Durability Study on 150 MPa High Strength Mortar with Micro Fiber and Cracks under Chloride Environment from The Viewpoint of Steel Corrosion

Theng, Loke Yen Department of Civil and Structural Engineering, Kyushu University

濱田, 秀則 Department of Civil and Structural Engineering, Kyushu University

Sagawa, Yasutaka Department of Civil and Structural Engineering, Kyushu University

Yamamoto, Daisuke Department of Civil and Structural Engineering, Kyushu University

他

https://hdl.handle.net/2324/4481596

出版情報:2019-11-11 バージョン: 権利関係:

DURABILITY STUDY ON 150 MPa HIGH STRENGTH MORTAR WITH MICRO FIBER AND CRACKS UNDER CHLORIDE ENVIRONMENT FROM THE VIEWPOINT OF STEEL CORROSION

Kyushu University

Loke Yen Theng, Hidenori Hamada, Yasutaka Sagawa, Daisuke Yamamoto, Hirotaka Hazehara*, Tadaaki Nozawa**, Yuki Kobayashi** *Fukuoka University ** SE Corporation

Advantages

- \checkmark High strength and high durability.
- \checkmark Reduce clearance height.
- \checkmark Increase construction speed.
- \checkmark Less maintenance cost.

High Strength Mortar Bridge

Specimens

What will happen if cracks happened on surface of structure? Can **cover depth reduce** to 20mm?

Density (g/cm³)

Objectives

- ✓ To study the **trend and effect of corrosion** inside high strength mortar before and after crack repaired.
- Identify the minimum allowable crack width of high strength mortar with cover 20mm.

Strength (N/mm ²)	150	30 (OPC)
Cover Depth (mm)	40 and 20	70 and 40
Crack Width (mm)	0 ~ 0.46	0 ~ 0.26
Bar Size (mm)	16	16
No. of Bar	1	1

Parameters

Size : 150mm(B) x 150mm(H) x 490mm(L) *150mm(B) x 250mm(H) x 690mm(L)

*For specimen with cover depth 70mm

Strength (N/mm ²)	150
Bending Stress (N/mm ²)	20
Tension Stress (N/mm ²)	7
Cracking Strength (N/mm ²)	6.8
Elastic Modulus (N/mm ²)	4.6x10⁴
Poisson Ratio	0.2
Effective Diffusion coefficient, De (cm ² /year)	0.00591

Movement of chloride ion towards steel

Experimental and Results

Testing Methods

Purpose

a) Half-cell potential measurement : Identify the potential corrosion of steel

Measurement up to 431 days

- Polarization resistance b)
- Passivity grade C)
- - : Measure rate of corrosion of steel
 - : Classify the passivity film of steel

Half-cell Potential (mV)

Half-cell Potential (mV) – with Silane Coating

Conclusion

20mm cover depth is acceptable with crack width less than 0.12mm. Repair works is necessary for crack width more than 0.12mm.

Future Plan

Effectiveness of applied silane coating still can not be judged, therefore more observation is required.

Acknowledgement

