九州大学学術情報リポジトリ Kyushu University Institutional Repository

Sea Water Utilization in Concrete Production in Future Water Stressed World: From the View Point of Corrosion Prevention of Steel in Concrete

濱田, 秀則 Kyushu University

https://hdl.handle.net/2324/4481593

出版情報:2019-10-13 バージョン: 権利関係: Sea Water Utilization in Concrete Production in Future Water Stressed World

-- From the View Point of Corrosion Prevention of Steel in Concrete --

Hidenori HAMADA Kyushu University, Fukuoka, Japan (Formerly, Port and Airport Research Institute, Yokosuka, Japan)

Research Career (Hidenori Hamada)

- 1. <u>April 1983 March 1986 (3 years)</u> Kyushu University (student)
- 2. <u>April 1986 March 2006 (20 years)</u> PHRI (Port and Harbour Research Institute)
 - PARI (Port and Airport Research Institute)
- (2). <u>October 1992 September 1993 (1 year)</u> University of Sheffield, England, U.K.
- 3. April 2006 October 2019 (13.5 years)

Kyushu University (Academic staff)

ACKNOWLEDGEMENT

 I sincerely thanks to the Organization of 2019 International Corrosion Engineering Conference, for inviting me as one of Plenary Speakers.

It is my great honor to be here.

Prepared Contents

- 1. Why now! Do we need to use seawater for concrete production ?
- 2. Present situation of Seawater usage in concrete production.
- 3. Conceptual model of RC deterioration due to the chloride attack.
- 4. What is the long-term exposure test? How it is important to understand long-term performance?
- 5. Can we use seawater for concrete production safely? What kind countermeasure for corrosion prevention of steel in seawater mexed concrete?
- 6. Finally, before closingConcluding Remark.

Water scarcity ?

- The lack of fresh water resources to meet water demand.
- ♦ A mere 0.014% of all water on Earth is both fresh and easily accessible. Of the remaining, 97% is saline and a little less than 3% is hard to access.
- The essence of global water scarcity is the geographic and temporal mismatch between freshwater demand and availability.

Water stress ?

- More than one in every six people in the world is water stressed, meaning that they do not have sufficient access to potable water.
- Those that are water stressed make up **1.1 billion people** in the world and are living in developing countries.

Water crisis ?

- When there is **not enough potable water for a given population**, the threat of a water crisis is realized.
- In 2025, **2/3 of world population** will be suffered from water shortage, even drinking water.

Water : The new oil ! In 21st Century

Goldman Sachs estimates that global water consumption is doubling every 20 years, and *United Nations* expects that demand for pure water will outstrip the supply by more than 30% by 2040.

JCI (JAPAN CONCRETE INSTITUTE) TECHNICAL COMMITTEE ON THE USE OF SEAWATER IN CONCRETE 2012 -

 In the field of concrete, billions tons of freshwater is consumed annually for mixing, curing and washing.

• Seawater is presently not permitted to be used for these purposes. Active use of seawater in the field would help more effective use of freshwater resources.

16

18

Committee report

- Chapter 1 Objectives and activities of the Committee
- Chapter 2 Case studies of concrete structures
- Chapter 3 Evaluation of the material properties of concrete
- Chapter 4 **Durability** of concrete mixed with seawater
- Chapter 5 Higher performance of concrete mixed with seawater and appropriate reinforcement
- Chapter 6 Investigation of manufacturing and casting methods for concrete

Chapter 7 Overall summary and future outlook

- HOW TO ORDER
- Please ask us how to order by e-mail address as below.
- jci-books@jci-net.or.jp

Seawater for Concrete Production ?

Negative aspect:

- * All the standards in the world inhibit using seawater as mixing water for RC.
- * Almost all the authorities in the world are against.

Positive aspect:

* Some researchers reported "not so bad" to use seawater with mineral admixtures.

Literature review on seawater mixed concrete By T Nishida (P. A. R. I.) Total OPC, Others Positive 23% Negative Positive 35% Negative 37% 36% Moderate Moderate or unclear or unclear 40% 29% 358 papers :10 papers FA BFS Negative legative 14% 17% Positive Moderate 58% Positive Moderate or unclear 63% or unclear 23% 25% :22 papers :12 рарен

3.90

.50

1.00

2.20

Fly ash Silica fume BBMKP

How is "the chloride threshold value" for corrosion initiation of steel in concrete ?

Mineral

admixtures

Current study

Chloride threshold

OPC

 $(1.2 kg/m^3)$

Previous study

(Hamada et al.,

Chloride Diffusion Coefficient Obtained from "Long-term Exposure Test"		
	$\frac{\partial C}{\partial t} = D_C \frac{\partial^2 C}{\partial x^2}$	
Cement type	Diffusion Coefficient (mm²/ year)	
OPC	145	
BFSC type "A"	33	
BFSC type "B"	22	
BFSC type "C"	10	

Specimen No. W/O	14/10	Estimated Initiation Period (years)	
Specimen No.	men No. W/C	Cover depth = 35mm	Cover depth = 55mm
OPC	0.45	3.9 year	Over 21 years
OPC	0.60	1.8 year	5.1 year
OPC	0.75	0.6 year	2.4 year
Blast Furnace Slag	0.60	Over 12 years	Over 21 years
Fly Ash	0.60	3.7 year	Over 21 years
Silica Fume	0.60	Over 12 years	Over 21 years
Blast Furnace Slag	0.75	2.4 year	19.6 year

ACKNOWLEDGEMENT

- I express my sincere thanks to all participants in the research group, JCI (Japan Concrete Institute), Kyushu University.
- In near future, seawater mixing will be inevitable technique in concrete engineering almost all over the world under collaboration of concrete engineer and corrosion engineer.

