
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

MR Damper Modeling using Gaussian and
Generalized Bell of ANFIS Algorithm

Choirunisa, Ikhtiar
Mechanical Engineering Department, Universitas Sebelas Maret

Ubaidillah
Mechanical Engineering Department, Universitas Sebelas Maret

Imaduddin, Fitrian
Mechanical Engineering Department, Universitas Sebelas Maret

Elliza Tri Maharani
Mechanical Engineering Department, Universitas Sebelas Maret

他

https://doi.org/10.5109/4491844

出版情報：Evergreen. 8 (3), pp.673-685, 2021-09. 九州大学グリーンテクノロジー研究教育センター
バージョン：
権利関係：



EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 08, Issue 03, pp673-685, September 2021 

 

 

MR Damper Modeling using Gaussian and Generalized Bell of 
ANFIS Algorithm 

 
Ikhtiar Choirunisa1, Ubaidillah1,*, Fitrian Imaduddin1, Elliza Tri Maharani1, Gigih

 Priyandoko2,*, Saiful Amri Mazlan3 
1Mechanical Engineering Department, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 

57126, Indonesia 
2Electrical Engineering, Universitas Widyagama Malang, Malang, Indonesia 

3Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Malaysia 
 

*Author to whom correspondence should be addressed: 
 E-mail: ubaidillah_ft@staff.uns.ac.id, gigih@widyagama.ac.id  

  
(Received January 7, 2021; Revised September 6, 2021; accepted September 6, 2021). 

 
Abstract: The MR damper is well-known for its hysteresis characteristic, which needs to be 

modeled accurately to describe the MR damper's original state. Modeling with conventional 
calculations is considered less effective for MR damper because it has a very high nonlinearity. One 
of the modeling methods chosen is Adaptive Neuro-Fuzzy Inference System (ANFIS), using two 
types of membership functions: Gaussian and Generalized Bell. Overall, the results showed that 
Gaussian had an accuracy about 1% higher than Generalized Bell. It can be considered in future 
studies to model the MR damper and designing a control system. 
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1. Introduction 

The suspension system is useful for maintaining contact 
between the wheels and the road, and maintaining driving 
stability, so the vehicle remains under control 1). In a 
vehicle suspension system, one of them is called a semi-
active device. A critical part of the semi-active device is a 
magnetorheological damper (MR damper) that changes 
the damping coefficient. MR dampers are used in industry 
or control structures such as in semi-active controls 
utilizing LQR controllers 2), industrial shock absorbers 3), 
and structural control 4). The MR damper has a difference 
from a standard damper that generally uses a fluid such as 
a hydraulic fluid because it is designed using a special 
fluid called magnetorheological fluids (MRFs). It has 
been classified as one of the smart materials since it is easy 
to control under external influence. 

MRFs are magnetic suspensions that can change their 
rheological properties when subjected to the magnetic 
field induction 5). It consists of three main parts 6), namely 
soft magnetic particles (Fe3O4, Fe3 , Fe, or Co), carrier 
fluid or a soft magnetic particle suspension medium 
(synthetic oil or water and mineral oil), and the last is 
additives (a dispersant or an anti-sedimentation agent). 
MRFs are used in various mechanical system devices such 
as dampers, brakes, clutches, hydraulic valves, polishing 
devices 7), or semi-active vibration isolation 8). This fluid 
is referred to as a Non-Newtonian fluid when the magnetic 

field is applied. After the magnetic field is removed, 
MRFs will be a Newtonian fluid 9). MRFs act as a 
nonlinear component in the MR damper, which causes the 
MR damper to have distinctive and well-known behavior, 
which is hysteresis characteristic 10). It needs to be 
modeled precisely and effectively to describe the typical 
behavior of MR damper 11). 

Many modeling techniques have been used to model the 
MR damper, such as dynamic modeling 12). For example, 
a new phenomenological model based on the Bouc-Wen 
modeling proposed by Spencer et al. 13) in 1997. The 
results showed that the modeling was effective in 
controlling algorithm development and system evaluation. 
In 2005, Rene et al. 14) utilized a new mathematical model, 
namely the modified Lugre friction, to model the MR 
damper's dynamic behavior. The experimental data 
showed a fair degree of accuracy between the predicted 
and measured forces, although there were some minor 
differences at the low velocities. After two years in 2007, 
Kwok et al. 15) used the non-symmetric Bouc-Wen method 
identified by the Genetic Algorithm (GA) to consider the 
effects of the non-symmetric hysteresis behavior of MR 
damper, which was not considered in the original Bouc-
Wen model. In 2011, Boada et al. 16)  used the Recursive 
Lazy Learning method based on the Neural Network to 
model MR damper's behavior. This method reduced the 
previous compilation and used the sample input to guide 
making a decision. Arias et al. 17) modeled the MR damper 
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using a second-order polynomial model, and the results 
were used to design and apply a semi-active control 
algorithm. Dimock et al. 18) utilized Bingham's biplastic 
analysis to calculate shear thing and shear thickening 
MRF properties. Soltane et al. 19) proposed an adaptation 
of the accurately regulated Bingham model to reproduce 
the hysterical behavior of MR damper. Paul et al. 20) 
utilized a Neural Network model 21) consisting of 6 input 
neurons, 1 output neuron, and 12 neurons in a hidden layer 
to imitate the dynamic behavior of MR damper. Maharani 
et al. 22) and Han et al. 23) conducted experimental studies 
and mathematical modeling on MR damper. 

However, these modeling methods are still inaccurately 
to model the hysteresis behavior of the MR damper. It is 
because of the high nonlinearity between the input and the 
output. Some modelings with conventional mathematical 
method are not suitable to describe the nonlinear state of 
the system. Because apart from being complex, the 
parameters are not known certainly. Complex systems 
require effective modeling and have a higher degree of 
accuracy. For this reason, the soft input technique is one 
of the main alternative options because it has been shown 
to be effective in dealing with complex problems and 
nonlinear behavior of control systems 24). Adaptive Neuro-
Fuzzy Inference System (ANFIS) as machine learning 
25,26) was chosen as alternative modeling. ANFIS is based 
on artificial intelligence, which combines fuzzy systems 
and neural networks 27,28) using hybrid learning 24). This 
method is proven to generate better results of modeling. 
ANFIS is used in modeling MR damper or in control 
structures by Nugroho et al. 10), Imaduddin et al. 29), 
Zeinali et al. 30), Zong et al. 31), Wang 32), and Nguyen et al. 
33).  

The efficiency and computaional cost of ANFIS is 
strongly influenced by the form of membership function 
and the number of membership function, so this study 
needs to be carried out. This study was expected to 
develop an accurate MR damper modeling using ANFIS 
with Gaussian and Generalized Bell membership function 
to describe the MR damper's hysteresis characteristics. So, 
the modeling results can be considered for designing a 
control system in the next future studies. 

 
2. Research Methodology 

The MR Damper prototype was manufactured at PT 
Kayaba Indonesia and was designed with an annular-
radial-annular valve type. Furthermore, dynamic testing 
was carried out to measure this prototype's 
characterization using Shimadzu Selvopulser L-type 
Loading Frame with a 4830 controller. This machine 
works by regulating the electric current. It will calculate 
the damping force after getting the command to run from 
the exsiting program from the selvopulser (parameter 
values for the test are inputted in this program). After 
running the program, the damping force will be detected 
by the load cell sensor and then the value will be 
automatically recorded and displayed in the selvopulser 

program on the computer. The experimental configuration 
can be seen in Figure 1. Its parameters were given at 
different amplitude variations of 4, 8, 10, 12, and 16 mm. 
Each amplitude was given a current of 0.25 A difference, 
starting from 0 to 0.75 A and a frequency of 1.5 Hz.  
 
2.1 Fuzzy Inference System 

FIS (Fuzzy Inference System) is also known as a fuzzy 
rule based on a system composed of five function blocks 
34), namely: 
1. A function block that contains several fuzzy if-then 

rules is called a rule base. 
2. A function block that defines the membership function 

of a fuzzy set is called a database. 
3. A function block that shows the inference operation in 

the rule is called a decision making unit. 
4. The function block that converts the cryptic input into 

a degree of match with a linguistic value is called the 
fuzzification interface block. 

5. The function block that converts the fuzzy output into 
cryptic input is called the defuzzification interface. 

 
The basis of the FIS system is to use the expression of 

the if-then logic to generate an output from a set of inputs 
that have been provided or desired. If-then logic is 
expressed in the "IF A THEN B" such as "if pressure is 
large, so volume is small" 34). The value of the fuzzy if-
then rule depends on the selected number of membership 
function configurations from the system. 

In the case of MR damper, the input data for modeling 
is current, displacement, and velocity. There are 
represented by variables I, d, and v. So, the if-then logic 
rule is written as Equation (1), 

 

IF (I is A1) AND (d is B1) AND (v is C1) 
 

THEN 
 

f1 = p1I + q1d + r1v + s1 

(1) 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Experimental set up 
 

2.2 ANFIS Algorithm 
ANFIS (Adaptive Neuro-Fuzzy Inference System) is a 

modeling technique that is composed of a multilayer 
network structure and utilizes fuzzy reasoning and neural 
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network learning 35), so the output of a fuzzy system with 
an exact value will be generated from a fuzzy input model 
of cryptic value 36). In ANFIS there is a hybrid learning 
algorithm 35) that is applied to update the parameters so 
that the final parameters used in the fuzzy system will be 
obtained. Two other methods, namely gradient descent 
method and least squares method 35) were utilized to adjust 
the premise parameter and the consequent parameter 
identifier, respectively. ANFIS is a multilayer network 
where each layer has calculations to solve the problems 
borne by each layer, as written here 36):  
1. The first layer is for calculating the fuzzy 

membership of the input data. 
2. The second layer is to calculate the fitness of each 

fuzzy rule. 
3. The third layer is to calculate the normalized fitness. 
4. The fourth layer is for calculating the output of each 

fuzzy rule. 
5. The fifth or last layer is to calculate the total output 

from the fuzzy system. 
 
Talpur et al. in 2017 37) stated that choosing the number 

of membership functions and the form of membership 
functions will affect ANFIS performance in terms of 
complexity and level of accuracy. The membership 
function is defined as a function that describes the level or 
degree of input data in a value range of 0 to 1 so that the 
difference in the quality of data can be clearly identified. 
The membership function is described in the form of a 
curve and is constructed by several parameters. In this 
study, the membership functions are used for MR damper 
modeling, which was Gaussian and Generalized Bell, as 
can be seen in Figures 2 and 3. 

 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 2: Gaussian MF. 

There are three inputs: current, displacement and 
velocity from the 20th cycle data measurement are used to 
generate the value of force as output. In the first layer, the 
formula of Gaussian and Generalized Bell is used to 
generate the premise parameters, that are shown in 
Equation (2) and (3), 
 

f(I, d, v)= e-(x-ci) 2

2σi 2  (2) 

f(I, d, v)= 
1

1+ �  x-c
a  � 2b

 (3) 

where, f (I, d, v) is the output of the first layer as a function 
of current, displacement, or current, while σi, ci, a, b, c are 
premise parameters.  
 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3: Generalized Bell MF. 

The calculation results from the first layer will be 
calculated in the second layer using AND rules that are 
written in Equation (4) as follows, 

where fi (I) is the output for the current input, fi (d) is the 
output for the displacement input, and fi (v) is the output 
for the velocity input. Each function's magnitude is 
influenced by the value of the premise parameters 
obtained from the first layer. 

The third layer's output is the average of the 
multiplication between each input divided by the number 
of nodes. The formula, as shown in Equation (5), 

 

O3,i= wi�  = wi/∑ win
i=1  (5) 

 
where 𝑤𝑤𝑤𝑤��� is the relative rule weight of the i node.  

The output from the fourth layer is calculated according 
to Equation (6), 

O4,i=wi� gi=wi� (pi(I)+qi(d)+ri(v)+si) (6) 

where 𝑝𝑝𝑝𝑝, 𝑞𝑞𝑞𝑞, 𝑟𝑟𝑟𝑟  and 𝑠𝑠𝑠𝑠  represent the values of the 
consequent parameters that are obtained after the training 
process is complete.  

In this study, however, the output from the membership 
function was chosen to be constant, so that 𝑝𝑝𝑝𝑝 = 𝑞𝑞𝑞𝑞 = 𝑟𝑟𝑟𝑟 
were assumed 0. Then, the consequent parameters in the 
fourth layer are represented only by the value of 𝑠𝑠1 

O2,i=wi=fi(I)×fi(d)×fi(v) (4) 

Gaussian-shaped,  

P=[σ c]=[2 5] 

Bell-shaped,  

P=[a b c]=[2 4 6] 
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(𝑔𝑔𝑔𝑔 = 𝑠𝑠𝑠𝑠). So, the final output from the fourth layer can 
be written as Equation (7), 

 

O4,i=wi� gi=wi� (si) (7) 

 
The average output of the membership function in the 

fourth layer is recalculated in the fifth layer as the final 
output, as shown in Equation (8), 

 
 

O5,i =∑ wi�n
i=1  gi= ∑ wi�n

i=1  (si)/∑ w1n
i=1  (8) 

 
Relative error value from ANFIS is calculated using 

RMSE from Equation (9), 
 

RMSE= √1/n ( ∑  (Zt� -Z) ^2 (9) 

 
where n is number of testing sets, 𝑍𝑍𝑍𝑍��� is actual force, and 
𝑍𝑍 is predicted force. 
 
3. Results and Discussion 
3.1 MR Damper Characterization 

The data from measurement of the MR damper 
characteristics were taken from the 16th cycle of the entire 
MR damper testing cycle and generated a hysteresis 
relationship between force and velocity that can be seen 
in Figures 4 – 8. The damping force will increase when 
the electric current tested on the MR damper is also high 
as a result of the increased pressure drop that occurs in the 
valve 29). Besides the pressure drop, another factor 
affecting the damping force's magnitude is the high and 
low amplitude value. It corresponds to the theory of 
simple harmonic vibrations, which is written according to 
Equation (10), 
 

Y=A sin (ωt) (10) 

where Y is the relative displacement, A is the amplitude, ω 
is the natural frequency, and t is the time. 

From Equation (10), the amplitude will affect the 
relative displacement of a vibration system. The 
derivative of displacement as a function of time (in this 
case is the relative velocity of the piston rod on the MR 
damper) will directly affect the damping force. Since the 
magnitude of the damping force is calculated according to 
the formula = 𝑐𝑐𝑐𝑐, c is the damping force coefficient, and 
v is the velocity. 

Based on those figures, the damping force generated at 
amplitudes of 4 mm to 16 mm when on the on-state 
condition (0.75 A) was more significant than on the off-
state condition (0 A). Also, the damping force for the 
overall amplitude of 16 mm had the most terrific value 

compared to the others. This was according to the theory 
that the damping force is influenced by the damping 
coefficient and the piston rod's relative velocity, which is 
determined by the amplitude value. 
 
3.2 The Results of MR Damper Modeling 

MR damper modeling was done using ANFIS with two 
different membership functions with the number of 
epochs was 2500 and the same configurations of 3-5-6 that 
can be seen in Figure 9. The configurations in this study 
were selected based on the research that was done by 
Imaduddin et al. 29), while the analysis was done by Zeinali 
et al. 30). 

In ANFIS, there is a term called Root Mean Square 
Error (RMSE), which describes the amount of data 
calculation error during the training process, and the 
results will appear when the training process is complete. 
The error value of the training process for Gaussian and 
Generalized Bell is shown in Figures 10 and 11, 
respectively, with the result of Gaussian was 0.1011 while 
Generalized Bell was 0.1079. From the graph, it can be 
seen that the error value generated between the two 
membership functions showed the results reaching 0.1. 
However, the level of accuracy of Gaussian was better 
than Generalized Bell because it showed an error value, 
which was 0.1011 and 0.1079, respectively. The number 
of epochs and fuzzy-rules was the same; it turned out that 
the training error value had a 0.0068 difference. The 
graph's trend showed that the calculated error value for 
Generalized Bell was saturated when it reached almost 
1000 to 2500 epochs. When the number of iterations 
increased, then the error value remained the same. In 
addition to the error value, the differences in ANFIS 
training results with Gaussian and Generalized Bell are 
shown in Table 1. 

Furthermore, the ANFIS training process generated 
parameters representing all training data and are known as 
premise parameters and consequent parameters. The 
premise parameter determines the degree of membership 
from the training data, while the consequent parameter 
determines the membership function's output value. These 
parameters are formulated in determining the value of an 
output from the modeling results. Tables 2 - 4 show the 
premise parameters' values and consequent parameters for 
Gaussian and Generalized Bell membership function. 
Based on the tables, the number of premise parameters 
represents the membership function configuration's input 
value, namely 3-5-6. Meanwhile, the number of 
consequent parameters is the product of the membership 
function's configuration as a fuzzy if-then rule. 

In the scope of MR damper modeling, one of the useful 
parameters that can be chosen to predict the damping force 
using ANFIS is velocity, as described by Zeinali et al. 30). 
Figures 12 – 14 show the force's prediction versus velocity 
in off-state condition at 0 A and on-state at 0.75 A with the 
amplitude variation for 4, 10, and 16 mm. Based on the 
figures, the Gaussian and Generalized Bell membership 
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functions successfully predicted the peak value of force-
velocity.  
 

 
Fig. 4: Plot of force-velocity for 4 mm 

 
Fig. 5: Plot of force-velocity for 8 mm 

 
Fig. 6: Plot of force-velocity for 10 mm 

 
Fig. 7: Plot of force-velocity for 12 mm 

 
Fig. 8: Plot of force-velocity for 16 mm 

 
Fig. 9: ANFIS structure for 3-5-6 MF. 

 
 

I 

d 

v 

f 

-  677 -



EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 08, Issue 03, pp673-685, September 2021 

 

 

 
Fig. 10: Gaussian RMSE 

 

 
Fig. 11: Generalized Bell RMSE 

 

 

 Fig. 12: MR Damper modeling results on the 16th cycle test in 
off-state (0 A) and on-state for 4 mm 

 

Fig. 13: MR Damper modeling results on the 16th cycle test in 
off-state (0 A) and on-state for 10 mm 

 

 
Fig. 14: MR Damper modeling results on the 16th cycle test in 

off-state (0 A) and on-state for 16 mm 
 

Table 1 ANFIS information for Gaussian and Generalized Bell 

ANFIS 

Informations 

Gaussian Generalized Bell 

Epochs 2500 2500 

Number of nodes 214 214 

Number of linear 

parameters 

90 90 
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Number of nonlinear 

parameters 

28 42 

Number of fuzzy-

rules 

90 90 

Value of training 

error 

0,1011 0,1079 

 
Table 2 Premise parameters for Gaussian MF. 

Input MF. σ c 

Current 11 0.039756 -0.004153 

12 0.604219 -0.351618 

13 0.320881 0.72403 

Displacement  21 5.098082 -

20.57685

1 

22 4.499525 -8.989566 

23 1.36592 -0.782151 

24 2.643117 5.528595 

25 2.119668 8.575908 

Velocity 31 30.193096 -

151.0422

84 

32 38.732401 -87.4658 

33 22.121275 -

35.60300

5 

34 22.4923 9.701959 

35 37.153932 64.40899 

36 45.287408 140.3465

63 

 
Table 3 Premise parameters for Generalized Bell MF. 

Input M

F 

A b c 

Current 11 0.002286 2.00917

4 

-8.66E-05 

 12 0.33519 1.95733

7 

0.197528 

 13 0.211905 2.01876

6 

0.602006 

Dsiplacemen

t 

21 4.26646 1.79238

2 

-16.611529 

 22 4.094669 3.59171

8 

-7.706637 

 23 2.944155 -

0.16580

8 

0.100385 

 24 4.848748 6.88285

9 

6.831874 

 25 6.871987 3.79629 13.540689 

Velocity 31 32.69824

4 

1.27020

5 

148.67971

7 

 32 33.15936

4 

1.17714

6 

-90.40958 

 33 29.43965

9 

0.75816 -35.797875 

 34 30.15750

7 

-

0.04668

3 

30.09459 

 35 40.25923

2 

1.61227

6 

81.067577 

 36 30.63752

8 

1.14221

1 

150.46895

6 

 
Following the theory, the damping force generated from 
ANFIS modeling using Gaussian and Generalized Bell 
was directly proportional to the increase in amplitude and 
electric current. 

However, there was an exception for 10 mm because 
one of the velocity-damping force's peak value was not 
predicted correctly. It was caused by the small difference 
value of the displacement from 8 to 10 mm and 10 to 12 
mm, while the other displacement parameters had a 4 mm 
difference value, namely 4, 8, 12, and 16 mm. Still, 
Gaussian and Generalized Bell membership functions 
were able to map the damping force, which was almost the 
same as the test result data. The evaluation results of the 
relative error values to the 16th cycle data testing are 
shown in Table 5. 

Furthermore, it can be determined that each 
membership function's level of accuracy is compared with 
the average relative error values in the same current 
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conditions. In the off-state condition (0 A), Gaussian and 
Generalized Bell generated an average relative error value 
of 7.45% and 7.71%, respectively. The same phenomenon 
also occurred in the on-state condition (0.75 A) for 
Gaussian and Generalized Bell, which generated an 
average relative error value of 12.14% and 13.20%. From 
there, it can be observed that the average relative error 
values generated by Gaussian both in off-state and on-
state conditions had a higher level of accuracy than 
Generalized Bell. A lower relative error value evidenced 
this fact. The same result applied to currents of 0.25 and 
0.5 A. 
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Table 4 Consequent parameters for Gaussian and Generalized Bell 

If-then 

Rules 

Consequent Parameters If-then Rules Consequent Parameters 

Gaussian Generalized Bell Gaussian Generalized Bell 

1 -8.793647698 -25.81086649 46 2.19384411 6.12074608 

2 -2.29320457 -0.4886648 47 0.817232405 -0.345759205 

3 -1.748439591 -3.046028459 48 1.620747585 0.052241079 

4 -1.673680452 2.935599502 49 -1.353341094 -4.125143259 

5 -1.528027213 -3.245283371 50 -1.308399275 -4.311688414 

6 -2.051516492 -3.80859061 51 0.103466957 0.142749218 

7 -2.125132976 -4.136189761 52 1.335350971 2.490750721 

8 -0.716557057 -2.459437291 53 0.857580462 0.767886206 

9 -0.512852651 -2.065684941 54 1.644383943 1.559701725 

10 -0.075548291 4.70334813 55 -1.732805111 -3.981187687 

11 -0.584024313 -2.839468931 56 -0.192948313 0.689588443 

12 -0.161818266 -2.498484743 57 0.682806556 2.483973398 

13 -1.869149739 -0.203973824 58 0.894222137 0.028510324 

14 -0.718483185 1.236860981 59 1.033172705 1.626058501 

15 -0.099990276 1.764036176 60 1.762638645 3.628203913 

16 -1.664230426 -4.256253594 61 -5.362076276 -15.0646137 

17 -0.513686034 1.156332972 62 -4.249359434 2.38346904 

18 -0.048867155 1.846023437 63 -2.794574442 1.819955267 

19 -2.139455656 -3.106856581 64 -4.58750393 -14.82540668 

20 -0.031140378 0.721223673 65 -0.717376086 5.827991202 

21 -1.823211229 -3.816942996 66 2.051742022 14.9858533 
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22 -0.896382293 1.705572623 67 -3.82051117 -1.468492107 

23 -0.37054444 -0.977036973 68 -2.926865778 -0.627888446 

24 -0.060391567 -0.793907304 69 -2.626727088 -0.207408557 

25 -0.149420276 1.787449994 70 -3.149799095 -8.790917453 

26 -1.320077109 -4.155640305 71 1.304391259 6.246806869 

27 -0.919095751 -2.567454311 72 1.82939483 6.616388278 

28 -0.242388313 2.245042636 73 -3.646147508 -7.061133014 

29 -0.573313368 -1.739068096 74 -2.821149597 -6.231396294 

30 -0.102770496 -0.545103018 75 -3.194661334 -5.88208006 

31 -3.90276916 -11.83591939 76 1.140568842 5.867730054 

32 -1.733557774 2.237976863 77 1.231250807 0.398225532 

33 -1.090365173 1.721869009 78 1.954736388 0.407716387 

34 -2.278949931 -10.24892461 79 -3.320124696 -6.447846344 

35 0.923475591 5.178862868 80 -3.31725402 -6.308970276 

36 -0.545681664 6.880643753 81 0.290034143 0.673140517 

37 -1.815589925 -1.000446862 82 1.03219264 2.718555186 

38 -0.990986112 -0.351345334 83 1.301484217 1.050095046 

39 -0.852168765 0.142502653 84 1.950669566 1.772475946 

40 -0.722267202 -5.323496547 85 -4.73095417 -7.801847737 

41 1.231421939 4.526313185 86 0.022345596 1.499529935 

42 1.386741155 4.74104485 87 0.346484995 2.304890225 

43 -1.881660815 -5.6554021 88 1.491668348 1.888206377 

44 -0.798857651 -4.342847263 89 1.310564375 1.056642497 

45 -1.390561544 -4.500251447 90 1.984501282 2.623060161 
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Table 5 Model relative error to the 16th cycle measurement data 
Amplitudes Gaussian Relative Error (%) Generalized Bell Relative Error (%) 

0.0A 0.25A 0.50A 0.75A 0.0A 0.25A 0.50A 0.75A 

4 mm 8.93 11.32 10.61 11.84 9.12 12.48 10.88 12.27 

8 mm 6.43 10.30 11.12 11.52 7.60 9.86 13.16 13.05 

10 mm 9.96 9.83 10.93 14.54 10.24 8.61 10.92 15.53 

12 mm 7.32 8.95 12.13 13.13 6.72 10.03 13.70 14.14 

16 mm 4.62 7.37 8.48 9.69 4.88 7.22 9.27 11.04 

Averages  7.45 9.55 10.65 12.14 7.71 9.64 11.58 13.20 

 
Besides the current, another parameter to determine the 
quality of Gaussian against Generalized Bell compared at 
the relative error value when the same amplitude was 
applied. For 4 mm, the relative error value in Gaussian for 
each electric current started from 0; 0.25; 0.5; and 0,75 A 
was 8.93; 11.32; 10.61; and 11.84%. Consequently, 
Generalized Bell generated relative error values of 9.12, 
12.48, 10.88; and 12.27%. When the amplitude was 16 
mm, the relative error for Gaussian was 4.62; 7.37; 8.48; 
and 9.69%, while Generalized Bell is 4.88; 7.22; 9.27; and 
11.04% (for each current from 0 – 0.75 A). These results 
prove that Gaussian had a higher level of accuracy than its 
counterpart (Generalized Bell). Similar results also 
occurred at amplitudes of 8, 10, and 12 mm. 

Besides that, Gaussian has the advantage of 
distinguishing data quality, for example, small or large, 
high or low 37). A study by 38) proven that Gaussian has the 
best RMSE compared to others. It is because Gaussian can 
plot curves smoothly 37,38) and non-zero at any point 37). 
Based on the table, the relative error values will increase 
when the amount of electric current also increases. For 
example, at an amplitude of 16 mm, the relative error 
value for Gaussian in off-state condition (0 A) was 4.62% 
while in on-state condition (0.75 A) was 9.69%. The 
phenomenon also true for Generalized Bell, which 
generated the relative error value at 4.88% in the off-state 
condition and 11.04% in the on-state condition. These 
results were different from what has been studied by 29). 
The study stated that the greater the value of electric 
current and frequency, the smaller relative error values 
generated, and the relative error values began to consistent 
above the 1 Hz frequency. However, it was further 
explained that there are no clear facts about this 
phenomenon. Most likely due to anomalies originating 
from the data test, which require the same study with the  

 

 
other data from different input and MR damper type 29).  

Overall, the relative error value generated by the two 
ANFIS models was under 20%, and Gaussian showed an 
accuracy level is around 1% higher than Generalized Bell, 
with the maximum relative error was about 14.54% and 
15.53%. These results corresponded to the value of the 
training error, which shows that Gaussian was smaller 
than Generalized Bell, so the accuracy of Gaussian was 
higher than Generalized Bell. It can occur due to a 
difference in the RMSE value generated during the 
training process. If the RMSE value is small, then the 
more accurate the calculations during modeling will be. In 
2015, Gaxiola et al. 38) conducted a study to compare 
several types of membership functions namely Triangular, 
Gaussian, Trapezoidal, and Generalized Bell. These 
results from the study will be used to predict cases of 
Mackey-Glass time series. It showed that the best average 
prediction error (APE) was obtained by Gaussian, which 
was 0.0659. In addition, Ali et al. from 39) proved that 
Gaussian was suitable and performs well when used in 
systems dealing with both probability and statistics. 
Although Gaussian was only formed by two parameters (σ 
and c) 37), but this membership function has advantage can 
precisely, accurately, and clearly of distinguishing data 
quality, for example small or large, high or low 40). Still, 
study by 37) proven that Gaussian has the best RMSE 
compared to others. It is because Gaussian is able to plot 
curves smoothly 37,40) and concise notation so it is able to 
represent data effectively and non-zero at any point 40). 

  
4. Summary 

The MR damper was modelled using ANFIS with two 
membership functions, namely Gaussian and Generalized 
Bell. Each membership function was given the same 
ANFIS training parameters to generate the best results 
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from one proposed model. This study indicated that the 
training error value of Gaussian was 0.1011, while 
Generalized Bell was 0.1079. These membership 
functions generate training error value was close to 0.1. 
However, Gaussian showed an accuracy level of about 1% 
higher than Generalized Bell. Also, Gaussian has the best 
achieve than its counterparts because Gaussian can plot 
curves smoothly and concise notation to represent data 
effectively and non-zero at any point, although two 
parameters only form Gaussian. The evidence of its 
accuracy was from the maximum relative error value 
tested from one of the MR Damper test cycles in off-state 
and on-state conditions, which was 14.54% for Gaussian 
and 15.53% for Generalized Bell. Thus, it can be used as 
an MR damper modeling consideration in future studies' 
control system. 
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Nomenclature 

n number of testing sets (–) 
𝑍𝑍𝑍𝑍��� actual force (kN) 
Z predicted force (kN) 
Y relative displacement (mm) 
A amplitude (mm) 
ω natural frequency (Hz) 
t time (s) 
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