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Abstract: The intelligibility of interrupted speech (interrupted over time) and checkerboard speech (interrupted over time-by-
frequency), both of which retained a half of the original speech, was examined. The intelligibility of interrupted speech stimuli
decreased as segment duration increased. 20-band checkerboard speech stimuli brought nearly 100% intelligibility irrespective
of segment duration, whereas, with 2 and 4 frequency bands, a trough of 35%–40% appeared at the 160-ms segment duration.
Mosaic speech stimuli (power was averaged over a time-frequency unit) yielded generally poor intelligibility (610%).
The results revealed the limitations of underlying auditory organization for speech cues scattered in a time-frequency domain.
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1. Introduction

Speech perception has been investigated by degrading speech signals in time and frequency. Periodic interruption [Fig
1(b)], introduced systematically by Miller and Licklider (1950), has been one of the typical techniques that degrades speech
in the time domain [e.g., Powers and Wilcox (1977), Shafiro et al. (2016), and Shafiro et al. (2018)], along with local time-
reversal [e.g., Steffen and Werani (1994), Saberi and Perrott (1999), Matsuo et al. (2020), Ueda et al. (2017), Ueda et al.
(2019), Ueda and Ciocca (2021), and Ueda and Matsuo (2021)]. In frequency, many researchers have used filtering [e.g.,
French and Steinberg (1947), Miller and Nicely (1955), Studebaker et al. (1987), Warren et al. (2005), and Humes and
Kidd (2016)]. The third type of techniques focuses on spectrotemporal modulations (Elliott and Theunissen, 2009; Venezia
et al., 2016; Flinker et al., 2019), and thus this type of techniques smears modulations to degrade speech [e.g., ter Keurs
et al. (1992, 1993), Shannon et al. (1995), and Venezia et al. (2016)]. A group of techniques in this type employs small
units of time and frequency, and transforms the signal properties within each unit. Pointillistic speech (Kidd et al., 2009),
mosaic speech (Nakajima et al., 2018; Santi et al., 2020), and pixelated speech (Schlittenlacher et al., 2019) come into this
group.

Suppose that the “on” and “off” durations are equal, an interrupted speech stimulus [Fig. 1(b)] consists of a half
of the original speech signal [Fig. 1(a)]. In this case, it is well-known that the intelligibility of interrupted speech can be
80% or higher at segment durations shorter than 100ms for phonetically balanced monosyllabic word lists (Miller and
Licklider, 1950), and still exceeds 50% even for an extended segment duration, up to 650ms, for meaningful sentences
(Powers and Wilcox, 1977). The simultaneous onsets and offsets along the frequency axis (Bregman, 1990), or temporal
coherence in a spectrum, may provide strong perceptual cues to connect interrupted segments of speech stimuli, yielding
such robust speech perception without any filling noise [cf. Ueda and Ciocca (2021)]. On the other hand, it is possible to
create a variety of stimulus conditions, in which speech is interrupted in an incoherent manner across frequency, while
the proportion of reduction from the original speech is kept constant. We name an extreme case for this type of degraded
speech checkerboard speech [Fig. 1(c)], after checkerboard noise (Howard-Jones and Rosen, 1993). Checkerboard speech
stimuli enable us to examine how auditory organization for spectrotemporal segments affects intelligibility; nevertheless, to
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date, no investigation has attempted this approach. Thus, to compare the intelligibility between interrupted speech stimuli
and checkerboard speech stimuli with systematically manipulated segment duration and frequency division, maintaining
50% reduction from the original speech, is the primary purpose for the present investigation.

Our second purpose was to check whether or not periodicity (about 50–500Hz) and temporal fine structure
(about 600–10 000Hz) in speech (Rosen, 1992) play a crucial role in organizing the perceptual cues scattered in time and
frequency. Mosaicking (Nakajima et al., 2018) was employed to remove periodicity and temporal fine structure from inter-
rupted speech and checkerboard speech [Fig. 1(d)]. It is a kind of noise-vocoding (Shannon et al., 1995), in which band
noises are modulated with amplitude envelopes of filtered speech, whereas in mosaicking, the amplitude envelopes are
stepwise functions, reflecting the average power for each time-frequency unit. Similarly, as in noise-vocoded speech, the
periodicity and temporal fine structure in the original speech signal are lost; nevertheless, mosaic speech is almost perfectly
intelligible (>95% intelligibility) with the 20 frequency bands (critical bands) and 40-ms segment duration. Extending the
segment duration to 80ms drops the intelligibility to about 45% (Nakajima et al., 2018).

2. Methods

2.1 Listeners

A total of 22 Japanese native listeners (ages 20–25) participated in this study with 2 unpaid listeners participating in exper-
iment 1 and 20 paid listeners participating in experiment 2. None of the listeners participated in both experiments. Their
normal hearing within the frequency range of 250–8000Hz was ensured by the tests with an audiometer (Rion AA-56,
Rion, Kokubunji, Japan). The research was conducted with prior approval of the Ethics Committee of Kyushu University
(approval ID: 70).

2.2 Stimuli and conditions

A total of 180 (experiment 1) or 150 (experiment 2) Japanese sentences spoken by a female talker were extracted from the
“Multilingual Speech Database 2002” (NTT Advanced Technology Corp., Kawasaki, Japan; 16 000-Hz sampling, 16-bit lin-
ear quantization). The sentences in the database were based on articles published in newspapers and magazines. The aver-
age duration per sentence was 2.5 s (SD¼ 0.40 and 0.39 for experiments 1 and 2, respectively), and the average number of
morae (a mora is a syllable-like unit in Japanese) per sentence was 18 (SD¼ 2.9 and 2.8, respectively). The extracted spo-
ken sentences were edited to eliminate unnecessary blanks and noises. The edited speech samples were converted into
44 100-Hz sampling, with 16-bit linear quantization with PRAAT (Boersma and Weenink, 2020) prior to the subsequent
processing.

Fig. 1. Examples of narrowband spectrograms for degraded speech, produced from the same fragment of an original spoken sentence by a
female talker. (a) Original speech, reconstructed with bandpass filtering into 4 frequency bands (passbands of 50–570, 570–1600, 1600–3400,
3400–7000Hz) and segmenting with an 80-ms time window including 5-ms root-of-raised-cosine ramps in amplitude, (b) interrupted speech
with the 80-ms segment duration, (c) checkerboard speech with the 4 frequency bands and 80-ms segment duration, and (d) checkered
mosaic speech with the same time-frequency segmentation.
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The frequency range from 50 to 7000Hz was divided into 2, 4, and 20 frequency bands with bandpass filter banks
in both experiments 1 and 2. The passbands of the filters for the two frequency band condition were 50–1600 and
1600–7000Hz, whereas for the four frequency band condition, the passbands were 50–570, 570–1600, 1600–3400, and
3400–7000Hz. The passbands for the 20 frequency band condition were determined according to the critical bandwidths (see
the filter bank B in Ueda and Nakajima, 2017). We adopted the four frequency bands determined by Ueda and Nakajima
(2017). The four frequency bands were the basis for the two frequency bands. The resulted cutoff frequency in the middle, i.e.,
1600Hz, was quite similar to the typical crossover frequency of intelligibility curves obtained in highpass and lowpass filtering
experiments [e.g., French and Steinberg (1947), Miller and Nicely (1955), and Studebaker et al. (1987)]. Each filter was con-
structed as a concatenated convolution of an upward frequency glide and its temporal reversal (an FIR filter). The frequency
characteristics of the filters showed transition regions of 100-Hz wide, with out-of-band attenuations of 50–60 dB.

Filtered signals were segmented at every 20, 80, and 320ms in experiment 1. In experiment 2, they were seg-
mented at every 20, 40, 80, 160, and 320ms. All segment durations included 5-ms rise and fall root-of-raised-cosine ramps
in amplitude. To produce interrupted speech stimuli, every other segment in a filtered output was replaced with a silent
segment of the same length. Whereas, to produce checkerboard speech stimuli, the “on” and “off” phases of interruption
were switched across adjacent frequency bands. Then, the segments were concatenated, and summed up across frequency.
In experiment 1, mosaicked versions for both interrupted speech and checkerboard speech stimuli were prepared, too. To
produce mosaicked stimuli, an average of power in each segment in a bandpass filtered output (a frequency band) was cal-
culated and reflected in an amplitude envelope. Band-pass noise of the same bandwidth as the filtered speech signal was
modulated with the amplitude envelope in each frequency band and summed up across frequency.

In summary, in experiment 1, three steps of segment duration (20, 80, and 320ms), three steps of frequency
bands (2, 4, and 20), two types of reduction (interruption and checkerboard), and mosaic processing (non-mosaicking and
mosaicking) were combined to yield 36 conditions in total. In experiment 2, five steps of segment duration (20, 40, 80,
160, and 320ms), three steps of frequency bands (2, 4, and 20), and two types of reduction (interruption and checker-
board) were combined to produce 30 conditions in total. A block of trials consisted of a set of full conditions. Five blocks
of trials, in which the order of conditions was randomized in each block, were constructed. Sentences were randomly allot-
ted to one of the trials for individual participants.

2.3 Procedures

The stimuli were presented to participants diotically through headphones (Beyerdynamic DT 990 PRO, Beyerdynamic
GmbH, Heilbronn, Germany) in a sound-attenuated booth (Music cabin SC3, Takahashi Kensetsu, Kawasaki, Japan). The
headphones were driven with an optical interface (USB interface, Roland UA-4FX, Roland Corp., Shizuoka, Japan) and a
headphone amplifier with a built-in D/A converter (Audiotechnica AT-DHA 3000, Audiotechnica, Machida, Japan). The
sound pressure level of the original speech was adjusted to about 73 dB (A), using a 1000-Hz calibration tone provided
with the speech database. The sound pressure level was measured with an artificial ear (Br€uel & Kjær type 4153, Br€uel &
Kjær Sound & Vibration Measurement A/S, Nærum, Denmark), a condenser microphone (Br€uel & Kjær type 4192), and a
sound level meter (Br€uel & Kjær type 2250).

Participants were instructed to write down exactly what they heard with hiragana or katakana (sets of symbols
that are used to represent Japanese morae) without guessing. They were instructed to write down the morae that they
could immediately recognize, and not to fill blanks afterwards from the context. Each mora was examined whether it was
correct or incorrect. The number of correct morae was counted for each sentence. A blank response was counted as incor-
rect. Homophone errors were permitted. Percentages of correct morae were calculated for summarizing and displaying the
data, whereas statistical analysis was performed on the binomial (correct or incorrect) results.

3. Results

3.1 Experiment 1

The details of the results are provided in supplementary material.1 Summarizing briefly, the results showed (1) the intelli-
gibility (measured as mora accuracy) for the interrupted speech stimuli decreased monotonically from close to perfect
(99%) at the 20-ms segment duration to 55% at the 320-ms segment duration, (2) the intelligibility for the 20-band check-
erboard speech stimuli was close or equal to 100%, irrespective of segment duration, (3) the intelligibility for the 2- and 4-
band checkerboard speech stimuli varied drastically from more than 94% at the 20-ms segment duration, via less than
46% at the 80-ms segment duration, to about 60% at the 320-ms segment duration, and (4) for the mosaicked speech
stimuli, the intelligibility was generally poor (less than 10%) irrespective of the types of reduction (i.e., interrupted or
checkered), except for the stimuli with the finest division (with the 20 frequency bands and 20-ms segment duration),
which brought more than 85% intelligibility.

3.2 Experiment 2

The percentages of mora accuracy are represented in Fig. 2(a). The results for the interrupted speech stimuli were averaged
over the number of frequency bands. The intelligibility for the interrupted speech stimuli went down from almost perfect
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(97%) at the 20-ms segment duration to a little better than a half point (56%) at the 320-ms segment duration along with
the segment duration, as expected from the previous investigations with meaningful speech sentences [e.g., Powers and
Wilcox (1977)]. On the other hand, the intelligibility for the 20-band checkerboard speech stimuli stayed at ceiling
(97%–99%) irrespective of segment duration, whereas the intelligibility for the 2- and 4-band checkerboard speech stimuli
was highest (93%) at the 20-ms segment duration, lowest (35% or 40%) at the 160-ms segment duration, and moderate
(50% or 53%) at the 320-ms segment duration.

These observations were supported by the analysis using a generalized linear mixed model (GLMM) with a logistic
linking function as implemented in an add-in for JMP (SAS Institute Inc., 2018). The data were analyzed for fixed effects of
segment duration (continuous predictor), number of frequency band (continuous predictor), type of reduction (categorical
predictor), and their interactions, and for random effects of listener and sentence. This model revealed the p values smaller
than 0.05 in all effects and interactions: segment duration (b ¼ �0:007; SE < 0:001; t ¼ �25:94, p< 0.001), number of fre-
quency band (b ¼ 0:096; SE ¼ 0:005, t¼ 18.92, p< 0.001), type of reduction (b ¼ �0:226; SE ¼ 0:029; t ¼ �7:75,
p< 0.001), number of frequency band � type of reduction (b ¼ 0:105; SE ¼ 0:005, t¼ 20.62, p< 0.001), segment duration
� number of frequency band (b < 0:001; SE < 0:001, t¼ 2.40, p¼ 0.017), segment duration � type of reduction
(b ¼ 0:002; SE < 0:001, t¼ 8.17, p¼ 0.001), and segment duration � number of frequency band � type of reduction
(b < 0:001; SE < 0:001, t¼ 2.46, p¼ 0.014).

Figure 2(b) shows the differences in the mora accuracy between the interrupted speech and checkerboard speech
stimuli. The average accuracy for the interrupted speech stimuli at each segment duration is represented as the baseline,
that is, “0” of the vertical axis. The deviations of the intelligibility for the 2- and 4-band checkerboard speech stimuli,
reached the maximum at the 80-ms segment duration (–40% and –44%, respectively). The monotonic increase observed
for the 20-band checkerboard speech stimuli essentially reflected the decrement of intelligibility for the interrupted speech
stimuli.

4. Discussion

A growing body of literature has revealed the relationship between speech intelligibility and the modulation power spec-
trum (MPS) (Singh and Theunissen, 2003; Elliott and Theunissen, 2009; Venezia et al., 2016; Sohoglu and Davis, 2020;
Flinker et al., 2019). The majority of the previous investigations has identified the area confined to the low spectral
(<2 cyc/kHz) and slow temporal (< 10Hz) modulation rates as the area significantly contributing to intelligibility (Elliott
and Theunissen, 2009; Venezia et al., 2016; Sohoglu and Davis, 2020). A signal analysis with the MPS was performed for
the current stimuli, followed by an analysis of variance (ANOVA). The analysis results shown in the supplementary mate-
rial1 were generally in a good agreement with the previous results.

Both the interrupted speech stimuli and checkerboard speech stimuli used in the present investigation retained a
half of each original speech signal; nevertheless, in most of the cases, the intelligibility for these stimuli was not 50% [sup-
plementary Fig. S1(a) and Fig. 2(a)]. With regards to the interrupted speech stimuli, it has been well-known that intelligi-
bility is high, 80% or above, at the segment duration shorter than 100ms, and then declines gradually as the segment

Fig. 2. Results of experiment 2. (a) Mean percentages of mora accuracy (n¼ 20) for the interrupted speech and checkerboard speech stimuli
as a function of segment duration and number of frequency band. The data for the interrupted speech stimuli were averaged over the number
of frequency bands. (b) Mora accuracy differences between the interrupted speech and checkerboard speech stimuli. The percentages of cor-
rect for the checkerboard speech stimuli are represented as deviations from those for the interrupted speech stimuli at corresponding segment
duration. Error bars in panel (a) reflect standard error of the mean (SEM).
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duration is extended, to about 50% at the segment duration close to or longer than the duration of a word, i.e., about
500ms (Miller and Licklider, 1950). The present results are in line with this general trend.

By contrast, the intelligibility for the checkerboard speech stimuli was affected by both the number of frequency
bands and segment duration, with a wider range of variation (35%–93%) than the range for the interrupted speech stimuli
(56%–97%). Furthermore, segment duration was the primary determinant for the intelligibility for the checkerboard speech
stimuli with a small number (2 or 4) of frequency bands; on the other hand, the intelligibility for the stimuli with 20
bands was close to 100% irrespective of segment duration. Therefore, the results suggest that speech cue integration across
critical bands occurred for the 20-band stimuli irrespective of segment duration, whereas the integration across frequency
bands was difficult for the 2- and 4-band stimuli, especially at the 80- and 160-ms segment duration. Thus, the auditory
system exhibits limitations in organizing spectrotemporally scattered speech cues, if the number of frequency bands is
small. Furthermore, the limitations should be responsible for the intelligibility difference between the interrupted speech
stimuli and checkerboard speech stimuli with a small number of frequency bands, which is particularly apparent at the
80-ms segment duration [Fig. 2(b)].

The multiple time window model, proposed by Poeppel and his colleagues (Giraud and Poeppel, 2012; Chait
et al., 2015; Teng et al., 2016; Teng and Poeppel, 2020), assumes that two temporal windows, i.e., a short (�20–30ms)
and a long (�200ms) window, process speech (or non-speech) in parallel. The model successfully explains the almost per-
fect accuracy found in the current results for non-mosaicked stimuli at the 20-ms segment duration, because both win-
dows work properly for the stimuli with this segment duration. Further investigation is warranted to integrate the effects
of the spectrotemporal segmentation into the model.

Shafiro et al. (2018) showed that a minimum of word intelligibility appeared at the 250-ms segment duration for
interrupted speech stimuli, when the stimuli were lowpass-filtered at 2000Hz. They claimed that the segment duration at
the dip could be estimated with a probability summation for how many words were sampled in each segment (mainly at
low frequency of interruption) and how often a word was sampled (mainly at high frequency of interruption): At the min-
imum point, the proportion of words, i.e., words contained per each segment, is equal to the number of segments per
word. The present authors introduced an analogous probability summation, taking a mora as a perceptual unit instead of
a word, of which the average duration was about 140ms (2500=18). The model predicts the segment duration at the mini-
mum intelligibility to be about 100ms, which points to the bottom of the U-shaped curves observed for the checkerboard
speech stimuli with a small number of frequency bands [Fig. 2(a)]. The successful prediction implies that, for spectrally
degraded (coarsely segmented) speech stimuli, the segment duration at the minimum intelligibility may be determined by
the average duration of the perceptual unit. The conjecture needs further verification in future investigations.

Periodicity and temporal fine structure might be a basis for the sharp contrast observed between the interrupted
and checkered stimuli in the non-mosaicked conditions, because the differences in the non-mosaicked conditions vanished
away in the mosaicked conditions [experiment 1; supplementary Fig. S1(b)]. Periodicity and temporal fine structure may
be crucial in organizing the scattered or interrupted perceptual cues in the interrupted and checkered speech stimuli,
except for the stimuli with the finest division. It is indeed conceivable that continuity among interrupted segments in
degraded speech affects intelligibility. This idea is supported by the drastic reduction in intelligibility (close to 60%)
observed in the interrupted locally time-reversed speech for just 40-ms silent intervals and the recovery of intelligibility
(about 30%) by filling the intervals with 10-dB noise (Ueda and Ciocca, 2021).

Our findings in the 20-band checkerboard speech stimuli might be considered to be comparable to the results
obtained with the 8- and 16-band checkerboard masking noise of the 50-ms segment duration, made from pink noise, by
Howard-Jones and Rosen (1993); they observed that the checkerboard noise had the same level of a masking effect as continu-
ous pink noise. This seems to be comparable to the current results, in which the 20-band checkerboard speech stimuli always
produced almost perfect intelligibility like original speech irrespective of segment duration. However, they found a nearly 10-dB
difference in masked thresholds between their logarithmically scaled 2- and 4-band conditions, which can be contrastive to the
current results. It seems likely that further investigations are warranted to fill the gap between the two studies.

In conclusion, the newly proposed experimental paradigm employing interrupted, checkered, and mosaicked
speech stimuli looks promising in further exploring the mechanisms of spectrotemporal processing in speech perception.
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