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SCHUBERT CALCULUS, SEEN FROM TORUS EQUIVARIANT TOPOLOGY

SHIZUO KAJI

Abstract. We survey the classical (ordinary) Schubert calculus in the first half of this note.
Then we lift everything up to an equivariant setting; we see three descriptions of the equivariant
cohomology of flag varieties and investigate their relation. The example given in §10 will be
helpful to read this note. (This version fixed some errors in the published one.)

This note derives from my talk given at Toric Topology Workshop KAIST 2010. I would like
to thank Prof. Dong Youp Suh and KAIST for the hospitality during the workshop. I am also
grateful to Prof. Masaki Nakagawa for pointing out mistakes in the earlier version.

1. Introduction: Schubert’s quiz

“How many lines are there in the three dimensional space which intersects all the four given
lines ?” Hermann Schubert (1848-1911) considered this kind of problems in an insightful but
not rigorous way. His method goes as follows. First, we define a series of logical symbols
concerning a line in the space: A line

Ω(1234) : without any restriction
Ω(1324) : intersecting a given line
Ω(2314) : goes through a given point
Ω(1423) : lying on a given plane
Ω(2413) : lying on a given plane and goes through a given point on the plane
Ω(3412) : lying on a given line, i.e. the line itself

Then we can do logical calculation such as:

Ω(1324) ∩Ω(1324) = Ω(2314) ∪Ω(1423),

which means in the usual language that “A line intersecting two given lines is either 1) going
through the intersection point of the two, or 2) lying on the plane spanned by the two.” Note that
for this “calculation,” we have to assume that the problem doesn’t lose generality if we move
the two given lines so that they have an intersection. This assumption is what Schubert called
the “principle of continuity,” which we accept for the present.
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To solve Schubert’s quiz, what we want to know is Ω(1324) ∩Ω(1324) ∩Ω(1324) ∩Ω(1324) and the
calculation proceeds as:

=(Ω(2314) ∪Ω(1423)) ∩ (Ω(2314) ∪Ω(1423))
=(Ω(2314) ∩Ω(2314)) ∪ 2(Ω(2314) ∩Ω(1423)) ∪ (Ω(1423) ∩Ω(1423)) (♣)
=Ω(3412) ∪ ∅ ∪Ω(3412)

=2Ω(3412).

This kind of counting problems belong to enumerative geometry. Hilbert asked for a rigor-
ous foundation for it as the 15th problem in his 1900 lecture and now Schubert’s quiz can be
rephrased in terms of intersection theory of a Grassmaniann manifold ( see [27] ).

First we need to consider the problem in CP3 instead of R3 (this is justified by [38]), to allow
an “intersection at infinity” and to work in algebro-geometric setting. The space of projective
lines in CP3 is identified with the Grassmannian manifold Gr(2, 4) of two dimensional linear
sub-spaces of C4, and the conditions are replaced by its sub-varieties, called the (classical)
Schubert varieties, which is indexed by a certain subset of permutations.

Definition 1.1. We denote an element w =

(
1 2 · · · n + m

w(1) w(2) · · · w(n + m)

)
of the permutation

group S n+m of n + m-letters by one-line notation (w(1),w(2), . . . ,w(n + m)).
A set WPn ⊂ S n+m of Grassmaniann permutations with a descent at n is defined to be

WPn := {w = (i1, i2, . . . , in+m) ∈ S n+m | i1 ≤ i2 ≤ · · · ≤ in, in+1 ≤ in+2 ≤ · · · ≤ in+m} .

Then, the Schubert variety in Gr(n, n + m) corresponding to a Grassmaniann permutation is
defined1 by the incidence condition:

Definition 1.2.
Ωw :=

{
Vn ∈ Gr(n, n + m) | dim(Vn ∩ C

i) ≥ #{ j | n < j ≤ n + m,w( j) ≤ i}
}
, w ∈ WPn .

Example 1.3. Ω(1324) ⊂ Gr(2, 4) is the set of those V2 such that

dim(V2 ∩ C
1) ≥ 0, dim(V2 ∩ C

2) ≥ 1, dim(V2 ∩ C
3) ≥ 1, dim(V2 ∩ C

4) ≥ 2,

which means that the projective line V2 has intersection at a projective point with the fixed
projective line C2, and intersection at a projective point with the fixed projective plane C3, and
intersection at a projective line with the whole space CP3 = C4. The latter two are redundant
since they are automatically satisfied.

Remark 1.4. Usually Schubert varieties in Grasmaniann manifolds are indexed by (n,m)-
partitions {(λ1 ≥ λ2 ≥ · · · ≥ λn) | m ≥ λ1, λn ≥ 0}, or in other words, Young diagram.
Correspondence between Grassmaniann permutations and partitions is given by

(λ1 ≥ λ2 ≥ · · · ≥ λn) 7→ (1 + λn, 2 + λn−1, . . . , i + λn+1−i, . . . , n + λ1, j1, j2, . . . , jm),

where j1 ≤ j2 ≤ · · · ≤ jm are the those numbers not appearing as i + λn+1−i.

In this setting, we can think of ∩ and ∪ in the calculation (♣) as the intersection product and
the sum in the intersection cohomology (the Chow ring), which makes Schubert’s argument
rigorous.

1WPn can be thought of as the minimal length left coset representatives of W/WPn = S n+m/S n × S m. Ωw is
independent of the choice of a representative w in the coset W/WPn .
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2. What is Schubert calculus

In the calculation (♣) we had to resort to geometric intuition to calculate the product of two
Schubert varieties. A long-standing open problem in Schubert calculus is to give an “good”
algorithm for the structure constants. We first see the precise statement of the problem in a
general setting.

Let G be a connected complex Lie group of rank r, B be its Borel sub-group. Then the (right
quotient) homogeneous space G/B (or more generally, G/P where B ⊂ P) is known to be a
smooth projective variety and called the (generalized) flag variety. Alternatively, if we take
K ⊂ G to be a maximal compact connected sub-group, then by Iwasawa decomposition we
have a diffeomorphism K/T → G/B induced by the inclusion K ↪→ G. We use both forms
interchangeably, in particular, flag varieties are easily seen to be compact from the latter.

Example 2.1. Let G = GLn+m(C) and B be the sub-group of upper-triangular matrices. The
space of flags2

Fln+m = {0 ( V1 ( · · · ( Vn+m = Cn+m | dimC(Vi) = i}

admits a transitive G action and B fixes the base point (0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cn+m). So
Fln+m � G/B. We can take a maximal compact sub-group U(n + m) ⊂ GLn+m(C) and then
Fln+m � U(n + m)/T.

Similarly, if we take a sub-group B ⊂ Pn ⊂ GLn+m(C) as

Pn :=
{

A ∈ GLn+m(C) | A =

(
X Y
0 Z

)
, X ∈ GLn(C),Z ∈ GLm(C)

}
,

then the quotient GLn+m/Pn is the Grassmannian manifold Gr(n, n + m).

2.1. Cell cohomology. The cohomology group H∗(G/B;Z) (or equivalently, the Chow group
A∗(G/B) ) has a distinguished basis as we will see here. Let B− be the Borel sub-group opposite
to B, i.e. B ∩ B− is the maximal algebraic torus, and W be the Weyl group of G. W is a finite
group generated by the simple reflections s1, . . . , sr corresponding to the simple roots α1, . . . , αr.
The length l(w) ∈ Z≥0 for w ∈ W is the minimal length of the presentation of w by a product of
s1, . . . , sr.

The Bruhat decomposition G �
∐

w∈W B−wB induces a left T -stable cell decomposition
G/B �

∐
w∈W B−wB/B which has even cells only. It is known that B−wB/B � Cl(w0)−l(w)

([6]), where w0 is the longest element of W. In particular, the real dimension of G/B is
dimR(Cl(w0)) = 2l(w0).

Example 2.2. When G = GLr(C), T can be taken as the sub-group of the diagonal matrices, B
be the sub-group of the upper triangular matrices, B− be the sub-group of the lower triangular
matrices, and W = S r is the sub-group of the permutation matrices. The simple root αi (1 ≤ i ≤
r − 1) is identified as ti+1 − ti, where ti’s are the coordinates of Cr.

Any matrix A in GLr(C) can be decomposed as A = LPU, where L is a lower triangular
matrix, P is a permutation, and U is an upper triangular matrix. This is often referred to as the
LPU-decomposition of the invertible matrices.

2Imagine drawing a picture of (base point on the ground ⊂ flagpole ⊂ entire flag), then you’ll know why it is
named “flags.”
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Example 2.3. Let G be GL4(C) and w = (3412) = s2s1s3s2 ∈ W = S 4. Then l(w) = 4 and
l(w0) = l(s3s2s1s3s2s3) = 6.

w =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ∈ GL4(C)

B−w =


0 0 ∗ 0
0 0 ∗ ∗

∗ 0 ∗ ∗

∗ ∗ ∗ ∗

 ⊂ GL4(C)

B−wB/B =


0 0 1 0
0 0 ∗ 1
1 0 0 0
∗ 1 0 0

 � C2 ⊂ GL4(C)/B

Definition 2.4. The closure of the cell B−wB/B becomes a sub-variety (possibly with rational
singularity) of real codimension 2l(w) called the Schubert variety and denoted by Ωw.

The Poincare dual of its fundamental class determines a cohomology class [Ωw] ∈ H2l(w)(G/B;Z),
called the Schubert class and denoted by Zw.

Remark 2.5. Here we adopt convention of taking left B− orbit. The original definition of a
Schubert variety is the left B orbit BwB/B, which is dimension 2l(w) instead of codimension
2l(w). If we take the Kronecker (instead of Poincare) dual of BwB/B, it gives the same class Zw,
since BwB/B and B−wB/B are dual to each other. (That is, BwB/B ∩ B−wB/B = pt.)

Example 2.6. For G = GLr(C), the Schubert variety B−wB/B is defined by the incidence con-
dition on the flags:{

0 ( V1 ( · · · ( Vr = Cr | dim(Vi ∩ C
j) ≥ rw(i, j) := #{p | r − i < p ≤ r,w(p) ≤ j}

}
and has codimension 2l(w), twice the number of inversions in w.

Schubert varieties for general G/P cases are defined as:

Ωw := B−wP/P, w ∈ WP,

where WP is the left coset W/WP. Here WP is the Weyl group of P. Note that this coincide with
the definition for Grassmaniann manifolds Gr(n, n + m) � GLn+m/Pn.

Since the Bruhat decomposition involves only even dimensional cells,

Theorem 2.7 (Basis Theorem). H∗(G/P;Z) is a free Z-module generated by Schubert classes,
i.e.

H∗(G/P;Z) �
⊕
w∈WP

Z〈Zw〉, in particular, H∗(G/B;Z) �
⊕
w∈W

Z〈Zw〉,

Remark 2.8 (See [9]). From Morse theoretic point of view, Schubert classes can be considered
as follows. Let t and g be the Lie algebra for T and K respectively. If we take X0 ∈ t, where X0 an
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internal point of the Weyl chamber, K/T is identified with the adjoint orbit {gX0g−1 | g ∈ K} ⊂ g.
Then we have a perfect Morse function

h : K/T → R, X 7→ |X − X0|
2

with the critical points {wX0 | w ∈ W} of index dim(K/T ) − 2l(w).

By the Basis Theorem, the cup product3 of two Schubert classes can be represented by a
linear combination of Schubert classes

Zu ∪ Zv =
∑

w∈WP

cw
uvZw, cw

uv ∈ Z,

where cw
uv is called the structure constant. If we replace the ordinary cohomology H∗ by the

K-theory K∗, the quantum cohomology QH∗, or their equivariant versions H∗T , K∗T , QH∗T , we
have corresponding problem of the structure constants cw

uv ∈ h∗(pt), where h∗ = H∗,K∗,H∗T ,K
∗
T

or QH∗T .

Remark 2.9. Since the (ordinary) structure constant can be regarded as counting a certain
number of solutions, it is known to be a positive integer. It also has other interpretations in
representation theory and combinatorics of symmetric functions (see [35]).

Question 2.10. Give a combinatorial algorithm for the structure constant.

A lot of partial answers are known so far. For example:

• Classical Pieri, Monk and Chevalley rules (see [20])
• Littlewood-Richardson rule for H∗(Gr(n, n + m)) [34]
• Knutson and Tao’s Puzzle rule for H∗T (Gr(n, n + m)) [28]
• Coskun’s formula for H∗(GLr(C)/B) [14] and (combined with [12]) for QH∗(Gr(n, n +

m)).

Note that since the projection p : G/B→ G/P induces an injection on the cohomology rings
(and the Chow rings)

H∗(G/P;Z)
p∗
−→ H∗(G/B;Z)

Zw 7→ Zw,

the problem for G/P is a sub-problem for G/B. This is also true for other cohomology theories.
So from now on, we only take up the case of full flag varieties G/B.

3. Schubert calculus in Bott tower

There are a lot of ways to attack the problem, such as by investigating intersections geomet-
rically, employing combinatorial technique, and reducing the problem to that of polynomials,
which we will pursue here.

Before proceeding further, let us consider a corresponding problem of structure constants in
a familiar setting of Bott manifolds.

3In cohomology, we use the symbol ∪ for product, while ∩ in intersection theory.
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Definition 3.1. A Bott tower is an iterated CP1-bundle

CP1

��

CP1

��

CP1

�

��
Bn

πn // Bn−1
πn−1 // · · ·

π2 // B1
π1 // B0 = pt,

where each CP1-bundle structure comes from a projectivization of a line bundle Li, i.e. Bn =

P(Li ⊕ C) with C the trivial bundle over Bn−1.
The highest total space Bn is called a Bott manifold, which is a 2n-dimensional toric variety

with the canonical action of T n.

Let σi be the 0-section of πi. Then a cell decomposition of Bn indexed by I = (I1, I2, . . . , In) ∈
{0, 1}n is given by

Bn =
⋃

I∈{0,1}n
b(In) ◦ b(In−1) ◦ · · · ◦ b(I1)(pt),

where b(0) = σi and b(1) = π−1
i . Hence if we put ΓI as the class (Kronecker) dual to

b(In) ◦ b(In−1) ◦ · · · b(I1)(pt), we have H∗(Bn;Z) =
⊕

I∈{0,1}n Z〈ΓI〉. Note that ΓI ∈ H2l(I)(Bn;Z),
where l(I) is the number of 1’s in I. Here we encounter a problem similar to Schubert calculus
(and in fact, closely related to it as we’ll see in Theorem 3.3), that is, to determine the structure
constant cK

IJ for
ΓI ∪ ΓJ =

∑
K∈{0,1}n

cK
IJΓK .

This is solved as follows. Let xi be the class corresponding to (0, 0, . . . , 1, . . . , 0) with the
only 1 at i-th entry, i.e. the class coming from the i-th fiber CP1, and ei ∈ H∗(Bi−1;Z) be the
Euler class of Li. Then we have the following description for the cohomology ring:

(A) H∗(Bn;Z) �
Z[x1, . . . , xn]

(x2
i + eixi)

,

and an identification (B) ΓI = xI = xI1
1 xI2

2 · · · x
In
n in this presentation. We can write ei =

−
∑

j<i a jix j, a ji ∈ Z so that the problem is now reduced to calculation of polynomials.

Example 3.2. Let Bn be the Bott tower defined4 by (a ji) =


0 1 1 −2
0 0 0 1
0 0 0 1
0 0 0 0

. Then,

x2
1 = 0, x2

2 = x1x2, x2
3 = x1x3, x2

4 = −2x1x4 + x2x4 + x3x4 ∈ H∗(Bn;Z)

(Γ(1000) + Γ(0001))4 = (x1 + x4)4

= x4
4 + 4x1x3

4 = (−2x1 + x2 + x3)3x4 + 4(x1x2x2
4 + x1x3x2

4)
= (8 − 12 + 6)x1x2x3x4 = 2x1x2x3x4

= 2Γ(1111)

4Euler classes determine each step of CP1-bundles, and hence, the Bott tower.
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The number 2 in this example is corresponding to the answer for the quiz in §1 by the fol-
lowing Theorem.

Theorem 3.3 (Bott-Samelson [9], Duan [16], Willems [40]). Let w = sk1 sk2 · · · skl(w) ∈ W be a
reduced (minimal length) expression, and Bl(w) be the Bott manifold determined by the upper
triangular matrix (a ji), where

a ji =

−2
〈αk j , αki〉

|αk j |
2 ( j < i)

0 ( j ≥ i).

For I ∈ {0, 1}l(w),wI ∈ W is defined to be sI1
k1

sI2
k2
· · · sIl(w)

kl(w)
. Then∑

wI=u

ΓI ∪
∑
wJ=v

ΓJ = cw
uvΓ(11···1),

where cw
uv is the structure constant5 for H∗(G/B;Z).

Skech of proof. See either [9], [16], or [40] for detail.
Bl(w) is geometrically constructed as Pk1 ×B Pk2 ×B · · · ×B Pkl(w)/B, where Pi is the minimal

parabolic sub-group corresponding to αi so that Pi/B � CP1. Then the multiplication map
ψw : Bl(w) → G/B induces in cohomology ψ∗w(Zu) =

∑
wI=u ΓI and hence∑

wI=u

ΓI ∪
∑
wJ=v

ΓJ = ψ∗w(ZuZv) = ψ∗w

 ∑
l(w′)=l(u)+l(v)

cw′
uvZw′

 =
∑

l(w′)=l(u)+l(v)

cw′
uvψ

∗
w(Zw′) = cw

uvΓ(11···1).

�

Since we know how to compute the LHS, we can obtain the structure constant only from the
information of the root system of G.

Example 3.4. Let G = GL4(C) and w = s2s3s1s2 ∈ S 4. Since 〈αi, α j〉 =


0 (|i − j| > 2)
−1 (|i − j| = 1)
2 (i = j)

,

we have (a ji) =


0 1 1 −2
0 0 0 1
0 0 0 1
0 0 0 0

, as in Example 3.2. If we put u = s2, then u = wI iff I =

(1000), (0001). So the coefficient of Zw in the expansion Z4
u is calculated by∑

wI=u

ΓI


4

= (x1 + x4)4 = 2x1x2x3x4 = 2Γ(11···1).

Theorem 3.3 gives an algorithm for the structure constant in a uniform way for all Lie types.
However, as we saw in Example 3.2, it is not positive, i.e. it contains a lot of cancellation on
the way of computation. A positive formula is yet to be found.

5Replacing the relations in (A) x2
i = −eixi by x2

i = αki xi−eixi, we have a formula for the equivariant cohomology.
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4. Schubert polynomials

As we saw in the previous section, the problem of structure constant can be solved by reduc-
ing it to that for polynomials. The key facts which enables us to do the calculation in Bott towers
are (A) a polynomial description for the cohomology ring and (B) polynomial representatives
for the basis classes ΓI . So for the flag varieties, the first step should be to give a polynomial
description for the cohomology ring and second is to find a polynomial representative for a
Schubert class.

Fortunately enough, a handy presentation for H∗(G/B) is known for more than fifty years,
but we have to be a little careful for its coefficients. Let R be a ring in which all the torsion
primes of G invertible, i.e. the primes such that H∗(G;Z) has p-torsion are invertible.

G GLn(C) SO2n+1(C) Sp2n(C) SO2n(C)
K/T U(n)/T SO(2n + 1)/T Sp(n)/T SO(2n)/T

torsion primes ∅ 2 φ 2

G GC2 FC4 EC6 EC7 EC8
K/T G2/T F4/T E6/T E7/T E8/T

torsion primes 2 2, 3 2, 3 2, 3 2, 3, 5
Table 1. Torsion primes (see [7])

Theorem 4.1 ([8]).

H∗(G/P; R) �
H∗(BT ; R)WP

(H+(BT ; R)W)
.

In particular, the cohomology of a flag variety is isomorphic to the coinvariant algebra

H∗(G/B; R) �
R[x1, . . . , xr]

(R+[x1, . . . , xr]W)
,

which we will denote by RW[x].

Example 4.2. For G = GLn+m(C) and W = S n+m, the above Theorem holds for the integral
coefficients. We have

H∗(GLn+m(C)/B;Z) �
Z[x1, . . . , xn+m]
(c1, . . . , cn+m)

,

where ci is the i-th elementary symmetric function in the n + m variables x1, . . . , xn+m. Further-
more, for Gr(n, n + m) = GLn+m(C)/Pn,

H∗(Gr(n, n + m);Z) �
Z[c′1, . . . , c

′
n, c
′′
1 , . . . , c

′′
m]

(c1, . . . , cn+m)
= H∗(GLn+m(C)/B;Z)S n×S m ,

where c′i and c′′i are the elementary symmetric functions respectively in x1, . . . , xn and in xn+1, . . . , xn+m.
Geometrically, xi can be considered as the first Chern class for the canonical line bundle

over Fln+m = GLn+m(C)/B with the fiber Vi/Vi−1 and hence ci is the i-th Chern class for the
trivial bundle with fiber

⊕
i Vi/Vi−1 = Cn. c′i and c′′i are the i-th Chern classes for the bundle

over Gr(n, n + m) with fiber Vn and V⊥n respectively.
8



Next thing to do is to find a representative for a Schubert class. Such a polynomial repre-
sentative is called the Schubert polynomial. There are choices for Schubert polynomials and
several definitions are given so far. For example,

• Schur functions for H∗(Gr(n, n + m))
• Lascoux-Schützenberger’s original Schubert polynomials for H∗(GLn(C)/B) [32].
• Q- and Q̃-Schur functions for H∗(Sp(n)/U(n)) and H∗(SO(2n + 1)/U(n)) [37, 31].
• Billey-Haiman [4], Fomin-Kirillov [19], etc. for H∗(G/B), where G is a classical group.
• Lascoux-Schützenberger’s original double Schubert polynomials for H∗T (GLn(C)/B) [32].
• Ikeda-Mihalcea-Naruse [25], Kresch-Tamvakis [29] for H∗T (G/B), where G is a classical

group.
• Grothendieck polynomials for K(GLn/B) [33].
• Quantum Schubert polynomials for QH∗(GLn(C)/B) [18, 17].

Lascoux-Schützenberger’s Schubert polynomial for type A Lie group is definitive; it has all the
desirable combinatorial properties. For other classical types, each definition has both advan-
tages and disadvantages. For exceptional types, no definition is known nor even “What is a
desirable property ?”

5. Equivariant cohomology of flag varieties

As is often the case with manifolds carrying a group symmetry, the geometry of flag varieties
become easier to access when we take an additional equivariant structure into account. From
now on, we consider the problem in an equivariant setting and provide some machinery to attack
it.

A flag variety G/B is equipped with a left T -action induced by the left multiplication. The
Borel construction according to this action is defined as the following fiber bundle:

G/B→ ET ×T G/B→ BT,

where ET is the universal G-bundle (which also serves as the universal T -bundle) and ET ×T

G/B = {[e, gB] | e ∈ ET, gB ∈ G/B, [e, gB] = [te, tgB],∀t ∈ T }. The ordinary cohomol-
ogy of ET ×T G/B is called the equivariant cohomology of G/B and denoted by H∗T (G/B;Z).
H∗T (G/B;Z) is a H∗T (pt;Z) = H∗(BT ;Z) = Z[t1, . . . , tr] algebra induced by the equivariant map
G/B→ pt.

Since Schubert varieties are T -stable sub-varieties, they also form a basis for the equivariant
cohomology:

Theorem 5.1 (Basis Theorem). H∗T (G/B;Z) is a free Z[t1, . . . , tr]-module generated by Schubert
classes, i.e.

H∗T (G/B;Z) �
⊕
w∈W

Z[t1, . . . , tr]〈Zw〉.

Here again, the ring structure according to this distinguished basis is the problem. In other
words,

Question 5.2. Give an algorithm for the structure constants cw
uv(t) ∈ Z[t1, . . . , tr] for H∗T (G/B;Z),

where
Zu ∪ Zv =

∑
w∈W

cw
uv(t)Zw.

9



By [23], they are again known to be “positive,” i.e. cw
uv is a polynomial in the simple roots with

positive coefficients. Therefore, a positive algorithm is desirable.

Remark 5.3. We can recover the ordinary cohomology from the equivariant one by the forget-
ting homomorphism

H∗T (G/B;Z) = H∗(ET ×T G/B;Z)→ H∗(G/B;Z)

induced by the fiber inclusion of the Borel construction. So the equivariant structure constant
reduces to the ordinary one by evaluating at ti = 0 (1 ≤ i ≤ r).

5.1. Polynomial description. Just as in the case of the ordinary cohomology, a polynomial
description of the equivariant cohomology is useful. For H∗T (G/P; R), we have an analogous
result to Theorem 4.1.

Proposition 5.4. As H∗(BT ; R)-algebras,

H∗T (G/P; R) � H∗(BT ; R) ⊗H∗(BG;R) H∗(BT ; R)WP .

In particular, H∗T (G/B; R) � H∗(BT ; R) ⊗H∗(BG;R) H∗(BT ; R).

Proof. Consider the Eilenberg-Moore spectral sequence (see [36]) for the following pullback

G/P� _

��

G/P� _

��
ET ×T G/P

��

// EG ×G G/P

��

BP

BT // BG
with the E2-term TorH∗(BG;R)(H∗(BP; R),H∗(BT ; R)), converging to H∗T (G/P; R) � H∗(ET ×T

G/P; R). Recall from [8] that H∗(BG; R) � H∗(BT ; R)W and H∗(BP; R) � H∗(BT ; R)WP . Since
H∗(BT ; R) is free over H∗(BG; R), there are only non-trivial entries in the 0-th column and so
E2 � H∗T (G/P; R) as algebras. Here E2 � TorH∗(BG;R)(H∗(BP; R),H∗(BT ; R)) is just the tensor
product H∗(BP; R) ⊗H∗(BG;R) H∗(BT ; R). �

We denote the polynomial algebra in ti’s (xi’s) by R[t] (respectively R[x])6. Then as R[t]-

algebras, H∗(BT ; R) ⊗H∗(BG;R) H∗(BT ; R) �
R[t1, . . . , tr] ⊗ R[x1, . . . , xr]

J
, where J is the ideal

generated by f (t1, . . . , tr) − f (x1, . . . , xr) for all positive degree W-invariant polynomials f . We
denote it by RW[t; x]. Since H∗T (G/B;Z) is torsion-free, H∗T (G/B;Z) can be regarded as a Z[t]-
sub-algebra of H∗T (G/B; R) � RW[t; x]. This is the key point in the later discussion.

5.2. GKM description. A major advantage of considering Schubert calculus in the torus equi-
variant setting is the availability of the localization technique.

By the definition of the Weyl group W = N(T )/T , we can easily see that the fixed point set
of the left torus action on G/B is {wB/B | w ∈ W}. Since the inclusion iw : wB/B ↪→ G/B is an
equivariant morphism, we have the localization map

H∗T (G/B;Z)
⊕

w∈W i∗w
−−−−−−→

⊕
w∈W

H∗T (wB/B;Z) �
⊕
w∈W

H∗(BT ;Z).

6We consider the degree of generators ti and xi to be 2 to match the degree of the cohomology ring.
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Recall that in the Bruhat decomposition G/B �
∐

w∈W B−wB/B, each cell B−wB/B is equivari-
antly contractible to the fixed point wB/B. Hence by the Mayer-Vietoris sequence

0→ H∗T (G/B;Z)→
⊕
w∈W

H∗T (B−wB/B; Z) �
⊕
w∈W

H∗T (wB/B;Z) �
⊕
w∈W

H∗(BT ;Z),

we see that the localization map is injective.
To identify the image of the localization map, we introduce the following oriented graph:

Definition 5.5 ([1, 22]). The GKM graph for a flag variety G/B has a vertex set W the Weyl

group of G. There is a labeled oriented edge v
β
−→ w for a positive root β iff w = sβv and

l(w) > l(v). We denote v ≤ w if there is an oriented path from v to w. This partial order on the
Weyl group is called the (left) weak Bruhat order.

Theorem 5.6 ([1, 22]). The image of the localization map in
⊕

w∈W H∗(BT ;Z) is precisely the
list of polynomials {hw ∈ H∗(BT ;Z) � Z[t] | w ∈ W} which satisfies the following condition
(referred to as the GKM condition):

hw − hv ∈ 〈β〉 if v
β
−→ w.

Now we have three descriptions for the equivariant cohomology of G/B:
• Additive description

⊕
w∈W Z[t1, . . . , tr]〈Zw〉

• Polynomial description RW[t; x] =
R[t1, . . . , tr] ⊗ R[x1, . . . , xr]

J
• GKM description

{
{hw ∈ Z[t] | w ∈ W} | satisfying the GKM condition

}
In the following sections, we’ll investigate their relationship.

6. Left W ×W-action on H∗T (G/B;Z)

To investigate the relationship between the three description for H∗T (G/B;Z), we make use of
a right W ×W-action on ET ×T G/B ' ET ×T K/T defined by:

(ET ×T K/T ) × (W ×W) → (ET ×T K/T )[
e, gT

]
× (w′, v) 7→

[
w′−1e,w′−1gvT

]
.

Note that this action is well-defined because w ∈ W = N(T )/T . For notational convenience, we
always use primed letters w′, v′, . . . for the element of the first factor of W × W while w, v, . . .
for the second factor.

Consider the following pull-back diagram:

K/T� _

��

K/T� _

��
ET ×T K/T

p1

��

p2
// EK ×K K/T

��

BT

K/T � � // BT // BK

Since p1([e, gT ]) = [e] ∈ BT, p2([e, gT ]) = [e, gT ] = [g−1e,T ] = [g−1e] ∈ ET ×K K/T �
BT , the W × W-action is compatible with the standard right action on BT × BT via (p1, p2) :

11



ET ×T K/T → BT × BT . Moreover, since iw([pt]) = [e,wT ] and w([e,T ]) = [e,wT ], we have
iw = w ◦ i1. Hence we have,

Proposition 6.1. The induced left W × W-action on H∗T (G/B; R) is represented on f (t; x) ∈
RW[t; x] by f (w′−1(t); w−1(x)) and the restriction map i∗w is represented by
i∗w( f (t; x)) = i∗1( f (t; w−1(x))) = f (t; w−1(t)) ∈ R[t].

Since i∗w( f (t; x)) − i∗sβw( f (t; x)) = f (t; w−1(t)) − f (t; w−1sβ(t)) is divisible by a multiple of β,
this partially explains the GKM condition in Theorem 5.6. Theorem 5.6 says much more since
it holds with the integral coefficients; a class f (t; x) ∈ RW[t; x] � H∗T (G/B; R) is integral iff
f (t; w−1(t)) − f (t; w−1sβ(t)) is divisible by β for all positive roots β.

Corollary 6.2 (cf. [25]). On the GKM description, the induced left W×W-action is represented
by (

(u′, v)h
)

w (t) = hu′−1wv(u′−1(t)).

Proof. The commutativity of the action and the localization gives the proof; for a class {hw(t)} ∈⊕
w∈W H∗(BT ;Z), choose a representative f (t; x) ∈ RW[t; x] such that i∗w( f (t; x)) = f (t; w−1(t)) =

hw(t). Then from the previous Proposition,(
(u′, v)h

)
w (t) = i∗w((u′, v) f (t; x))

= i∗w f (u′−1(t); v−1(x))

= f (u′−1(t); v−1w−1(t))

= u′
(

f (t; v−1w−1u′(t))
)

= u′ (hu′−1wv(t))

= hu′−1wv(u′−1(t))

�

7. Divided difference operators

To handle Schubert calculus combinatorially, a powerful tool called the divided difference
operator will be defined using the W×W-action of the previous section. Then we can investigate
a characterization of the representative for a Schubert class both in the GKM and the polynomial
descriptions.

For a simple root αi, there is the associated minimal parabolic sub-group Pi whose Weyl
group is generated by si, and Pi/B � CP1.

We consider the following two CP1-bundles:

CP1
� _

��

Pi/B� _

��
CP1 � � // ET ×T G/B

p1

��

p2
// ET ×T G/Pi

��
Pi/B � � // EPi ×Pi G/B // EPi ×Pi G/Pi

,

12



Then we have two maps:

∆i : H∗T (G/B;Z)
(p2)∗
−−−→ H∗−2

T (G/Pi;Z)
p∗2
−→ H∗−2

T (G/B;Z),

δi : H∗T (G/B;Z)
(p1)∗
−−−→ H∗−2

Pi
(G/B;Z)

p∗1
−→ H∗−2

T (G/B;Z),
where (p1)∗ and (p2)∗ are the push-forward maps.

Definition 7.1 (cf. [2, 15]). The right divided difference operator for w ∈ W is defined as

∆w = ∆i1 ◦ · · · ◦ ∆ik : H∗T (G/B;Z)→ H∗−2l(w)
T (G/B;Z).

where w = si1 · · · sik ∈ W is a reduced expression. ∆w is independent of the choice of a reduced
expression.

The left divided difference operator δw is defined similarly and also independent of the choice
of a reduced expression.

Proposition 7.2. ∆i operates on f (t; x) ∈ RW[t; x] as:

∆i f (t; x) =
f (t; x) − f (t; si(x))

−αi(x)
,

where αi(x) ∈ R[x] � H∗(BT ; R) is the i-th simple root expressed in the x variable.

Sketch of proof. By Leray-Hirsch Theorem, H∗T (G/B; R) is a free H∗T (G/Pi; R)-module gener-
ated by {1, ωi}, where ωi is the i-th fundamental weight. Hence any element of H∗T (G/B; R)
can be written as a + bωi, where a, b ∈ H∗T (G/Pi; R). Since (p2)∗(a + bωi) = −b, we have
∆i(a + bωi) = −b. On the other hand, si(a + bωi) = a + b(ωi − αi(x)) and αi(x) ∈ H0(BT ; R) ⊗
H2(BT ; R) ⊂ H2

T (G/B; R), so we have the conclusion. �

Similarly,

δi f (t; x) =
f (t; x) − f (si(t); x)

αi(t)
.

Corollary 7.3. On the GKM description, we have

∆i(h)w(t) =
hw(t) − hwsi(t)
−αi(w−1(t))

and

δi(h)w(t) =
hw(t) − hsiw(si(t))

αi(t)
.

Proof. Choose f (t; x) ∈ RW[t; x] such that i∗w( f (t; x)) = f (t; w−1(t)) = hw(t). Then

∆i(h)w(t) = i∗w(∆i f (t; x))

= i∗w

(
f (t; x) − f (t; si(x))

−αi(x)

)
=

f (t; w−1(t)) − f (t; siw−1(t))
−αi(w−1(t))

=
hw(t) − hwsi(t)
−αi(w−1(t))

.

�
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Note that ∆i is a (degree −2) R[t]-module morphism while δi is not. This implies that δi is
peculiar to the equivariant cohomology, while ∆i can act on the ordinary cohomology.

The following remarkable Proposition reveals a hierarchy of Schubert classes in such a way
that it enables us the induction on the Bruhat order of the Weyl group.

Proposition 7.4 (cf. [2, 25]). ∆wZv =

Zvw−1 (l(vw−1) = l(v) − l(w))
0 (otherwise).

,

and δwZv =

Zwv (l(wv) = l(v) − l(w))
0 (otherwise).

.

Sketch of proof. For the statement for the right divided difference operator, we only have to
show ∆iZw = Zwsi when l(wsi) = l(w) − 1. Note that in this case, there is a reduced word for w
of the form s j1 s j2 · · · s jl(w)−1 si. As in the proof of Theorem 3.3, we take ψw : Bl(w) → G/B. Then

ET ×T Bl(w)

π

��

ψw // ET ×T G/B

p2

��
ET ×T Bl(w)/Pi

ψw // ET ×T G/Pi.

Since π∗π∗([Γ(11···1)]) = [Γ(11···0)] = ψ∗w(Zwsi), by the commutativity of push-forward map, we
have the result.

The statement for the left divided difference operator follows similarly from the equivalence
ET ×Pi Bl(w) � ET ×T Bl(s j′1

s j′2
···s j′l(w)−1

) for w = sis j′1
s j′2
· · · s j′l(w)−1

.
�

Proposition 7.5 ([1, 30]). The image under the localization map {hv = i∗v(Zw) | v ∈ W} of a
Schubert class Zw is characterized by the following three conditions:

(1) hv is homogeneous of degree 2l(w), satisfying the GKM condition.
(2) hv = 0 if l(v) < l(w) or (l(v) = l(w) and v , w).
(3) hw =

∏
∃v,v

β

−→w
β.

Proof. (1) Zw represents a class in degree 2l(w).
(2) Since B−wB/B =

∐
v≥w B−vB/B, those fixed points which lies in Ωw are {vB/B | v ≥ w}.

Hence i∗v(Zw) , 0 only when v ≥ w.
(3) When l(wsi) = l(w) + 1, by Corollary 7.3 and Proposition 7.4 we have

w(αi)hw = w(αi)i∗w(∆i(Zwsi)) = −i∗w(Zwsi) + i∗wsi
(Zwsi).

From (2) above, i∗w(Zwsi) = 0 and hence w(αi)i∗w(Zw) = i∗wsi
(Zwsi). For w = si1 · · · sil(w) , we

obtain inductively

i∗w(Zw) =

l(w)∏
k=1

si1 · · · sik−1αik =
∏
∃v,v

β

−→w

β.

On the other hand, suppose that there are two lists of polynomials {hv}, {h′v} satisfying the two
conditions. hv − h′v vanishes on all v, l(v) ≤ l(w). If hu − h′u , 0 for some u, then by the GKM
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condition, it should be divisible by
∏
∃u′,u′

β

−→u
β and so it has a degree at least 2l(u) > 2l(w),

which contradicts |hu − h′u| = 2l(w). �

By Proposition 7.4, Schubert classes are obtained by applying the divided difference operator
to a higher Schubert class in the Bruhat order. The top class Zw0 ∈ H2l(w0)

T (G/B;Z) corresponding
to the longest element w0 ∈ W produces the other Schubert classes by Zw = ∆w−1w0Zw0 .

Corollary 7.6. (1) The localization image of the top class is given as:

i∗v(Zw0) =


∏

β:positive roots β (v = w0)
0 (v , w0)

.

(2) The localization image of a Schubert class is given by:

i∗v(Zw) = cv
w,v.

In particular, i∗v(Zw) is a polynomial of the simple roots with positive coefficients. (An
explicit formula is given in [3].)

(3) (Newton Interpolation formula) f (t; x) =
∑

w∈W ∆w( f )(t; t) · Zw

Proof. (1) Since w0 is the longest element, for any positive root β, l(sβw0) < l(w0). So the
assertion follows from Proposition 7.5 (3).

(2) Since i∗u(ZvZw) = i∗u(Zv)i∗u(Zw) = 0 unless u ≥ v,w by the proof of Proposition 7.5
(2), the product ZvZw should expand as

∑
u≥v,w cu

v,wZu. Applying localization, we obtain
i∗v(ZvZw) =

∑
u≥v,w cu

v,wi∗v(Zu). Again by Proposition 7.5 (2), i∗v(Zu) = 0 unless v ≥ u. So
i∗v(ZvZw) = cv

v,wi∗v(Zv) and i∗v(Zw) = i∗v(ZvZw)/i∗v(Zv) = cv
v,w.

(3) Suppose f (t; x) =
∑

v∈W av(t) · Zv. Then ∆w( f )(t; x) =
∑

v∈W av(t) · ∆w(Zv).

Since i∗e(Zv) =

1 (v = e)
0 (v , e)

and i∗e(∆w(Zv)) = 0 unless w = v, we have ∆w( f )(t; t) =

i∗e(∆w( f )) = aw(t).
�

If we find polynomial representativesSw(t; x) ∈ RW[t; x] for Zw, we can calculate the structure
constants cw

u,v = ∆w(Su ·Sv)(t; t) by (3) above.

Definition 7.7. A representative Sw(t; x) ∈ RW[t; x] ( or more precisely its lift to R[t; x]) of a
Schubert class Zw is called the double Schubert polynomial for w ∈ W.

The problem of finding such a polynomial is often referred to as Giambelli problem.

By Proposition 7.5, a polynomial f (t; x) ∈ R[t; x] of degree 2l(w) represents the Schubert
class Zw iff

f (t; v−1(t)) = 0 (∀v , w, l(v) ≤ l(w)), f (t; w−1(t)) =
∏
∃v,v

β

−→w

β.

On the other hand, by Proposition 7.4 (1), a representative Sw(t; x) can be obtained by
Sw(t; x) = ∆w−1w0(Sw0(t; x)). Thus, a representative Sw0(t; x) for the top class Zw0 produces all

the others. The top classSw0(t; x) ∈ RW[t; x] is characterized bySw0(t; w−1(t)) =


∏

β:positive roots β (w = w0)
0 (w , w0)

,

however, there are no known method to produce such a polynomial representative in general.
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Example 7.8. Lascoux and Schützenberger defined in [32] the double Schubert polynomials for
GLr(C)/B recursively as follows:

Sw0(t; x) =
∏
i+ j<l

(xi − t j)

Sw(t; x) = ∆w−1w0(Sw0(t; x))

The localization of the top class satisfiesSw0(t; w−1(t)) =
∏

i+ j<l(tw−1(i)−t j) =


∏

i> j(ti − t j) (w = w0)
0 (w , w0)

.

It can be verified that for a Grassmann permutation, Sw is identified with a double Schur func-
tion.

More concretely, when n = 3,

S(123) = 1,S(312) = (x1 − t2)(x1 − t1),
S(213) = x1 − t1,S(132) = x2 − t2 + x1 − t1,

S(231) = (x2 − t1)(x1 − t1),S(321) = (x2 − t1)(x1 − t2)(x1 − t1),

and by Corollary 7.6 (3), we can calculate for example,

Z2
(213) = (t1 − x1)2 =

∑
w∈S 3

∆w((x1 − t1)2)(t; t) · Zw = (t2 − t1)Z(213) + Z(312).

Example 7.9. For G of type Bn,Cn and Dn, Fulton and Pragacz [21] give a representative
for the top class7. Recall that the Weyl group for G = SO2n+1(C),G = Sp2n(C) is the signed
permutations of n-letters, and that for G = SO2n(C), it is the signed permutations of n-letters
with even number of negative signs.

Let w0 be the longest element in W, that is,

w0 =

(−1,−2, . . . ,−n) (G = SO2n+1(C), Sp2n(C), SO4n′(C)))
(1,−2,−3, . . . ,−n) (G = SO4n′+2(C))

.

Then

Sw0(t; x) = w0

det(E)
∏
i> j

(xi − t j)

 ,
where E is an n × n-matrix (ei j) with

ei j =


1
2 (cn+1+ j−2i(x) + cn+1+ j−2i(t)) (G = SO2n+1(C))
cn+1+ j−2i(x) + cn+1+ j−2i(t) (G = Sp2n(C))
1
2 (cn+ j−2i(x) + cn+ j−2i(t)) (G = SO2n(C))

Example 7.10. For GC2 /B, the Weyl group W = 〈s1, s2〉 is the dihedral group of order 12 and
R = Z[1

2 ]. We can take generators of R[x] = R[x1, x2] such that

s1(x1) = −x1, s1(x2) = 3x1 + x2, s2(x1) = x1 + x2, s2(x2) = −x2.

7They consider in the context of degeneracy locus of flag bundles and the formula is a bit different.
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Then we find a polynomial representative

Sw0(t; x) =
1
2

(x1 + t1)(x1 − t1 − t2)(x1 − 2t1 − t2)(x1 + t1 + t2)(x1 + 2t1 + t2)(x2 + 3t1 + t2).

8. Reduction to the ordinary cohomology

Since H∗T (G/B;Z) is a free H∗(BT ;Z)-module, the equivariant cohomology recovers all the
information of the ordinary cohomology. In fact, the augmentation

r1 : H∗T (G/B;Z)→
H∗T (G/B;Z)
(H+(BT ;Z))

� H∗(G/B;Z)

gives a map from H∗T (G/B;Z) to H∗(G/B;Z), which is represented on the polynomial descrip-
tion as

r1 : RW[t; x] 3 f (t; x) 7→ f (0; x) ∈ RW[x].
Since r1 is compatible with the right divided difference operators, it maps the equivariant Schu-
bert classes to the ordinary ones. In other words, if we know polynomial representativesSw(t; x)
for the equivariant Schubert classes, then we obtain representatives for the ordinary Schubert
classes by Sw(x) = Sw(0; x).

On the other hand, we can consider the following map

H∗T (G/B;Q) → H∗T (G/B;Q)W � H∗T (G/G;Q) = H∗T (pt;Q) = H∗(BT ;Q)

p 7→
1
|W |

∑
w∈W

w(p)

On the polynomial description, it is represented as

r2 : QW[t; x] 3 f (t; x) 7→
1
|W |

∑
w∈W

f (t; w−1(x)) =
1
|W |

∑
w∈W

f (t; w−1(t)) ∈ Q[t].

Here
∑

w∈W f (t; w−1(x)) =
∑

w∈W f (t; w−1(t)) inQW[t; x] because
∑

w∈W f (t; w−1(x)) is W-invariant.
It is easily seen that ∆i◦r2 = r2◦δi, and hence r2(Zw) represents Zw−1 in the ordinary cohomology.
By Proposition 6.1, f (t; w−1(t)) = i∗w( f ) so r2 is equal to the composition

H∗T (G/B;Q)
i∗
−→

⊕
w∈W

H∗(BT ;Q)
sum
−−→ H∗(BT ;Q).

Note that by Corollary 7.6 (2),

r2(Sw−1) =
1
|W |

∑
v∈W

Sw−1(t; v−1(t)) =
1
|W |

∑
v∈W

i∗v(Sw−1) =
1
|W |

∑
v∈W

cv
vw−1(t) ∈ Q[t]

is always a positive polynomial representative of Zw in the ordinary cohomology for any repre-
sentative Sw−1 ∈ QW[t; x] of Zw−1 in the equivariant cohomology.

9. Some open problems

Question 9.1. • How to find a polynomial representative of the top Schubert class.
• An appropriate characterization of the double Schubert polynomials of exceptional

types.
• Similar problems for other cohomology theories ( e.g. double Grothendieck polynomials

in the equivariant K-theory ).
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10. Example

We list properties in a fundamental example of GLr(C)/B:

G GLr(C)
B upper triangular matrices
K U(r)
T diagonal matrices

G/B � K/T Flr = {0 ( V1 ( · · · ( Vr = Cr | dimC(Vi) = i}
W symmetric group S r

H∗(BT ;Z) Z[t1, . . . , tr]
simple roots αi = ti+1 − ti (1 ≤ i ≤ r − 1)

simple reflections si = (i, i + 1) (1 ≤ i ≤ r − 1)
positive roots ti − t j (i > j)

longest element of W w0 = (r, r − 1, . . . , 1)

H∗(G/B;Z) ZW(t; x) �
Z[t1, . . . , tr, x1, . . . , xr]

(c1(t) − c1(x), . . . , cr(t) − cr(x))

right divided difference ∆i( f (t; x)) =
f (t1, . . . , tr, x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xr)

xi+1 − xi

left divided difference δi( f (t; x)) =
f (t1, . . . , ti−1, ti+1, ti, ti+2, . . . , tr, x1, . . . , xr)

ti+1 − ti
top class in H∗T (G/B;Z) Sw0(t; x) =

∏
i+ j<r(xi − t j)

localization i∗w(Zw0) Sw0(t; w−1(t)) =
∏

i+ j<r(tw−1(i) − t j) =


∏

i> j(ti − t j) (w = w0)
0 (w , w0)

type An−1 Bn Cn Dn

G GLn(C) SO2n+1(C) Sp2n(C) SO2n(C)
K/T U(n)/T SO(2n + 1)/T Sp(n)/T SO(2n)/T

dim(G/B) n(n − 1) 2n2 2n2 2n(n − 1)
#W n! 2nn! 2nn! 2n−1n!

type G2 F4 E6 E7 E8

G GC2 FC4 EC6 EC7 EC8
K/T G2/T F4/T E6/T E7/T E8/T

dim(G/B) 12 48 72 126 240
#W 12 1152 51840 2903040 696729600

11. Further readings

Here is a list for the references:
• A note by Jonah Blasiak

(http://math.berkeley.edu/˜hutching/teach/215b-2005/blasiak.pdf)
is a charming invitation for Schubert calculus of the complex Grassmannian.
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• Kleiman and Laksov’s survey [27] is a classical and definitive introduction, where geo-
metrical aspects are stressed.
• Fulton’s book [20] is a comprehensive text for the subject.
• Kumar’s book [30] is another comprehensive text. In particular, Chapter XI gives a

detailed account for §7 of this note.
• Manivel’s book [35] deals with newer materials, mainly from a combinatorial perspec-

tive.
• Fulton’s lecture note (http://www.math.washington.edu/˜dandersn/eilenberg/)

is the only resource I know which provides a systematic treatment for the equivariant
Schubert calculus.
• Brion’s lecture note [11] is written from a view point of algebraic geometry, and surveys

singularity of Schubert varieties.
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[32] A. Lascoux and M. Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982),

no. 13, 447–450.
[33] A. Lascoux and M. Schützenberger, Structure de Hopf de lfanneau de cohomologie et de lfanneau de
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