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The gradient flow bears a close resemblance to the coarse graining, the guiding principle of the
renormalization group (RG). In the case of scalar field theory, a precise connection has been made
between the gradient flow and the RG flow of theWilson action in the exact renormalization group
(ERG) formalism. By imitating the structure of this connection, we propose an ERG differential
equation that preserves manifest gauge invariance in Yang–Mills theory. Our construction in
continuum theory can be extended to lattice gauge theory.
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1. Introduction

The gradient flow [1–6] is a continuous deformation of a gauge field configuration Aa
μ(x) along a

fictitious time t ≥ 0. It is given by a gauge-covariant diffusion equation

∂tB
a
μ(t, x) = DνGa

νμ(t, x), Ba
μ(t = 0, x) = Aa

μ(x), (1.1)

where

Ga
μν(t, x) ≡ ∂μBa

ν(t, x) − ∂νBa
μ(t, x) + f abcBb

μ(t, x)Bc
ν(t, x) (1.2)

is the field strength of the flowed or diffused field Ba
μ(t, x), and

DμX a(t, x) ≡ ∂μX a(t, x) + f abcBb
μ(t, x)X c(t, x) (1.3)

is the covariant derivative with respect to Ba
μ(t, x).1 The gradient flow bears a close resemblance to

the coarse graining along renormalization group (RG) flows [7]. This aspect of the gradient flow has
been investigated from various perspectives [6,8–18]. In this paper we further our understanding of
how the gradient flows are related to the RG flows by using the exact renormalization group (ERG)
formalism (for reviews of ERG, see for instance Refs. [19–21]).

In scalar field theory, the analogue of Eq. (1.1) would be [22]

∂tϕ(t, x) = ∂μ∂μϕ(t, x), ϕ(t = 0, x) = φ(x). (1.4)

1 f abc is the structure constant defined from the anti-hermitian generator T a of the gauge group by [T a, T b] =
f abcT c.
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It is actually possible to make a precise connection between the gradient flow and the flow of a Wilson
action under ERG [16] (see also Ref. [18]). In D-dimensional Euclidean space, the ERG differential
equation for the Wilson action Sτ [φ] (the so-called Wilson–Polchinski equation [23]) reads, in terms
of dimensionless variables,2

∂

∂τ
eSτ [φ] =

∫
p

({[
�(p)

K(p)
+ D + 2

2
− ητ

2

]
φ(p) + pμ

∂

∂pμ

φ(p)

}
δ

δφ(p)

+ 1

p2

[
2
�(p)

K(p)
k(p) + 2p2 dk(p)

dp2 − ητ k(p)

]
1

2

δ2

δφ(p)δφ(−p)

)
eSτ [φ], (1.5)

where K and k are cutoff functions satisfying

K(p) =
{

1 for |p| → 0,

0 for |p| → ∞,
, k(p)

|p|→0→ 0, (1.6)

and

�(p) ≡ −2p2 dK(p)

dp2 . (1.7)

The origin of the anomalous dimension ητ in the above has been elucidated in Ref. [24]. Particularly
for K(p) = e−p2

, it has been shown [16] that the correlation functions of the diffused field ϕ(t, x),
defined by Eq. (1.4), calculated with the “bare” action Sτ=0[φ] are essentially identical to the corre-
lation functions of the elementary field φ(x) calculated with the Wilson action Sτ [φ]; the flow time t
in Eq. (1.4) and the scale parameter τ in the ERG equation (1.5) are related by t = e2τ − 1.3 We will
review this observation in the next section. The connection between the gradient flow and ERG can
naturally explain [16] why the local products of the diffused field remain finite under the wave func-
tion renormalization of elementary fields [4,5]: we first obtain the Wilson action Sτ [φ] by integrating
over field modes whose momenta are higher than a cutoff (corresponding to the parameter τ ), and
then the correlation functions of the field φ(x) are obtained by integration of the field-modes with
momenta less than the cutoff, and thus are finite.4

It is of great interest to find such a connection between the gradient and ERG flows in gauge theory;
it would provide a natural understanding of the finiteness of the correlation functions of the diffused
gauge field (1.1) in the continuum limit [4] (see also Ref. [25]). The manifest gauge covariance of the
gradient flow (1.1) would suggest a manifestly gauge-invariant ERG formulation of gauge theory.
It appears quite difficult, however, to make such a direct connection. The gradient flow equation in

2 Throughout this paper, we use abbreviations,∫
p
≡

∫
dDp

(2π)D
, δ(p) ≡ (2π)Dδ(D)(p).

3 In Ref. [16], a particular choice k(p) = K(p) (1 − K(p)) [23] has been made, but this restriction can be
relaxed; see below.

4 The argument given for scalar field theory in Ref. [16] assumes the same flow time for the diffused fields
(because the flow time is identified with the scale parameter in the Wilson action), but it somewhat extends the
result of Refs. [4,5] for gauge theory, in that it applies not only to the continuum limit around the Gaussian
fixed point but also to that around a non-trivial fixed point such as the Wilson–Fisher fixed point.
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gauge theory (1.1) is highly non-linear compared with the flow equation (1.4) in scalar field theory,
which is linear and solvable. The argument of Ref. [16] took advantage of this simplicity.

In this paper, we look at the problem from a different perspective. We first derive, on the basis of
the result of Ref. [16], a representation of the Wilson action Sτ [φ] directly in terms of the diffused
fieldϕ(t, x) in Eq. (1.4).We can readily generalize this representation to theYang–Mills theory, simply
by replacing ϕ(t, x) by the diffused gauge field Ba

μ(t, x) in Eq. (1.1). We regard this as a definition of
the Wilson action. We will argue that our construction of the Wilson action effectively implements
an ultraviolet cutoff in Sτ [A]. From the representation of Sτ [A], we see that Sτ [A] and Sτ=0[A] give
identical partition functions. The corresponding ERG transformation thus preserves the partition
function, as is usually required for ERG. We can also see that Sτ [A] possesses manifest gauge
invariance as long as the initial action Sτ=0[A] is gauge invariant; the ERG thus preserves gauge
invariance. We then derive an ERG differential equation by taking the τ derivative of Sτ [A]. The
resulting ERG equation is written entirely in terms of Sτ [A], and once this ERG equation is obtained,
we may forget about the original representation of Sτ [A] based on the gradient flow.

This paper is organized as follows. In Sect. 2, we review the argument of Ref. [16] and derive
a representation, Eq. (2.13), of the Wilson action in terms of the diffused field; this representation
becomes the basis of our construction of the Wilson action Sτ [A] in Yang–Mills theory in Sect. 3.1.
We analyze the gauge invariance of Sτ [A] in Sect. 3.2; we show that Sτ [A] possesses manifest
gauge invariance as long as the initial action Sτ=0[A] is gauge invariant. This implies that the ERG
differential equation, Eq. (3.25), that we derive in Sect. 3.3 preserves gauge invariance. In Sect. 3.4, we
solve the ERG equation in the lowest approximation, i.e., in the lowest order in a parameter λ (3.10).
This parameter turns out to provide a convenient expansion parameter analogous to the conventional
gauge coupling. In Sect. 4, we generalize the construction of the Wilson action in Sect. 3.1 to lattice
gauge theory. We conclude the paper in Sect. 5. There is a short appendix to Sect. 3 about the
normalization of the gauge field.

In this paper, we only present the basic idea and basic equations for our formulation ofYang–Mills
theory; we defer possible applications for future studies.

2. Scalar field theory

As pointed out in Ref. [26], the change of a Wilson action Sτ under a change of the cutoff
scale in Eq. (1.5) can be formulated as an equality of modified correlation functions. In terms
of dimensionless variables, Eq. (38) of Ref. [26] with t → 0, �t → τ , and e�tγ → Z1/2

τ reads〈〈
φ(p1eτ ) · · · φ(pneτ )

〉〉K ,k
Sτ

= e−τn(D+2)/2Zn/2
τ 〈〈φ(p1) · · · φ(pn)〉〉K ,k

Sτ=0
. (2.1)

The anomalous dimension in Eq. (1.5) and the wave function renormalization factor Zτ are related
by

ητ = ∂

∂τ
ln Zτ . (2.2)

Here, the modified correlation functions are defined by [26]

〈〈φ(p1) · · · φ(pn)〉〉K ,k
S ≡

n∏
i=1

1

K(pi)

〈
exp

[
−

∫
p

k(p)

p2

1

2

δ2

δφ(p)δφ(−p)

]
φ(p1) · · · φ(pn)

〉
S

, (2.3)
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where the ordinary correlation functions are denoted with single brackets:

〈φ(p1) · · · φ(pn)〉S ≡
∫

[dφ] φ(p1) · · · φ(pn) eS[φ]. (2.4)

In terms of ordinary correlation functions, Eq. (2.1) reads〈
exp

[
−

∫
p

k(p)

p2

1

2

δ2

δφ(p)δφ(−p)

]
φ(p1eτ ) · · · φ(pneτ )

〉
Sτ

= e−τn(D+2)/2Zn/2
τ

n∏
i=1

K(pieτ )

K(pi)

〈
exp

[
−

∫
p

k(p)

p2

1

2

δ2

δφ(p)δφ(−p)

]
φ(p1) · · · φ(pn)

〉
Sτ=0

. (2.5)

Now, let us choose the Gaussian

K(p) = e−p2
(2.6)

as the cutoff function K . We then have〈
exp

[
−

∫
p

k(p)

p2

1

2

δ2

δφ(p)δφ(−p)

]
φ(p1eτ ) · · · φ(pneτ )

〉
Sτ

= e−τn(D+2)/2Zn/2
τ

〈
exp

[
−

∫
p

k(p)

p2

1

2

δ2

δφ(p)δφ(−p)

]
ϕ(t, p1) · · · ϕ(t, pn)

〉
Sτ=0

, (2.7)

where

ϕ(t, p) ≡ e−tp2
φ(p), t ≡ e2τ − 1, (2.8)

is the diffused scalar field in Eq. (1.4) given in momentum space. In terms of functional integrals,
this reads∫

[dφ] φ(p1) · · · φ(pn) exp
[
−

∫
p

k(p)

p2

1

2

δ2

δφ(p)δφ(−p)

]
eSτ [φ]

= e−τn(D+2)/2Zn/2
τ

×
∫

[dφ] ϕ(t, p1e−τ ) · · · ϕ(t, pne−τ ) exp
[
−

∫
p

k(p)

p2

1

2

δ2

δφ(p)δφ(−p)

]
eSτ=0[φ]. (2.9)

Using field variables in coordinate space

φ(x) =
∫

p
eipx φ(p), ϕ(t, x) =

∫
p

eipx ϕ(t, p), (2.10)

we get δ/[δφ(p)] = ∫
dDx eipx (δ/[δφ(x)]) and δ/[δϕ(t, p)] = ∫

dDx eipx (δ/[δϕ(t, x)]). Hence, we
can rewrite Eq. (2.9) as∫

[dφ] φ(x1) · · · φ(xn) exp
[
−

∫
dDx

∫
dDy D(x − y)

1

2

δ2

δφ(x)δφ(y)

]
eSτ [φ]

= eτn(D−2)/2Zn/2
τ
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×
∫

[dφ] ϕ(t, x1eτ ) · · · ϕ(t, xneτ ) exp
[
−

∫
dDx

∫
dDy D(x − y)

1

2

δ2

δφ(x)δφ(y)

]
eSτ=0[φ],

(2.11)

where

D(x) ≡
∫

p
eipx k(p)

p2 . (2.12)

This leads to a representation of the Wilson action Sτ [φ],

eSτ [φ] = exp
[∫

dDx
∫

dDy D(x − y)
1

2

δ2

δφ(x)δφ(y)

]
×

∫
[dφ′]

∏
x′

δ
(
φ(x) − eτ(D−2)/2Z1/2

τ ϕ′(t, x′eτ )
)

× exp
[
−

∫
dDx′′

∫
dDy′′ D(x′′ − y′′)1

2

δ2

δφ′(x′′)δφ′(y′′)

]
eSτ=0[φ′]. (2.13)

Note that the field ϕ′(t, x′eτ ) in the delta function results from diffusion of the integration variable φ′
by the flow equation (1.4). It is easy to check Eq. (2.13) simply by substituting it into Eq. (2.11).
Written with the diffused field in coordinate space, this representation admits straightforward gener-
alization to the other systems whose gradient flow equation may be non-linear in fields. Yang–Mills
theory is such an example.5 Equation (2.13) is the basis of our construction in the next section.

Before discussing generalization to Yang–Mills theory, let us verify that Eq. (2.13) satisfies the
ERG equation (1.5). Recalling t = e2τ − 1 (Eq. (2.8)) and the flow equation (1.4), we find

∂

∂τ
eSτ [φ]

= exp
[∫

dDx
∫

dDy D(x − y)
1

2

δ2

δφ(x)δφ(y)

]

×
∫

[dφ′]
∫

dDx′
[
−D − 2

2
− ητ

2
− 2�x′ − x′

μ

∂

∂x′
μ

]
eτ(D−2)/2Z1/2

τ ϕ′(t, x′eτ )

× δ

δφ(x′)
∏

x

δ
(
φ(x) − eτ(D−2)/2Z1/2

τ ϕ′(t, xeτ )
)

× exp
[
−

∫
dDx

∫
dDy D(x − y)

1

2

δ2

δφ′(x)δφ′(y)

]
eSτ=0[φ′]

= exp
[∫

dDx
∫

dDy D(x − y)
1

2

δ2

δφ(x)δφ(y)

]

×
∫

dDx′ δ

δφ(x′)

[
−2�x′ − D − 2

2
− ητ

2
− x′

μ

∂

∂x′
μ

]
φ(x′)

×
∫

[dφ′]
∏

x

δ
(
φ(x) − eτ(D−2)/2Z1/2

τ ϕ′(t, xeτ )
)

5 We can also generalize this to the O(N ) non-linear sigma model [27–30].
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× exp
[
−

∫
dDx

∫
dDy D(x − y)

1

2

δ2

δφ′(x)δφ′(y)

]
eSτ=0[φ′]

= exp
[∫

dDx
∫

dDy D(x − y)
1

2

δ2

δφ(x)δφ(y)

]

×
∫

dDx′
[
−2�x′ − D − 2

2
− ητ

2
− x′

μ

∂

∂x′
μ

]
φ(x′) · δ

δφ(x′)

×
∫

[dφ′]
∏

x

δ
(
φ(x) − eτ(D−2)/2Z1/2

τ ϕ′(t, xeτ )
)

× exp
[
−

∫
dDx

∫
dDy D(x − y)

1

2

δ2

δφ′(x)δφ′(y)

]
eSτ=0[φ′]. (2.14)

The first equality is obvious. In the second equality, we have made the replacement,
eτ(D−2)/2Z1/2

τ ϕ′(t, x′eτ ) → φ(x′), which is justified in front of the delta function. Then, we have
interchanged δ/[δφ(x′)] and φ(x′) neglecting an infinite constant δ

δφ(x′)φ(x′) = δ(D)(x = 0) because
this contributes only to the constant term in Sτ [φ]. Finally, using the relation

exp
[∫

dDx
∫

dDy D(x − y)
1

2

δ2

δφ(x)δφ(y)

]
φ(x′)

=
[
φ(x′) +

∫
dDx D(x − x′) δ

δφ(x)

]
exp

[∫
dDx

∫
dDy D(x − y)

1

2

δ2

δφ(x)δφ(y)

]
, (2.15)

we obtain an ERG equation

∂

∂τ
eSτ [φ]

=
∫

dDx′
(

−2�x′ − D − 2

2
− ητ

2
− x′

μ

∂

∂x′
μ

)[
φ(x′) +

∫
dDx D(x − x′) δ

δφ(x)

]

× δ

δφ(x′)
eSτ [φ]. (2.16)

Here, the derivative with respect to x′ does not act on x′ in δ/[δφ(x′)]. Switching back to momentum
space, we get

∂

∂τ
eSτ [φ] =

∫
p

{[(
2p2 + D + 2

2
− ητ

2

)
φ(p) + pμ

∂

∂pμ

φ(p)

]
δ

δφ(p)

+ 1

p2

[
4p2k(p) + 2p2 dk(p)

dp2 − ητ k(p)

]
1

2

δ2

δφ(p)δφ(−p)

}
eSτ [φ]. (2.17)

Since �(p) in Eq. (1.7) is given by 2p2e−p2
for our choice (2.6), this equation coincides precisely

with the ERG equation in momentum space, Eq. (1.5).

3. Yang–Mills theory
3.1. Wilson action

A natural generalization of Eq. (2.13) to Yang–Mills theory is given by

eSτ [A] = exp

[∫
dDx

1

2

δ2

δAa
μ(x)δAa

μ(x)

]
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×
∫

[dA′]
∏

x′,ν,b

δ
(

Ab
ν(x

′) − eτ(D−2)/2B′b
ν (t, x′eτ )

)

× exp

[
−

∫
dDx′′ 1

2

δ2

δA′c
ρ (x′′)δA′c

ρ (x′′)

]
eSτ=0[A′], (3.1)

where, as in Eq. (2.8), we identify the flow time t and the scale parameter τ by

t ≡ e2τ − 1. (3.2)

The field B′b
ν (t, x′eτ ) in the delta function is diffused from the integration variable A′ by the flow

equation

∂tB
a
μ(t, x) = DνGa

νμ(t, x) + α0Dμ∂νBa
ν(t, x), Ba

μ(t = 0, x) = Aa
μ(x). (3.3)

Note that we have added a “gauge-fixing term” with the parameter α0 [3,4] to the original flow
equation (1.1); this term suppresses the gauge degrees of freedom along the diffusion and guarantees
the finiteness of gauge non-invariant correlation functions of the diffused gauge field in perturbation
theory [4]. This somewhat peculiar addition is due to our tacit assumption of perturbation theory
in this section. In fact, we exclude this term in lattice gauge theory discussed in the next section.
In transcribing Eq. (2.13) to gauge theory, we have set Zτ = 1 because the diffused field does
not receive wave function renormalization [4]; we will see that this choice is consistent with an
effective presence of a cutoff in the Wilson action. We have also adopted k(p) = p2, which yields
D(x) = δ(D)(x) in Eq. (2.12).

Under a change of the scale parameter τ , Eq. (3.1) preserves the partition function:∫
[dA] eSτ [A] =

∫
[dA] exp

[
−

∫
dDx

1

2

δ2

δAa
μ(x)δAa

μ(x)

]
eSτ [A]

=
∫

[dA] exp

[
−

∫
dDx

1

2

δ2

δAa
μ(x)δAa

μ(x)

]
eSτ=0[A]

=
∫

[dA] eSτ=0[A]. (3.4)

The first equality follows from the vanishing of a total derivative
∫ [dA] (δ/[δAa

μ(x)]) F[A] = 0 for
any well-behaved functional F[A]; for the second equality, we have used Eq. (3.1). The invariance of
the partition function, expected of a Wilson action, remains formal unless the functional integral in the
most right-hand side of Eq. (3.4) is regularized. In perturbation theory, at least, we can give a gauge-
invariant meaning to the last integral by dimensional regularization. With the lattice transcription
of Eq. (3.1) in the next section, the invariance of the partition function can be given a rigorous
meaning.

Another important relation that follows immediately from Eq. (3.1) is〈
exp

[
−

∫
dDx

1

2

δ2

δAa
μ(x)δAa

μ(x)

]
Aa1

μ1
(x1) · · · Aan

μn
(xn)

〉
Sτ

= eτn(D−2)/2

〈
exp

[
−

∫
dDx

1

2

δ2

δAa
μ(x)δAa

μ(x)

]
Ba1

μ1
(t, x1eτ ) · · · Ban

μn
(t, xneτ )

〉
Sτ=0

. (3.5)
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This is analogous to Eq. (2.7) in scalar field theory. As for the right-hand side, note that the flow
equation (3.3) can be written as an integral equation [3,4]:

Ba
μ(t, x) =

∫
dDy

[
Kt(x − y)μνAa

ν(y) +
∫ t

0
ds Kt−s(x − y)μνRa

ν(s, y)

]
, (3.6)

where

Kt(x)μν ≡
∫

p

eipx

p2

[
(δμνp2 − pμpν)e−tp2 + pμpνe−α0tp2

]
(3.7)

is the integration kernel of a linear diffusion, and

Ra
μ ≡ f abc

[
2Bb

ν∂νBc
μ − Bb

ν∂μBc
ν + (α0 − 1)Bb

μ∂νBc
ν + f cdeBb

νBd
ν Be

μ

]
. (3.8)

Using Eq. (3.6), we can express δB/δA, necessary on the right-hand side of Eq. (3.5), as a power
series in B. The right-hand side of Eq. (3.5) is then given by correlation functions of the diffused
field B.

We now suppose that the “bare” action Sτ=0[A] contains a gauge coupling g0. Setting g0 =
μεZg(ε)g, where μ is an arbitrary mass scale and D = 4 − 2ε, we take ε → 0 for a continuum
limit.6 By a general theorem [4], the right-hand of Eq. (3.5) has a finite limit. Hence, the correlation
functions with respect to Sτ [A] on the left-hand side of Eq. (3.5) are finite in the continuum limit.
This suggests that our definition of the Wilson action (3.1) implements effectively an ultraviolet
cutoff for the Wilson action.7

3.2. Gauge invariance

We next show that Sτ [A] defined by Eq. (3.1) is invariant under any infinitesimal gauge transformation
of the scaled gauge potential

Ãa
μ(x) ≡ λAa

μ(x), (3.9)

where

λ ≡ e−τ(D−4)/2. (3.10)

The τ -dependent factor λ acts like a coupling constant: An infinitesimal gauge transformation on Ã
is

Ãa
μ(x) −→ Ãa

μ(x) + ∂x
μωa(xeτ ) + f abcÃb

μ(x)ωc(xeτ ), (3.11)

6 Here, Zg(ε) = 1 −[g2/(4π)2](β0/2ε)+ O(g4) and β0 = (11/3)CA, where CA is the Casimir of the adjoint
representation, f abcf bcd = CAδ

ab.
7 In a lattice transcription of Eq. (3.1) in the next section, the presence of an ultraviolet cutoff in the Wilson

action is obvious.
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but the corresponding gauge transformation on A is modified by λ as

Aa
μ(x) −→ Aa

μ(x) + λ−1∂x
μωa(xeτ ) + f abcAb

μ(x)ωc(xeτ ). (3.12)

(See the Appendix for an alternative normalization of A.)
To see the invariance of Sτ [A], we first note that the first factor in Eq. (3.1),

exp

[∫
dDx

1

2

δ2

δAa
μ(x)δAa

μ(x)

]
, (3.13)

is invariant under the transformation (3.12) because the functional derivative transforms in the adjoint
representation under Eq. (3.12):

δ

δAa
μ(x)

−→ f abc δ

δAb
μ(x)

ωc(xeτ ). (3.14)

We next examine the argument of the delta function in Eq. (3.1). Under the transformation (3.12),
we find (we write x′ as x for simplicity)

Ab
ν(x) − eτ(D−2)/2B′b

ν (t, xeτ )

−→ Ab
ν(x) + λ−1∂x

νωb(xeτ ) + f bcdAc
ν(x)ω

d(xeτ ) − eτ(D−2)/2B′b
ν (t, xeτ )

= Ab
ν(x) − eτ(D−2)/2

[
B′b

ν (t, xeτ ) − e−τ ∂x
νωb(xeτ ) − f bcde−τ(D−2)/2Ac

ν(x)ω
d(xeτ )

]
= Ab

ν(x) − eτ(D−2)/2
[
B′b

ν (t, xeτ ) − ∂νω
b(xeτ ) − f bcdB′c

ν (t, xeτ )ωd(xeτ )
]

= Ab
ν(x) − eτ(D−2)/2

[
B′b

ν (t, xeτ ) − D′
νω

b(xeτ )
]
. (3.15)

In the third line above, we can replace e−τ(D−2)/2Ac
ν(x) by B′c

ν (t, xeτ ) since ω is infinitesimal, and
the two are equal when ω = 0. The last line implies that the gauge transformation (3.12) on the
external variable A induces a gauge transformation on B′b

ν (t, xeτ ) with the gauge function −ωb(xeτ ):

B′a
μ(t, x) −→ B′a

μ(t, x) − D′
μωa(x). (3.16)

In the functional integral (3.1), the integration variable A′ and the diffused gauge field B′ are related
by the flow equation (3.3). We wish to show that there is a gauge transformation on A′ that gives the
gauge transformed B′, given by Eq. (3.16), as the solution of the diffusion equation (3.3). To show
this, let us consider an infinitesimal gauge transformation on the diffused field B that depends on the
flow time s (we save t for t = e2τ − 1):

Ba
μ(s, x) −→ Ba

μ(s, x) − Dμξa(s, x). (3.17)

This changes the flow equation (3.3) to

∂sB
a
μ(s, x) = DνGa

νμ(s, x) + α0Dμ∂νBa
ν(s, x) + Dμ(∂s − α0Dν∂ν)ξ

a(s, x). (3.18)

If we choose ξ as the solution to the linear diffusion equation,

(∂s − α0Dν∂ν)ξ
a(s, x) = 0, ξa(s = t, x) = ωa(x), (3.19)
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Eq. (3.18) reduces to the original diffusion equation (3.3) (with s replacing t). Note that we must
solve Eq. (3.19) backward against the flow time; ξ is specified at s = t rather than the usual s = 0.
Thus, if we gauge-transform the integration variable A′ by

A′a
μ(x) −→ A′a

μ(x) − D′
μξa(s = 0, x), (3.20)

the diffusion equation (3.3) gives the gauge-transformed B′ given by Eq. (3.16).
We have shown that the gauge transformation (3.12) on the external variable A induces the ordi-

nary gauge transformation (3.20) on the integration variable A′. Now, the functional measure [dA′]
in Eq. (3.1) can be and is defined to be gauge invariant (by dimensional regularization, for example).
The factor

exp

[
−

∫
dDx′′ 1

2

δ2

δA′c
ρ (x′′)δA′c

ρ (x′′)

]
(3.21)

is invariant just as the factor (3.13) is. We thus conclude that, if the original “bare” action Sτ=0[A]
in Eq. (3.1) is invariant under the gauge transformation, then the Wilson action Sτ [A] is invariant
under the λ-dependent (hence τ -dependent) gauge transformation (3.12). This is how our definition
of the Wilson action preserves manifest gauge invariance.8

3.3. ERG equation

We now derive an ERG differential equation satisfied by the above Wilson action (3.1). By using
Eqs. (3.2) and (3.3), calculations analogous to Eq. (2.14) yield

∂

∂τ
eSτ [A]

= exp

[∫
dDx

1

2

δ2

δAa
μ(x)δAa

μ(x)

]

×
∫

dDx′ δ

δÃb
ν(x′)

[
−2D̃ρFb

ρν(x
′) − 2α0D̃ν∂ρAb

ρ(x′) −
(

D − 2

2
+ x′

ρ∂ ′
ρ

)
Ãb

ν(x
′)
]

×
∫

[dA′]
∏

x′′,ρ,c

δ
(

Ac
ρ(x′′) − eτ(D−2)/2B′c

ρ (t, x′′eτ )
)

× exp

[
−

∫
dDx′′′ 1

2

δ2

δA′d
λ (x′′′)δA′d

λ (x′′′)

]
eSτ=0[A′]

= exp

[
λ2

∫
dDx

1

2

δ2

δÃa
μ(x)δÃa

μ(x)

]

×
∫

dDx′ δ

δÃb
ν(x′)

[
−2D̃ρFb

ρν(x
′) − 2α0D̃ν∂ρAb

ρ(x′) −
(

D − 2

2
+ x′

ρ∂ ′
ρ

)
Ãb

ν(x
′)
]

8 To compute the correlation functions of elementary fields such as Eq. (3.5) in perturbation theory, we need
to add a gauge-fixing term to Sτ=0[A], which breaks the gauge invariance. This breaking propagates to Sτ [A].
In lattice gauge theory in the next section, however, such breaking of gauge invariance by gauge fixing is
unnecessary.
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× exp
[
−λ2

∫
dDx′′ 1

2

δ2

δÃc
σ (x′′)δÃc

σ (x′′)

]
eSτ [A], (3.22)

where the gauge potential Aa
μ(x) under the tilde (̃ ) is replaced by the rescaled potential, Eq. (3.9).

Using a relation analogous to Eq. (2.15) (with δ(D)(x) replacing D(x)):

exp

[
λ2

∫
dDx

1

2

δ2

δÃa
μ(x)δÃa

μ(x)

]
Ãb

ν(x
′) = ̂̃

Ab
ν(x

′) exp

[
λ2

∫
dDx

1

2

δ2

δÃa
μ(x)δÃa

μ(x)

]
, (3.23)

where we define the hat (̂ ) by

̂̃Aa
μ(x) ≡ Ãa

μ(x) + λ2 δ

δÃa
μ(x)

, (3.24)

we can rewrite Eq. (3.22) compactly as

∂

∂τ
eSτ [A]

=
∫

dDx
δ

δÃa
μ(x)

[
−2

̂̃
DνFa

νμ(x) − 2α0
̂̃

Dμ∂νAb
ν(x) −

(
D − 2

2
+ xν∂ν

) ̂̃Aa
μ(x)

]
eSτ [A]. (3.25)

Here, the gauge potential Ãa
μ(x) is replaced by the combination (3.24) if it appears under the hat.

This is our ERG equation for Yang–Mills theory.
Note that without the hat, Eq. (3.25) would involve only the first order differentials of Sτ , and

our ERG equation would be merely a change of variables. It is the differential operator in the
hat (3.24), whose origin is the exponentiated second-order differentials in Eq. (3.22), that introduces
higher-order differentials in Eq. (3.25).

Once the ERG equation (3.25) has been obtained, we may forget the original construction (3.1)
and the gradient flow behind it. Under the ERG flow, the gauge invariance is preserved in the sense
explained in Sect. 3.2.

For completeness, we give a little more explicit form of the ERG equation (3.25):

∂

∂τ
eSτ [A]

=
∫

dDx
δ

δÃa
μ(x)

×
{
−2D̃ν

[
F̃a

νμ(x) + λ2D̃ν

δ

δÃa
μ(x)

− λ2D̃μ

δ

δÃa
ν(x)

+ λ4f abc δ

δÃb
ν(x)

δ

δÃc
μ(x)

]

− 2λ2f abc δ

δÃb
ν(x)

[
F̃c

νμ(x) + λ2D̃ν

δ

δÃc
μ(x)

− λ2D̃μ

δ

δÃc
ν(x)

+ λ4f cde δ

δÃd
ν (x)

δ

δÃe
μ(x)

]

− 2α0

[
D̃μ∂νAa

ν(x) + λ2∂μ∂ν

δ

δÃa
ν(x)

+ λ2f abcÃb
μ(x)∂ν

δ

δÃc
ν(x)

+ λ2f abc δ

δÃb
μ(x)

∂νÃc
ν(x) + λ4f abc δ

δÃb
μ(x)

∂ν

δ

δÃc
ν(x)

]

−
(

D − 2

2
+ xν∂ν

)[
Ãa

μ(x) + λ2 δ

δÃa
μ(x)

]}
eSτ [A]. (3.26)
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In deriving this, we have interchanged the order of δ/[δÃb
ν(x)] and Ãc

μ(x) in the combina-

tion f abc(δ/[δÃb
ν(x)])Ãc

μ(x); this is justified because f abc is anti-symmetric in b ↔ c.
To write a differential equation for Sτ , we multiply e−Sτ from the left of Eq. (3.26) and write

covariant derivatives explicitly to obtain

∂

∂τ
Sτ [A]

= e−Sτ [A]
∫

dDx
δ

δAa
μ(x)

×
{
−2∂ν

[
∂νAa

μ(x) − ∂μAa
ν(x) + ∂ν

δ

δAa
μ(x)

− ∂μ

δ

δAa
ν(x)

+ λf abcAb
ν(x)A

c
μ(x) + λf abc

[
Ab

ν(x)
δ

δAc
μ(x)

− Ab
μ(x)

δ

δAc
ν(x)

]

+ λf abc δ

δAb
ν(x)

δ

δAc
μ(x)

]
− 2λf abc

[
Ab

ν(x) + δ

δAb
ν(x)

]
×

[
∂νAc

μ(x) − ∂μAc
ν(x) + ∂ν

δ

δAc
μ(x)

− ∂μ

δ

δAc
ν(x)

+ λf cdeAd
ν (x)A

e
μ(x) + λf cde

[
Ad

ν (x)
δ

δAe
μ(x)

− Ad
μ(x)

δ

δAe
ν(x)

]

+ λf cde δ

δAd
ν (x)

δ

δAe
μ(x)

]

− 2α0

[
∂μ∂νAa

ν(x) + ∂μ∂ν

δ

δAa
ν(x)

+ λf abcAb
μ(x)∂νAc

ν(x) + λf abcAb
μ(x)∂ν

δ

δAc
ν(x)

+ λf abc δ

δAb
μ(x)

∂νAc
ν(x) + λf abc δ

δAb
μ(x)

∂ν

δ

δAc
ν(x)

]

−
(

D − 2

2
+ xν∂ν

)[
Aa

μ(x) + δ

δAa
μ(x)

]}
eSτ [A]. (3.27)

Differentiating eSτ further, we obtain a non-linear ERG equation that involves up to quartic
differentials of Sτ :

∂

∂τ
Sτ [A]

=
∫

dDx

[
δSτ

δAa
μ(x)

+ δ

δAa
μ(x)

]

×
(

−2∂ν

{
∂νAa

μ(x) − ∂μAa
ν(x) + ∂ν

δSτ

δAa
μ(x)

− ∂μ

δSτ

δAa
ν(x)

+ λf abcAb
ν(x)A

c
μ(x) + λf abc

[
Ab

ν(x)
δSτ

δAc
μ(x)

− Ab
μ(x)

δSτ

δAc
ν(x)

]
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+ λf abc

[
δ2Sτ

δAb
ν(x)δAc

μ(x)
+ δSτ

δAb
ν(x)

δSτ

δAc
μ(x)

]}

− 2λf abc
[

Ab
ν(x) + δSτ

δAb
ν(x)

+ δ

δAb
ν(x)

]
×

{
∂νAc

μ(x) − ∂μAc
ν(x) + ∂ν

δSτ

δAc
μ(x)

− ∂μ

δSτ

δAc
ν(x)

+ λf cdeAd
ν (x)A

e
μ(x) + λf cde

[
Ad

ν (x)
δSτ

δAe
μ(x)

− Ad
μ(x)

δSτ

δAe
ν(x)

]

+ λf cde

[
δ2Sτ

δAd
ν (x)δAe

μ(x)
+ δSτ

δAd
ν (x)

δSτ

δAe
μ(x)

]}

− 2α0

{
∂μ∂νAa

ν(x) + ∂μ∂ν

δSτ

δAa
ν(x)

+ λf abcAb
μ(x)∂νAc

ν(x) + λf abcAb
μ(x)∂ν

δSτ

δAc
ν(x)

+ λf abc

[
δSτ

δAb
μ(x)

+ δ

δAb
μ(x)

]
∂νAc

ν(x)

+ λf abc

[
δSτ

δAb
μ(x)

∂ν

δSτ

δAc
ν(x)

+ δ

δAb
μ(x)

∂ν

δSτ

δAc
ν(x)

]}

−
(

D − 2

2
+ xν∂ν

)[
Aa

μ(x) + δSτ

δAa
μ(x)

])
. (3.28)

3.4. Approximate solution to O(λ0)

From Eq. (3.28), we see that the parameter λ, whose original definition is Eq. (3.10), provides a
convenient expansion parameter which organizes terms in the ERG equation. We expand the Wilson
action in powers of λ as

Sτ [A] ≡
∞∑

n=2

λn−2 1

n!
∫

dDx1 · · ·
∫

dDxn wa1···an
n,μ1···μn

(x1, . . . , xn)A
a1
μ1

(x1) · · · Aan
μn

(xn), (3.29)

where wn = O(λ0). By substituting this into the right-hand side of Eq. (3.28), we obtain terms of
the form

∞∑
n=2

λn−2 1

n!
∫

dDx1 · · ·
∫

dDxn W a1···an
n,μ1···μn

(x1, . . . , xn)A
a1
μ1

(x1) · · · Aan
μn

(xn). (3.30)

Therefore, the expansion of the Wilson action in the form (3.29) is consistent with the ERG
equation (3.28).

In this paper, we study only the lowest-order O(λ0) terms in some detail, postponing the higher-
order calculations for future studies.9 We thus set

Sτ [A] = 1

2

∫
dDx

∫
dDy wab

2,μν(x, y)Aa
μ(x)Ab

ν(y). (3.31)

9 This is the only term for the abelian gauge theory.
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Equation (3.28) then gives

∂

∂τ

1

2
wab

2,μν(x, y)

= −2∂ρ∂ρwab
2,μν(x, y) + (1 − α0)

[
∂μ∂ρwab

2,ρν(x, y) + ∂ν∂ρwab
2,μρ(x, y)

]
+

[
D + 2

2
+ 1

2
(x − y)ρ∂ρ

]
wab

2,μν(x, y)

+
∫

dDz wac
2,μρ(x, z)

[
δρσ (−2∂z

λ∂
z
λ + 1) + 2(1 − α0)∂

z
ρ∂z

σ

]
wcb

2,σν(z, y). (3.32)

In deriving this, we have neglected δ(D)(x = 0) assuming dimensional regularization. Imposing the
translational and rotational invariance and global gauge invariance, we can write

wab
2,μν(x, y) = δab

∫
p

eip(x−y) [T (p)(p2δμν − pμpν) + L(p)pμpν

]
, (3.33)

where T (p) and L(p) are functions of p2. Equation (3.32) then gives

1

2

∂

∂τ
T = −p2 ∂

∂p2 T + p2(2p2 + 1)T 2 + 2p2T ,

1

2

∂

∂τ
L = −p2 ∂

∂p2 L + p2(2α0p2 + 1)L2 + 2α0p2L. (3.34)

The general solution is given by

T (τ , p) = − 1

C(pe−τ )e−2p2 + p2
, L(τ , p) = − 1

D(pe−τ )e−2α0p2 + p2
, (3.35)

where C(p) and D(p) are arbitrary functions of p2. Locality demands that C(p) and D(p) can be
expanded in powers of p2 at p = 0:

C(p) = C0 + C1p2 + 1

2
C2(p

2)2 + · · · , D(p) = D0 + D1p2 + 1

2
D2(p

2)2 + · · · . (3.36)

Unitary demands C0 > 0 and D0 > 0.
As τ → +∞, the action Sτ [A] approaches an infrared fixed point S∗[A], corresponding to constants

C0 and D0:

T ∗(p) = − 1

C0e−2p2 + p2
, L∗(p) = − 1

D0e−2α0p2 + p2
. (3.37)

Since C0 > 0 and D0 > 0 are arbitrary, their variations give marginal operators:

δT (p) = δC0e−2p2

(C0e−2p2 + p2)2
, δL(p) = δD0e−2α0p2

(D0e−2α0p2 + p2)2
. (3.38)

It can be seen that these correspond to the change of normalization of the gauge field A (see the
Appendix).10 Infinitesimal Cn and Dn, on the other hand, give

δT (τ , p) ≡ T (τ , p) − T ∗(p) � Cn(p2e−2τ )ne−2p2

(C0e−2p2 + p2)2
,

10 δD0 corresponds to an infinitesimal change of the gauge-fixing parameter.
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δL(τ , p) ≡ L(τ , p) − L∗(p) � Dn(p2e−2τ )ne−2α0p2

(D0e−2α0p2 + p2)2
, (3.39)

where n = 1, 2, …, which correspond to irrelevant operators at the fixed point.
If we make the particular choice of C0 = 1 and D0 = ∞ in Eq. (3.36), the fixed-point action

becomes transverse:

S∗
τ [A] = −1

2

∫
dDx

∫
dDy

∫
p

eip(x−y) 1

e−2p2 + p2
(p2δμν − pμpν)A

a
μ(x)Aa

ν(y), (3.40)

and the marginal operator at the fixed point is given by

O0 =
∫

dDx
∫

dDy
∫

p
eip(x−y) e−2p2

(e−2p2 + p2)2
(p2δμν − pμpν)A

a
μ(x)Aa

ν(y). (3.41)

It is important to pursue the above analysis to higher orders in λ to see how the ordinary beta
function arises in our formalism.

4. Lattice gauge theory

In the previous section, we have constructed a gauge-invariant Wilson action and its associated
ERG equation for a generic Yang–Mills theory in continuum R4. We now tailor the construction
for lattice gauge theory.11 For simplicity, we consider an infinite volume lattice Z4. The discrete
coordinates on Z4 render our ERG transformation discrete. This discreteness is introduced through
“block-spins.” Let us pick a fixed “block-spin” factor b from one of the integers 2, 3, … . We then
define a “block-spin” link variable by

U(x, μ) ≡ U (x, μ)U (x + μ̂, μ) · · · U (x + (b − 1)μ̂, μ), x ∈ bZ4, (4.1)

where U (x, μ) is a conventional link variable on the Z4 lattice; here, μ̂ denotes the unit vector in
the μ direction. This U(x, μ) is regarded as a link variable on the coarse lattice bZ4 scaled by the
factor b.

We then divide the range of the scale factor τ , originally continuous in 0 ≤ τ < ∞, into the
contiguous intervals

n�τ < τ ≤ (n + 1)�τ , n = 0, 1, 2, . . . , (4.2)

where

�τ ≡ ln b. (4.3)

The nth interval corresponds to the scaling of x by a factor between bn and bn+1. Multiplying a lattice
coordinate x ∈ Z4 by e�τ = b gives the coordinate bx on the coarse lattice bZ4.

Now, we consider a continuous change of the Wilson action within one of the intervals in Eq. (4.2).
A natural extension of Eq. (3.1) for the interval τ = (n�τ , (n + 1)�τ ] would be the discrete

11 Many versions of the renormalization group transformation have been proposed for lattice gauge theory.
We cite Refs. [31,32] as the pioneering works. Some of the more recent works are Refs. [33,34].
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transformation from Sn to Sn+1, given by12

eSn+1[U ] = exp

(∑
x,μ,a

1

2
∂a

x,μ∂a
x,μ

)∫
[dU ′]

∏
x′,ν

δ
(
U (x′, ν) − W ′

�τ (bx′, ν)
)

× exp

⎛⎝−
∑

x′′,ρ,b

1

2
∂b

x′′,ρ∂b
x′′,ρ

⎞⎠ eSn[U ′]. (4.4)

This needs a fair amount of explanation, which we give below.
First, ∂a

x,μ is a link differential operator defined by (see also Appendix A of Ref. [3])

∂a
x,μF[U ] ≡ d

ds
F[esX U ]

∣∣∣∣
s=0

, X (y, ν) =
{

T a if (y, ν) = (x, μ),

0 otherwise,
(4.5)

where T a denotes a (anti-hermitian) generator of the gauge group. The exponentiated link differential
operator in Eq. (4.4) is an analogue of the exponentiated functional differential operator in Eq. (3.1).

Secondly, W ′
τ (bx′, ν) in Eq. (4.4) is the solution of the lattice flow equation [2,3] on the coarse

lattice x ∈ bZ4:

∂

∂τ
W ′

τ (x, μ) = −2∂x,μSw[W ′
τ ] · W ′

τ (x, μ), (4.6)

where ∂x,μ ≡ T a∂a
x,μ. The initial value at τ = 0 is given by the “block-spin” link variable (4.1)

constructed from the integration variable U ′ defined on Z4:

W ′
τ=0(x, μ) = U ′(x, μ) ≡ U ′(x, μ)U ′(x + μ̂, μ) · · · U ′(x + (b − 1)μ̂, μ), x ∈ bZ4. (4.7)

It is the value of Wτ at τ = �τ that appears in the delta function. A possible choice of Sw[W ] is the
plaquette action,

Sw[W ] ≡
∑

p

Re tr[1 − W (p)], (4.8)

where the sum runs over the plaquettes p belonging to the coarse lattice bZ4, and W (p) is the product
of the “block-spin” link variables around p. Note that the lattice flow equation (4.6) is written in terms
of the scale factor τ rather than the flow time t = b2ne2τ −1. We have used ∂/∂t = b−2ne−2τ (∂/2∂τ)

and absorbed the factor b2ne2τ into the right-hand side; this prescription is natural because we have
rescaled the lattice coordinates by the factor b2ne2τ compared with n = 0. Thanks to this prescription,
the ERG transformation (4.4) from Sn to Sn+1 does not depend on n explicitly.

We obtain the lattice Wilson action Sn+1[U ] by successive applications of Eq. (4.4) on the “bare”
action S0[U ]. The preservation of the partition function and the gauge invariance, both demonstrated
in Sect. 3 on the basis of perturbation theory, now hold true non-perturbatively, as we explain below.

First, we consider the partition function. If [dU ] is the group-invariant Haar measure such that
[d(eηU )] = [dU ] for infinitesimal Lie algebra elements ημ(x), we find, for any functional F[U ],∫

[dU ] F[U ] =
∫

[d(eηU )] F[eηU ]

12 Note that the formula (3.1) can be used to relate the Wilson actions between two non-zero τ values.
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=
∫

[dU ] F[eηU ]

=
∫

[dU ]
[
F[U ] +

∑
x

ηa
μ(x)∂a

x,μF[U ]
]

. (4.9)

This implies
∫ [dU ] ∂a

x,μF[U ] = 0. Using this identity for Eq. (4.4), we obtain∫
[dU ] eSn+1[U ] =

∫
[dU ] eSn[U ]. (4.10)

Hence, the partition function is preserved just as in Eq. (3.4).
As for the gauge invariance, we first note that a gauge transformation is given by

U (x, μ) −→ U g(x, μ) ≡ g(x)U (x, μ)g(x + μ̂)−1, g(x) ≡ eω(x). (4.11)

If ω is infinitesimal, the link differential operator transforms in the adjoint representation,(
∂a

x,μF[U ])
U→U g = ∂a

x,μF[U g] + f abcωb(x)∂c
x,μF[U ], (4.12)

where the link differential operator acts on U g on the left-hand side, but it acts on U of U g on the right.
This shows that (∂a

x,μ∂a
x,μF[U ])U→U g = ∂a

x,μ∂a
x,μF[U g], and in Eq. (4.4) the gauge transformation

on U and the first exponentiated link differential operator commute.
The gauge transformation (4.11) acts on the delta function in Eq. (4.4) as (we set x′ → x for

simplicity)

δ
(
U (x, ν) − W ′

�τ (bx, ν)
)

−→ δ
(
g(x)U (x, ν)g(x + ν̂)−1 − W ′

�τ (bx, ν)
)

= δ
(
U (x, ν) − g(x)−1W ′

�τ (bx, ν)g(x + ν̂)
)

. (4.13)

This shows that the gauge transformation (4.11) on U induces an inverse gauge transformation W g−1

�τ

on W ′
�τ defined on the coarse lattice bZ4. Now, if W ′

τ is the solution of the lattice flow equation (4.6)

with the initial condition U ′, given by Eq. (4.7), then W ′g−1

τ is the solution with the initial condi-
tion U ′g−1

as long as g does not depend on τ ; this follows from the property (4.12). Hence, the gauge
transformation g on U induces the inverse gauge transformation g−1 on the initial condition U ′. To
obtain this transformation on bZ4, we can introduce the following gauge transformation on Z4:

U ′(x, μ) −→ h(x)−1U ′(x, μ)h(x + μ̂), h(x) =
{

g(y) if x = by for y ∈ Z4,

1 otherwise.
(4.14)

This gauge transformation commutes with the second exponentiated link differential operator
in Eq. (4.4) and, as long as Sn[U ′] is gauge invariant, the resulting Wilson action Sn+1[U ] is also gauge
invariant. This completes our argument for the gauge invariance of the lattice ERG transformation.

The structure of our Wilson action defined recursively by Eq. (4.4) resembles the “lattice effective
action” that has been advocated and studied in Refs. [8,9]. Our definition is different in two crucial
aspects, however: Eq. (4.4) has exponentiated link differential operators, and the lattice points are
rescaled in each step of the ERG transformation. As we have emphasized in the previous section,
these two are essential ingredients for obtaining an ERG differential equation that is non-linear in
the Wilson action and entails scale transformation of space.
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Finally, let us derive an ERG differential equation in lattice gauge theory that follows from the
definition (4.4) of the Wilson action. For this, we define Sn+1(τ )[U ] by

eSn+1(τ )[U ] ≡ exp

(∑
x,μ,a

1

2
∂a

x,μ∂a
x,μ

)∫
[dU ′]

∏
x′,ν

δ
(
U (x′, ν) − W ′

τ (bx′, ν)
)

× exp

⎛⎝−
∑

x′′,ρ,b

1

2
∂b

x′′,ρ∂b
x′′,ρ

⎞⎠ eSn[U ′]. (4.15)

We have introduced a diffusion factor τ so that

Sn+1(�τ)[U ] = Sn+1[U ]. (4.16)

As τ → 0+, Sn+1(τ ) reduces essentially to Sn, written for the block-spin link variables U defined
by Eq. (4.7):

eSn+1(τ→0+)[U ] ≡ exp

(∑
x,μ,a

1

2
∂a

x,μ∂a
x,μ

)∫
[dU ′]

∏
x′,ν

δ
(
U (x′, ν) − U ′(bx′, ν)

)

× exp

⎛⎝−
∑

x′′,ρ,b

1

2
∂b

x′′,ρ∂b
x′′,ρ

⎞⎠ eSn[U ′]. (4.17)

The dependence of Sn+1(τ ) on the diffusion factor τ is given by the differential equation,

∂

∂τ
eSn+1(τ )[U ]

= exp

(∑
x,μ,a

1

2
∂a

x,μ∂a
x,μ

)∫
[dU ′]

∑
y,σ ,c

(−2)∂c
y,σ Sw[W ′

τ ] · ∂ ′c
y,σ

∏
x′,ν

δ
(
U (x′, ν) − W ′

τ (bx′, ν)
)

× exp

⎛⎝−
∑

x′′,ρ,b

1

2
∂b

x′′,ρ∂b
x′′,ρ

⎞⎠ eSn[U ′]

= 2 exp

(∑
x,μ,a

1

2
∂a

x,μ∂a
x,μ

) ∑
y,σ ,c

∂c
y,σ

(
∂c

y,σ Sw[U ]
) ∫

[dU ′]
∏
x′,ν

δ
(
U (x′, ν) − W ′

τ (bx′, ν)
)

× exp

⎛⎝−
∑

x′′,ρ,b

1

2
∂b

x′′,ρ∂b
x′′,ρ

⎞⎠ eSn[U ′]. (4.18)

For the first equality above, we have used the lattice flow equation (4.6) in evaluating ∂
∂τ

F[W ′
τ ] =∑

y,σ ,c[(∂/∂τ)W ′
τ (y, σ) · W ′

τ (y, σ)]c ∂ ′c
y,σF[W ′

τ ], which follows from the definition of the link
differential operator (4.5). It is understood that the operator ∂ ′c

y,σ acts on W ′
τ . For the second equal-

ity, we have rewritten ∂ ′c
y,σ as the derivative on U , ∂ ′c

y,σ → −∂c
y,σ ; this identity holds because

the link differential operator acts on the delta function as d/ds δ(U (x′, ν) − esT a
W ′

τ (bx′, ν)) =
d/ds δ(e−sT a

U (x′, ν) − W ′
τ (bx′, ν)). This link differential operator on U can be put outside to act

on the integral over U ′. Then, we can replace ∂c
y,σ Sw[W ′

τ ] by ∂c
y,σ Sw[U ] thanks to the delta function.
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Therefore, from Eq. (4.15), we get an ERG differential equation:

∂

∂τ
eSn+1(τ )[U ] = exp

(∑
x,μ,a

1

2
∂a

x,μ∂a
x,μ

) ∑
x′,ν,b

∂b
x′,ν

[
∂b

x′,νSw[U ]
]

× exp

⎛⎝−
∑

x′′,ρ,c

1

2
∂c

x′′,ρ∂c
x′′,ρ

⎞⎠ eSn+1(τ )[U ]. (4.19)

By integrating this from τ = 0+ to τ = �τ , we restore the finite change of the Wilson action
in Eq. (4.4).

Thus, our ERG transformation in lattice gauge theory consists of the rescaling of lattice points
by Eq. (4.17) and the diffusion from τ = 0+ to τ = �τ by Eq. (4.19) (see Eq. (4.16)). As we
have shown, this transformation preserves the partition function and manifest gauge-invariance of
the Wilson action. It is important to note that neither Eq. (4.17) nor Eq. (4.19) depends explicitly
on n. This implies a possibility of finding a fixed point solution, Sn+1 = Sn. The technique in Ref. [2]
appears helpful to the study of such questions.

5. Conclusion

Imitating the structure of the Wilson action in scalar field theory, expressed by the field diffused by
the flow equation, we have constructed a manifestly gauge-invariant Wilson action and its associated
ERG differential equation in Yang–Mills theory. The construction, extended to lattice gauge theory,
provides a non-perturbative gauge-invariant Wilson action of Yang–Mills theory. We have presented
only the basic idea and basic relations in this paper; we expect many future applications including
analytical or numerical searches for non-trivial RG fixed points in gauge theory. We can also expect
extensions in various directions, such as inclusion of matter fields and search for a reparametrization-
invariant ERG formulation of quantum gravity. It should be also interesting to clarify a possible
relation to the other gauge-invariant ERG formulations of gauge theory [35–39].
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Appendix A. Normalization of the gauge field

In Sect. 3, we have normalized the gauge field Aa
μ(x) so that the rescaled field Ãa

μ(x) ≡ λAa
μ(x),

defined by Eq. (3.10), has the ordinary gauge transformation (3.11). In fact this is not the only choice
of normalization. We can change the normalization of Aa

μ(x) arbitrarily so that the rescaled field is
given by

Ãa
μ(x) = λz(τ )Aa

μ(x). (A.1)
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Let Sz,τ [A] be the Wilson action of this field. We should then obtain

z(τ )n

〈
exp

[
−1

2

∫
dDx

δ2

δAa
μ(x)δAa

μ(x)

]
Aa1

μ1
(x1) · · · Aan

μn
(xn)

〉
Sz,τ

=
〈

exp

[
−1

2

∫
dDx

δ2

δAa
μ(x)δAa

μ(x)

]
Aa1

μ1
(x1) · · · Aan

μn
(xn)

〉
Sτ

. (A.2)

This implies [26]

eSz,τ [A] = exp

[
1 − 1/z(τ )2

2

∫
dDx

δ2

δAa
μ(x)δAa

μ(x)

]
exp (Sτ [z(τ )A]) . (A.3)

For

z(τ ) = 1 + ε (A.4)

where ε is infinitesimal, we obtain

Sz,τ [A] − Sτ [A] = ε

∫
dDx

{[
δSτ

δAa
μ(x)

δSτ

δAa
μ(x)

+ δ2Sτ

δAa
μ(x)δAa

μ(x)

]
+ Aa

μ(x)
δSτ

δAa
μ(x)

}
≡ −εNτ [A]. (A.5)

Hence, Sz,τ satisfies the same ERG equation (3.25) as Sτ except with the addition of

−dz(τ )

dτ
Nτ [A] (A.6)

on the right-hand side. We can interpret −[dz(τ )]/dτ as the anomalous dimension of the gauge field.
The marginal operator O0(p) (3.41) that we have found at the end of Sect. 3 is in fact the operator N ;

we find

N ∗[A]

= −
∫

dDx

{[
δSτ

δAa
μ(x)

δSτ

δAa
μ(x)

+ δ2Sτ

δAa
μ(x)δAa

μ(x)

]
+ Aa

μ(x)
δSτ

δAa
μ(x)

}

=
∫

dDx
∫

dDy Aa
μ(x)Aa

ν(y)
∫

p
eip(x−y)(p2δμν − pμpν)

[
− p2

(e−2p2 + p2)2
+ 1

e−2p2 + p2

]

=
∫

dDx
∫

dDy Aa
μ(x)Aa

ν(y)
∫

p
eip(x−y)(p2δμν − pμpν)

e−2p2

(e−2p2 + p2)2

= O0. (A.7)

We believe that the right choice of the anomalous dimension is necessary to obtain a fixed point
of the ERG transformation.
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[33] Ph. de Forcrand, M. Garćia Pérez, T. Hashimoto, S. Hiokid, H. Matsufuru, O. Miyamura, A.
Nakamura, I.-O. Stamatescu, T. Takaishi, and T. Umeda, [QCD-TARO Collaboration], Nucl. Phys. B
577, 263 (2000) [arXiv:hep-lat/9911033] [Search INSPIRE].

[34] S. Ejiri, K. Kanaya, Y. Namekawa, and T. Umeda, Phys. Rev. D 68, 014502 (2003)
[arXiv:hep-lat/0301029] [Search INSPIRE].

[35] T. R. Morris, Nucl. Phys. B 573, 97 (2000) [arXiv:hep-th/9910058] [Search INSPIRE].
[36] T. R. Morris, J. High Energy Phys. 0012, 012 (2000) [arXiv:hep-th/0006064] [Search INSPIRE].
[37] S. Arnone, T. R. Morris, and O. J. Rosten, Eur. Phys. J. C 50, 467 (2007) [arXiv:hep-th/0507154]

[Search INSPIRE].
[38] C. Wetterich, Nucl. Phys. B 931, 262 (2018) [arXiv:1607.02989 [hep-th]] [Search INSPIRE].
[39] C. Wetterich, Nucl. Phys. B 934, 265 (2018) [arXiv:1710.02494 [hep-th]] [Search INSPIRE].

22/22

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/2/023B05/6122444 by (D

) Kyushu U
 M

ed Lib user on 09 July 2021

http://dx.doi.org/10.1016/S0550-3213(00)00145-0
http://www.arxiv.org/abs/hep-lat/9911033
http://www.inspirehep.net/search?p=find+EPRINT+hep-lat/9911033
http://www.inspirehep.net/search?p=find+EPRINT+hep-lat/9911033
http://dx.doi.org/10.1103/PhysRevD.68.014502
http://www.arxiv.org/abs/hep-lat/0301029
http://www.inspirehep.net/search?p=find+EPRINT+hep-lat/0301029
http://www.inspirehep.net/search?p=find+EPRINT+hep-lat/0301029
http://dx.doi.org/10.1016/S0550-3213(99)00821-4
http://www.arxiv.org/abs/hep-th/9910058
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9910058
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9910058
http://dx.doi.org/10.1088/1126-6708/2000/12/012
http://www.arxiv.org/abs/hep-th/0006064
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0006064
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0006064
http://dx.doi.org/10.1140/epjc/s10052-007-0258-y
http://www.arxiv.org/abs/hep-th/0507154
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0507154
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0507154
https://doi.org/10.1016/j.nuclphysb.2018.04.020
http://www.arxiv.org/abs/1607.02989
http://www.inspirehep.net/search?p=find+EPRINT+1607.02989
http://www.inspirehep.net/search?p=find+EPRINT+1607.02989
http://dx.doi.org/10.1016/j.nuclphysb.2018.07.002
http://www.arxiv.org/abs/1710.02494
http://www.inspirehep.net/search?p=find+EPRINT+1710.02494
http://www.inspirehep.net/search?p=find+EPRINT+1710.02494

