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Abstract: The hypergeometric Ordinary Differential Equation (ODE) has wide application in the 
Mechanical Engineering field. The solution to the hypergeometric ODE is called a hypergeometric 
function, or also a hypergeometric series. Not all of the hypergeometric series converges to a simple 
defined algebraic function. It is a well-known fact that the hypergeometric series F(1, c, c; x) will 
converge to the Maclaurin series 1/(1-x). This article investigates the hypergeometric function F(k, 
c, c; x). It will be proven that the function F(k, c, c; x) will always converge to certain values. We 
can represent these values on a line of the form A + mx, whose coefficients A and m are functions of 
x. 

Keywords: hypergeometric ODE; hypergeometric function; hypergeometric series. 

1. Introduction
Engineering Mathematics is an expanding discipline 

that covers a wide range of areas. It’s development and 
growing relevance are motivated by the engineer’s need 
for a theoretical basis1). Mohd et al. used a numerical 
method based upon the Lattice Boltzmann approach to 
describe a three-dimensional free surface flow impacting 
on a cylindrical obstacle. The results shown a good 
agreement with the experiments2). Kumar et al. developed 
a mathematical model for a Rayleigh waves in 
thermoelastic medium. The model is based on stress and 
energy balance. It is found that, as wave number increases, 
the secular equation’s determinant and the velocity value 
of Rayleigh waves decrease whilst the attenuation 
coefficient increase3). Abouelella et al. used mathematical 
modelling for computing mass balance, mass and heat 
transfer to describe adsorption of CO2 in several 
materials4). Chiba used 2D Differential Transform Method 
to obtain the solution for natural convection between two 
finite vertical plates5). The solution describes the velocity 
profiles which depend on the temperature of the two plates. 
Bathavatchalam et al. developed a program using C 
language to analyze humidity and desalination6). Specific 
heat at constant pressure was modelled using polynomial 
equation which is retrieved from experiment’s data. 
Mishra et al. evaluated the temperature distribution of 
workpiece in electric discharge machining using semi 
analytical approach7). The approach was based on the 
integral transformation method and numerical evaluation 
of the integral by Monte Carlo simulation. Chauhan and 
Khare analyze an ABB IRB 1520 robot movement8). The 

proposed mathematical model written in matrix form was 
evaluated using the RoboAnalyzer software. It is found 
that the cycloidal trajectory provides the smallest total 
time, with a smooth and vibration free movement. Seddiq 
and Maerefat found the solution for a cross-flow plate heat 
exchanger9). The solution was developed based on energy 
conservation in an incompressible medium without heat 
source and viscous dissipation. The obtained results have 
a good agreement with the experiment results. 
Muhammad et al. simulated the mixing action inside a 
photo bioreactor10). They defined a parameter which is 
called population balance model to quantitatively evaluate 
the environment quality for the growth of microalgae. 
Based on results obtained with the computational fluid 
dynamic software Ansys/Fluent, it is found that photo 
bioreactor with baffles improve the mixing action, which 
in turn improve the environment quality. 

Second-order differential equations can describe many 
of the phenomena encountered in engineering. Depending 
on their complexity, second order ordinary differential 
equations may be solved either analytically or via some 
numerical technique11). Two main types of approaches do 
exist for obtaining the solution to an Ordinary Differential 
Equation (ODE) using numerical methods, namely the 
Power Series and the Frobenius methods, used when the 
ODE contains analytic and non-analytic coefficients, 
respectively. 

Engineering problems such as those encountered in the 
fields of electrical circuits12), resonance13), matrix14), 
forensic sciences15), chemistry16), risk analysis in 
generator17), sampling application18), Design optimization 
of Francis turbine19), delamination of composite20), 
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thermal analysis of heat sink21), and stochastic 
computing22) can be solved using a hypergeometric 
differential equation, whose solution is a hypergeometric 
function. A hypergeometric ODE is solved using the 
Frobenius Methods since its coefficients in the ODE 
standard form are not analytic. 

Mubeen et al. and Li & Dong found the solution for a 
class of modified hypergeometric ODE called k-
Hypergeometric ODE23, 24). They found solutions for the 
k-Hypergeometric ODE around all its regular singular 
points. Yilmazer et al. found discrete fractional solutions 
for both homogeneous and nonhomogeneous confluent 
hypergeometric function25). They used the Nabla 
fractional calculus operator to solve the integration as it is 
used in the classical methods. The discrete fractional 
calculus requires a massive computational effort, and the 
use of a hypergeometric ODE offers an alternative way to 
obtain the solution. Iskhanyan and Iskhanyan solved the 
Heun confluent equation using generalized confluent 
hypergeometric solutions26). The Heun equation is widely 
encountered in contemporary physics research such as 
atomic and particle physics, theory of black holes, general 
relativity and cosmology.  

Not all solutions of the hypergeometric ODE converge 
to a simple defined algebraic function. This article will 
discuss a specific solution to the hypergeometric ODE, 
which does not converge to a simple algebraic function.  

 
2.  The Hypergeometric ODE 

In its original form, a hypergeometric ODE can be 
expressed as: 

𝑥𝑥(1 − 𝑥𝑥) 𝑑𝑑2𝑥𝑥
𝑑𝑑𝑦𝑦2

+ {𝑐𝑐 − (𝑎𝑎 + 𝑏𝑏 + 1)𝑥𝑥} 𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥
− 𝑎𝑎𝑏𝑏𝑎𝑎  (1) 

Using the Frobenius method to express y and its 
derivatives, one can write 𝑎𝑎 = ∑ 𝑎𝑎𝑚𝑚𝑥𝑥𝑚𝑚+𝑟𝑟∞

𝑚𝑚=0  ; 𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

=

∑ (𝑚𝑚 + 𝑟𝑟)𝑎𝑎𝑚𝑚𝑥𝑥𝑚𝑚+𝑟𝑟−1∞
𝑚𝑚=0   and 𝑑𝑑

2𝑦𝑦
𝑑𝑑𝑥𝑥2

= ∑ (𝑚𝑚 + 𝑟𝑟)(𝑚𝑚 +∞
𝑚𝑚=0

𝑟𝑟 − 1)𝑎𝑎𝑚𝑚𝑥𝑥𝑚𝑚+𝑟𝑟−2. Substitution of these equations into (1) 
and grouping the x within terms of same order, results in: 
∑ {𝑟𝑟2 + (2𝑚𝑚 + 𝑐𝑐 − 1)𝑟𝑟 + (𝑚𝑚2 + 𝑐𝑐𝑚𝑚 −∞
𝑚𝑚=0

𝑚𝑚)}𝑎𝑎𝑚𝑚𝑥𝑥𝑚𝑚+𝑟𝑟−1 − ∑ {𝑟𝑟2 + (2𝑚𝑚 + 𝑎𝑎 + 𝑏𝑏)𝑟𝑟 +∞
𝑚𝑚=0

(𝑚𝑚2 + 𝑎𝑎𝑚𝑚 + 𝑏𝑏𝑚𝑚 + 𝑎𝑎𝑏𝑏)}𝑎𝑎𝑚𝑚𝑥𝑥𝑚𝑚+𝑟𝑟 = 0 (2) 
Equating the coefficient of minimum order of x to zero 
(i.e., 𝑥𝑥𝑟𝑟−1) brings to what is called an indicial equation: 

𝑟𝑟(𝑟𝑟 + 𝑐𝑐 − 1)𝑟𝑟 = 0 
whose solutions are r = r1 = 0 and r = r2 = 1 – c. We are 
interested in the case of r = r1. Substitution into the (2), 
brings to: 
∑ (𝑚𝑚2 + 𝑐𝑐𝑚𝑚 −𝑚𝑚)𝑎𝑎𝑚𝑚𝑥𝑥𝑚𝑚−1∞
𝑚𝑚=0 − ∑ (𝑚𝑚2 + 𝑎𝑎𝑚𝑚 +∞

𝑚𝑚=0

𝑏𝑏𝑚𝑚 + 𝑎𝑎𝑏𝑏)𝑎𝑎𝑚𝑚𝑥𝑥𝑚𝑚 = 0   

and substituting s = m-1 for the first series, and m = s for 
the second series one obtains: 

∑ {(𝑠𝑠2 + 2𝑠𝑠 + 1) + (𝑐𝑐𝑠𝑠 + 𝑐𝑐) − (𝑠𝑠 + 1)}𝑎𝑎𝑠𝑠+1𝑥𝑥𝑠𝑠∞
𝑠𝑠=−1 −

∑ (𝑠𝑠2 + 𝑎𝑎𝑠𝑠 + 𝑏𝑏𝑠𝑠 + 𝑎𝑎𝑏𝑏)𝑎𝑎𝑠𝑠𝑥𝑥𝑠𝑠∞
𝑠𝑠=0 = 0  

And, since for s = -1 the coefficient of the first series is 
equal to zero, then: 

∑ {(𝑠𝑠2 + 2𝑠𝑠 + 1) + (𝑐𝑐𝑠𝑠 + 𝑐𝑐) − (𝑠𝑠 + 1)}𝑎𝑎𝑠𝑠+1𝑥𝑥𝑠𝑠∞
𝑠𝑠=0   

−∑ (𝑠𝑠2 + 𝑎𝑎𝑠𝑠 + 𝑏𝑏𝑠𝑠 + 𝑎𝑎𝑏𝑏)𝑎𝑎𝑠𝑠𝑥𝑥𝑠𝑠∞
𝑠𝑠=0 = 0  

Finally, equating the coefficients of xs to zero, results in 
the recursive formula: 

𝑎𝑎𝑠𝑠+1 = (𝑎𝑎+𝑠𝑠)(𝑏𝑏+𝑠𝑠)
(𝑐𝑐+𝑠𝑠)(𝑠𝑠+1)

𝑎𝑎𝑠𝑠        (3) 

3.  Radius of Convergence  
The solution in the form of a series: ∑ 𝑎𝑎𝑚𝑚𝑥𝑥𝑚𝑚+𝑟𝑟∞

𝑚𝑚=0  is 
only meaningful for practical purposes if it converges. 
Values of the variable x for which convergence can be 
obtained are determined by the radius of convergence. The 
radius of convergence can be calculated using the 
following expression: 

𝑅𝑅 = 1
𝑙𝑙𝑙𝑙𝑚𝑚
𝑠𝑠→∞

�𝑎𝑎𝑠𝑠+1𝑎𝑎𝑠𝑠
�

= 1
(𝑎𝑎+∞)(𝑏𝑏+∞)
(𝑐𝑐+∞)(1+∞)

� = 1 ∞ .∞
∞ .∞
� = 1  

Thus, the solution of the hypergeometric function (1) only 
converges for -1 < x < 1. 
 
4.  The Hypergeometric Function  

Simulating the recursive formula for s = 0, 1, 2, 3, … 
one obtains the coefficients: 
𝑎𝑎1 = 𝑎𝑎𝑏𝑏

1!𝑐𝑐
𝑎𝑎0  

𝑎𝑎2 = (𝑎𝑎+1)𝑎𝑎𝑏𝑏(𝑏𝑏+1)
2!𝑐𝑐(𝑐𝑐+1)

𝑎𝑎0  

𝑎𝑎3 = (𝑎𝑎+2)(𝑎𝑎+1)𝑎𝑎𝑏𝑏(𝑏𝑏+1)(𝑏𝑏+2)
2!𝑐𝑐(𝑐𝑐+1)(𝑐𝑐+2)

𝑎𝑎0  
… 
 
Let’s take r = r1 = 0. Following Frobenius, the solution is 
given by: 𝑎𝑎 = ∑ 𝑎𝑎𝑚𝑚𝑥𝑥𝑚𝑚+𝑟𝑟∞

𝑚𝑚=1 . Thus, the sought solution 
for the hypergeometric ODE is: 
𝑎𝑎 = 𝑎𝑎0 �1 + 𝑎𝑎𝑏𝑏

1!𝑐𝑐
𝑥𝑥 + (𝑎𝑎+1)𝑎𝑎𝑏𝑏(𝑏𝑏+1)

2!𝑐𝑐(𝑐𝑐+1)
𝑥𝑥2 +  

               (𝑎𝑎+2)(𝑎𝑎+1)𝑎𝑎𝑏𝑏(𝑏𝑏+1)(𝑏𝑏+2)
2!𝑐𝑐(𝑐𝑐+1)(𝑐𝑐+2)

𝑥𝑥3 + ⋯� (4) 
 
The terms in parenthesis is called the hypergeometric 
series or hypergeometric function and denoted as F(a, b, 
c ; x). Thus, 
𝐹𝐹(𝑎𝑎, 𝑏𝑏, 𝑐𝑐; 𝑥𝑥) = 1 + 𝑎𝑎𝑏𝑏

1!𝑐𝑐
𝑥𝑥 + (𝑎𝑎+1)𝑎𝑎𝑏𝑏(𝑏𝑏+1)

2!𝑐𝑐(𝑐𝑐+1)
𝑥𝑥2 +  

                 (𝑎𝑎+2)(𝑎𝑎+1)𝑎𝑎𝑏𝑏(𝑏𝑏+1)(𝑏𝑏+2)
2!𝑐𝑐(𝑐𝑐+1)(𝑐𝑐+2)

𝑥𝑥3 + ⋯  (5) 
 
It should be noted here that the values of the coefficient 

c are generally nor equal to 0 nor are negative integer 
numbers, which results into non-analytic solutions to 
equation (5). 
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5.  F(1, 1, 1; x)  
The function F(1, 1, 1; x) is a special case, since it 

converges to a simple algebraic function. The 
hypergeometric function which is obtained assuming a, b, 
and c equal to 1 in equation (4) is: 𝑎𝑎 = 1 + 𝑥𝑥 + 𝑥𝑥2 +
𝑥𝑥3 + ⋯ . This expression is a Maclaurin series that 
converges to the simple algebraic function: 𝑎𝑎 = 1

1−𝑥𝑥
. It is 

worth noting that for convergence to be achievable, the 
value of x should strictly be in the interval -1 < x < 1. 
Figure 1 plots the function F(1, 1, 1; x), where the abscissa 
represents the number of terms used in the hypergeometric 
function of equation (5). 

 

 
Figure 1. The hypergeometric function for a=b=c=1 and 

varied x. 
 
Furthermore, evaluation of equation (5) shows that F(c, 

1, c; x) and F(1, c, c; x) also converge to 𝑎𝑎 = 1
1−𝑥𝑥

 because 
terms c at the denominator cancel terms a or b at the 
numerator. Finally, Figure 1 above, demonstrates that the 
value to which the hypergeometric series converges 
depend on the values of x. 

 
6.  F(k, c, c; x) or F(c, k, c; x)  

The discussion about the hypergeometric series 
presented above can be found in many books of 

Engineering Mathematics. We want to make now a step 
further and investigate the case in which values for 
coefficients a or b are set to a generic constant k instead 
than to one, resulting in the two identical functions F(k, c, 
c; x) and F(c, k, c; x), respectively. Since it has already 
been observed that the values to which the hypergeometric 
function will converge depend on x, the fact that now 
coefficients a and b are no longer set to one, but to an 
arbitrary value k, results in a whole lot of possible 
functions (or curves in a x-y line diagram). 

 
Figure 2. The values of F(k, c, c; 0.5). 

 
For sake of simplicity, we evaluate first the 

hypergeometric series obtained by taking x = 0.5, which 
are F(k, c, c; 0.5) and F(c, k, c; 0.5), and which both result 
in the same values. If equation (5) is applied to simulate 
the series behavior, it is found that the hypergeometric 
series converge to the values shown in Figure 2. The 
convergence was evaluated by using up to 500 terms in 
equation (5), which is considered enough to reach a 
satisfactory convergence level. As shown by Figure 2, it is 
interesting to observe that the hypergeometric final values 
will fall on a line on the k-F plane for changing values of 
the free parameter k. The implication of this findings is 
that once the values of the function F is known for two 
values of the parameter k, any other value of F can be 
obtained by linear interpolation or extrapolation of the 
known values. All of the computed F’s values will lie on 
the same line. 

 
Figure 3. The values of F(k, c, c; x) as a function of k. 
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As it has been previously mentioned, the values to 
which the hypergeometric function converges depends on 
the value of x. Figure 2 presents the evaluation of F made 
for x equal to 0.5. If the same method is applied to other 
values of x (under the constrain of -1<x<1) the results are 
those presented in Figure 3. 

 

 

 
Figure 4. Slope (m) and intercept values (A) for the lines 

of Figure 3; plotted values of A and m are valid for all 
values of k; the plot on the upper of the figure is rescaled 

for convenience. 
 

Figure 3 shows that when the free parameter k changes 
and for each value of x, all the F(k, c, c; x) fall on a straight 
line. Since the equation for a line is y = A + mx, where m 
is the line’s slope and A is the value at which the line 
intercepts the ordinate axis, then all lines in Figure 3 can 
be expressed as F(k, c, c; x) = A(x) + m(x)·k. Figure 4 plots 
the values of A(x) and m(x) for different values of the 
independent variable x. It is worth noting here that the plot 
reported in Figure 4 is valid for any value of the free 
parameter k. 

A smoother curve representation is given in Figure 5, 
where more positive values of the independent variable x 
have been used for the evaluation of A and m. Table 1 
reports the data upon which Figure 5 is based. 

 

 

 
Figure 5. Slope (m) and intercept values (A) for the 

function F(k, c, c; x); a higher number of x values have 
been used for plotting; the plot on the right of the figure 

is rescaled for convenience. 
 
Table 1. Slope (m) and intercept values (A) for the function 

F(k, c, c; x); tabulated values are valid for every 
k. 

 x-0.99 x-0.985 x-0.98 x-0.975 x-0.95 

A 1.1939 1.1897 1.1882 1.1869 1.1806 

m -0.6881 -0.6856 -0.6831 -0.6806 -0.6678 

 x-0.925 x-0.9 x-0.75 x-0.5 x-0.25 
A 1.1744 1.1682 1.1310 1.0721 1.0231 
m -0.6549 -0.6419 -0.5596 -0.4055 -0.2231 
 x0 x0.1 x0.2 x0.25 x0.3 
A 1.0000 1.0058 1.0269 1.0457 1.0719 
m 0.0000 0.1054 0.2231 0.2877 0.3567 
 x0.4 x0.5 x0.6 x0.7 x0.75 
A 1.1558 1.3069 1.5837 2.1294 2.6137 
m 0.5108 0.6931 0.9163 1.2040 1.3863 
 x0.8 x0.9 x0.925 x0.95 x0.975 
A 3.3906 7.6974 10.7431 17.0043 36.3110 
m 1.6094 2.3026 2.5903 2.9957 3.6889 
 x0.98 x0.985 x0.99   
A 46.0860 62.4327 94.7455   
m 3.9120 4.1996 4.6041   
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In order to test the correctness of Figure 5 and/or Table 
1, we will now evaluate the values of the hypergeometric 
function F(k, c, c; x) when k = 1 and for three values of 
the independent variable x, namely the functions F(1, c, c; 
0.25) , F(1, c, c; 0. 5), and F(1, c, c; 0.75). Their values are 
equal to 1⅓, 2 and, 4 respectively. These values can be 
calculated directly from the Maclaurin series which, as it 
has been already discussed earlier, converges to 1

1−𝑥𝑥
. 

Because Figure 5 (or its equivalent Table 1) is valid for 
every values of k, one can always use Figure 5 or Table 1 
to retrieve the values of A and m for every value of x. If 
now we assume x to be equal to 0.25, 0.5, and 0.75 the 
corresponding value of A are 1.0457, 1.3069 and 2.6137, 
respectively, and those of m are 0.2877, 0.6931 and 1.3863, 
respectively. If now we put those values of A and m into 
the line equation F(1, c, c; x) = A + mk for x equal to 0.25, 
0.5 and 0.75, and k = 1, we can evaluate the values of F(1, 
c, c; 0.25), F(1, c, c; 0. 5), and F(1, c, c; 0.75) to be equal 
to 1.3333, 2.0000, and 4.0000, respectively, which is 
consistent with the values obtained using the Maclaurin 
series and thus confirms the correctness of Figure 5 and/or 
Table 1. The test can be repeated for the evaluation of the 
hypergeometric function in the negative x realm, such as 
F(1, c, c; -0.25) , F(1, c, c; -0. 5), and F(1, c, c; -0.75). The 
corresponding Maclaurin series yields: 1

1.25
= 0.8, 1

1.5
=

0.6667 , and 1
1.75

= 0.5714. If one repeat the previous 
steps by retrieving the values of A and m from Figure 5 or 
Table 1, and using those values in the line equation F(k, c, 
c; x) = A + mk, the corresponding values of the three 
functions F(1, c, c; -0.25) , F(1, c, c; -0. 5), and F(1, c, c; 
-0.75) are found to be equal to 0.8000, 0.6667, and 0.5714, 
respectively, which, once again, confirms the correctness 
of the proposed approach. 

Because the function F(k, c, c; x) covers the all range of 
c, a solution always exists even when c is equal to zero or 
is a negative integer, since the form of the terms of 
equation (5) prevents the denominators from going to zero 
When x is equal to zero, the slope m will be zero 
(horizontal line) and the function F(k, c, c; 0) will always 
be equal to 1, which is also confirmed by the Maclaurin 
series. 
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