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Abstract

An optimal formation reconfiguration method under the constraints of a satellite attitude
with respect to an inertial frame is addressed. Both the satellite position and attitude are
controlled by only two body-fixed thrusters for an in-plane maneuver. To tackle the under-
actuated control problem, an attitude controller for tracking reference accelerations is firstly
derived on the basis of Lyapunov approach. This controller allows us to consider the atti-
tude constraints as input directional constraints because the satellite attitude is controlled
so that the thrust direction is coincide with the force direction required for the orbit transfer.
Secondly, a formation reconfiguration method based on the Fourier series is used as the ref-
erence inputs, and boundary conditions that make the resulting input trajectory an ellipse
are shown. Such elliptic input trajectory changes the input direction monotonically, which
enables bounding it around an desired direction. The proposed underactuated-controller
achieves a reconfiguration maneuver while keeping the satellite attitude within a range from
a specified direction, and thus is useful when several thrusters of a satellite fail due to mal-
functions. Finally, numerical simulation results validate the effectiveness of the proposed
relocation method by comparing energy consumptions and bounded satellite attitude angles.

Keywords: Optimal reconfiguration, Attitude constraints, Formation flying, Thrusters

1. Introduction

Formation flying is one of promising technologies for space missions [1, 2, 3, 4], in which
several satellites are orbiting on a close formation and controlled to keep their relative posi-
tion and attitude to one another. The relative motion of a satellite, called “follower”, with
respect to a “leader” satellite have been discussed using linearized equations. The equations
of motion of the follower in the proximity of the leader is expressed with Hill–Clohessy–
Wiltshire (HCW) equations [5] for a circular orbit and Tschauner-Hempel equations [6] for
an elliptic orbit. These linearized equations have periodic solutions and they are useful to
design satellite formation relocation or rendezvous trajectories [7, 8, 9]. From a practical
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viewpoint, optimal trajectories to desired relative orbits should be designed to minimize en-
ergy or fuel consumption. In terms of energy optimality, Carter and Pardis [10] propose an
optimal feedback controller for a rendezvous problem in a circular orbit under constraints of
bounded thrusts. Palmer [11] analytically shows an optimal controller based on the Fourier
series for relocating a follower satellite to a desired relative orbit. This method is extended to
study analytical solutions for optimal formation reconfigurations under J2 perturbation [12]
as well as to derive an optimal controller for formation flying in an elliptic orbit [13]. For
both energy and fuel optimizations, Xi and Li [14] show an optimal reconfiguration method
in an elliptic orbit using a homotopy method. Though these methods enable optimal forma-
tion control, arbitrary magnitudes of accelerations are assumed available in any directions.
This assumption implies that enough number of thrusters are equipped on satellites, and
thus the prior controllers are not applicable when some thrusters have failed or a satellite
equips a few number of thrusters.

Even if a follower satellite equips enough number of thrusters, the satellite attitude con-
trol throughout a reconfiguration maneuver is needed for practical mission requirements.
Moreover, the satellite attitude depends on the thrust directions when only a few number
of thrusters are available. In that case, the thrust directions must be oriented along desired
directions by controlling the satellite attitude. This indicates that the requirements on the
attitude angles can be equivalently considered as input directional constraints. Mitani and
Yamakawa [15] show an optimal rendezvous method under thrust directional constraints with
respect to a leader satellite. The optimal controller is based on a satisficing method [16] for
keeping the thrust direction within an allowable area. The control method in [15] is further
extended to an optimal controller [17] in terms of L1 and L2 optimizations of thruster accel-
erations by the use of a smoothing method. Guelman et al. [18] deal with a formation control
under a single input constraint in a circular orbit. Recent research deals with position and
attitude control of satellites in formation flying [19, 20, 21]. These studies, however, assume
that the satellite attitude can be controlled arbitrarily. That is, the attitude dynamics of
a follower satellite is not explicitly studied. Therefore the existing control methods may
affect the attitude motion in the formation flying and are not applicable to the system in
this paper.

This study aims to show an optimal formation reconfiguration method under a satellite
attitude constraint with respect to an inertial frame. In the reconfiguration maneuver for in-
plane motion, both the satellite position and attitude are controlled using only two thrusters.
For such an underactuated satellite, its attitude angle must be controlled for generating
thruster forces in desired directions. Thus this study firstly derives an attitude tracking
controller using the thruster inputs on the basis of Lyapunov stability. The derived tracking
controller reduces the reconfiguration problem under the attitude constraint to the one
under a thrust directional constraint. Secondly, reference inputs for the tracking method is
designed. Then, the conditions of the reference inputs to bound the thrust direction around
desired one are discussed. The maximum bound of the attitude angle can be accurately
estimated. Numerical simulation results verify the effectiveness of the proposed controller
and the accuracy of the estimated bounds, and compare the energy consumptions. The
proposed underactuated control method uses two thrusters for the reconfiguration maneuver
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while keeping the satellite attitude in a certain region. The proposed method is useful and
applicable for formation flying maneuvers under attitude constraints such as electric power
generation with fixed solar array panels, coronagraph observations[3, 22] or communication
with ground stations. The formation reconfiguration with only two thrusters also indicates
that the number of actuators required for formation flying can be reduced and is useful when
several thrusters of a satellite fail due to malfunctions.

This paper is organized as follows. Section 2 denotes the relative equations of a follower
satellite in a near-circular orbit and their analytical solutions. Modal equations are also
shown to simplify the interpretation of the reconfiguration problem. Section 3 describes an
optimal reconfiguration method and its boundary conditions to orient the satellite attitude
along a desired direction. Furthermore, an initial input direction and the estimation of the
attitude bound are analyzed. Finally, some numerical simulation results are shown to verify
the effectiveness of the proposed method in Section 4, and Section 5 concludes this paper.

2. Problem Formulation

2.1. Hill–Clohessy–Wiltshire equations

The relative motion of a follower satellite is described in a leader-fixed frame. In the
leader-fixed coordinate system, x-axis lies in the radial direction from the Earth, z-axis
points to the orbital momentum vector of the leader, and y-axis completes the right-handed
frame. Since the cross-track motion along the z-axis is decoupled from the in-plane motion,
this study considers a formation reconfiguration in the x–y plane. If cross-track motion
exists, the translational and rotational motion along the z-axis should be firstly controlled
so that the proposed method in this paper can be applied. The in-plane equations of motion
are written as

ẍ = 2Ωẏ + Ω2 (Rl + x)− µ (Rl + x)(
(Rl + x)2 + y2 + z2

) 3
2

+ ux (1)

ÿ = −2Ωẋ+ Ω2y − µy(
(Rl + x)2 + y2 + z2

) 3
2

+ uy (2)

where Ω, Rl, and µ are the orbital rate of the leader satellite, the orbital radius of the
leader, and the gravitational constant, respectively. The variables (x, y, z) and (ux, uy)
denote the relative position of the follower and external accelerations. Although practical
disturbances such as atmospheric drag and/or solar radiation pressure should be considered
in the external accelerations, this study ignores these effects to simplify the simultaneous
control of the relative position and attitude. The extension of the proposed method to the
motion under the disturbances will be studied in future works.

Assuming that the orbital radius of the leader is much larger than the distance between
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the leader and follower, we obtain linearized equations, i.e., HCW equations [5] as

d

dt


Ωx
ẋ
Ωy
ẏ

 =


0 Ω 0 0
3Ω 0 0 2Ω
0 0 0 Ω
0 −2Ω 0 0




Ωx
ẋ
Ωy
ẏ

+


0
1
0
0

0
0
0
1

[ uxuy
]

(3)

⇒ ẋ = Ax+Buxy (4)

Note that the variables x and y in the state vector x are multiplied by the orbital rate Ω to
simplify analytical solutions shown in the followings.

The analytic solutions of the HCW equations with no external forces, i.e., homogeneous
solutions, are described as follows.

xh (t) = Φ (t)xi (5)

where

Φ(t) :=


4− 3cΩ sΩ 0 2 (1− cΩ)
3sΩ cΩ 0 2sΩ

6 (sΩ − Ωt) −2 (1− cΩ) 1 4sΩ − 3Ωt
−6 (1− cΩ) −2sΩ 0 −3 + 4cΩ

 (6)

In Eq. (6), cΩ := cos (Ωt) and sΩ := sin (Ωt). Hereafter the subscript i denotes an initial
state. Equation (5) is simplified as

x (t) = −a cos (Ωt+ ϕ) +
2b

Ω
(7)

y (t) = 2a sin (Ωt+ ϕ)− 3bt+ d (8)

ẋ (t) = Ωa sin (Ωt+ ϕ) (9)

ẏ (t) = 2Ωa cos (Ωt+ ϕ)− 3b (10)

where

a :=

√
(3xi + 2ẏi/Ω)

2 + (ẋi/Ω)
2 (11)

b := 2Ωxi + ẏi (12)

d := yi − 2ẋi/Ω (13)

ϕ := arctan

(
ẋi

Ω (3xi + 2ẏi/Ω)

)
(14)

Since the follower position forms(
x− 2b/Ω

a

)2

+

(
y + 3bt− d

2a

)2

= 1 (15)

the relative motion of the follower represents an elliptic orbit at b = 0 and a leader-centered
ellipse at b = d = 0. Thus the constants a, b, d, and ϕ denote the size of the relative orbit,
the drift velocity, the center distance of the ellipse from the leader satellite, and the initial
phase, respectively.
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2.2. Modal equations

A variable transformation based on modal analysis can simplify the relative motion of
the follower satellite [18, 23]. The system matrix A for the in-plane motion of the HCW
equations is defective and only three eigenvectors and eigenvalues are obtained, although
the order of A is four. The eigenvectors and eigenvalues are calculated as

[
e1 e3 e4

]
=


0
0
1
0

−1/2
j/2
j
1

−1/2
−j/2
−j
1

 (16)

λ1 = 0, λ3 = −jΩ, λ4 = jΩ (17)

where j is an imaginary number. The following manipulations give two real eigenvectors:

e′
3 = (e3 − e4) /j

=
[
0 1 2 0

]T
(18)

e′
4 = (e3 + e4)

=
[
−1 0 0 2

]T
(19)

The superscript “T” denotes the transpose of a vector or matrix.
A generalized eigenvector e2 is obtained as follows.

(A− λ1I) e2 = e1

⇒ e2 =
[
−2/(3Ω) 0 α 1/Ω

]T (20)

In Eq. (20), α is an arbitrary value and henceforth the case for α = 0 is considered for
simplicity. The modal variables are defined using the transformation matrix that consists
of the eigenvectors as

ξ =
[
ξ1 ξ2 ξ3 ξ4

]T
:= Px (21)

where

P :=
[
−e′

4 e′
3 −e1 −3Ωe2

]−1
(22)

and equivalently,

ξ1 = −3Ωx− 2ẏ (23)

ξ2 = ẋ (24)

ξ3 = 2ẋ− Ωy (25)

ξ4 = 2Ωx+ ẏ (26)
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It is noted that the matrix P in Eq. (22) is defined as the inverse of the eigenvectors to
simplify the formulation. The modal variables ξ1 and ξ2 denote an oscillatory mode, whereas
ξ3 means the distance between the leader and the center of the relative elliptic orbit and ξ4
is the drift velocity, respectively. In fact, the Euclidean norm of ξ1/Ω and ξ2/Ω has the same
form as the parameter a shown in Eq. (11); the initial values of −Ωξ3 and ξ4 are equivalent
to the parameters d and b defined in Eqs. (13) and (12).

The differential equations of the modal variables are described as follows:

ξ̇ = PAP−1 + PBuxy (27)

=


0 Ω 0 0
−Ω 0 0 0
0 0 0 3Ω
0 0 0 0

 ξ +


0
1
2
0

−2
0
0
1

uxy (28)

The state transition matrix Φ is also simplified with the modal variables as:

PΦP−1 =


cos (Ωt) sin (Ωt) 0 0
− sin (Ωt) cos (Ωt) 0 0

0 0 1 3Ωt
0 0 0 1

 (29)

Equations (28) and (29) indicate that the oscillatory mode described with ξ1 and ξ2 are
decoupled with the drift motion terms ξ3 and ξ4.

2.3. Rotational equations

The rotational motion of the follower is discussed under the assumption that zb-axis in
the follower-fixed frame corresponds with the z-axis. The rotational equations of motion of
the follower in the x–y plane is expressed with a single spin motion around the z-axis as

ψ̇ = ωz − Ω (30)

Jzω̇z = Tz (31)

where ψ, ωz, Tz, and Jz are the attitude angle of the follower in the leader-fixed frame, the
angular rate, the external torque generated with the thrusters, and the moment of inertia
around the zb-axis of the follower-fixed frame, respectively.

In the present paper, the follower satellite is assumed to equip two body-fixed thrusters
for position and attitude control and the xb-axis of the body-fixed frame corresponds with
the thrust direction as shown in Fig. 1. The thrusters can generate variable magnitudes
of thrust forces whose directions are restricted only in positive direction due to thruster
mechanisms. Thus the external accelerations shown in Eq. (4) are written as

uxy =
1

m
R(ψ)Fb (32)
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Figure 1: Thruster configuration.

where m and Fb =
[
f1 + f2 0

]T
(f1, f2 ≥ 0) are the satellite mass and the thruster force

vector in the body-fixed frame, respectively, and R(·) denotes a rotational matrix around
the zb-axis, that is,

R (ψ) =

[
cosψ sinψ
− sinψ cosψ

]
(33)

The control torque is written as

Tz = f1β1 + f2β2 (34)

where β1 and β2 are the moment arms of each thruster; note that βi is defined in this study
to take a negative value in the case that the thruster generates a clockwise directional control
torque.

Consequently, the following relation is used to distribute the required control acceleration
and torque into the two thrusters.[

f1
f2

]
=

[
1 1
β1 β2

]−1 [
m
√
u2x + u2y
Tz

]
(35)

Although the inverse matrix in the right-hand side of Eq. (35) becomes singular at β1 = β2 ,
this singularity can be ignored because such condition occurs in which the two thrusters gen-
erate control torques in the same direction; in that case the system becomes uncontrollable.

2.4. Attitude constraints

In a reconfiguration maneuver, the size of the relative orbit is controlled to that of a
desired relative orbit, which is described in terms of the modal variables as (ξ1i, ξ2i, ξ3i, ξ4i) →
(ξ1d, ξ2d, ξ3i, ξ4i). In addition, the maneuver aims to orient a specific direction of the follower,
e.g., the normal direction of solar array panels or a telescope. Such inertially-oriented
constraint arises from mission requirements; obtaining solar energy or sun observation [24].
As shown in Fig. 2, this paper assumes that the desired direction as X-axis in the inertial
frame, and the specific direction to be oriented is denoted with ψoffset in the body-fixed
frame. The attitude angle to be oriented along the X-axis is represented in the inertial
frame:

Ψ(t) := θ(t) + ψ(t) + ψoffset (36)
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Figure 2: Attitude constraint in the inertial coordinate system.

where θ denotes the true anomaly of the leader satellite. Therefore the attitude constraint
considered in this study is keeping the attitude angle Ψ around the X-axis throughout the
maneuver: that is, the angle ψbound in Fig. 2 should be bounded.

3. Control Method

In this section, an attitude tracking controller to orient the thrust direction along desired
one is firstly derived because only two thrusters are available for a formation reconfigura-
tion. The attitude controller enables considering the control inputs for the reconfiguration
maneuver as accelerations. Thus, for the tracking controller, Subsection 3.2 shows optimal
reconfiguration inputs in terms of the accelerations. Then, boundary conditions that make
the input trajectory an ellipse are derived in Subsection 3.3, which enables bounding the
attitude angle around the desired direction. Furthermore, Subsection 3.4 shows that the
initial input angle can be oriented into the desired direction by properly setting maneuver
terminated time, and the estimation method of the maximum attitude bound is described
in Subsection 3.5.

3.1. Reference acceleration tracking

An attitude control method using the body-fixed thrusters is derived for tracking desired
thrust directions. Since the follower satellite equips only two thrusters, the follower’s attitude
must be controlled so that the thrust direction is oriented along the desired acceleration
direction. In other words, for an arbitrary reference acceleration (uxd(t), uyd(t)) and its
angle ψd(t) := arctan (uyd(t)/uxd(t)), the attitude control to realize ψ(t) → ψd(t) is needed.
To this end, the following Lyapunov function candidate is adopted.

L =
1

2
(ψ − ψd)

2 +
1

2

(
ψ̇ − ψ̇d

)2
(37)
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The time derivative of Eq. (37) is calculated as

L̇ =
(
ψ̇ − ψ̇d

)(
ψ̈ − ψ̈d + ψ − ψd

)
=
(
ψ̇ − ψ̇d

)(
Tz/Jz − ψ̈d + ψ − ψd

)
(38)

Thus the following controller is proposed.

Tz/Jz = ψ̈d − ψ + ψd −Kψ(ψ̇ − ψ̇d) (39)

where Kψ is a positive constant gain. Substituting this control input into Eq. (38), we obtain
the time derivative of the Lyapunov function as

L̇ = −Kψ

(
ψ̇ − ψ̇d

)2
< 0 (40)

The control torque shown in Eq. (39) therefore enables the follower attitude to track the
reference acceleration angle. This indicates that the reconfiguration problem under the
attitude constraint can be dealt with as the reconfiguration under the directional constraint
of the reference accelerations. Henceforth, the attitude constraint is interchangeably denoted
as the input directional constraints under the reference acceleration tracking.

Note that the reference inputs uxd and uyd must be at least two times differentiable due
to the term ψ̈d in Eq. (39). If the reference inputs include a feedback term of the velocity ẋ,
the reference inputs require the term ψ̈d for the feedback that results in the time derivative
of acceleration

...
x . Such term is difficult to estimate and thus full-state feedback controllers,

e.g., linear-quadratic regulator, are not applicable to design the reference accelerations in
this study.

3.2. Reference optimal controller

The optimal controller design for the reference inputs under the input directional con-
straint is shown on the basis of the method in [11]. The advantages of using the controller
are: 1) the optimal inputs are infinitely differentiable because of a series of time function;
2) the analytical expression of the controller provides a clue for conditions which satisfy
the constraint on the input direction. The control method in [11] is briefly followed in this
subsection.

Regarding accelerations as control inputs, an optimal reconfiguration controller is de-
signed to minimize the energy consumption of the maneuver. A cost function is defined for
the maneuver with a terminated time tf as follows.

J =

∫ tf

t0

(
u2x + u2y

)
dt (41)
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where t0 is maneuver starting time. The control inputs are described with the Fourier series
for representing arbitrary inputs as:

ux =
ax0
2

+
∞∑
n=1

(
axn cos

(
2nπ

∆t
t

)
+ bxn sin

(
2nπ

∆t
t

))
(42)

uy =
ay0
2

+
∞∑
n=1

(
ayn cos

(
2nπ

∆t
t

)
+ byn sin

(
2nπ

∆t
t

))
(43)

where ∆t := tf − t0 and ak0, akn, and bkn (k = x, y) are the Fourier coefficients. The cost
function is rewritten in terms of the Fourier coefficients using the Parseval’s theorem [25] as
follows.

J =
∆t

2

(
a2x0
2

+
∞∑
n=1

(
a2xn + b2xn

))
+

∆t

2

(
a2y0
2

+
∞∑
n=1

(
a2yn + b2yn

))
(44)

Thus the optimal control problem is equivalent to finding the Fourier coefficients that min-
imize the cost function.

The analytical solutions of the HCW equations including control inputs are described as

xf = xhf + xpf (45)

= Φfx0 + xpf (46)

where the subscripts “h” and “p” denote a homogeneous solution and a particular solution.
The subscripts “0” and “f” mean the state when t = t0 and t = tf , respectively. The
particular solution is written as a matrix form:

xpf =


2 −2 0 0
0 0 2 0

−3Ω∆t 0 4 3
−3 4 0 0



I2
I3
I4
I5

 (47)

⇒ xpf = BpI (48)

where

I2 =

∫ tf

t0

uy (τ) dτ (49)

I3 =

∫ tf

t0

uy (τ) cos [Ω (∆t− τ)] dτ −
∫ tf

t0

ux (τ) sin [Ω (∆t− τ)] dτ (50)

I4 =

∫ tf

t0

uy (τ) sin [Ω (∆t− τ)] dτ +
1

2

∫ tf

t0

ux (τ) cos [Ω (∆t− τ)] dτ (51)

I5 = Ω

∫ tf

t0

uy (τ) τdτ −
∫ tf

t0

2

3
ux (τ) dτ (52)
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These integral terms describe the constraints between a desired state and a homogeneous
solution as

I = B−1
p (xf − xhf )

=


2 0 0 1
3/2 0 0 1
0 1/2 0 0

2Ω∆t −2/3 1/3 Ω∆t




Ω (xf − xhf )
ẋf − ẋhf

Ω (yf − yhf )
ẏf − ẏhf

 (53)

These boundary constraints are transformed in terms of the modal variables as follows.

Iξ = [ Iξ2 Iξ3 Iξ4 Iξ5 ]T

:= B−1
p P−1 (ξf − ξh) (54)

The permutation of the components of Iξ defines I
′
ξ := [ Iξ3 Iξ4 Iξ5 Iξ2 ]T and the bound-

ary constraints are further transformed as

K =


cos β

2
sin β

2
0 0

− sin β
2

cos β
2

0 0
0 0 − 2

β
1

0 0 0 1

 I ′
ξ (55)

where K = [ K3 sin(β/2) K4 sin(β/2) K5 K2 ]T and β = Ω∆t. The transformed con-
straints K provide simple relations with Lagrange multipliers as shown in [23] and the
multipliers are analytically solved for satisfying the boundary constraints [11]. The result-
ing optimal inputs for the fixed time reconfiguration maneuver are described as follows.

ux(t) =
2

3
T1 +

Λ

2
sin(Ω (t− t0)−Θ) (56)

uy(t) = T0 − T1Ω (t− t0) + Λ cos(Ω (t− t0)−Θ) (57)

where T0, T1,Λ, and Θ are constants described with the Lagrange multipliers [11].

3.3. Elliptic input trajectory

The analytical expression of the optimal controller gives us a clue for satisfying the input
directional constraint. The controller shown in Eqs. (56) and (57) has the same form as the
analytical solutions of the HCW equations in Eqs. (7) and (8), and this fact indicates that the
input trajectory becomes an ellipse at T1 = 0 and furthermore an origin-centered ellipse at
T0 = T1 = 0. Such elliptic input trajectory can change the acceleration angle along with the
input directional constraint, because both the acceleration angle and desired one represented
in the leader-fixed frame vary monotonically. In fact, the average rate of the acceleration
angle changes is Ω as shown in Eqs. (56) and (57) and the desired angle represented in the
leader-fixed frame also varies at the rate Ω due to the leader’s circular orbit. Thus if the
initial input direction is within allowable directions, the difference between the input angle
and desired one is expected to be bounded.
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In order to realize the elliptic input trajectory, conditions for satisfying T1 = 0 are
sought. The constant T1 is described with the Lagrange multipliers and they are related to
the boundary states of the follower, i.e., the initial and final states when the maneuver is
implemented. The constant T1 is written as [11]

T1 =
λ5 (β,K4, K5)

β
(58)

The variable λ5 is the Lagrange multiplier described as

λ5 =
1

D

[
1

2Ω

(
β − sin β

1− cos β
+

1

4

β + sin β

1− cos β

)
K5 −

2

βΩ

(
β

2
cot

β

2
− 4/3

)
K4

]
(59)

where

D =
1

6Ω2

[
β − sin β

1− cos β
+

1

4

β + sin β

1− cos β

](
β

2
+

8

3β

)
− 4

β2Ω2

(
β

2
cot

β

2
− 4

3

)2

(60)

Since the boundary states of ξ3 and ξ4 are ξ3,0 = ξ3hf and ξ4,0 = ξ4hf for the reconfiguration
maneuver, the constraints K are simplified to K2 = K5 = 0 from Eqs. (54) and (55). As a
result, the condition T1 = 0 is equivalent to K4 = 0 from Eqs. (58) and (59).

Using Eqs. (54) and (55), we obtain the condition on the boundary states for satisfying
K4 = 0 as follows.

(ξ1f − ξ1hf ) + (ξ2f − ξ2hf ) cot

(
β

2

)
= 0 (61)

The modal variables are rewritten with polar coordinates as

ξ1f = af cos γf (62)

ξ2f = af sin γf (63)

Note that, since af =
√
ξ21f + ξ22f , the variable af indicates the size of the relative orbit at

the terminated time tf . The homogeneous solutions of the modal variables are described
using the state transition matrix in Eq. (29) as follows.

ξ1hf = a0 cos γ0 cos β + a0 sin γ0 sin β (64)

ξ2hf = −a0 cos γ0 sin β + a0 sin γ0 cos β (65)

Substitution of Eqs. (62)-(65) into Eq. (61) and the assumption cot (β/2) ̸= 0 yield

(af cos γf − a0 cos (γ0 − β)) tan

(
β

2

)
+ af sin γf − a0 sin (γ0 − β) = 0 (66)

⇒ af

(
tan

(
β

2

)
cos γf + sin γf

)
− a0

(
sin(γ0 − β) + tan

(
β

2

)
cos(γ0 − β)

)
= 0 (67)
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In the above equations, af and a0 are nonzero values for the reconfiguration maneuver and
Eq. (67) is equivalent to the following conditions:

tan

(
β

2

)
cos γf + sin γf = 0 (68)

sin(γ0 − β) + tan

(
β

2

)
cos(γ0 − β) = 0 (69)

These equations hold at

γf = −β
2

(70)

γ0 =
β

2
(71)

From the definitions of γf , γ0, ξ1, and ξ2, Eqs. (70) and (71) are described as the boundary
conditions of the follower position:

yf
2xf

= tan

(
−β
2

)
(72)

y0
2x0

= tan

(
β

2

)
(73)

Therefore by setting the initial and final position of the follower to satisfy Eqs. (72) and
(73), the condition T1 = 0 holds. That is, the resulting optimal input trajectory in Eqs. (56)
and (57) becomes an ellipse.

3.4. Initial input angle

As discussed in the previous subsection, the elliptic input trajectory can bound the dif-
ference between the acceleration angle and desired one if the initial input angle is coincident
with the desired angle. The initial acceleration angle when the maneuver starts is obtained
by substituting t = t0 into Eqs. (56) and (57) as

ψd0 = arctan

(
2 (T0 + Λcos (−Θ))

Λ sin (−Θ)

)
(74)

On the other hand, since the attitude angle ψ is controlled to ψd by using the attitude
tracking controller, the initial angle ψd0 is described from Eq. (36) as

−ψd0 = Ωt0 + ψoffset (75)

where, without loss of generality, the initial state xi is assumed to be on the X-axis, i.e.,
θ(ti) = 0. The maneuver starting time t0 is determined with Eq. (73) and is written in terms
of the initial position of the follower (i.e., when θ = 0) as follows.

β

2
= arctan

(
yi
2xi

)
− Ωt0 (76)
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Substituting Eq. (76) into Eq. (75) provides

ψd0 −
β

2
= − arctan

(
yi
2xi

)
− ψoffset (77)

The left-hand side of Eq. (77) is the function of the terminated time tf because the initial
acceleration angle ψd0 can vary according to the final time tf . Equation (77) thus determines
the proper final time tf that can realize the initial acceleration angle to coincide with the
desired one. In addition, Eq. (77) has multiple solutions as tf + 2Nπ/Ω (N = 0, 1, 2, ...)
because the relative motion of the follower is periodic. Note that, although the terms
ψd0 − β/2 vary depending on tf , Eq. (77) may not have a solution for a certain range of
ψoffset. However, in that case, relaxing the condition in Eq. (75) to

−ψd0 ≤ |Ωt0 + ψoffset ± Γ| (78)

where Γ is an initial error with respect to the desired angle, we can find the solution of the
terminated time tf .

3.5. Maximum bound estimation

The maximum bound of the input angle with respect to the desirable angle needs to be
numerically obtained because they do not strictly coincide throughout the reconfiguration
maneuver, even though the initial acceleration angle can be oriented along the desirable one.
This stems from the elliptic motion of the acceleration trajectory, whereas the desired angle
change is a circular motion.

Despite the fact that Ψ(t) in Eq. (36) is expressed with the analytical form, its extremum
values may not be analytically obtained due to the nonlinearity of ψd (equivalent to ψ). Their
estimated values, however, are easily obtained by solving Ψ̇ (t) = 0 under the assumption
T0 ≒ 0: the condition Ψ̇ (t) = 0 holds at

t− t0 =
2Θ + arccos (−1/3)

2Ω
, −−2Θ + arccos (−1/3)

2Ω
(79)

The assumption T0 ≒ 0 does not hold except for special cases of boundary conditions though,
the approximate solutions in Eq. (3.5) provide good estimations for the maximum bound of
the attitude angle as demonstrated in the following section. Furthermore, the approximate
solutions are useful as initial estimations for numerical solvers of nonlinear equations, such
as Newton’s method. Consequently the accurate maximum bound of the attitude angle can
be calculated with low computational efforts using the approximate solutions in Eq. (3.5).

4. Numerical simulation

This section shows numerical simulation results for three cases to demonstrate the ef-
fectiveness of the proposed reconfiguration method. A leader satellite is assumed to be
orbiting in a circular orbit at 6.313× 10−4 rad/s. The follower satellite’s mass, the moment
of inertia, and the moment arm of the thrusters are set to m = 200 kg, Jz = 60 kgm2, and
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Figure 3: Reconfiguration trajectory of the follower (ψoffset = 0 deg, t0 = 7036 s, tf = 18396 s).

(β1, β2) = (0.5,−0.5) m, respectively, and the initial follower attitude is assumed to coincide
with a desired angle with no angular velocity. All simulation cases aim the reconfiguration
of the follower from the relative orbit at ai = 2000 m to the target orbit at af = 1000 m
with the initial position (xi, yi) = (347.3,−3939.2) m, i.e., arctan (yi/ (2xi)) = −80 deg.

The first numerical simulation is conducted setting the parameter for the attitude con-
straint as ψoffset = 0 deg. For this attitude constraint, the terminated time tf is numerically
obtained as tf = 18396 s (N = 0) using Eq. (77) and then the starting time of the maneuver
is calculated as 7036 s from Eq. (76). Figure 3 describes the reconfiguration trajectory of
the follower satellite, in which the dashed and solid line represent the coasting and relo-
cation trajectory of the follower, respectively. The circle and cross indicate the initial and
maneuver starting positions. As seen in the Fig. 3, the follower is successfully controlled to
the target relative orbit. The time history of the attitude angle with respect to the inertial
frame is shown in Fig. 4, and it represents the attitude angle of the follower can be bounded
around the X-axis of the inertial frame. The estimated bound of the attitude angle is calcu-
lated as 34.4 deg using Eqs. (36) and (3.5), whereas the exact value is found to be 35.2 deg.
Thus the maximum bound can be precisely estimated as discussed in the subsection 3.5. In
Figs. 5 and 6, the reference acceleration trajectory and the time history of the total thruster
forces are shown, respectively. The reference input trajectory in Fig. 5 describes an ellipse as
expected in the previous section, and the thruster forces throughout the maneuver in Fig. 6
are kept positive not to violate the constraints on the thruster mechanisms. The numerical
simulation result yields the cost function as 2.50× 10−5 m2/s3.

The second simulation is performed with the attitude offset angle ψoffset = −30 deg. The
terminated time tf = 16699 s and starting time t0 = 8734 s are obtained from Eqs. (76) and
(77), respectively. In Fig. 7, the dashed and solid lines describe the follower coasting and
reconfiguration trajectory, respectively, and the relative orbit of the follower is successfully
controlled to the desired relative orbit. Figure 8 shows the time history of the attitude angle
including the offset angle in the inertial frame. Although the maximum bound is larger than
the previous simulation result, the attitude angle with the offset angle ψoffset can be bounded
around the X-axis in the inertial frame. The reason of the larger bound is that the center of
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Figure 4: Time history of the attitude angle of the follower in the inertial frame (ψoffset = 0 deg, t0 = 7036
s, tf = 18396 s).
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Figure 5: Input trajectory in the leader-fixed frame (ψoffset = 0 deg, t0 = 7036 s, tf = 18396 s).
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Figure 6: Time history of the total thruster forces (ψoffset = 0 deg, t0 = 7036 s, tf = 18396 s).
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Figure 7: Reconfiguration trajectory of the follower (ψoffset = −30 deg, t0 = 8734 s, and tf = 16699 s).
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Figure 8: Time history of the attitude angle of the follower in the inertial frame (ψoffset = −30 deg, t0 = 8734
s, and tf = 16699 s).

the elliptic input trajectory in Fig. 9 has a larger offset than that of the previous simulation
in Figs. 5. Figure 10 illustrates the time history of the thruster forces and the magnitude
of the thrusts is also larger than that of the previous simulation in Fig. 6 because of the
shorter maneuver time: ∆t = 7965 s for the second case and ∆t = 11900 s for the first case.
The resulting cost function is obtained as J = 6.77× 10−5 m2/s3.

The third simulation result is for the same initial condition and the attitude constraint
as the first one except for the terminated time tf . The terminated time tf more than
one orbital period is set as tf = 18396 + 2π/Ω = 28348 s, whereas the starting time is
the same as the first simulation, i.e., and t0 = 7036 s. In Fig. 11, the dashed and solid
lines similarly represent the coasting motion and reconfiguration trajectory of the follower,
respectively. The relative orbit of the follower is successfully relocated to the desired relative
orbit. Figure 12 represents the time history of the attitude angle Ψ in the inertial frame and
the attitude angle is kept around the X-axis of the inertial coordinates. As shown in Fig. 13,

17



 $

"

$

 $"$

Figure 9: Input trajectory in the leader-fixed frame (ψoffset = −30 deg, t0 = 8734 s, and tf = 16699 s).
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Figure 10: Time history of the total thruster forces (ψoffset = −30 deg, t0 = 8734 s, and tf = 16699 s).
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Figure 11: Reconfiguration trajectory of the follower (ψoffset = 0 deg, t0 = 7036 s, and tf = 28348 s).
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Figure 12: Time history of the attitude angle of the follower in the inertial frame (ψoffset = 0 deg, t0 = 7036
s, and tf = 28348 s).

the thrusters generate positive forces and the resulting cost function for this maneuver is
1.06×10−5 m2/s3, which is smaller than the previous simulations due to the longer maneuver
time.

Table 1 summarizes the maneuver time, the energy consumptions, the estimated maxi-
mum bounds of the attitude angle, and their exact values for the three cases. The energy
consumption is significantly affected by the maneuver duration ∆t: a longer maneuver time
can reduce the energy consumption. The maximum bound of the attitude angle is accurately
estimated under the assumption T0 ≒ 0, and more accurate results will be obtained by using
nonlinear equation solvers, such as Newton’s method.

5. Conclusions

An optimal formation reconfiguration under attitude constraints with respect to an in-
ertial frame has been derived using only two thrusters. To control a follower position and
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Figure 13: Time history of the total thruster forces (ψoffset = 0 deg, t0 = 7036 s, and tf = 28348 s).

Table 1: Cost function and maximum bound

first case second case third case
maneuver duration, ∆t, s 11360 7965 21312
cost function, J , m2/s3 2.50× 10−5 6.77× 10−5 1.06× 10−5

estimated maximum bound, deg 34.4 48.0 32.2
exact maximum bound, deg 35.2 50.8 32.4

attitude using the thrusters, an attitude tracking method based on Lyapunov approach has
been shown. The tracking controller can reduce the reconfiguration problem under the at-
titude constraints to the one under thrust directional constraints, which allows us to design
the reference inputs in terms of the accelerations. The reference accelerations using the
Fourier series reveal that particular boundary conditions can make the input trajectory an
ellipse, which can be exploited to satisfy the constraints. Furthermore, the estimation tech-
nique for the maximum bound of the attitude angle with respect to the desired direction
has been shown. Numerical simulations for three cases have verified the effectiveness of
the proposed reconfiguration controller and compared the energy efficiency. Although the
proposed reconfiguration maneuver needs to admit the attitude change in some range due to
the constraints of the small number of thrusters, the proposed method achieves the optimal
formation reconfiguration with bounded and small attitude changes using only few thrusters.
Further improvements to overcome the limitation and to involve practical situations such as
formation flying in elliptic orbit or under disturbances will be studied in future works.
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