the sensitivity between hydrodynamic derivatives based on the cubic model 

and the quadratic model and clarify the advantages and the disadvantages of both models. 

3.2. Influence of Measurement Error on Hydrodynamic Derivatives 

To evaluate ship manoeuvrability based on numerical simulations, hydrodynamic 

derivatives which is necessary to express lateral force and yawing moment acting on a 

ship hull are one of parameters which have much influence on simulated results. It is 

important to use accurate hydrodynamic derivatives to simulate ship manoeuvring motion 
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precisely. The Monte Carlo simulation method has been often used to investigate the 

sensitivity of ship manoeuvrability to the hydrodynamic derivatives, by varying the value 

of each derivative randomly (Dash et al., 2015, Shenoi et al., 2015, Sung et al., 2014, Shin 

et al., 2012).  

In these investigations, hydrodynamic derivatives are randomly changed one by one, 

independently. However, it is well known that there is strong relation between linear and 

non-linear derivatives. Therefore, it is considered that the value of each derivative should 

not be varied independently to grasp the sensitivity of manoeuvring performance to 

hydrodynamic derivatives precisely. 

On the other hand, the hydrodynamic derivatives are generally derived by analyzing 

lateral force and yawing moment measured by conducting captive model tests in a model 

basin using a model ship. However, measurements of the hydrodynamic forces in same 

condition are not repeated in general, because it consumes long time to carry out the 

measurement even for one condition. Therefore, measurement error included in the 

measured results is directly reflected to the values of hydrodynamic derivatives. It means 

that simulated manoeuvring motion is also affected by the measurement error through the 

hydrodynamic derivatives. Then, it should be necessary to understand the influence of the 

measurement error on the hydrodynamic derivatives and simulation results to evaluate 

ship manoeuvrability properly. 

3.2.1. Preparation of Pseudo Measurement Data of Lateral Force and 

Yawing Moment including Artificial Measurement Error 

It is necessary to use accurate hydrodynamic derivatives presented in the cubic model and 

the quadratic model to simulate ship manoeuvring motion with high accuracy. The 

hydrodynamic derivatives are derived by fitting lateral force and yawing moment 

measured by conducting captive model tests in a model basin with the cubic polynomials 

or the quadratic polynomials shown in Eqs. (2.29) and (2.30). Therefore, it is important 

to obtain measured hydrodynamic forces having a good quality. Iterating measurements 

or taking average of measured values are one of the practical ways to reduce measurement 

error. However, measurements of the hydrodynamic forces in the same condition are 

rarely repeated in general because it requires a long time to carry out the measurement 
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even for one condition and there are many combinations of drift angle 𝛽  and non-

dimensional yaw rate 𝑟′ to be considered to measure the hydrodynamic forces. Once 

measurement error occurs in the captive model tests, it is directly reflected to the values 

of the hydrodynamic derivatives. Therefore, grasping the influence of measurement error 

on the derived values of hydrodynamic derivatives is important. 

The principal particulars of KVLCC2 is shown in Table 3.1. To evaluate the influence of 

measurement error on the hydrodynamic derivatives, pseudo measurement data for a 

model ship of KVLCC2 are prepared because it is impossible to obtain true hydrodynamic 

forces and difficult to extract precise errors from measured hydrodynamic forces. By 

adding the assumed measurement error to “provisional true data”, pseudo measurement 

data can be created. “provisional true data” can be obtained by using hydrodynamic 

derivatives shown in Table 3.2 (Yasukawa and Yoshimura, 2015). Detail of the pseudo 

measurement error including artificial measurement error are described later. 

As the true values of measured hydrodynamic forces, calculated lateral force and yawing 

moment using hydrodynamic derivatives presented in Table 3.2 (Yasukawa and 

Yoshimura, 2015) are used. Red lines shown in Fig. 3.1 represent non-dimensional lateral 

force 𝑌𝐻
′  and yawing moment 𝑁𝐻

′  for non-dimensional yaw rate 𝑟′ =0.0, 0.2, 0.4, 0.6, and 

1.0 for the variation of drift angle 𝛽 in the range of -4.0° and 20.0°. It should be noted 

that the effect of centrifugal force is contained in 𝑌𝐻
′  and 𝑁𝐻

′  presented in Fig. 3.1. They 

are expressed as −(𝑚′ +𝑚𝑥
′ )𝑟′  for lateral force and 𝑥𝐺

′𝑚′𝑟′  for yawing moment, 

respectively. 𝑥𝐺
′  stands for non-dimensional distance between the midship and the centre 

of gravity of a ship. Furthermore, circles presented in Fig. 3.1 are deemed as the true 

values of non-dimensional lateral force and yawing moment when the pseudo 

measurement data including artificial measurement error are created. Hereafter, the data 

is noted as “provisional true data.” 
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Before creating the pseudo measurement data, hydrodynamic derivatives for the quadratic 

model are derived by using the provisional true data. They are shown in Table 3.3 and 

calculated 𝑌𝐻
′  and 𝑁𝐻

′  using the hydrodynamic derivatives are shown in Fig. 3.2. There is 

slight difference between the red lines and the blue lines. Reproducibility of the fitting 

curves based on the quadratic model is lower than that of the cubic model. The lower 

reproducibility might occur by having used the provisional true data generated by the 

cubic model. 

It is expected to use the exact characteristics of real measurement error to prepare pseudo 

measurement data containing assumed measurement error. However, it is difficult to 

know the exact characteristics of real measurement error because there are so many 

sources of the measurement error such as resolution and inherent characteristics of 

measurement equipment, fluctuation of towing speed and angular velocity of a carriage, 

Table 3.1 Principal particulars of KVLCC2 

 Model Full scale 

𝐿 (m) 2.902 320.0 

𝐵 (m) 0.527 58.0 

𝑑 (m) 0.189 20.8 

𝐶𝑏  0.810 0.810 

Table 3.2 Hydrodynamic derivatives for cubic model 

𝑌𝑣
′   𝑁𝑣

′   

𝑌𝑣𝑣𝑣
′    𝑁𝑣𝑣𝑣

′   

𝑌𝑟
′ − (𝑚′ +𝑚𝑥

′ )   𝑁𝑟
′ − 𝑥𝐺

′𝑚′  

𝑌𝑟𝑟𝑟
′    𝑁𝑟𝑟𝑟

′   

𝑌𝑣𝑟𝑟
′    𝑁𝑣𝑟𝑟

′   

𝑌𝑣𝑣𝑟
′    𝑁𝑣𝑣𝑟

′   

Table 3.3 Hydrodynamic derivatives for quadratic model 

𝑌𝑣
′   𝑁𝑣

′   

𝑌𝑣𝑣
′    𝑁𝑣𝑣

′   

𝑌𝑟
′ − (𝑚′ +𝑚𝑥

′ )   𝑁𝑟
′ − 𝑥𝐺

′𝑚′  

𝑌𝑟𝑟
′    𝑁𝑟𝑟

′   

𝑌𝑣𝑟𝑟
′    𝑁𝑣𝑟𝑟

′   

𝑌𝑣𝑣𝑟
′    𝑁𝑣𝑣𝑟

′   
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setting error in drift angle, facility bias, and so on. Therefore, the measurement error is 

assumed to be normally distributed and its standard deviation is also assumed to be 

expressed by 𝜎. Based on these assumptions, pseudo measurement data is represented as 

follows in Monte Carlo simulations which are described later. 

𝐹pm
′ = 𝐹pt

′ ± 2𝑛𝜎. (3.1) 

  
(a) 𝑌𝐻

′  (b) 𝑁𝐻
′  

Figure 3.1 Substitute data for true non-dimensional lateral force 𝑌𝐻
′  and yawing 

moment 𝑁𝐻
′  and their fitting lines based on cubic model 

  
(a) 𝑌𝐻

′  (b) 𝑁𝐻
′  

Figure 3.2 Substitute data for true non-dimensional lateral force 𝑌𝐻
′  and yawing 

moment 𝑁𝐻
′  and their fitting lines based on quadratic model 
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𝐹pm
′  and 𝐹pt

′  represent the pseudo measurement data of hydrodynamic force and the 

provisional true data of hydrodynamic force, respectively. This calculation is carried out 

for each combination of drift angle 𝛽 and non-dimensional yaw rate 𝑟′ using a normal 

random number 𝑛 chosen in the range of -1.0 and 1.0. 

3.2.2. Monte Carlo Simulations for Evaluation of Influence of 

Measurement Error on Hydrodynamic Derivatives 

Monte Carlo simulations are conducted to evaluate the influence of measurement error 

on hydrodynamic derivatives. Pseudo measurement data are created by using Eq. (3.1) 

for each simulation and 105 times of simulations are repeated to derive the values of 

hydrodynamic derivatives for the cubic model and the quadratic model. The value of 

standard deviation of the measurement error 𝜎 is assumed to be 0.5%, 1.0%, 1.5%, and 

2.0% of the positive maximum value of the provisional true data shown in Fig. 3.1. 

Namely, the maximum value is selected as the value of 𝑌𝐻
′  or 𝑁𝐻

′  at 𝛽 = 20° and 𝑟′ = 0.0. 

Hydrodynamic derivatives of the cubic model and the quadratic model are derived using 

all pseudo measurement data created in the Monte Carlo simulations. Fig. 3.3 shows an 

example of the pseudo measurement data created based on Eq. (3.1) when the value of 

standard deviation 𝜎 is assumed to be 1.0% of the maximum value. It can be observed 

that the pseudo measurement data shown with green circles deviate from the provisional 

true data shown with black circles, but the difference between them are not so big. That 

is likely observed in actual captive model tests. Red and blue lines provide fitting curves 

obtained by using the hydrodynamic derivatives for the cubic model and the quadratic 

model derived from the pseudo measurement data shown with green circles. 



48 

 

After the Monte Carlo simulations are completed, standard deviation for each 

hydrodynamic derivatives are calculated by this following formula, 

𝐷𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 = 𝐷𝑖
′/𝐷pt

′ . (3.2) 

𝐷𝑖
′  stands for each hydrodynamic derivative derived by using the i-th pseudo 

measurement data and 𝐷pt
′  represents each hydrodynamic derivative derived by using the 

provisional true data. The standard deviations for all kinds of hydrodynamic derivatives 

are presented in Table 3.4. It can be understood that the values of standard deviations for 

all kinds of hydrodynamic derivatives for the cubic model are smaller than those for the 

quadratic model. Therefore, it is expected that the cubic model is less susceptible to 

measurement error comparing with the quadratic model. It is also observed that the 

standard deviations of linear derivatives such as 𝑌𝑣
′, 𝑌𝑟

′ − (𝑚′ +𝑚𝑥
′ ), 𝑁𝑣

′ , and 𝑁𝑟
′ − 𝑥𝐺

′𝑚′ 

are smaller than those of non-linear derivatives. This is because linear and non-linear 

derivatives related to the same parameter have close relation each other. Once a linear 

derivative deviate from the provisional true value, non-linear derivative which is 

subordinate to the linear derivative is much affected by variation of the linear derivative. 

It suggests that assuming uniform standard deviations for all hydrodynamic derivatives 

  
(a) 𝑌𝐻

′  (b) 𝑁𝐻
′  

Figure 3.3 Example of artificial measurement data of 𝑌𝐻
′  and 𝑁𝐻

′  and their fitting 

lines based on cubic model. 
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which is often used to evaluate the sensitivity of ship manoeuvrability to each 

hydrodynamic derivative by conducting Monte Carlo simulations is not appropriate. 

 

3.3. Simulation of Ship Manoeuvring Motions Considering Influence of 

Measurement Error 

3.3.1. Conditions of Simulations and Simulation Results without 

Measurement Error 

Eqs. (2.29) and (2.30) can be simulated by the Runge-Kutta method. As for the values of 

parameters such as hydrodynamic derivatives for 𝑋𝐻
′  and interaction coefficients among 

ship hull, propeller, and rudder which are essential to obtain accurate simulation results, 

values shown in a reference (Yasukawa and Yoshimura, 2015) are used except for the 

Table 3.4 Standard deviation for each hydrodynamic derivatives 

 Cubic model Quadratic model 

(𝑌𝑣
′)𝑖/(𝑌𝑣

′)pt  0.041 0.091 

(𝑌𝑣𝑣𝑣
′ )𝑖 /(𝑌𝑣𝑣𝑣

′ )pt  0.097 − 

(𝑌𝑣𝑣
′ )𝑖/(𝑌𝑣𝑣

′ )pt  − 0.101 

{𝑌𝑟
′−(𝑚′+𝑚𝑥

′ )}
𝑖

{𝑌𝑟
′−(𝑚′+𝑚𝑥

′ )}
pt

  0.035 0.055 

(𝑌𝑟𝑟𝑟
′ )𝑖/(𝑌𝑟𝑟𝑟

′ )pt  2.019 − 

(𝑌𝑟𝑟
′ )𝑖/(𝑌𝑟𝑟

′ )pt  − 2.042 

(𝑌𝑣𝑟𝑟
′ )𝑖/(𝑌𝑣𝑟𝑟

′ )pt  0.129 0.191 

(𝑌𝑣𝑣𝑟
′ )𝑖/(𝑌𝑣𝑣𝑟

′ )pt  0.325 0.444 

(𝑁𝑣
′)𝑖/(𝑁𝑣

′)pt  0.027 0.044 

(𝑁𝑣𝑣𝑣
′ )𝑖/(𝑁𝑣𝑣𝑣

′ )pt  1.440 − 

(𝑁𝑣𝑣
′ )𝑖/(𝑁𝑣𝑣

′ )pt  − 1.510 

(𝑁𝑟
′−𝑥𝐺

′𝑚′)
𝑖

(𝑁𝑟
′−𝑥𝐺

′𝑚′)
pt

  0.039 0.066 

(𝑁𝑟𝑟𝑟
′ )𝑖/(𝑁𝑟𝑟𝑟

′ )pt  0.346 − 

(𝑁𝑟𝑟
′ )𝑖/(𝑁𝑟𝑟

′ )pt  − 0.349 

(𝑁𝑣𝑟𝑟
′ )𝑖/(𝑁𝑣𝑟𝑟

′ )pt  0.254 0.377 

(𝑁𝑣𝑣𝑟
′ )𝑖/(𝑁𝑣𝑣𝑟

′ )pt  0.117 0.159 
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hydrodynamic derivatives for 𝑌𝐻
′  and 𝑁𝐻

′  presented in the previous section. Initial ship 

speed 𝑈0 in the simulations is set as 0.73576 m/s which corresponds to 15 knots in full 

scale. 

Fig. 3.4 shows turning trajectories with rudder angle of 35 and the time histories of non-

dimensional yaw rate 𝑟′, speed drop ratio 𝑈/𝑈0 , drift angle 𝛽 , and heading angle 𝜓 

simulated by using hydrodynamic derivatives based on the provisional true data. The 

values of advance 𝐴𝐷 , transfer 𝑇𝑅 , and tactical diameter 𝐷𝑇  are shown in non-

dimensional form in Table 3.5. There are hardly difference between the simulated results 

for the cubic model and the quadratic model. 

 

 

 

(a) Turning trajectories (b) Time histories of 𝑟′, 𝑈/𝑈0, 𝛽, and 𝜓 

Figure 3.4 Trajectories and time histories of 𝑟′, 𝑈/𝑈0, 𝛽, and 𝜓 in turning motion 

with rudder angle of 35 

 

Table 3.5 Values of evaluation indices for provisional true data 

Evaluation indices Cubic model Quadratic model 

Advance, 𝐴𝐷pt/𝐿 3.234 3.222 

Transfer, 𝑇𝑅pt/𝐿 1.440 1.446 

Tactical Dia., 𝐷𝑇pt/𝐿 3.331 3.341 
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Simulated time histories of rudder angle 𝛿 and heading angle 𝜓 for 10/10 and 20/20 

zigzag manoeuvres are shown in Fig. 3.5 and the values of overshoot angles are presented 

in Table 3.6. It is observed that the first and second overshoot angles of 10/10 zigzag 

manoeuvre for the quadratic model are larger than those for the cubic model. It can be 

considered that the difference originates from lower reproducibility of the quadratic 

model as described in the previous section. Therefore, the authors only focus on the 

variation of evaluation indices such as advance, transfer, tactical diameter, and overshoot 

angles when hydrodynamic derivatives for 𝑌𝐻
′  and 𝑁𝐻

′  derived by using the i-th pseudo 

measurement data are used. 

3.3.2. Sensitivity of Simulated Manoeuvring Motion to Measurement 

Error 

Simulations of turning motion with rudder angle of 35 and 10/10 and 20/20 zigzag 

manoeuvres are conducted using 105 sets of hydrodynamic derivatives for 𝑌𝐻
′  and 𝑁𝐻

′  

created by the Monte Carlo simulations considering the effect of the pseudo measurement 

 

 
(a) 10/10 zigzag (b) 20/20 zigzag 

Figure 3.5 Times histories of 𝛿 and 𝜓 in 10/10 and 20/20 zigzag manoeuvres 

 

Table 3.6 Values of evaluation indices for provisional true data 

Evaluation indices Cubic model Quadratic model 

1st overshoot angle of 10/10 zigzag, 𝜓1pt
(10)

 3.995 4.476 

2nd overshoot angle of 10/10 zigzag, 𝜓2pt
(10)

 9.420 10.637 

1st overshoot angle of 20/20 zigzag, 𝜓1pt
(20)

 9.277 9.547 

2nd overshoot angle of 20/20 zigzag, 𝜓2pt
(20)

 13.021 13.006 
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error. Advance 𝐴𝐷 , transfer 𝑇𝑅 , and tactical diameter 𝐷𝑇  are selected as evaluation 

indices to investigate the sensitivity of ship turning motion to hydrodynamic derivatives. 

On the other hand, 𝜓1
(10)

 and 𝜓2
(10)

 which are the first and the second overshoot angles of 

10/10 zigzag and 𝜓1
(20)

 and 𝜓2
(20)

 for 20/20 zigzag are used as evaluation indices to 

observe the sensitivity of zigzag manoeuvres. 

Fig. 3.6 shows normalized histograms of 𝐼𝑖 − 𝐼pt for turning motion when the value of 

standard deviation 𝜎 used in Eq. (3.1) is assumed to be 1.0% of the maximum value. Here, 

𝐼𝑖 stands for an evaluation index obtained by using hydrodynamic derivatives for 𝑌𝐻
′  and 

𝑁𝐻
′  based on the i-th pseudo measurement data in the Monte Carlo simulations. 𝐼pt is an 

evaluation index for the provisional true data which is presented in Table 3.5. Therefore, 

𝐼𝑖 − 𝐼pt  represents the variation of each evaluation index. Vertical axes indicate 

normalized frequencies of the variation. Furthermore, the mean value 𝜇 and the standard 

deviation 𝜎 of each evaluate index 𝐼𝑖 are shown in Table 3.7. 

It is observed that the quadratic model tends to have a larger standard deviation comparing 

with that of the cubic model. This tendency is consistent with the larger variation of 

hydrodynamic derivatives caused by the pseudo measurement error as shown in Table 3.4. 

It suggests that further quality control of measurement in captive model tests is required 

when the quadratic model is adopted to express lateral force and yawing moment acting 

on a ship hull. It is also observed that the variation range of 𝑇𝑅𝑖 − 𝑇𝑅pt is the narrowest 

among three evaluation indices both for the cubic model and the quadratic model as 

presented in Table 3.7. The impact of measurement error for simulated values of advance 

is approximately equivalent to that of tactical diameter. 
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Examples of simulation results picked up from the 105 times of simulations are shown in 

Fig. 3.7. Trajectory and time histories drawn by red solid lines are same as the trajectory 

and the time histories for the cubic model presented in Fig. 3.4. Additional two kinds of 

lines (dotted line and broken line) indicate the simulation results of which the values of 

advance 𝐴𝐷 are nearly equal to μ + 2σ or μ − 2σ, respectively. It can be considered that 

most of simulation results exist between these two lines. Hydrodynamic derivatives used 

  

  

  
(a) Cubic model (b) Quadratic model 

Figure 3.6 Normalized histograms for each evaluation index for turning motion 

Table 3.7 Mean value and standard deviation for each evaluation index for turning 

motion 

Evaluation indices 
Cubic model Quadratic model 

𝜇 𝜎 𝜇 𝜎 

𝐴𝐷𝑖/𝐿 3.235 0.037 3.223 0.042 

𝑇𝑅𝑖/𝐿 1.442 0.022 1.445 0.024 

𝐷𝑇𝑖/𝐿 3.332 0.033 3.342 0.039 
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in these simulations are presented in Table 3.8. When the three kinds of values for each 

hydrodynamic derivative are compared, difference among them is not so big, though 

obviously different simulation results are obtained.  

 

 

(a) Turning trajectories (b) Time histories of 𝑟′, 𝑈/𝑈0, 𝛽, and 𝜓 

Figure 3.7 Trajectories and time histories of 𝑟′, 𝑈/𝑈0, 𝛽, and 𝜓 in turning motion 

with rudder angle of 35 

 

Table 3.8 Hydrodynamic derivatives of cubic model 

 Original 𝐴𝐷 : μ +

2σ 

𝐴𝐷 : μ −

2σ 

𝑌𝑣
′    

𝑌𝑣𝑣𝑣
′     

𝑌𝑟
′ − (𝑚′ +

𝑚𝑥
′ )  


 

𝑌𝑟𝑟𝑟
′     

𝑌𝑣𝑟𝑟
′     

𝑌𝑣𝑣𝑟
′     

𝑁𝑣
′     

𝑁𝑣𝑣𝑣
′     

𝑁𝑟
′ − 𝑥𝐺

′𝑚′    

𝑁𝑟𝑟𝑟
′     

𝑁𝑣𝑟𝑟
′     

𝑁𝑣𝑣𝑟
′     
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Normalized histograms of the variation of each evaluation index 𝐼𝑖 − 𝐼pt for 10/10 and 

20/20 zigzag manoeuvres are shown in Fig. 3.8 and the mean value 𝜇 and the standard 

deviation 𝜎 of each evaluate index are presented in Table 3.9. As same as the comparison 

between the characteristics of the cubic model and the quadratic model in turning motion, 

the quadratic model tends to have a larger standard deviation. It is obvious that the 

  

  

  

  
(a) Cubic model (b) Quadratic model 

Figure 3.8 Normalized histograms for each evaluation index for turning motion 
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distribution range of 𝜓2𝑖
(10) − 𝜓2pt

(10)
 is the widest among all overshoot angles. It means the 

second overshoot angle of 10/10 zigzag is considerably affected by the measurement 

error. It can be confirmed by the standard deviation presented in Table 3.9. 

Examples of simulation results picked up from the 105 times of simulations are shown in 

Fig. 3.9. Time histories of 𝛿 and 𝜓 drawn by red solid lines are same as the lines for the 

cubic model presented in Fig. 3.5. Additional two kinds of lines indicate simulation 

results of which the value of 𝜓1
(10)

 or 𝜓1
(20)

 is nearly equal to 𝜇 + 2𝜎  or 𝜇 − 2𝜎 . 

According to Fig. 3.9 (a), it is confirmed that the variation of the first overshoot angle 

causes considerable variation of the second overshoot angle in 10/10 zigzag manoeuvre. 

Therefore, it can be concluded that measurement error included in measured 

hydrodynamic forces have much influence on transient motion which is observed in 

10/10 zigzag manoeuvre. 

 

Table 3.9 Mean value and standard deviation for each evaluation index for 10/10 

and 20/20 zigzag manoeuvres 

Evaluation Indices 
 Cubic model  Quadratic model 

 𝜇 𝜎  𝜇 𝜎 

𝜓1𝑖
(10)

  4.005 0.281  4.499 0.432 

𝜓2𝑖
(10)

  9.488 1.054  10.754 1.465 

𝜓1𝑖
(20)

  9.284 0.440  9.556 0.518 

𝜓2𝑖
(20)

  13.015 0.563  13.006 0.610 

 

 

 
 

(a) 10/10 zigzag (b) 20/20 zigzag 

Figure 3.9 Times histories of 𝛿 and 𝜓 in 10/10 and 20/20 zigzag manoeuvres 
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3.3.3. Effect of Standard Deviation of Measurement Error 

Finally, effect of the assumed standard deviation of measurement error on simulation 

results of manoeuvring motions are investigated using the cubic model. Table 3.10 shows 

the variation of standard deviation for each evaluation index for turning motion and 

10/10 and 20/20 zigzag manoeuvres when the standard deviation of the pseudo 

measurement error is changed as 0.5%, 1.0%, 1.5%, and 2.0% of the maximum values 

described in the previous section. According to Table 3.10, the standard deviation for 

each evaluation index is proportional to the assumed standard deviation of the pseudo 

measurement error. Therefore, it can be concluded that 10/10 zigzag manoeuvre is the 

most sensitive to the measurement error included in hydrodynamic forces measured by 

conducting captive model tests, though the degree of influence should be investigated 

further considering realistic measurement error. 

 

  

Table 3.10 Variation of standard deviation for each evaluation index for turning motion 

and 10/10 and 20/20 zigzag manoeuvres by difference of pseudo 

measurement error 

 0.5% 1.0% 1.5% 2.0% 

𝐴𝐷𝑖/𝐿 0.019 0.037 0.056 0.075 

𝑇𝑅𝑖/𝐿 0.011 0.022 0.032 0.043 

𝐷𝑇𝑖/𝐿 0.016 0.033 0.049 0.066 

𝜓1𝑖
(10)

 0.140 0.281 0.426 0.576 

𝜓2𝑖
(10)

 0.521 1.054 1.610 2.202 

𝜓1𝑖
(20)

 0.220 0.440 0.661 0.884 

𝜓2𝑖
(20)

 0.282 0.563 0.843 1.120 
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3.4. Conclusion 

Sensitivity of simulated manoeuvring motion to hydrodynamic derivatives derived from 

measured lateral force and yawing moment including measurement error was investigated 

and the following conclusions were obtained. 

・ It is expected that the cubic model is less susceptible to measurement error comparing 

with the quadratic model. 

・ Assuming uniform standard deviations for all hydrodynamic derivatives is not 

appropriate for the Monte Carlo simulations method because the standard deviations 

of non-linear derivatives are larger than those of linear derivatives. 

・ Manoeuvring indices such as advance, tactical diameter, and overshoot angles 

predicted by using hydrodynamic derivatives based on the quadratic model tends to 

have a larger standard deviation comparing with those based on the cubic model. 

・ Measurement error included in measured hydrodynamic forces have much influence 

on transient motion of a ship such as 10/10 zigzag manoeuvre. 

・ The standard deviation for each evaluation index is proportional to the assumed 

standard deviation of the pseudo measurement error. 

Though influence of hydrodynamic derivatives for 𝑌𝐻
′  and 𝑁𝐻

′  on simulated manoeuvring 

motion was only investigated, there are many parameters which have significant impact 

on ship manoeuvrability. They should be further investigated considering realistic 

measurement error. 
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Chapter 4 Source and Quasi Vortex Lattice Method (SQCM) 

4.1. Introduction 

The sensitivity of simulated ship manoeuvring motion using hydrodynamic derivatives to 

measurement error included in measured lateral force and yawing moment has been 

investigated in the previous chapter. In order to simulate manoeuvring motion precisely, 

conducting captive model tests is necessary paying much attention to the accuracy of 

measurement. However, captive model tests are time and cost consuming and the number 

of facilities where captive model tests can be conducted is limited. It becomes general 

problem with these model tests. Hence, development of practical calculation methods for 

hydrodynamic forces acting on a ship hull is expected. 

In this chapter, a calculation method to predict lateral force and yawing moment acting 

on a ship hull representing the shape of the hull accurately is introduced. This calculation 

method is based on the SQCM (Source and Quasi Continuous vortex lattice Method) 

which is one of the panel methods as explained in Chapter 1. It has been confirmed that 

the SQCM had good accuracy to calculate hydrodynamic force produced by a propeller. 

Generally, the SQCM is based on two methods proposed by Hess and Smith (1964) and 

Lan (1970), respectively. The Hess and Smith method is used to represent the shape of 

the body expressed by several panels and sources are distributed for each panel. Then, 

Lan (1970) represented circulation around the body by discrete vortices arranged along 

the central longitudinal plane of the body.  

The SQCM is applied to predict hydrodynamic forces acting on a ship hull in drift motion. 

In this method, ship hull is treated as a thick wing. To represent the flow field around the 

hull appropriately, vortex models considering deformation of free vortices are introduced. 

Then, two kinds of vortex models are examined to improve the estimation accuracy of 

lateral force and yawing moment in the range of large drift angle. 

4.2. Basic Theory of SQCM 

Fig. 4.1 shows the schematic view of the SQCM. For simplicity, a target object is 

represented by two-dimensional body. In the SQCM, the shape of the body is expressed 

by several panels based on the Hess and Smith method (1964) and sources are distributed 
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for each panel. Furthermore, according to Lan (1970), circulation around the body is 

expressed by vortices arranged along the central longitudinal plane of the body. 

Hydrodynamic forces acting on a body in uniform flow can be estimated by locating 

calculation points on the surface of each panel and the vortex points as shown by blue 

cross marks in Fig. 4.1 and by calculating the strength of the sources and the vortices that 

satisfy boundary conditions at the calculation points. Like the QCM method, the Kutta 

condition is automatically satisfied as the strength of the vortices become zero at the 

trailing edge of the wing-shaped body. Since there is no need to perform repetitive 

calculation, the SQCM is an efficient calculation method with respect to calculation time. 

Consequently, total flow velocity around the body in uniform flow is expressed as 

follows, 

𝑉⃗ = 𝑉0⃗⃗  ⃗ + 𝑉𝑠⃗⃗⃗  + 𝑉𝑣⃗⃗  ⃗, (4.1) 

where, 

𝑉⃗  : total flow velocity vector, 

𝑉0⃗⃗  ⃗ : flow velocity vector by uniform flow around the body, 

𝑉𝑠⃗⃗⃗   : induced velocity vector by source panels, 

𝑉𝑣⃗⃗  ⃗ : induced velocity vector by vortices. 
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Figure 4.1 Schematic diagram of SQCM 

4.3. Calculation Method of Induced Velocity by Sources 

4.3.1. Hess and Smith Method 

Assuming a double body model of a body in uniform flow, the origin of the basic 

coordinate system 𝑜 − 𝑥𝑦𝑧 is defined as shown in Fig. 4.2. Body surface is represented 

by discrete points which are placed on its surface. These are identified as a group of four 

to form the quadrilateral surface element which is treated as a source panel. To form the 

quadrilateral surface element from a four given point, two diagonal vectors, each of which 

is simply the vector between the two of the four points are formed. Here, 𝑛⃗  is a cross 

product of the two diagonal vectors, taken as the normal vector to the quadrilateral surface 

element. The four points which are projected parallel to the normal vector into the plane 

of the element to obtain the points at the corners of the quadrilateral. The element plane 

as defined here is equidistant from the four points used to form the element. 
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Figure 4.2 Representation of body shape and basic coordinate system. 

The basic formula of the Hess and Smith method gives induced velocity by a quadrilateral 

source panels with a unit source density at a point in the space. Let the surface of the body 

have an equation of the form, 

𝐹(𝑥, 𝑦, 𝑧) = 0, (4.2) 

where, 𝑥, 𝑦, and 𝑧 are the coordinates in the basic coordinate system. The undisturbed 

flow coming to the body is taken as uniform flow of unit magnitude. This flow is 

described by the following equation, 

𝑉∞ = (𝑉∞𝑥
2 + 𝑉∞𝑦

2 + 𝑉∞𝑧
2 )

1 2⁄
= 1. (4.3) 

The fluid velocity at an arbitrary point may be denoted as the negative gradient of a 

velocity potential function 𝜙, which must satisfy the following three conditions; it must 

satisfy Laplace’s equation, it should have a zero normal derivative on the surface body, 

and it should reach the proper uniform flow potential at infinity, as follows, 

Δ𝜙 = 0   in   𝑅, (4.4) 

𝜕𝜙

𝜕𝑛
≡ 𝑛⃗ ∙ grad𝜙|𝐹=0 = 0, (4.5) 

𝜙 → −(𝑥𝑉∞𝑥 + 𝑦𝑉∞𝑦 + 𝑧𝑉∞𝑧)   for   (𝑥
2 + 𝑦2 + 𝑧2)1 2⁄ → ∞. (4.6) 
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Here, Δ stands for the Laplacian operator and 𝑛⃗  is the unit normal vector at an arbitrary 

point of the body surface. For convenience, 𝜙 can be written as: 

𝜙 = 𝜑∞ + 𝜑, (4.7) 

where 𝜑∞ is the uniform flow potential and 𝜑 is the disturbance potential due to the body. 

𝜑 will be denoted as the potential of source density distribution over the surface 𝑆 of the 

body. The potential at arbitrary point 𝑃(𝑥, 𝑦, 𝑧) in the basic coordinate system due to a 

unit point source located at a point 𝑞 on the body surface is 1 ⁄ 𝑟(𝑃, 𝑞) , where, 𝑟(𝑃, 𝑞) 

is the distance between the points 𝑃 and 𝑞. Accordingly, the potential 𝜑 at 𝑃 due to a 

source density distribution 𝜎(𝑞) on the surface of the body is given by, 

𝜑(𝑥,𝑦,𝑧) =∯
𝜎(𝑞)

𝑟(𝑃, 𝑞)
𝑑𝑆

𝑠

. (4.8) 

4.3.2. Basic Coordinate System to Panel Fixed Coordinate System 

Conversion Method 

Fig. 4.3 shows the panel fixed coordinate system 𝑂 − 𝜉𝜂𝜁. 𝜁 axis is set in the direction of 

the outward normal vector 𝑛⃗  on the quadrilateral surface. In addition, one point is selected 

where the fluid velocity normal to the quadrilateral surface is required to vanish and 

where tangential velocity and pressure are eventually evaluated. The origin 𝑂 of the panel 

fixed coordinate system is designated as a null point which is a point that does not receive 

the induced velocity by the panel itself. 

The conversion sequence from the basic coordinate system 𝑂 − 𝑥𝑦𝑧 to the panel fixed 

coordinate system 𝑂 − 𝜉𝜂𝜁 is performed in the procedure from (a) to (c) as shown in 

Fig. 4.4. The coordinate system 𝑂3 − 𝑥3𝑦3𝑧3  in (c) is the same as the panel fixed 

coordinate system 𝑂 − 𝜉𝜂𝜁. The details of how to obtain the transformation matrix M for 

performing this transformation will be described. 
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Figure 4.4 Conversion of flow coordinate – translation of the origin 

 

 

 

 

Figure 4.3 panel fixed coordinate system 
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First, in Fig. 4.4, let the coordinate (𝑥0, 𝑦0, 𝑧0) in the basic coordinate system 𝑂 − 𝑥𝑦𝑧 be 

the origin of a coordinate system 𝑂1 − 𝑥1𝑦1𝑧1. In here, (𝑥0, 𝑦0, 𝑧0) is the average value 

of the coordinates of the four vertices of the panel. At this time, the coordinate of an 

arbitrary point (𝑥, 𝑦, 𝑧) defined in the basic coordinate system is expressed as (𝑥1, 𝑦1, 𝑧1) 

in the 𝑂1 − 𝑥1𝑦1𝑧1 by using the following equations, 

(

𝑥1
𝑦1
𝑧1
) = (

𝑥
𝑦
𝑧
) − (

𝑥0
𝑦0
𝑧0
) = (

𝑥 − 𝑥0
𝑦 − 𝑦0
𝑧 − 𝑧0

). (4.9) 

 

Figure 4.5 Conversion of flow coordinate – Rotation around 𝑧1 axis 

Next, as shown in Fig. 4.5, let 𝜃 be the angle between the straight line projected from the 

normal vector 𝑛⃗  onto the 𝑥1𝑦1 plane and the 𝑥1 axis. Then, let 𝑂1 − 𝑥1𝑦1𝑧1 to be rotated 

counterclockwise by the angle 𝜃 around 𝑧1 axis. In here, the rotated coordinate system 

will be deemed as 𝑂2 − 𝑥2𝑦2𝑧2 . At this time, the coordinate of an arbitrary point 

(𝑥1, 𝑦1, 𝑧1) defined in the 𝑂1 − 𝑥1𝑦1𝑧1 is expressed as (𝑥2, 𝑦2, 𝑧2) in the 𝑂2 − 𝑥2𝑦2𝑧2 by 

using the following equations. 

(

𝑥2
𝑦2
𝑧2
) = (

cos 𝜃 sin 𝜃 0
−sin 𝜃 cos 𝜃 0
0 0 1

)(

𝑥1
𝑦1
𝑧1
). (4.10) 
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Here, cos 𝜃 and sin 𝜃 are given by the following equations. 

cos 𝜃 =
𝑛𝑥

√𝑛𝑥2 + 𝑛𝑦2
,   sin 𝜃 =

𝑛𝑦

√𝑛𝑥2 + 𝑛𝑦2
. (4.11) 

However, if cos 𝜃  and sin 𝜃  matches the direction normal vector 𝑛⃗  of the 𝑧1  axis, the 

calculation of 1 √𝑛𝑥2 + 𝑛𝑦2⁄  will be diverges, so the following values are given. 

cos 𝜃 = 1,   sin 𝜃 = 0. (4.12) 

 

Figure 4.6 Conversion of flow coordinate – Rotation around 𝑧2 axis 

Furthermore,  𝜙  is the angle formed by the normal vector 𝑛⃗  and 𝑧2  axis as shown in 

Fig. 4.6. Let 𝑂2 − 𝑥2𝑦2𝑧2  to be rotated clockwise by the angle 𝜙 . Here, the rotated 

coordinate system will be deemed as 𝑂3 − 𝑥3𝑦3𝑧3. At this time, the coordinate of an 

arbitrary point (𝑥2, 𝑦2, 𝑧2) defined in the 𝑂2 − 𝑥2𝑦2𝑧2 is expressed as (𝑥3, 𝑦3, 𝑧3) in the 

𝑂3 − 𝑥3𝑦3𝑧3 by using the following equations. 

(

𝑥3
𝑦3
𝑧3
) = (

cos𝜙 0 −sin𝜙
0 1 0

sin𝜙 0 cos𝜙
)(

𝑥2
𝑦2
𝑧2
). (4.13) 
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Here, cos𝜙 and sin𝜙 are given by the following equations. 

cos𝜙 = 𝑛𝑧 ,   sin 𝜙 = √𝑛𝑥2 + 𝑛𝑦2 . (4.14) 

From the above, 𝑧3 axis of the 𝑂3 − 𝑥3𝑦3𝑧3 is in the same direction with normal vector 

𝑛⃗  of the object panel, which is same as the panel fixed coordinate system 𝑂 − 𝜉𝜂𝜁. The 

coordinate transformation from the basic coordinate system 𝑂 − 𝑥𝑦𝑧 to the panel fixed 

coordinate system 𝑂 − 𝜉𝜂𝜁 is summarized as follows. 

(
𝜉
𝜂
𝜁
) = (

𝑥3
𝑦3
𝑧3
) = (

cos𝜙 0 −sin𝜙
0 1 0

sin 𝜙 0 cos𝜙
)(

𝑥2
𝑦2
𝑧2
) 

= (
cos𝜙 0 −sin𝜙
0 1 0

sin𝜙 0 cos𝜙
)(

cos 𝜃 sin 𝜃 0
−sin 𝜃 cos 𝜃 0
0 0 1

)(

𝑥1
𝑦1
𝑧1
) 

= (
cos𝜙 cos 𝜃 cos𝜙 sin 𝜃 −sin𝜙
−sin 𝜃 cos 𝜃 0

sin𝜙 cos 𝜃 sin𝜙 sin 𝜃 cos𝜙
)(

𝑥 − 𝑥0
𝑦 − 𝑦0
𝑧 − 𝑧0

) 

= 𝑴(

𝑥 − 𝑥0
𝑦 − 𝑦0
𝑧 − 𝑧0

), 

(4.15) 

where, 

𝑴 = (
cos𝜙 cos 𝜃 cos𝜙 sin 𝜃 −sin𝜙
−sin 𝜃 cos 𝜃 0

sin 𝜙 cos 𝜃 sin𝜙 sin 𝜃 cos𝜙
). (4.16) 

On the other hand, since the hydrodynamic forces acting on the body is handled in the 

basic coordinate system, it is crucial to convert the induced velocity in the panel fixed 

coordinate system to the basic coordinate system. For that purpose, matrix 𝑴−𝟏 is created 

to transform the panel fixed coordinate system 𝑂 − 𝜉𝜂𝜁 to the basic coordinate system 

𝑂 − 𝑥𝑦𝑧. The transformation matrix 𝑴−𝟏 is given by this following equation. 

(
𝑥
𝑦
𝑧
) = 𝑴−𝟏 (

𝜉
𝜂
𝜁
) + (

𝑥0
𝑦0
𝑧0
). (4.17) 
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4.3.3. Induced Velocity by Source of Quadrilateral Plane 

Let (𝜉𝑘, 𝜂𝑘, 0)(𝑘 = 1, 2, 3, 4)  be represented as the coordinates of the points at the 

corners of the quadrilateral in the panel fixed coordinate system as shown in Fig. 4.7. 

Further, the point at the corners of the quadrilateral are set to clockwise direction as seen 

from the angle of the unit normal vector to the plane of the quadrilateral. The velocity 

potential 𝜑 at the point 𝑃(𝑥, 𝑦, 𝑧) by the quadrilateral is given by the following equation, 

𝜑 =∯
𝑑𝐴

𝑟𝐴

=∯
𝑑𝜉𝑑𝜂

[(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 + 𝑧2]1 2⁄
𝐴

, (4.18) 

where, 𝑟  is the distance between the point 𝑃(𝑥, 𝑦, 𝑧)  and the point (𝜉, 𝜂, 0)  on the 

quadrilateral surface, and the range of integration is the area 𝐴 of the quadrilateral surface. 

Therefore, if the velocity vector induced at the point 𝑃 in the panel fixed coordinate 

system is 𝑉𝑠𝑙⃗⃗ ⃗⃗  (𝑉𝑠𝑙𝑥 , 𝑉𝑠𝑙𝑦𝑉𝑠𝑙𝑧) then the components of the velocity vector are given by, 

𝑉𝑠𝑙𝑥 = −
𝜕𝜑

𝜕𝑥
=∯

(𝑥 − 𝜉)𝑑𝜉𝑑𝜂

𝑟3𝐴

,

𝑉𝑠𝑙𝑦 = −
𝜕𝜑

𝜕𝑦
=∯

(𝑦 − 𝜂)𝑑𝜉𝑑𝜂

𝑟3𝐴

,

𝑉𝑠𝑙𝑧 = −
𝜕𝜑

𝜕𝑧
=∯

𝑧𝑑𝜉𝑑𝜂

𝑟3𝐴

.

 

}
 
 
 

 
 
 

 (4.19) 

The potential function for the inside and the outside of the quadrilateral source panel 

shown in Fig. 4.7 is composed as the sum of the potentials of two semi-infinite source 

strips, each of whose boundaries consists of the side of the quadrilateral and two semi-

infinite lines parallel to the one of the coordinate axes. The region corresponding to the 

inside of the quadrilateral has a value of source density σ = +1/2, and for the outside 

σ = −1/2. From Figs. 4.7 and 4.8, the source densities on the strips are canceled outside 

of the quadrilateral and added inside to give a unit value. Thus, the potential and velocity 

of the quadrilateral are given as the sum of the potentials and velocities of the four sets of 

semi-infinite strips.  

Now, assuming that the induced velocity component on the 𝑦-axis direction at the point 

𝑃  due to the pair of semi-infinite strips corresponding to the points (𝜉𝑘, 𝜂𝑘)  and 



69 

 

(𝜉𝑘+1, 𝜂𝑘+1)  is 𝑉𝑠𝑙𝑦 𝑘,𝑘+1(𝑘 = 1,⋯ ,4; 𝜉5 = 𝜉1, 𝜂5 = 𝜂1) , it is given by the following 

equation, 

𝑉𝑠𝑙𝑥𝑘,𝑘+1 =
1

2
∫ 𝑑𝜉
𝜉𝑘+1

𝜉𝑘

[∫ −∫  
∞

𝜂𝑘,𝑘+1

𝜂𝑘,𝑘+1

−∞

]
(𝑦 − 𝜂)𝑑𝜂

[(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 + 𝑧2]3 2⁄
, (4.20) 

 

where, 𝜂𝑘,𝑘+1  indicates the 𝜂  coordinate of a point on the side of the quadrilateral. 

Furthermore, the following equations are obtained by executing the integration shown in 

the Eq. (4.20). 

 

Figure 4.7 Source panel on 𝑥𝑦 plane 

 

Figure 4.8 Quadrilateral strip split 
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𝑉𝑠𝑙𝑥𝑘,𝑘+1 =
𝜂𝑘+1 − 𝜂𝑘
𝑑𝑘,𝑘+1

ln (
𝑟𝑘 + 𝑟𝑘+1 − 𝑑𝑘,𝑘+1
𝑟𝑘 + 𝑟𝑘+1 + 𝑑𝑘,𝑘+1

) ,

𝑉𝑠𝑙𝑦𝑘,𝑘+1 =
𝜉𝑘+1 − 𝜉𝑘
𝑑𝑘,𝑘+1

ln (
𝑟𝑘 + 𝑟𝑘+1 − 𝑑𝑘,𝑘+1
𝑟𝑘 + 𝑟𝑘+1 + 𝑑𝑘,𝑘+1

) ,

𝑉𝑠𝑙𝑧𝑘,𝑘+1 = tan
−1
𝑚𝑘,𝑘+1𝑒𝑘 − ℎ𝑘

𝑧𝑟𝑘
− tan−1

𝑚𝑘,𝑘+1𝑒𝑘+1 − ℎ𝑘+1
𝑧𝑟𝑘+1

,

 

}
  
 

  
 

 (4.21) 

where, 

𝑟𝑘 = [(𝑥 − 𝜉𝑘)
2 + (𝑦 − 𝜂𝑘)

2 + 𝑧2]1 2⁄ ,

𝑟𝑘+1 = [(𝑥 − 𝜉𝑘+1)
2 + (𝑦 − 𝜂𝑘+1)

2 + 𝑧2]1 2⁄ ,

𝑑𝑘,𝑘+1 = [(𝜉𝑘+1 − 𝜉𝑘)
2 + (𝜂𝑘+1 − 𝜂𝑘)

2]1 2⁄ ,

𝑒𝑘 = 𝑧
2 + (𝑥 − 𝜉𝑘)

2,

𝑒𝑘+1 = 𝑧
2 + (𝑥 − 𝜉𝑘+1)

2,

ℎ𝑘 = (𝑦 − 𝜂𝑘)(𝑥 − 𝜉𝑘),

ℎ𝑘+1 = (𝑦 − 𝜂𝑘+1)(𝑥 − 𝜉𝑘+1),

𝑚𝑘,𝑘+1 =
𝜂𝑘+1 − 𝜂𝑘
𝜉𝑘+1 − 𝜉𝑘

.

 

}
 
 
 
 

 
 
 
 

 (4.22) 

Finally, induced velocity vector 𝑉𝑠𝑙⃗⃗ ⃗⃗   are given by the sum of the induced velocity by the 

four pairs of semi-infinite strips as follows, 

𝑉𝑠𝑙⃗⃗ ⃗⃗  = ∑(𝑖𝜉⃗⃗⃗  𝑉𝑠𝑙𝑥𝑘,𝑘+1 + 𝑗𝜂⃗⃗⃗  𝑉𝑠𝑙𝑦𝑘,𝑘+1 + 𝑘𝜁
⃗⃗⃗⃗ 𝑉𝑠𝑙𝑧𝑘,𝑘+1)

4

𝑘=1

, (4.23) 

where, 𝑖𝜉⃗⃗⃗  , 𝑗 𝜂, and 𝑘𝜁⃗⃗⃗⃗  are unit vectors in the panel coordinate system. 

After calculating the induced velocity from the sources expressed in the panel fixed 

coordinate system, it is necessary to convert it back to the basic coordinate system. This 

is because hydrodynamic forces acting on the body is handled in the basic coordinate 

system. The induced velocity vector 𝑉𝑠⃗⃗⃗   at arbitrary point by a source of strength 𝜎 in the 

basic coordinate system is expressed by the following equation using the induced velocity 

vector 𝑉𝑠𝑙⃗⃗ ⃗⃗  , 

𝑉𝑠⃗⃗⃗  = 𝜎𝑴
−𝟏𝑉𝑠𝑙⃗⃗ ⃗⃗  , (4.24) 
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where, 𝑴  is the conversion matrix to perform the conversion from the panel fixed 

coordinate system 𝑂 − 𝜉𝜂𝜁 to the basic coordinate system 𝑂 − 𝑥𝑦𝑧 based on Eq. (4.16). 

4.3.4. Induced Velocity by All Sources distributed on Quadrilateral 

Surface 

Total induced velocity vector by all sources distributed on quadrilateral panels is 

expressed as the sum of the induced velocity vectors due to each quadrilateral panel. Let 

𝑀 be the number of quadrilateral panels used to approximate the body surface and 𝑖 be 

the number of arbitrary quadrilateral panel, then the induced velocity vector 𝑉𝑠⃗⃗⃗   by the 

entire source panels is given by the following equation, 

𝑉𝑠⃗⃗⃗  = ∑𝜎𝑖𝑴𝑖
−1𝑉𝑠𝑙⃗⃗ ⃗⃗  

𝑀

𝑖=1

. (4.25) 

By using normal vector 𝑛⃗  at an arbitrary calculation point, the boundary conditions at the 

calculation point is expressed by the following equation, 

𝑉𝑠⃗⃗⃗  ∙ 𝑛⃗  = ∑𝜎𝑖𝐶𝑠𝑖

𝑀

𝑖=1

, (4.26) 

where, 

𝐶𝑠𝑖  = 𝑴𝑖
−1𝑉𝑠𝑙𝑖
⃗⃗⃗⃗⃗⃗ ∙ 𝑛⃗  . (4.27) 

𝐶𝑠𝑖  is influence coefficient representing the velocity induced by the 𝑖-th source panel 

having unit source strength.  

4.4. Calculation Method of Induced Velocity by Horseshoe Vortices 

4.4.1. Horseshoe Vortices 

Assuming a body in uniform flow is represented by its central longitudinal plane, the 

basic coordinate system shown in Fig. 4.9 is expressed as same as the coordinate system 

shown in Fig. 4.2. In here, the positive directions of 𝑥, 𝑦, and 𝑧 axes are backward, port 

side, and upward, respectively. Then discrete horseshoe vortices having shedding angle 
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𝛩 with respect to the 𝑥𝑧 plane are distributed on the central longitudinal plane. The 𝑥 

coordinate of each horseshoe vortex is defined as follows, 

𝑥𝜇𝜈 =
𝐿

2
(1 − cos

2𝜈 − 1

2𝑁𝜈
𝜋) ,   𝜇 = 1,⋅⋅⋅, 𝑁𝜇,   𝜈 = 1,⋅⋅⋅, 𝑁𝜈 , (4.28) 

where, 𝐿  is ship length and 𝑁𝜇  and 𝑁𝜈  are the numbers of division in vertical and 

longitudinal directions of the central longitudinal plane, respectively. 

 

Figure 4.9 Horseshoe vortex implemented at the stern part of the ship hull 

4.4.2. Induced Velocity by Horseshoe Vortices 

Let assume that a horseshoe vortex 𝐴1𝐴𝑛𝐵𝑛𝐵1  shown in Fig. 4.9 is the one of the 

horseshoe vortices distributed on the central longitudinal plane and it has unit vortex 

strength. The horseshoe vortex consists of a bound vortex (𝐴𝑛𝐵𝑛) and two free vortices 

(𝐴1𝐴𝑛 and 𝐵𝑛𝐵1) represented by red and blue lines, respectively. Furthermore, the free 

vortices are formed by some vortex elements with nodes represented by yellow dots to 

consider the deformation of the free vortices. One single free vortex element consists of 

one blue line and two yellow dots. Then, the number of elements in each free vortex is 

represented by 𝑛𝐸 .  
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Theoretically, the length of free vortex 𝑙𝑣 is infinity. In here, assumption is introduced to 

the length of free vortex. The closer free vortex node to the calculation point placed on 

the central longitudinal plane, the larger the influence caused by that. On the other hand, 

the farthest free vortex node to the calculation point gives very small influence. Based on 

these, it is assumed that the length of free vortex is limited until the influence of the 

farthest position of free vortex node to the calculation point are very small or almost 0. 

After assuming the length of free vortex 𝑙𝑣, the length of each vortex element 𝑙𝐸 is defined 

as follow, 

𝑙𝐸 = 𝑙𝑣 𝑛𝐸⁄ , (4.29) 

where, 𝑛𝐸  is the number of vortex elements in a free vortex. Then, distance between 𝜅-th 

node in a free vortex and the assumed endpoint of the free vortex can be defined by this 

following formula, 

𝜆𝜅 = 𝑙𝑣 − 𝑙𝐸(𝜅 − 1), 𝜅 = 1,⋅⋅⋅, 𝑛𝐸 + 1.  (4.30) 

Based on Eq. (4.30), the coordinate of each node in the basic coordinate system 𝑂 − 𝑥𝑦𝑧 

are defined by this following equations, 

𝑃𝜇𝜈𝑥
𝜅 = 𝑥𝜇𝜈 + 𝜆𝜅 cos Θ ,  𝜇 = 1,⋯ ,𝑁𝜇,  𝜈 = 1,⋯𝑁𝜈 ,  𝜅 = 1,⋯ , 𝑛𝐸 + 1,

𝑃𝜇𝜈𝑦
𝜅 = 𝜆𝜅 sinΘ , 𝜅 = 1,⋯ , 𝑛𝐸 + 1,

𝑃𝜇𝜈𝑧
𝜅 = (𝜇 − 1)

𝑑

𝑁𝜇
, 𝜇 = 1,⋯ ,𝑁𝜇 + 1,

}
 
 

 
 

 (4.31) 

where, 

𝑃𝜇𝜈𝑥
𝜅 , 𝑃𝜇𝜈𝑦

𝜅 , 𝑃𝜇𝜈𝑧
𝜅  : Coordinate of each node of free vortex corresponding 𝑥𝜇𝜈 in the basic 

  coordinate system,  

𝑥𝜇𝜈 : 𝑥 coordinate of 𝑘-th horseshoe vortex based on Eq. (4.28), 

Θ : Shedding angle of free vortex, 

𝑑 : Ship draft. 

By using Biot-Savart law, velocity vector 𝑣  induced by the horseshoe vortex 𝐴1𝐴𝑛𝐵𝑛𝐵1 

at an arbitrary point 𝑃(𝑥, 𝑦, 𝑧) is given by the following equation, 
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𝑣 = {𝐾(𝑏)(𝑥, 𝑦, 𝑧) + 𝐾(𝑓1)(𝑥, 𝑦, 𝑧) + 𝐾(𝑓2)(𝑥, 𝑦, 𝑧)}𝑒 , (4.32) 

where, 

𝐾(𝑏)(𝑥, 𝑦, 𝑧) =
1

4𝜋|𝑃𝐻𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |
(
𝑃𝐵⃗⃗⃗⃗  ⃗ ⋅ 𝐴𝐵⃗⃗⃗⃗  ⃗

|𝑃𝐵⃗⃗⃗⃗  ⃗||𝐴𝐵⃗⃗⃗⃗  ⃗|
−
𝑃𝐴⃗⃗⃗⃗  ⃗ ⋅ 𝐴𝐵⃗⃗⃗⃗  ⃗

|𝑃𝐴⃗⃗⃗⃗  ⃗||𝐴𝐵⃗⃗⃗⃗  ⃗|
) ,

𝐾(𝑓1)(𝑥, 𝑦, 𝑧) =∑
1

4𝜋|𝑃𝐻𝑓1,𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
(
𝑃𝐴𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⋅ 𝐴𝑗𝐴𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

|𝑃𝐴𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗||𝐴𝑗𝐴𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
−
𝑃𝐴𝑗⃗⃗⃗⃗ ⃗⃗  ⃗ ⋅ 𝐴𝑗𝐴𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

|𝑃𝐴𝑗⃗⃗⃗⃗ ⃗⃗  ⃗||𝐴𝑗𝐴𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
)

𝑛𝐸

𝑗=1

,

𝐾(𝑓2)(𝑥, 𝑦, 𝑧) =∑
1

4𝜋|𝑃𝐻𝑓2,𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
(
𝑃𝐵𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⋅ 𝐵𝑗𝐵𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

|𝑃𝐵𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗||𝐵𝑗𝐵𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |
−
𝑃𝐵𝑗⃗⃗ ⃗⃗ ⃗⃗  ⋅ 𝐵𝑗𝐵𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

|𝑃𝐵𝑗⃗⃗ ⃗⃗ ⃗⃗  ||𝐵𝑗𝐵𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |
)

𝑛𝐸

𝑗=1

.

 

}
 
 
 
 

 
 
 
 

 (4.33) 

𝐻𝑏, 𝐻𝑓1, and 𝐻𝑓2 are the feet of perpendicular drawn from the point 𝑃 to the line segments 

of the bound vortex 𝐴𝑛𝐵𝑛, the free vortex 𝐴𝑗𝐴𝑗+1, and the free vortex 𝐵𝑗+1𝐵𝑗. 𝐾
(𝑏), 𝐾(𝑓1), 

and 𝐾(𝑓2)  are influence functions of the vortices, respectively, 𝑛𝐸  is the number of 

elements in single free vortex and 𝑗 is the number of nodes of the free vortex. The vector 

𝑒  is a unit vector representing the direction of the induced velocity. 

4.4.3. Induced Velocity by Horseshoe Vortices Distributed on Central 

Longitudinal Plane of Body 

Let the strength of each horseshoe vortex be γ𝜇𝜈(𝜇 = 1,⋯ , 𝑁𝜇;  𝜈 = 1,⋯ , 𝑁𝜈) and the 

induced velocity vector by a horseshoe vortex having unit strength be 𝜈𝜇𝜈⃗⃗⃗⃗⃗⃗ , the induced 

velocity vectors 𝑉𝑣⃗⃗  ⃗ by all the horseshoe vortices on the central longitudinal plane of the 

body are given by the following equation, 

𝑉𝑣⃗⃗  ⃗ =
𝜋

2𝑁𝜈
∑𝐿

𝑁𝜇

𝜇=1

∑𝛾𝜇𝜈𝑣𝜇𝜈⃗⃗⃗⃗⃗⃗ 

𝑁𝜈

𝜈=1

sin (
2𝜈 − 1

𝑁𝜈
𝜋). (4.34) 

Further, assuming that the number of horseshoe vortices is 𝑁(= 𝑁𝜈  ×  𝑁𝜇) and normal 

vector at an arbitrary calculation point, Eq. (4.34) can be expressed as the following 

equation, 
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𝑉𝑣⃗⃗  ⃗ ⋅ 𝑛⃗ =∑𝛾𝑗𝐶𝜈𝑗

𝑁

𝑗=1

, (4.35) 

where, 

𝐶𝜈𝑗 =
𝜋𝐿

2𝑁𝜈
sin (

2𝜈 − 1

𝑁𝜈
𝜋) 𝑣𝜇𝜈⃗⃗⃗⃗⃗⃗ ⋅ 𝑛⃗ ,    𝑗 = (𝜇 − 1) × 𝑁𝜈 + 𝜈, 

                 (𝜇 = 1,⋅⋅⋅, 𝑁𝜇   ;    𝜈 = 1,⋅⋅⋅, 𝑁𝜈). 

(4.36) 

𝑗  represents the sequential number of the horseshoe vortices, and 𝐶𝜈𝑗  is an influence 

coefficient representing the induced velocity by the 𝑗-th horseshoe vortex having unit 

strength. 𝜈  and 𝜇  are the numbers of division in the 𝑥 -axis and 𝑧 -axis directions, 

respectively. 

4.5. Vortex Model 

In this study, two kinds of vortex models shed from the hull are investigated. The 

simplified version of first and the second models (later referred as model 1 and model 2 

respectively) are shown in Fig. 4.10. In the model 1, all free vortices of horseshoe vortices 

distributed along the central longitudinal plane are assumed to be shed from the stern of 

the hull. On the other hand, in the model 2, free vortices of horseshoe vortices located at 

ship bottom are assumed to be shed from the bottom. It is considered that this model is 

close to real phenomenon around the bottom of the hull. Free vortices of other horseshoe 

vortices are shed from the stern as same as the model 1.  

  

Figure 4.10 Model 1 (left) and model 2 (right) outflow method 
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4.6. Boundary Conditions 

In the SQCM, the source strength 𝜎𝑖 (𝑖 = 1,⋯ ,𝑀)  and the vortex strength 𝛾𝑗  (𝑗 =

1,⋯ ,𝑁) are resolved by satisfying the boundary conditions assuming that the flow does 

not pass through the body surface where the source panel is placed and the central 

longitudinal plane of the body where the vortex is arranged. The boundary conditions are 

represented by the following equation, 

𝑉𝑘⃗⃗⃗⃗ ⋅ 𝑛𝑘⃗⃗⃗⃗ = 0     (𝑘 = 1,2, … ,𝑀 + 𝑁), (4.37) 

where, 𝑉𝑘⃗⃗⃗⃗  and 𝑛𝑘⃗⃗⃗⃗  are the flow velocity and the normal vector at the 𝑘-th calculation point. 

From Eq. (4.37), the following equation can be obtained, 

∑𝜎𝑖𝐶𝑠𝑖,𝑘

𝑀

𝑖=1

+∑𝛾𝑗𝐶𝜈𝑗,𝑘

𝑁

𝑗=1

+ 𝐻𝑘 = 0     (𝑘 = 1,2, … ,𝑀 + 𝑁), (4.38) 

where, 

𝐻𝑘 = 𝑉0⃗⃗  ⃗ ⋅ 𝑛𝑘⃗⃗⃗⃗      (𝑘 = 1,2, … ,𝑀 + 𝑁). (4.39) 

𝑉0⃗⃗  ⃗ is flow velocity vector by uniform flow around the body. When Eq. (4.38) is displayed 

in a matrix, it can be expressed as follows, 

(

 
 
 
 
 

𝐶𝑠1,1 ⋯ 𝐶𝑠1,𝑀 𝐶𝜈1,1 ⋯ 𝐶𝜈1,𝑁
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝐶𝑠𝑀,1 ⋯ 𝐶𝑠𝑀,𝑀 𝐶𝜈𝑀,1 ⋯ 𝐶𝜈𝑀,𝑁
𝐶𝑠𝑀+1,1 ⋯ 𝐶𝑠𝑀+1,𝑀 𝐶𝜈𝑀+1,1 ⋯ 𝐶𝜈𝑀+1,𝑁
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝐶𝑠𝑀+𝑁,1 ⋯ 𝐶𝑠𝑀+𝑁,𝑀 𝐶𝜈𝑀+𝑁,1 ⋯ 𝐶𝜈𝑀+𝑁,𝑁)

 
 
 
 
 

(

 
 
 
 

𝜎1

⋮

𝜎𝑀

𝛾1

⋮

𝛾𝑁)

 
 
 
 

+

(

 
 
 
 
 

𝐻1

⋮

𝐻𝑀

𝐻𝑀+1

⋮

𝐻𝑀+𝑁)

 
 
 
 
 

= 0. (4.40) 

By solving Eq. (4.40), the source strength 𝜎𝑖 of each hull panel and the vortex strength 𝛾𝑗 

of each horseshoe vortex can be determined. 

4.7. Additional Node and Moving Node of Free Vortex 

After solving the matrix equation Eq. (4.40), the source strength and vortex strength 

which satisfy the boundary conditions can be obtained. Then, induced velocity at arbitrary 

points by all source panels can be calculated by Eq. (4.25) and induced velocity by all 
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horseshoe vortices can be calculated by Eq. (4.34), respectively. By multiplying total 

velocity which consists of uniform flow velocity and induced velocities by source panels 

and horseshoe vortices with time step settled in advance, the moving distance of free 

vortex node 𝑠𝑉𝑥, 𝑠𝑉𝑦, and 𝑠𝑉𝑧 for each time step in each direction can be expressed as 

follow, 

𝑠𝑉𝑥 = (𝑉0𝑥 + 𝑉𝑠𝑥 + 𝑉𝑣𝑥)Δ𝑡,

𝑠𝑉𝑦 = (𝑉0𝑦 + 𝑉𝑠𝑦 + 𝑉𝑣𝑦)Δ𝑡,

𝑠𝑉𝑧 = (𝑉0𝑧 + 𝑉𝑠𝑧 + 𝑉𝑣𝑧)Δ𝑡,

 

}
 

 
 (4.41) 

where,  

Δ𝑡 : Time step (second). 

By adding moving distance calculated by Eq. (4.41) to the coordinate of free vortex node 

defined by Eq. (4.31), it will make the nodes of free vortices move from their original 

position. After obtaining new coordinates of free vortices nodes, Eq. (4.40) is solved 

again to obtain new source strength and new vortex strength. According to the induced 

velocity calculated by using updated source strength and vortex strength, the coordinates 

of the new positions of free vortices nodes are calculated again. 

Figs. 4.11 and 4.12 show the original position of free vortices and simplified example of 

moving free vortices in 𝑂 − 𝑥𝑧 plane of the basic coordinate system shown in Fig. 4.10, 

respectively. After several iterations of time steps, length between the position of the last 

vortex node which is located at the central longitudinal plane of a ship and a vortex node 

which is the nearest to the last node becomes longer than other vortex elements as shown 

in Fig. 4.12. The distance can be expressed as follows, 

𝑙𝐸𝑛𝑒𝑎𝑟 = √(𝑃𝑚𝑜𝑣𝑒𝑥 − 𝑃𝑏𝑎𝑠𝑒𝑥)
2
+ (𝑃𝑚𝑜𝑣𝑒𝑦 − 𝑃𝑏𝑎𝑠𝑒𝑦)

2

+ (𝑃𝑚𝑜𝑣𝑒𝑧 − 𝑃𝑏𝑎𝑠𝑒𝑧)
2
, (4.42) 

where 𝑃𝑏𝑎𝑠𝑒 indicates the position of the last node at the central longitudinal plane and 

𝑃𝑚𝑜𝑣𝑒 indicates the position of the nearest node. 
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When the length of 𝑙𝐸𝑛𝑒𝑎𝑟  exceeds the length of 𝑙𝐸 which is the general length of vortex 

node calculated by Eq. (4.29), an additional node of free vortex node is added at 𝑃𝑝𝑙𝑢𝑠 

which is located between the position of last node, 𝑃𝑏𝑎𝑠𝑒 and the position of the nearest 

node, 𝑃𝑚𝑜𝑣𝑒 as shown in Fig. 4.13 to calculate the deformation of free vortex properly. 

Then, the coordinate of the additional node of free vortex can be determined by the 

following formula, 

𝑃𝑝𝑙𝑢𝑠𝑥 = 𝑃𝑚𝑜𝑣𝑒𝑥 + (
𝑙𝐸

𝑙𝐸𝑛𝑒𝑎𝑟
) (𝑃𝑚𝑜𝑣𝑒𝑥 − 𝑃𝑏𝑎𝑠𝑒𝑥),

𝑃𝑝𝑙𝑢𝑠𝑦 = 𝑃𝑚𝑜𝑣𝑒𝑦 + (
𝑙𝐸

𝑙𝐸𝑛𝑒𝑎𝑟
) (𝑃𝑚𝑜𝑣𝑒𝑦 − 𝑃𝑏𝑎𝑠𝑒𝑦) ,

𝑃𝑝𝑙𝑢𝑠𝑧 = 𝑃𝑚𝑜𝑣𝑒𝑧 + (
𝑙𝐸

𝑙𝐸𝑛𝑒𝑎𝑟
) (𝑃𝑚𝑜𝑣𝑒𝑧 − 𝑃𝑏𝑎𝑠𝑒𝑧).

 

}
 
 
 

 
 
 

 (4.43) 

 

Figure 4.11 Original position of free vortices 
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Figure 4.12 Example of moving free vortices  
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After obtaining the coordinates of additional nodes, the length of the nearest vortex 

element for each free vortex is needed to be calculated again. 

 

Figure 4.13 Additional node of free vortex 

Fig. 4.14 shows the examples of deformation of free vortices for the vortex model 1 and 

the model 2, respectively. From the viewpoint of visibility, the numbers of free vortices 

and iteration shown in the figures are smaller than those used in calculations. 

 

(a) Initial condition 

 

(b) After 10th iteration 

 

(c) Initial condition 

 

(d) After 10th iteration 

Figure 4.14 Examples of deformation of free vortex for model 1 (left) 

and model 2 (right) 
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4.8. Calculation Method of SQCM for Every Time Step 

Fig. 4.15 shows the calculation flow of the SQCM. First, input data such as number of 

source panels, number of free vortex elements, the length of free vortex, etc. are 

determined. Hull panels based on the input data are created and null point calculated to 

obtained normal vector 𝑛⃗ . Then, influence coefficient by source panels to source panels 

can be determined by using Eq. (4.27). 

Calculation points and vortex points are determined to calculate influence coefficient by 

free vortices. The coordinates of free vortices nodes are calculated by using Eq. (4.31) 

and the length of free vortex are determined. Furthermore, influence coefficient by source 

panels to free vortices nodes, influence coefficient by free vortices to free vortices, and 

influence coefficient by free vortices to source panels can be calculated. 

By calculating all possible influences from source panels and free vortices, boundary 

conditions can be obtained. Then, by solving matrix equation from Eq. (4.40) the source 

strength for each source panel and the vortex strength for each free vortex can be 

determined. 

Fig. 4.16 shows the schematic method of the SQCM for every time step. After getting the 

values of source and vortex strength from Eq. (4.40), flow velocity at every nodes of free 

vortices can be calculated. This will make every nodes of free vortices move due to the 

influence of uniform flow and induced velocities by sources and other vortices. Based on 

that, the author considers the deformation of the shape of free vortices. Then, Eq. (4.40) 

is solved again to obtain the values of source and vortex strength which satisfy new 

boundary conditions updated by the motions of free vortices. These procedures are 

iterated for several time steps until the values of lateral force and yawing moment almost 

converge. 
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Figure 4.15 SQCM flowchart 



82 

 

 

4.9. Calculation Method of Hydrodynamic Force Coefficients 

After the source strength 𝜎  and the vortex strength 𝛾  are obtained, the flow velocity 

vector 𝑉⃗  of the entire flow field can be determined. By using this entire flow velocity 

vector, the pressure coefficient 𝐶𝑝 on the body surface is given by the following equation 

according to Bernoulli’s theorem, 

𝐶𝑝 = 1 −
|𝑉⃗ |

2

|𝑉0⃗⃗  ⃗|
2. (4.44) 

Further, the lateral force 𝐹𝑦 and the yawing moment 𝑀𝑧 acting on the hull can be obtained 

by the following equations using the pressure coefficient 𝐶𝑝. 

 

Figure 4.16 Calculation method of SQCM for every time step 
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𝐹𝑦 = −
𝜌|𝑉⃗⃗ |

2

2
∫ 𝐶𝑝𝑛𝑦𝑑𝑆
𝑆

= −
𝜌|𝑉⃗⃗ |

2

2
∑𝐶𝑝𝑖𝑛𝑦𝑖𝐴𝑖

𝑀

𝑖=1

,

𝑀𝑧 = −
𝜌|𝑉⃗⃗ |

2

2
∫ 𝐶𝑝(𝑛𝑥𝑦 − 𝑛𝑦𝑥)𝑑𝑆
𝑆

= −
𝜌|𝑉⃗⃗ |

2

2
∑𝐶𝑝𝑖𝑛𝑦𝑖𝐴𝑖 (𝑛𝑥𝑖𝑦 − 𝑛𝑦𝑖𝑥)

𝑀

𝑖=1

,

 

}
 
 

 
 

 (4.45) 

where, 

𝜌 : fluid density, 

𝑖 : source panel number, 

𝑛𝑥𝑖 , 𝑛𝑦𝑖 : 𝑥 and 𝑦 components of the 𝑖-th panel normal vector, 

𝑥, 𝑦 : 𝑥 and 𝑦 coordinate of the 𝑖-th panel, 

𝐴𝑖 : area of the 𝑖-th panel. 

Finally, the following formulae are used to non-dimensionalize the hydrodynamic forces 

acting on the hull. 

𝐶𝑦 =
𝐹𝑦

1
2𝜌𝑆𝑉0

2
, 𝐶𝑚 =

𝑀𝑧

1
2𝜌𝐿

2𝑑𝑉0
2
, (4.46) 

where, 𝑆 is the wetted surface area of the hull. 
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4.10. Conclusion 

This chapter introduced the SQCM to predict lateral force and yawing moment acting on 

a ship hull representing the shape of the hull accurately. In this method, ship hull is treated 

as a thick wing. Hydrodynamic forces acting on the hull can be obtained by calculating 

induced velocity by sources and induced velocity by vortices. The Hess and Smith method 

is introduced to calculate induced velocity by sources and Biot-Savart law is applied to 

calculate induced velocity by vortices. Then, two kinds of vortex models with considering 

deformation of free vortices are proposed to represent the flow field around the hull. 

Furthermore, by satisfying the boundary conditions assuming the flow does not pass 

through the body surface and central longitudinal plane, source strength and vortex 

strength can be resolved. Finally, the flow velocity vector of the entire flow field and 

hydrodynamic forces acting on the hull can be determined. 
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Chapter 5 Application of SQCM 

5.1. Introduction 

In the previous chapter, the basic equation of the SQCM is introduced to predict lateral 

force and yawing moment acting on a ship hull. The calculation process of a flow field 

based on the SQCM can be divided into two main components. One is a calculation of 

induced velocity by sources and the other is calculation of induced velocity by horseshoe 

vortices. The distribution of sources is calculated based on the Hess and Smith (1964) 

method and the distribution of free vortices around a ship hull is represented based on the 

QCM presented by Lan (1970). 

After getting the values of source and vortex strength which satisfy the boundary 

conditions, flow velocities at every nodes of free vortices can be calculated. This will 

make every nodes of free vortices move due to the influence of uniform flow and induced 

velocities by sources and other vortices. Based on that, vortex models considering 

deformation of free vortices are introduced in the previous chapter to represent the flow 

field around the hull appropriately. 

In this chapter, the SQCM is applied to the three types of ship hull to investigate the 

applicability of the SQCM on the prediction of hydrodynamic forces acting on a ship hull. 

Two kinds of vortex models are applied to each hull to examine the estimation accuracy 

of lateral force and yawing moment acting on a ship hull in oblique motion. Pressure 

distribution and flow field around a ship hull are also investigated. 

5.2. Application of SQCM to Wigley Hull 

5.2.1. Hull Shape 

The Wigley hull is a mathematical hull form that is symmetrical with respect to all 

directions. The shape of the Wigley hull is expressed by the following formula, 

𝑦(𝑥, 𝑧) =
𝐵

2
{1 − (

𝑥

𝑙
)
2

} {1 − (
𝑧

𝑐
)
2

}, (5.1) 
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where, 

𝐵 : Ship breadth, 

𝑙 : Half ship length (𝐿/2), 

𝑑 : Ship draft. 

Table 5.1 shows the principal particulars of a model ship of the Wigley hull that was used 

in a captive model test conducted at Kyushu University by Nakatake et al. (1994).  

Table 5.1 Principal particulars of a model ship of Wigley hull 

𝐿 (m) 2.500 

𝐵 (m) 0.250 

𝑑 (m) 0.156 

𝐶𝑏 0.444 

As shown in Fig. 5.1, the Wigley hull form has no flat part at the bottom of the ship and 

draws an arc from the keel in lateral direction of the ship. On the other hand, as shown in 

Fig. 5.2, the bow and the stern of the ship are vertical, and the distance between the bow 

 

Figure 5.1 Body plan of Wigley hull 

 



87 

 

and the stern is equal regardless of the height from the bottom. Therefore, the shape is 

different from the actual ship hull form. Fig. 5.3 shows the Wigley hull form based on 

division numbers used in this research which are described later. 

 

 

Figure 5.2 Side view of Wigley hull 

 

 

Figure 5.3 Wigley hull form 
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5.2.2. Calculation Conditions 

Convergence test is executed to decide the number of divisions in vertical and 

longitudinal directions and the number of free vortex elements in the horseshoe vortices, 

at first. Table 5.2 shows the results of simulation time obtained from the convergence 

tests for the Wigley hull. The number of divisions in longitudinal direction 𝜈 is set from 

30 to 50 at an interval of 10 and the number of divisions in vertical direction 𝜇 is set as 5 

and 10. Then the number of free vortex elements is set as 50. The value of drift angle 𝛽 

is set as 10° and the vortex model 2 presented in the previous chapter is applied. Initial 

shedding angle of free vortices 𝛩 is same as the value of drift angle 𝛽 and a ship speed 

𝑉0 is set at 0.5 m/s. 

Fig. 5.4 shows the comparison of non-dimensional lateral force coefficient 𝐶𝑦 and non-

dimensional yawing moment coefficient 𝐶𝑚 for each longitudinal division number ν at 

drift angle 𝛽 = 10° using the vortex model 2. In the figure, lateral axis indicates the 

number of iteration and vertical axis represents the values of 𝐶𝑦 or 𝐶𝑚. It is observed from 

the figure that similar results on the values of 𝐶𝑦 and 𝐶𝑚 for all longitudinal and vertical 

divisions numbers.  

Based on the convergence test results and taking account of required simulation time, the 

numbers of divisions for the Wigley hull are selected as 𝜈 = 30 in longitudinal direction 

and 𝜇 = 5  in vertical direction and the number of free vortex element is set as 50. 

Table 5.2 Convergence test results. 

Division 

number 
Iteration 

number 

Number of free vortex element  

50 

𝜈 𝜇 Simulation time (minutes) 

30 

5 

100 

25 

40 58 

50 135 

30 

8 

43 

40 129 

50 277 
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Accordingly, the number of source panels arranged on the port and starboard sides of the 

hull becomes 600 (= 30 × 5 × 2 × 2) including its mirror images. On the other hand, the 

number of free vortex arranged on the longitudinal plane of the hull is 300 (= 30 × 5 ×

2). 

5.2.3. Lateral Force and Yawing Moment 

The shapes of free vortices are changed due to the influence of uniform flow and induced 

velocities by sources and other vortices. This will make the shape of free vortex deformed 

for every time step and cause the variation of the calculation results of lateral force and 

yawing moment with respect to time. Based on that, calculations are iterated until the 

value of lateral force and yawing moment become steady as shown in Fig. 5.4. According 

to the result shown in Fig. 5.4, it can be concluded that the values of lateral force and 

yawing moment become almost steady after the number of iterations 𝑛  exceeds 60. 

Following this conclusion, the last iteration number (𝑛 = 100) is chosen as the base to 

evaluate the results of lateral force and yawing moment and then the values are compared 

with measured data. 

Fig. 5.5 shows the calculation results of lateral force coefficient 𝐶𝑦 and yawing moment 

coefficient 𝐶𝑚 of the Wigley hull for the model 1 and the model 2 as the function of drift 

angle 𝛽. It can be observed that calculated lateral force coefficient 𝐶𝑦 for the model 1 

shown with red solid line in Fig. 5.5 (a) is too smaller than the measured results presented 

by black circles. Same tendency is also found in the results of yawing moment coefficient 

𝐶𝑚 . On the other hand, improvement of prediction accuracy for the lateral force 

coefficient 𝐶𝑦 is observed for the model 2 as shown with blue solid line in Fig. 5.5 (a). 

However, the yawing moment coefficient 𝐶𝑚 shown with blue solid line in Fig. 5.5 (b) is 

still smaller than the measured results, though the value of 𝐶𝑚 for large drift angle is 

bigger than that for the model 1. 
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(a) 𝐶𝑦 (μ = 5) (b) 𝐶𝑚 (μ = 5) 

  

(c) 𝐶𝑦 (μ = 8) (d) 𝐶𝑚 (μ = 8) 

Figure 5.4 Comparison of lateral force coefficient 𝐶𝑦 and 

yawing moment coefficient 𝐶𝑚 (𝑛𝐸  = 50) 
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5.2.4. Pressure Distribution 

Pressure distributions around the ship hull at drift angle 𝛽 = 20°  are presented in 

Figs. 5.6 and 5.7 for the Wigley hull with the vortex models 1 and 2. All of these results 

are presented at the iteration number 𝑛 = 100. These figures show the values of pressure 

coefficient 𝐶𝑝 with the positive pressure being red, the negative pressure being blue, and 

the 0 pressure being white. For simplicity, a mirror part of the double body model is 

omitted in the figure. 

Upper and lower figures in Figs. 5.6 and 5.7 show pressure distributions on the port and 

the starboard sides for the vortex model 1 and the model 2, respectively. As for the 

pressure coefficients on the port side for both vortex models, no significant difference is 

seen in any of the models except for the pressure distribution at the bottom of the hull and 

around the stern. Lower pressure distribution is observed for the model 1.  

 

  

(a) Lateral force coefficient 𝐶𝑦 (b) Yawing moment coefficient 𝐶𝑚 

Figure 5.5 Wigley lateral force coefficient 𝐶𝑦 and yawing moment coefficient 𝐶𝑚 
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On the other hand, significant difference can be observed between the pressure 

coefficients on the starboard sides for the vortex models 1 and 2. Pressure distribution on 

the starboard side for the model 1 is almost same as that on the port side. It can be 

considered that the small lateral force coefficient for the model 1 is caused by these small 

difference of pressure distribution between the starboard and the port sides. In contrast, 

difference in pressure distributions between the starboard and the port sides is clear for 

the model 2. It means that free vortices which are assumed to be shed from the bottom 

have remarkable effect on hydrodynamic forces acting on the hull. 

 

  
Figure 5.6 Pressure distribution on port side (up) and starboard side (down) of Wigley 

hull for model 1 (𝛽 = 20°) 
 

 

 
Figure 5.7 Pressure distribution on port side (up) and starboard side (down) of Wigley  

hull for model 2 (𝛽 = 20°) 
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5.2.5. Velocity Field 

Figs. 5.8 and 5.9 show velocity fields around the starboard side of the Wigley hull 

including a mirror part of the double body model at the midship for the model 1 and the 

model 2, respectively. The value of drift angle 𝛽 is set as 30°. Two batches of figures are 

sets of flow fields at the iteration number 𝑛 = 1 and 𝑛 = 100 to see the effect of free 

vortices deformation to flow velocity around the hull. Dots in the figures indicate the 

positions of reference points in the flow field and the length of arrows indicate the 

magnitude of flow velocity vector at the points. The size of presented flow field is set as 

6 times of draft in 𝑧 direction and 6 times of breadth in 𝑦 direction of the basic coordinate 

system shown in Fig. 4.10. 

It is understood from Fig. 5.8 that the model 1 in which vortices are shed only from the 

stern does not have deformation of free vortex around midship, because the velocity 

vectors at the midship remains almost same after 100 iterations. On the other hand, 

remarkable differences between flow fields at 𝑛 = 1 and 𝑛 = 100 is observed in Fig. 5.9. 

Rotational flow after leaving the hull bottom can be observed more clearly for the model 

2.  
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(a) 𝑛 = 1 

 
(b) 𝑛 = 100 

Figure 5.8 Flow velocity around the Wigley hull for model 1 (𝛽 = 30°) 
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(a) 𝑛 = 1 

 
(b) 𝑛 = 100 

Figure 5.9 Flow velocity around the Wigley hull for model 2 (𝛽 = 30°) 
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5.3. Application of SQCM to Actual Ship Hull 

5.3.1 Hull Shape 

Following the Wigley hull form, applicability of the SQCM for actual hull shape is 

examined. Table 5.3 shows the principal particulars of KCS and KVLCC2 hulls and 

Fig. 5.10 shows the hull forms of KCS and KVLCC2. 

 

5.3.2 Calculation Conditions 

Convergence test is executed to decide the number of divisions in vertical and 

longitudinal directions and the number of free vortex elements in the horseshoe vortices, 

at first. Table 5.4 shows the results of simulation time obtain from the convergence tests 

for KCS and KVLCC2. The number of divisions in longitudinal direction 𝜈 is set from 

20 to 50 at an interval of 10 and the number of divisions in vertical direction 𝜇 is set as 5 

and 8. In here, additional higher number of free vortex elements which is set as 70 is 

Table 5.3. Principal particular of KCS and KVLCC2. 

 
KCS KVLCC2 

Real Model Real Model 

𝐿 (m) 230.00 2.500 320.00 2.500 

𝐵 (m) 32.20 0.350 58.00 0.453 

𝑑 (m) 10.80 0.117 20.80 0.162 

𝐶𝑏 0.651 0.810 

 

 

 

Figure 5.10 KCS model (left) and KVLCC2 model (right) 

 



97 

 

implemented to investigate the effect of the deformation of free vortex elements to the 

predicted results of hydrodynamic forces. The value of drift angle 𝛽 is set as 10° and the 

vortex model 2 presented in the previous chapter is applied. Ship speed 𝑉0 is set at 0.3 m/s 

which corresponds to 5.6 kt for KCS and 6.6 kt for KVLCC2 in real ship scale. Initial 

vortex shedding angle 𝛩 is set same as drift angle 𝛽. 

Fig. 5.11 shows the comparison of 𝐶𝑦 and 𝐶𝑚 for each longitudinal division number ν at 

drift angle 𝛽 = 10° using the vortex model 2 and the number of free vortex elements is 

set as 50. It is obvious from the figure that the results are almost similar for all longitudinal 

division numbers. As for the results when the number of vortex elements is equal to 70, 

significant improvement in the results of 𝐶𝑦 and 𝐶𝑚 are not observed, but the simulation 

time is almost twice comparing with that for 50. 

 

Table 5.4 Convergence test results. 

Division 

number 
Iteration 

number 

Number of free vortex 

element  

50 70 

𝜈 𝜇 Simulation time (minutes) 

20 

5 

100 

10 26 

30 22 44 

40 41 75 

50 71 130 

20 

8 

24 46 

30 58 117 

40 101 215 

50 160 424 
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(a) 𝐶𝑦 (μ = 5) (b) 𝐶𝑚 (μ = 5) 

  

(c) 𝐶𝑦 (μ = 8) (d) 𝐶𝑚 (μ = 8) 

Figure 5.11 Comparison of lateral force coefficient 𝐶𝑦 and yawing moment 

coefficient 𝐶𝑚 (number of elements 𝑛𝐸  = 50) 
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Higher number of divisions and free vortex elements are also executed in the convergence 

tests, but the results are not good because the higher number of divisions in vertical 

direction causes excessive interactions in the calculations of induced velocities by source 

and vortex. Furthermore, it makes calculation time too long. 

The numbers of divisions for the arrangement of vortices are selected as 𝜈 = 30  in 

longitudinal direction and 𝜇 = 5  in vertical direction for both KCS and KVLCC2. 

Accordingly, the number of source panels arranged on the port and starboard sides of the 

hull becomes 600 (= 30 × 5 × 2 × 2) including its mirror image. In addition, the ship 

breadth at the stern was set to be 1% wider than the exact breadth to avoid the divergence 

of induced velocity due to the computational singularity at the stern edge. Same with the 

Wigley hull conditions, all of the free vortices have the same number of elements which 

is set as 50 and the number of iteration is set as 100 times.  

5.3.3 Lateral Force and Yawing Moment 

Figs. 5.12 and 5.13 show the calculation results of lateral force coefficient 𝐶𝑦 and yawing 

moment coefficient 𝐶𝑚 of KCS and KVLCC2 for the two models as the function of drift 

angle 𝛽, respectively. In the figure, experimental data measured by captive model tests 

conducted at the Seakeeping and Manoeuvring Basin in Kyushu University are also 

shown for comparison. Experimental conditions are same as calculating conditions shown 

in the previous section. 

Based on the figure, it is clear that the differences between calculation results of the model 

1 and measured results for lateral force coefficient and yawing moment coefficient for 

both ships are too large comparing with the model 2. This likely happened because of too 

much simplification of vortex model at the bottom of the hull. On the other hand, 

calculation results of the model 2 show the same tendency with measured results in the 

small range of drift angle 𝛽 for both ships. It means the models 2 can be considered 

having the same condition with the actual flow. 

However, there still remains large difference between the calculated and measured results 

in the range of large drift angle β. As the value of drift angle becomes larger, interaction 

among free vortices, hull bottom and side hull becomes bigger. It is considered that the 

interaction has large influence on calculated hydrodynamic forces. Therefore, further 
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investigations of the treatment of free vortices existing around hull bottom and side hull 

are necessary as future works. 

To check the applicability of the SQCM for the prediction of hydrodynamic forces acting 

on a ship hull in manoeuvring motion, the results are compared with the estimated 

hydrodynamic forces using the following approximate formulae for hydrodynamic 

derivatives (Kijima et al.1990). 

𝑌𝛽
′ =

1

2
𝜋𝑘 + 1.4𝐶𝑏 𝐵 𝐿⁄ ,

𝑌𝛽𝛽
′ = 2.5𝑑 (1 − 𝐶𝑏) 𝐵⁄ + 0.5,

𝑁𝛽
′ = 𝑘,

𝑁𝛽𝛽
′ = −0.96𝑑 (1 − 𝐶𝑏) 𝐵⁄ + 0.066,}

 
 

 
 

 (5.2) 

where, 

𝑘 : 2𝑑 𝐿⁄ . 

As shown in Figs. 5.12 and 5.13, calculated results of the SQCM with the vortex model 

2 show better accuracy comparing with the results obtained by using the approximate 

formulae for the small range of drift angle. However, lateral force coefficient and yawing 

moment coefficient estimated by using the approximate formulae have better accuracy 

for both ships in the large range of drift angle. According to these results, the applicability 

of the SQCM is quite good in the small range of drift angle, but it still has a lot of room 

to improve the accuracy in the prediction of lateral force and yawing moment. It is 

important to focusing on the free vortex model implemented when calculating the 

hydrodynamic forces using the SQCM. 
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(a) Lateral force coefficient (b) Yawing moment coefficient 

Figure 5.12 KCS lateral force coefficient 𝐶𝑦 and yawing moment coefficient 𝐶𝑚 

 

  

(a) Lateral force coefficient (b) Yawing moment coefficient 

Figure 5.13 KVLCC2 lateral force coefficient 𝐶𝑦 and yawing moment coefficient 𝐶𝑚 
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5.3.4 Pressure Distribution 

Pressure distributions around the ship hull at drift angle 𝛽 = 20°  are presented in 

Figs. 5.14 to 5.17 for both KCS and KVLCC2. Figs. 5.14 and 5.15 and Figs. 5.16 and 

5.17 show pressure coefficients on the portside and starboard sides of KCS and KVLCC2 

for all vortex models, respectively. There is no significant differences observed on the 

port side in any of the models except for the pressure distribution at the bottom of the hull 

and around the stern. Same tendency occurs with the results of the Wigley hull where the 

model 1 tends to have lower pressure distribution than that of the model 2. These 

phenomena can be observed for both ships. Large difference can be observed between the 

pressure coefficients on the starboard side for the vortex models 1 and 2. Similar results 

between pressure distribution on the starboard side and portside for the model 1 are 

recognized. 

 

  
Figure 5.14 KCS pressure distribution on port side (up) and starboard side (down) 

for model 1 (𝛽 = 20°) 
 

 

 
Figure 5.15 KCS pressure distribution on port side (up) and starboard side (down) 

for model 2 (𝛽 = 20°) 
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In contrast, the model 2 shows difference in pressure distributions between the port side 

and the starboard side clearly. The differences between the model 1 and the model 2 in 

starboard side are likely due to the existence of vortex strength around the hull. Therefore, 

in order to improve the prediction accuracy of hydrodynamic forces acting on the hull, it 

is necessary to investigate vortex model including the influence of shedding angle based 

on the model 2.  

 

 
Figure 5.16 KVLCC2 pressure distribution on port side (up) and starboard side (down) 

for model 1 (𝛽 = 20°) 
 

 

 
Figure 5.17 KVLCC2 pressure distribution on port side (up) and starboard side (down) 

for model 2 (𝛽 = 20°) 
 



104 

 

5.3.5 Velocity Field 

Figs. 5.18 to 5.21 show velocity fields around KCS and KVLCC2 for the model 1 and the 

model 2, respectively. The velocity field conditions are same with the Wigley hull. 

Figs. 5.18 and 5.20 show the results for the model 1 for KCS and KVLCC2, respectively. 

Same tendency with the Wigley hull is observed where there is no differences between 

flow fields at iteration number 𝑛 = 1 and 𝑛 = 100 due to vortex shed only from the stern. 

Small circulation can be observed due to the influence of induced velocity around the 

stern. 

Velocity field for the model 2 for KCS and KVLCC2 are shown in Figs. 5.19 and 5.21, 

respectively. It is obvious that the differences between flow fields at iteration number 

𝑛 = 1 and 𝑛 = 100 exist due to the vortex shed from hull bottom. Large magnitude of 

velocity vectors is observed on the bottom of the hull. This mainly caused by the fact that 

the flow from lateral direction become stronger as the drift angle becomes larger, 

affecting the 𝑦𝑧 plane component of the velocity in the basic coordinate system. Based 

on that, the flow field around the hull is not well reproduced in the large range of drift 

angle, and will affect to the calculation of hydrodynamic forces due to some errors. 
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(a) 𝑛 = 1 

 
(b) 𝑛 = 100 

Figure 5.18 Flow velocity around the KCS hull for model 1 (𝛽 = 30°) 
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(a) 𝑛 = 1 

 
(b) 𝑛 = 100 

Figure 5.19 Flow velocity around the KCS hull for model 2 (𝛽 = 30°) 
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(a) 𝑛 = 1 

 
(b) 𝑛 = 100 

Figure 5.20 Flow velocity around the KVLCC2 hull for model 1 (𝛽 = 30°) 
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(a) 𝑛 = 1 

 
(b) 𝑛 = 100 

Figure 5.21 Flow velocity around the KVLCC2 hull for model 2 (𝛽 = 30°) 
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5.4. Conclusion 

Prediction of hydrodynamic forces acting on three different hulls in oblique motion using 

the SQCM has been investigated. Two kinds of vortex models considering the 

deformation of the shape of free vortices were applied and the calculated results were 

compared with measured data. 

It was confirmed on lateral force coefficient 𝐶𝑦 and yawing moment coefficient 𝐶𝑚 that 

the free vortices shed from the bottom of the hull give improvement in results of 

prediction accuracy in the small range of drift angle 𝛽 , but there still be significant 

difference in the large range of drift angle 𝛽. The difference in the large range of drift 

angle 𝛽 generally generated by the flow from lateral direction. 
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Chapter 6 Conclusions 

In this research, the difference between the characteristics of the cubic and the quadratic 

models for hydrodynamic forces acting on a ship hull is investigated by comparing course 

stability indices which are calculated by using linear hydrodynamic derivatives of both 

models. Then, to clarify the advantages and disadvantages of both models, sensitivity of 

simulated ship manoeuvring motion to hydrodynamic derivatives derived from measured 

lateral force and yawing moment including measurement error is investigated. 

Furthermore, applicability of the SQCM for the prediction of hull forces is investigated 

introducing two kinds of vortex models with the consideration of the deformation of free 

vortices. 

Chapter 1 introduced a general overview of this study, such as ship manoeuvring 

standards, prediction methods for manoeuvring performance, mathematical models of 

hydrodynamic forces and so on. A summarized literature review was presented associated 

with the review of mathematical models of hydrodynamic forces, sensitivity analysis, and 

introduction to the SQCM. The objectives and expected outcome of this research as well 

as a brief layout of this thesis were also presented. 

Two kinds of mathematical models for lateral force and yawing moment based on the 

cubic model and the quadratic model were presented in Chapter 2. Course stability index 

was investigated to see the differences between the cubic and the quadratic models. It was 

confirmed the different sign between the cubic model and the quadratic model caused by 

the difference on linear hydrodynamic derivatives. Existence of measured hydrodynamic 

forces in the large range of drift angle tends to give different result between the cubic and 

the quadratic models. 

In Chapter 3, sensitivity of simulated manoeuvring motion to hydrodynamic derivatives 

derived from measured lateral force and yawing moment including measurement error 

was investigated. Pseudo measurement data were created to evaluate the influence of 

measurement error on the hydrodynamic derivatives. The cubic model was confirmed to 

less susceptible to measurement error comparing with the quadratic model. On the other 

hand, manoeuvring indices predicted by using hydrodynamic derivatives based on the 

quadratic model tends to have larger standard deviation comparing with the cubic model. 
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Measurement error included in measured hydrodynamic forces have much influence on 

transient motion of a ship such as 10/10 zigzag manoeuvre. 

A method to predict lateral force and yawing moment on a ship hull representing the 

shape of the hull accurately has been proposed in Chapter 4. In this method, ship is treated 

as thick wing. Hydrodynamic forces acting on a ship hull can be obtained by calculating 

induced velocities by sources and horseshoe vortices. To represent the flow field around 

the hull appropriately, two kinds of vortex models considering the deformation of free 

vortices are introduced. Free vortices of the horseshoe vortices were divided into vortex 

elements and the motion of each vortex element were calculated based on induced 

velocities by source panels and other vortices. 

The results of predicted lateral force and yawing moment acting on a ship hull by the 

SQCM were presented in Chapter 5. Two kinds of vortex models with considering the 

deformation of the shape of free vortices were applied and the calculated results were 

compared with the measured data. It was confirmed on lateral force coefficient 𝐶𝑦 and 

yawing moment coefficient 𝐶𝑚 that the free vortices shed from the bottom of the hull give 

improvement in results of prediction accuracy in the small range of drift angle 𝛽, but there 

still be significant difference in the large range of drift angle 𝛽. The difference in the large 

range of drift angle 𝛽 generally generated by the flow from lateral direction. 

From the above results, it can be said that the cubic model has a better approximation 

accuracy when the hydrodynamic forces are measured in the large range of drift angle. It 

was shown that the quadratic model may give better approximation results when the 

measurement range is small. The first and second terms of course stability index also 

investigated. Almost all the absolute values of the first and second terms of course 

stability index for the quadratic model is smaller than those of the cubic model. Though 

influence of hydrodynamic derivatives for lateral force and yawing moment on simulated 

manoeuvring motion was only investigated in this research, there are many parameters 

which have significant impact on ship manoeuvrability. They should be further 

investigated considering realistic measurement error. As for SQCM, this method give a 

capable result of prediction accuracy in the small range of drift angle 𝛽. However, in 
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order to improve the prediction accuracy of hydrodynamic forces acting on a ship hull, it 

is necessary to investigate new model and the outflow shedding angle of free vortex. 
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