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Modeling of the rotation of polarization in polymers using 
an inhomogeneous birefringence model 

Yukio Watanabe 
Mitsubishi Kasei Research Center; Kamoshida 1000, Midoriku, Yokohama Kanagzwa 227, Japan 

(Received 7 February 1994; accepted for publication 20 June 1994) 

Polymers exhibiting a weak birefringence mostly posses optical properties which are predicted well 
by conventional models for birefringence. However, the rotation of polarization behavior was found 
to disagree with these models. This deviation has been overlooked in usual measurements 
characterizing birefringence in polymers. In order to accurately predict the rotation of polarization, 
we propose a model which includes a birefringence inhomogeneity. The model is shown to be 
related to the birefringence-induced optical activity. The model predictions are shown to agree well 
with experimental results using a parallel laser beam. Practical implications with respect to 
unusually high low-frequency noise of magneto-optical disks are discussed briefly. 

I. lNTRODUCTlON 

Recently, optical properties of random media have re- 
ceived considerable attention. Especially birefringence of 
polymers has been intensively discussed due to its practical 
importance in magneto-optical recordingrV3 and liquid crys- 
tal displays. Although mathematical models for polarization 
and birefringence using classical crystal optics have been 
well established, a close examination of the polarization 
properties has only recently become possible. 

Figure 1 shows the problem discussed in this article. 
After a linearly polarized beam passes through a plastic 
plate, it generally becomes elliptically polarized with its po- 
larization being rotated. Here, the direction of polarization is 
defined as the direction where the laser power measured 
through the analyzer is at its maximum. This rotation of po- 
larization even occurs in uniaxial and biaxial media and is 
correctly predicted by existing models.4 However, it accom- 
panies elliptical polarization and is therefore not a pure rota- 
tion of polarization. Since the effect is typically small for a 
medium with a small retardation, this rotation of polarization 
has not received much attention. 

Classical models for birefringence in polymer substrates 
have been based on the use of refractive ellipsoids which are 
valid for single crystals.4 In most cases, these models have 
been successful in accounting for the optical properties of 
transparent plastics. 

However, a close examination showed that the rotation 
of polarization of a transmitted beam was not in accordance 
with these models for optically inactive plastics such as poly- 
carbonates, their derivatives, and epoxy.’ In Ref. 5 we have 
tentatively attributed these deviations to an inhomogeneity of 
birefringence and modeled it by using birefringent double 
layers. 

In this article we generalize this idea and present a 
simple formula as a basis for birefringence modeling in plas- 
tics. We show that an inhomogeneous birefringence is 
equivalent to birefringence coexisting with optical rotatory 
power. We derive the formula using a birefringent multi- 
layer model and later reexamine it using Maxwell equations. 
The model calculations compare favorably with experimen- 
tal data. In addition, the effect of in-plane inhomogeneity is 

discussed to understand the low frequency modulation of 
magneto-optical disks. 

II. EXPERIMENT 

In this study, optical properties were measured in injec- 
tion molded polycarbonate disks with a thickness of 1.2 mm 
used as a substrate for commercial magneto-optical disks be- 
cause of their high purity, good homogeneity, and superior 
surface flatness. Figure 2 shows a block diagram of the ex- 
perimental setup to measure the direction of the maximum 
electric power, i.e., the principal polarization direction. A 
randomly polarized He-Ne laser with a wavelength of 633 
nm and a semiconductor laser with a wavelength of 820 nm 
were used as light beam sources. The beam was linearly 
polarized by a polarizer (PO), passed the sample, was modu- 
lated by a Faraday cell, passed through an analyzer (AO), 
and was finally detected by a photomultiplier. The output of 
the photomultiplier and the Faraday cell was measured by a 
lock-in amplifier. 

The effective retardation of the PO and the A0 was less 
than 1 nm, and the effective retardation by the Faraday cell 
was about 1.5 nm. When the power of the He-Ne laser 
through the PO was measured by rotating the PO, the beam 
was slightly elliptically polarized with the maximum power 
being about 5.7% higher than the minimum. The beam spot 
size on the sample was about 1 mm in diameter. The preci- 
sion of rotation of the PO was O.Ol”, and the precision of the 
sample positioning was better than 0.2 mm. The laser power 
passing through the PO was about 2 mW. 

We used the following procedure to minimize the mea- 
surement error: 

(1) The sample was moved away horizontally from the 
beam and the angle of the PO was set. 

(2) The extinction angle was measured by rotating the 
A0 (=A0 angle 1). 

(3) The sample was moved back into the beam. 
(4) The angle was measured by rotating the A0 (=A0 

angle 2) where the power through A0 was the minimum. 
(5) Steps (l)-(4) of the above procedure were repeated, 

and we defined a rotation angle of polarization A0 as A0 
angle 2-A0 angle 1 (Fig. 1). 
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the each layer L’ is much larger than the laser light wave- 
length h. The Jones matrix M for birefringent N layers is 
given by 

N 

t M= n Rt 4P4Rt - @z), 

1 

FIG. 1. Rotation of a principal direction of polarization through birefrin- 
gence. Initial polarization-is shown by an arrow. After passing through a 
birefringent medium, the beam is elliptically polarized and polarization ro- 
tates by an angle A& In plastics, the magnitude of A0 is different from the 
uniaxial medium. Experimentally, Ae=polarizer angle at the maximum 
electric field-analyzer angle at the maximum electric field. 

The magnitude and the principal direction of retardation 
varied over the sample. The error caused by inaccurate posi- 
tioning was -5% or 1-2 nm in retardation and l”-20 in the 
principal direction of retardation. Although no change of re- 
tardation was observed due to possible heating by the laser 
beam, it changed approximately 5% per hour due to variation 
of humidity and room temperature. Therefore, care was taken 
for the condition of the room atmosphere, and all measure- 
ments were done in a dark room. 

Ill. MATHEMATICAL FORMULATION 

(1) 
n=l 

exp(i8) 
0 

(14 

(lb) 

where 13, and S, are the direction of the principal axis of 
birefringence and half the retardation in each layer, respec- 
tively. PS expresses the birefringence for a beam with its 
polarization parallel to a principal axis. E, and E are ‘the 
electric field vectors of the incident and the transmitted 
beam, respectively. In the following, we introduce new rep- 
resentations of the Jones matrices and decompose PS into 

1 0 
PS=cos S I+i sin 8 V; L= ( i 0 2’ 

10. 
v= i 1 0 -1’ 

Similarly, birefringence with an arbitrary direction of the 
principal axis [Eq. (1) with N= 11 is expressed by 

A. Birefringent multilayer model 

First, the inhomogeneous birefringence is modeled using 
a birefringent multilayer and a Jones matrix formulation. 

R(B)PS R(-8)=cos 8 Ifi sin 8 S(269, 

sin 6, 
(2) 

Consider a plate which consists of N layers where the optical 
properties of each layer are expressed by a refractive ellip- 
soid with principal axes nl #n2 2123. For our purpose, we 
can neglect the change of direction of the ray. Therefore, the 
refract&e index in each layer is expressed by a refractive 
ellipse which is obtained by intersecting the refractive ellip- 
soid with the plane perpendicular to the incident beam. Con- 
sequently, each layer is regarded as a uniaxial medium. We 
may use Jones matrices and vectors when the thickness of 

Equation (2) gives the well known results for uniaxial 
media.4 It should be noted that M is a unitary matrix. For a 
unitary matrix U(iJ)=xij%iYij (i, i= 1, 2, Xij, Yij: real 
numbers) a constraint tUU= 1, where tU( iJ) =Xji- iyji, re- 
duces the number of free Xii and Yij to four.~However, the 
choice of the phase p is not physically meaningful in 
U’(i,j)=e’PU(i,j). If we restrict this freedom, the number 
of free xij and yij reduces to three. Therefore, any unitary 
operator can be expressed by Eq. (3) below by choosing a 
suitable phase fl, because Eq. (3) is a unitary operator with 
three free parameters. Thus, M can be written as 

OUTPUT 

M=cos (T R(2aO)+i sin rr S(2a). (3) 

Equation (3) is a generalization of Eq. (2) for a 
multilayer medium. A more physical derivation is given’ in 
Appendix A, and the rotation bias al) was estimated to be of 
the order of IL? for a weak birefiingence a<l. The condition 
cyO=O corresponds to conventional birefringence. In Eq. (3) 
o and a are half of the effective retardation and the effective 

FIG. 2. Block diagram for a measuring of a change of a principal polariza- 
tion direction through birefringence. AO, PO, DC denotes analyzer, polar- 
izer, and dc power supply, respectively. 

principal axis direction, respectively, if the birefringent N 
layers are regarded as one inhomogeneous birefringent me- 
dium. 
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DIRECTION OF 
DIRECTION OF PRINCIPAL AXIS 

PIG. 3. Birefringence double-layer model. The first and the second layers 
have retardation of AN1 and AN2, respectively. The angle between princi- 
pal axes of those layers are 6. Directions of principal axis are shown by 
arrgws. 

B. Properties of birefringent multilayer 

The deviation from conventional birefringence becomes 
evident for large retardations 8, as can be seen in Eq. (A2) in 
Appendix A. As a simple example, consider a pair of x/4 
plates with an optical axis direction different from each other 
by 19, i.e., N=2 in Eq. (1) and &l=&!=?r/2. The correspond- 
ing operator is R( 8+ ~P777/2R( - I!+ @R( B)Pd2R(- 13) 
=R(20, which shows that these plates act as a pure rotator. 

When a birefringent multilayer medium has a mirror in- 
version symmetry along the direction of beam propagation, 
the rotation bias disappears similarly to the case where opti- 
cal activity is inhibited in molecules having inversion sym- 
metry. An example is polarization of a normally incident 
beam on a substrate with the opposite side coated with a 
metaIlic film as in magneto-optical disks. In this case, Eq. (1) 
can be expressed by the following form 

6 R( B,)P&R( - @JRl i R( 0,)P6,R( - 0,) 
II=1 n=N 

=RlR(a+aO)P2a R(-a-rwO), (4) 

where RI is the reflectance of the metallic film. Thus, a bire- 
fringent multi-layer medium with a mirror inversion symme- 
try reduces to a conventional birefringent medium. The pa- 
rameters LT and u are those defined by a single pass 
measurement. A proof is given in Appendix B. 

IV. NUMERICAL AND EXPERIMENTAL RESULTS 

In this section we discuss properties of a birefringent 
multilayer medium based on Eq. (3). Equation (1) with N= 2 
is also used due to its mathematical equivalence to Eq. (3). 
Figure 3 shows the model and defines the notations 
ANl=S,X/n, AN2=S,h/rr, and ,$=6$-e,, where S,, 4, 
0,) and 0, are those in Eq. (1) for N = 2 and X is the wave- 
length. ANY is the effective total retardation uL/r~-. 

A. Elliptic@ of polarlzation and principal axis of 
birefringence 

The retardation 2A in a birefringence single layer is of- 
ten defined by 

Polarizer Angle(degree) 

FIG. 4. An example of a relatively conventional behavior of A0 vs PO angle 
variation. A PO angle has a meaning of an angle between a principal axis of 
retardation and a direction of polarization of an incident beam, when the 
principal axis of retardations directed at 0”. Open circles and the solid line 
show data points and calculated results based on a conventional birefrin- 
gence, respectively. Measured ANt was 8 nm. 

where Zmin and I,, are the minimum and the maximum 
power intensities detined by changing the A0 angle at a 
given PO angle. Here, [ I,,, and [ ]mrn are defined by chang- 
ing the PO angle. In the following, the PO angle corresponds 
to the angle between the direction of the electric field of the 
incident linearly polarized beam and that of the principal axis 
of retardation. In conventional birefringence the direction of 
the principal axis is defined as the PO angle at the minimum 
Of zminlzmax * 

The ellipticity of a beam passing through a birefringent 
multilayer medium can be zero at a certain polarization di- 
rection, as in conventional birefringence. For a linearly po- 
larized incident beam with Eax= 1 and Eey= 0, this occurs 
at a=& in Eq. (3). According to Eq. (3), Zmi, varies sinu- 
soidally with LY with a periodicity of 7r/2. This suggests that 
a may be regarded as an effective principal axis direction. 

B. Rotation of polarization 

The principal polarization direction A0 of a transmitted 
beam with respect to that of an incident beam oscillates with 
(Y with a periodicity of 7rJ2. Unlike Zmi, vs a this oscillation 
was not expressed by a simple sinusoidal function (Appendix 
C). Using Eq. (3), the amplitude of A6 was found to be 
governed by the effective total retardation 2o, for sin o&l. 
The A0 was found to be equal to c& at cw=c&, which is zero 
for conventional birefringence. That is, the linear polariza- 
tion rotates by Cro keeping its linearity when the angle be- 
tween the polarization direction of the incident beam and the 
effective principal axis is &I. 

Fist, the Ae variation was measured for a beam passing 
through a quartz single crystal plate, i.e., a commercial h/4 
plate. Periodicity of 9rZ2 and symmetry with respect to A0=0 
were clearly observed, and the results agreed well with the 
conventional model for birefringence. Figure 4 shows how 
A@ varies when a beam is transmitted through a polycarbon- 
ate plate. The result was close to that for the quartz single 
crystal plate, but a small asymmetry, or A@ bias, existed. 
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FIG. 5. A0 vs PO angle variation in a polycarbonate plate. Open circles are 
data, and the dashed line and the solid line correspond to the present and 
conventional models, respectively. Measured ANt was 32 nm. 

Furthermore, larger deviations from the conventional model 
were also observed in other samples. Figures 5 and 6 show 
measured A8 variations (circle) together with calculated re- 
sults based on conventional birefringence (dotted line) and 
Eq. (3) (solid line). A large A0 and an asymmetry with re- 
spect to AB=O is evident in the measured data. It is seen that 
Eq. (3) fits the d a a well and satisfies the constraints of ANt t 
and the direction of the effective principal axis. It should be 
menfioned that these constraints together with CL&, which 
form the complete set of parameters in Eq. (3), are deter- 
mined experimentally as discussed in Appendix D. In most 
cases, the magnitude of the A8 bias was observed to be a few 
hundredth of a degree. 

Figures 7, 8, and 9 show calculated results for typically 
observed retardation values and illustrate the properties of 
the present model (@to) as compared with the conventional 

Polarizer Angle(degree) 

FIG. 6. Same as Fig. 7 in another polycarbonate plate. Measured ANt was 
15 nm. 
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FIG. 7. At9 vs PO angle variation calculated for fixed magnitudes of internal 
retardation ANl=AN2=20 nm and different 5. The case c=O” corre- 
sponds to conventional birefringence, with a total effective retardation ANt 
= AN1 + ANZ- For [= ?30”, ANt is 32 nm. The dashed line, the dash-dot 
line, and the solid line correspond to 5=30”, O ”, -30” in the present model, 
respectively. Arrows indicate the direction of the effective principal axis a0 
of each curve. 

model (t=O). Figure 7 shows AIM vs PO angle for fixed in- 
ternal retardations AN1 , AN2, and different values of 6. Two 
features are evident. First, the A0 bias changes sign with the 
sign of 6. Second, the maximum absolute values of At? for 
.$= 230” are even larger than for ,$=O’, despite the decrease 
of ANt. Figure 8 also shows AB vs PO angle for fixed AN1 , 
AN2, and different .$‘s. With increasing 6, the amplitude of 
the A.8 oscillation decreases and the asypmetry increases. As 

l.C 

z 
kh 
4 O  
z d 

-1.0 

E= 300 ANl=AN2=20nm - 
./ ‘\ *Y 

NO” J, 
,“I \ 0” .x 
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. . 

do 
', '\ !'A., 
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i / 
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FIG. 8. A0 vs PO angle variation calculated for fixed magnitudes of internal 
retardation and different & The solid line, the dashed line, the dash dot line, 
the dash-dot-dot line corresppnd to E=O”, 30”, 40”, 60”, 80” in the present 
model, respectively. 

J. Appl. Phys., Vol. 76, No. 7, 1 October 1994 Yukio Watanabe 3997 



1.0 ANt-21nm 

-1.0. 

&i. 
\ i 

\ ,/‘r,,~~ ‘\ ‘\. .r’ -- .d+- ‘k,, l-.) 
\ 

,/+ ,‘.---““x. .... ‘, -(jo” 
\,/ / ‘:, ‘Y/~’ 

‘. *-.. *. . . . . i; 
?. 

L.. _ __... .-. 
\ -70 0 

--....__.* 
-2.01 

0 50 100 

Polarizer Angle(degree) 

FIG. 9. A0 vs PO angle variation calculated for a tixed magnitude of an 
effective total retardation and different 6 The solid line, the dash-dot line 
the dashed line, the dotted line correspond to .$=O’, -5O”, -6O”, 70” in the 
present model, respectively. Arrows indicate the direction of the effective 
principal axis a0 of each curve. 

discussed above, the decrease of the amplitude is mainly 
related to that of ANt. 

Figure 9 shows A$ vs PO angle for a fixed ANt and 
different 5’s. In this case; the A9 bias increases with .$. The 
increase of the A0 bias resulted mainly from the increase of 
AN1 and AN2. As expected, the amplitudes of the A8 oscil- 
lations are almost identical since ANt is the same. It is im- 
portant to note that even for a very small effective total re- 
tardation ANt of 21 Rm, a rotation of 2” is possible. 

C. Leak light at extinction angle 

So far, we have discussed the birefringence inhomoge- 
neity along the direction of thickness, since it exhibits prop- 
erties qualitatively different from the conventional birefrin- 
gence. Ln this paragraph we discuss the effect of in-plane 
inhomogeneity. The major effect of in-plane inhomogeneity 
of birefringence is to smear out the above variation in At? 

The retardation 2A is measured by the commonly used 
ellipticity measurement method mentioned above. The over- 
all variation of Zmin with the PO angle for a beam passing 
through a polycarbonate plate was fitted well by both Eq. (3) 
and the conventional birefringence model [Eq. (2)]. Here, 
Zmin is the minimum leak power at a given PO angle as 
defined before; 

Figure 10 shows a closer examination of the Zmin varia- 
tion near [Zmin]min for a beam passing through a polycarbon- 
ate plate. [Zmin]min is the minimum Zmin when changing the 
PO angle. [Zmin]min or the smallest observed value of the leak 
light was 70 nW or 3.5X10-’ of [Z,,],,, (= the maximum 
Zmax when changing the PO angle). It is worthwhile noticing 
that in a quartz single crystal [Zmin]min was also-observed to 
be 20 nW or 1 X 10m5 of [Zmaxlmax . On the other hand, ac- 
cording to the birefringence multilayer model Eq. (3) and the 
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s5 O.l- 
0 l * A 

$ l cl@ ,75 f 

3 

0 I.II.lt9*3 ’ 
-20 -16 -12 

70 3 
g 

Polarizer Angle(degree) 

3 

4 

FIG. 10. An example of Imin vs PO angle variation typically observed in 
polycarbonate plate. Imins (open circles) are the minimum leak power ob- 
tained by scanning A0 angles for a given PO angle. Dots are A0 angles at 
Inin. 

conventional model Eq. (2) [Zmin]min is always zero. A POS- 

sible cause of the large experimental [Zmr&rn could be a 
variation of the parameters in Eq. (3) within the beam spot of 
1 mm in diameter. For example, an in-plane deviation of the 
principal axis direction of 1” causes a leak light of 
[Zmr,&tn=sin2 c sin’(2”). This is about 5X 10m5 of [Zmaxlmax 
for a retardation (ANt) of 20 nm. Similar measurements 
were done using an optical microscope with a long-focus 
objective lens. [Zmh]mtn was still large in a beam spot of less 
than 0.3 mm in diameter. Thus, the in-plane inhomogeneity 
of the birefringence below the submillimeter level is thought 
to coexist with that along the direction of thickness, which 
was modeled using the birefringent multilayer approach. 

D. Physical foundation of Eq. (3): Transition region 

In plastics the boundary between adjacent layers is un- 
likely to be abrupt but changes gradually as in Fig. 11(b). At 
such a transition region, the Jones matrix Eq. (2) is not ap- 
plicable. 

Generally, an inhomogeneous birefringence may be re- 
garded as an arbitrary stack of two components, i.e., a ho- 
mogeneous layer expressed by Eq. (2) and a transition layer 
which contains a change in magnitude of the retardation and 
a change in the direction of the principal axes. The change in 
the magnitude is well approximated by Eq. (2). The regions 
where Eq. (2) are applicable are indicated in Fig. 11(b) by 
the horizontal bars, and the transition regions, where appli- 
cability of Eq. (2) is not certain, are indicated by oblique 
bars. 

A product of the matrices expressed by Eq. (3) is also 
expressed by Eq. (3) as can be seen from the discussion in 
Appendix A. Therefore, Eq. (3) is generally valid for an in- 
homogeneous birefringence, if the transition layer, in which 
the direction of principal axis changes gradually, is expressed 
by Eq. (3). This is shown by introducing a local variation of 
the dielectric tensor in Maxwell equations as 
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FIG. 11. Schematic representation of inhomogeneous birefringence showing 
a random variation of direction of the principal axis (b). Modeling of the 
variation in (b) by a birefringent multi-layer (a). Horizontal bars indicate the 
direction the principal axis are approximated to be constant so that a con- 
ventional model is applied in this region. 

E(z)=EO+E’(Z)=EO+AE RcB(z)] 

=EO+AE S[28(2)], (5) 

where to and AE are constants. Here, we only consider a 
local variation of the principal axis as expressed by 0(z) and 
can therefore set be to be constant. Furthermore, we assume 
a constant magnetic permeability p. In the case of E being a 
function of only z and t and Ez being zero, the Maxwell 
equations in c.g.s. units reduce to 

d*E(z, t) p&E(z, t) 
az* = c”at2 . 

We introduce a wave function q\E defined as 

~‘(,,t)=Ex(z,t)tiEy(z,t). 

Using Eqs. (5) and (6) gives 

(6) 

pro a2F .+p~LE pie(Z) a2*\1, 
7 c-at* We (7) 

Equation (7) is the same equation for the beam propagation 
in cholesteric liquid crystals6-’ Assuming a stationary wave 
~‘(r,t)=P’(z)e-‘of, Eq. (7) becomes. 

d”qE’ (t) - 
dz2 

-A~er*ie(z)~T(z)=~“(z), ia 

where i5=peOw”=ki and A?Y=~AE&=(AE/eO)k$ 
Within the transition layer the linear approximation: 

2 e(z) = KZ with 1 KZI < 7r/2 may be used for e(z). Assuming 
an advancing wave given by q’(z) =aeikl’+ beiki’ E<.-(8) 
is solved rigorously. The solution is expressed by a matrix 
T(Z) which gives the relation between E(z= 1, tj and. E(z 
=O,t) as E(z-Z,t)=e’.“‘T(Z)E(z=O,t), where v is a real 
number. In the following, we present approximate solutions 
for two limits. I I 

In the slow transition limit with 
K4Ko[=(b~/60)ko]4kOr T(Z) is found to be 

[cos u R(@+EOKlAeka sin c R(8--42) 

+ i( 1 + K/2k0)sin (+ S( 0) 

+ /c/2ko sin CT s( 8- n/2)1/( 1+ fc/2ko), (9) 

where V= K&2 and f3= e(f). 
Equation (9) has the form of Eq. (3) except for the cor- 

rection of the last term which is negligible, since the sum of 
the R terms is an R term itself. By rotating the ,Q coordinates 
by an angle a: an expression for an arbitrary choice of xy 
coordinates is obtained. The leading term is 

cos u R(e)+i sin c s(e+24. 

The condition K~K,, assures&%. Therefore, Eq. (9) gives 
only a small rotation bias 6, for ug0. 

In the fast transition limit with ~4 K+ko, T(Z) is given 
as 

R(-$jf3i~~/2~ Sif@+ $)s(e) 

+K,)/2K Sh[8+7,7~)S(d2-~)], (10) 

where v= - K$2K and 8= e( 1). 

Averaging the high frequency oscillations, we obtain 

R(-gl)+3iKo/4K-S(rr/2-?1Ij+K~/4K s(-~I). 
(11) 

_.. 
Since ] KII <rr/2 in the transition layer, Eq. (11) is roughly 
equal to 

1+%/Q/4/C S(%-/2), . . 
which has’the same form as Eq. (2). Thus, Eq. (3) is valid 
beyond a birefringent multilayer model. 

Both Eqs. (9) and (10) give Eq. (3) with al)ecr in the 
transition layer, while birefringence in homogeneous layers 
is expressed by Eq. (2). Using-the same arguments. as in 
Appendix A, the total rotation bias is shown to be small, i.e., 
of the order of square of the total retardation, as long as 
o< l/N in Eqs. (9) and (10) and Sn9 l/N [N is defined in 
Eq. (l)]. This means that Eq. (2) is applicable to most plastic 
substrates for MO disks as long as the prediction of the small 
rotation bias is not important. 

Using similar calculations, we can show that birefrin- 
gence can produce an optical rotatory power’OV’l in the fast 
transition limit for 1 KZI Z+ 1 .6 Therefore, the rotation bias in 
Eq. (3) in an inhomogeneous birefringent medium can be 
regarded as a precursory phenomena of an optical activity 
produced by birefringence. 
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V. DISCUSSION 

A. Comparison with optical rotatory power having 
birefringence 

Although basic equations for a medium having optical 
rotatory power and birefringence are dissimilar to Eq. (8), a 
Jones matrix derived from these equations is shown to be 
similar to Eq. (3). A Jones matrix for E= ~0 + (‘$oeo -iGA$) 
with G 4 1 in a material with a thickness I is 

(1 +k2L (12) 

where k=G/[]A6]+J(A2+G2)] and 4=7rZ~[(A~z+G~)l 
cXJ]/X.‘~ Anonzero G indicates existence of an optical activ- 
ity. Equation (12) can also be written as 

cos p R(aO)+i sin p S(O), 03) 
where P=tan-‘{( 1 - k2)sin +/d[(l + k2) - (1 - k2 sin2 +)I} 
and oO=tan--*[2kl( 1 + k2)tan 41. By rotating the coordi- 
nates by R(a), Eq. (13) becomes equal to Eq. (3). 

B. Origin of inhomogeneity 

An observation supporting the inhomogeneous birefrin- 
gence model was recently provided by examining the cross 
sections of. polycarbonate substrates where the retardation 
near the surfaces was found to be larger than the retardation 
at the center.r3 This structure was also suggested by numeri- 
cal simulations analyzing stress in a polymer resulting from 
the flow and the cooling process during injection 
molding.‘4Y’5 Such inhomogeneity of the refractive index, 
i.e., birefringence, is related to the local stress variation. 

C. Practical implication for magneto-optical recording 

Birefringence is known to cause noise in the read-back 
signal of magneto-optical (MO) disks which is usually sup- 
pressed by the differential detection system. The noise in 
polycarbonate MO disks was well accounted for by the con- 
ventional model Eq. (2).5 However, we have also observed 
envelope modulation which was due to a rotation of polar- 
ization in the substrate.3,5 Although its effect can be removed 
using a high pass filter, this modulation may induce high 
frequency noise by disturbing the output balance of photode- 
tectors in the differential detection system. The envelope 
modulation can only be qualitatively explained by Eq. (2). 
On the other hand, if the direction of the effective principal 
axis in Eq. (3) changes along a track of a disk, a large enve- 
lope modulation can happen even for a very-small retarda- 
tion. Because of disappearance of the rotation bias due to 
inversion symmetry as discussed before, this mechanism of 
envelope modulation does not even occur for a converging 
beam, as long as the parameters in Eq. (3) are constant in the 
beam spot. However, it should be noted that the pass of the 
reflected beam is different from that of the incident beam in 
a converging beam. This may cause a break of the inversion 
symmetry leading to envelope modulation, if the disk is 
tilted or the parameters in the beam spot are not constant. 
The latter is the in-plane inhomogeneity proposed above. 

Indeed, the envelope modulation was significantly re- 
duced when annealed polycarbonate disks were used as sub- 
strates for MO disks.3 Since annealing releases residual 
stresses and, in turn, reduces the birefringence inhomogene- 
ity, this experiment supports the above mechanism. The low 
frequency envelope modulations, which were much larger 
than predicted by Eq. (2), were also observed in MO disks 
with other plastic substrates such as epoxy.r6 These observa- 
tions imply that similar phenomena also exist in other plas- 
tics. 

It should be mentioned that Eq. (1) can be applied to the 
total system consisting of an optical head and a MO disk. 
Therefore, the discussion of the rotation bias in this article 
also holds for the total system. Obviously, the birefringence 
of the optical head should be much less than that of the MO 
disk substrate in order to avoid envelope modulation due to 
the rotation bias effect. 

For a converging beam it is necessary to use a refractive 
ellipsoid for a birefringence single layer to calculate the re- 
fractive indexes for a beam with an arbitrary angle of inci- 
dence. We have not generalized Eq. (3) for a beam incident 
from an arbitrary direction. In this case, the equivalence of 
Eq. (1) for N= 2 with Eq. (3) may be used. That is, calcu- 
lating first the Jones matrices corresponding to each layer for 
an arbitrary angle of incidence, the net effect for the angle of 
incidence may be approximated by the product of these two 
matrices. 

VI. CONCLUSION 

Rotation of polarization in polycarbonate plates was 
measured with high accuracy using a parallel beam and was 
found to be different from predictions using the conventional 
model for birefringence [Eq. (2)]. We attributed this result to 
a birefringence inhomogeneity in the direction of the thick- 
ness and proposed a simple formula Eq. (3) as a mathemati- 
cal model, which is equivalent to birefringence coexisting 
with optical activity. This proposed formula includes an ad- 
ditional parameter representing a rotation bias which was 
estimated to be small for a weak birefringence. Mirror inver- 
sion symmetry in the direction of propagation reduces Eq. 
(3) to Eq. (2). For weak birefringence it was shown that an 
inhomogeneous birefringence has properties similar to the 
conventional model except for a rotation of polarization. As 
an application the typically observed low frequency noise in 
the read-back signal of magneto-optical disks was discussed. 
It may be worthwhile to note that similar phenomena should 
be observed in mixtures of randomly oriented anisotropic 
dielectric or ferroelectric materials such as BaTiO,, 
(Pb,La)TiO,, and (Pb,La) (Zr,Ti)O,. The birefringence in 
these mixtures having randomly oriented multiple domains 
should also show the rotation bias effect represented by Eq. 
(3). 
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APPENDIX A: DERIVATION OF EQ. (3) N 

It is useful to derive Eq. (3) using the peculiarity of Eq. M= fl [cos 6, I+i sin 8, S(28),]. 
(2) so that the order of magnitude of the parameters in Eq. n=l 

(3) can be estimated from those in Eq. (1). Using Eq. (2), Eq. 
(1) is By expanding Eq. (Al) we obtain 

bj=( fil COS %)Ifijl (Sin &i cm 6j)s(zu.)-i,2 (sin 8, sin 6nji,n COS s,jn(zs,-28.) 

. . . . . . . 
N N 1 

+(i)2k-1 2 

i 
sin 8+ sin S1l...sin SI, rl[ COS Sj 

ii 
S C (-1)“-k20, 

l,CIz....d, j+rj&!dk n=k 1 
N 

+(i)2k C sin 811 sin Slz.. .sin 8, kil ii 2 (-l)n-k-l20, 
l,<12~....<lkcIk+, j+ll,l2 Jk+l n=k+l i 

. . . . . . . . w9 

General forms are shown by the last two terms in Eq. 
(A2). Sums of S and R terms can be written as 

= aS(2cu) for a sum of S terms, 

= b’R(2P) for a sum of R terms and , 

I=cI for I term, 

b’R(2P)+cI=bR(2cuO), 

where A, B, C, c, and D are real numbers, and 
a=J(A2+B2), b’=,/(C2+D2), b=d[(c+C)2+D2], 2a 
=arctan(B/A), 2,B=arctan(DIC), and 2&=arctan[Dl(c 
-l-C)]. Because of the unitarity of M: [bR(2&) 
+iaS(2cu)]jfbR(2d)+iaS(2cr)]=I, a”+ b2= 1. Thus, we 
can choose a =sin o, b =cos a, and M is written as 

M=cI+iaS(2Lu)+b’R(2P) 

=cos (+ R(2crO)+i sin (+ S(2a~). 

By the way, Eq. (A2) for N = 2 is 

cos 8, cos 8, I- sin Sl sin 8, R( 2 8, - 2 0,) 

+i[sin Sl cos S2 S(26$)+sin S2 cos 8, S(20,)]. 
(A4) 

Equation (A4) has the same form as Eq. (3) and three 
free parameters. Therefore, Eq. (3) is expressed by Eq. (A4). 

fn most cases, b’ (or S&l and thus the third term R in 
Eq. (A3) can be neglected in the first order in b’ . Then, Eq. 
(A3) represents the conventional birefringence by a single 
layer. The b’R(2P) represents the rotation bias due to the 
inhomogeneity. 

The order of magnitude of each term in in Eq. (3) can be 
evaluated using Eq. (A2). Noting that retardation Sis propor- 
tional to thickness, we evaluate the order of S,, as tr/N, 
where o-(<l) is the effective total retardation in Eq. (3). The 
orders of c, a, and b’ 
a(l+d?+cr4+d’ . . . . . . ), 

in Eq. (A3) are 1, 
and c?(l+d+~~+‘+a” . . . . . . ), respec- 

tively. Therefore, Eq. (A3) can be regarded as Eq. (2) with a 
small modification R. Especially, for S,+ l/N (e.g., 
8,,<1/5N), b’ is an order of c2. 

APPENDIX B: PROOF OF DISAPPEARANCE OF R 
TERMS IN EQ. (4) 

,lj N4,PS,W- e,$-& w%m3tR(- 0,) 
n=N 

N-l 

=m n &%)phR(- 6) R(eN>p2aNR(- eN) i R( e,)Pa,R( - 0,) 

,I = 1 i n=N- 1 
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N-l 1 

=mfl R(B,jP&R(--8,J[COS 2&I+i Sin 2&S(2&)] n R(ti,)P&R(-8,) 
ll=l n=N-1 

N-2 

=RZn: RiW’4tN-%J[~ cos’ fiN-, cos 2+-h 2&-, sin 28, cos(2eN-2tiN-L)-sin2 &v-r cos 2&}I 

+ i{sin 2 i?,- 1 cos 2 &s( 2 eN- l j + cd c?,-, sin 2 &S( 2 0,) - sin &- 1 sin 2 &S( 4 ON-r - 2 &j)] 
1 x rr R~6343(- 0,). 

n=N-2 

As shown above, the product 
R( B,JP&R( - 8,)R( B,JPS,R( - 0,) is expressed only by I 
and S, and also the product R(B,)PS,R(- 8,) S 
R( B,)P&R(- 0,) is expressed only by I and, S. 

By induction, Eq. (Bl) contains only I and S terms and 
no R terms. Equation (Bl) contains no R terms and using 
Eq. (A3), Eq. (Bl) is expressed as 

Rz[c1+iaS(2&2a0)]. 032) 

Using the same arguments used to derive Eq. (A3) from 
Eq. (A2) and choosing c =cos 2a and a =sin 2o, Eq. (B2) is 

RZ[cos 2cT 1-i-i ‘sin 2G+S(2n+2ao)] 

=RZR(a+nO)P2o R(--a-CYO). 033) 

Eq. (B3) is exactly same as Eq. (2). . . 
I The parameters in Eq. (B3) are related to those for bire- 

fringence in a single path measurement. Using Eq. (3), the 
Jones matrices for anincident and a reflected beams are 

cos u R(2aO)Ci sin (+ S(2a). 

RZ[cos u R(-2aO)+i sin (T S(2cw)], 

respectively. The argument of S and the o in a-reflected beam 
were determined from a consideration on symmetry. The ar- 
gument of R in a reflected beam was determined from the 
requirement that a real part of the product of these terms 
should be proportional to I as in Eq. (B2). Thus, the product 
gives Eq. (B3). 

APPENDIX C: CALCULATlON OF At3 

17x and Ey at a same position satisfy an equation for an 
ellipse. Principal axis of this ellipse is given by diagonalizing 
the equation. Using Eqs. (la), (lb), (A3), and notations in 
Appendix A, the following set of equations gives- the princi- 
pal axis direction(=A@ with respect to that of an incident 
beam with E~x=l, Eoy=O, 

tan A8=(F+JF2+4)/2 (Cl) 

F= -2[a” cos 4a+[(c+C)2-D2]/ 

[a” sin 4a+2(c+C)D]. va 

For the conventional birefringence, D = C = 0, a =sin a, 
c =cos a; and Eq. (C2) is F = - 2(cot 4aufcot’ o sin 4c~). 
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The amplitude of a A0 oscillation given by Eq. (Cl) is 
estimated from the maximum and the minimum values of F 
with respect to (Y. For D24a2+(c+C)2, this is approxi- 
mated by, - 2(c +.C)/[ 5 a + (c + C)D]. This shows that the 
amplitude is mainly determined by (c+ C)/a, which is 
roughly equal to cot (+. 

APPENDIX D: EXPERIMENTAL DETERMINATION OF 
PARAMETERS IN EQ. (3) 

We use a randomly polarized light source, and set a PO 
angle=4 and an A0 angle=x. Using Eq. (3), the power 
intensity Z is given by 

Z=cos” u cos2((p-x-2aO)+sin” (7 cos”(x++-2a), 

where &=tan-‘[Dl(c+C)]/2 as in Appendix A. For 4-x 
-2cr0=t?r/2 and x++-~cY=+I~/~, Z=O. Thus, a set of x, 
q5 for Z= 0 gives LY and iuo. When 4 and x are changed by 
A+ from the values for I = 0, I=sin’ u cos”(2A&. The coef- 
ficient of cos2(2A~) gives sin2 cr. When a PO and an A0 
angle are precisely measured, these three values can deter- 
mine three free parameters in Eq. (3). In addition, al) and 
ellipticity can be used to determine the parameters. 
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