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Abstract: Food and vaccine supply chains are a top priority in the cold chain sector as consumers 
are particularly concerned for the quality, safety, and environmental effects of these temperature 
sensitive products. Moreover, any disruptions to these supply chains will have adverse effects on the 
overall supply chain system and significantly increase the cost of recovery. Therefore, this study 
aimed to determine the optimum recovery cost for transportation disruptions in a cold chain system. 
A mathematical model was developed to analyse transportation disruption’s effect, where the optimal 
recovery schedule consisting of production and shipment quantity decisions are determined by 
considering the economic and environmental impact. Particularly, the model quantifies the costs of 
carbon emissions from fuel consumption and the cooling system of the refrigerated truck.  LINGO 
programming software was used to conduct a numerical analysis to determine the optimal recovery 
costs. Our findings indicate that truck load capacity was the main factor affecting total recovery costs 
as trucks carrying larger load capacities greatly reduced the frequency of shipment on a route thereby 
reducing the overall cost of carbon emissions. 

 
Keywords: Cold Chain, Transportation disruptions, Carbon emissions, Optimum recovery cost 

 

1.  Introduction 
Food supply chains consisting of farmers, suppliers, 

and production require careful distribution to ensure that 
food reaches the table of its consumers. The main factor 
that distinguishes fresh food supply chains from other 
supply chains is constant changes in quality; from the time 
it leaves the manufacturer and reaches the end consumer; 
due to the perishable nature of the product1). Therefore, 
the capacity of food supply chains depends on the ability 
of each of its components to cater to the ever-changing 
demands of consumers while efficiently taking into 
account the short shelf-life of the product2).  

According to Sawik3), the current supply chain is more 
global and complex. As such, supply chains typically 
experience problems such as disruptions. Supply chain 
disruption gives a major impact and could lead to 
disastrous outcome in the whole supply chain system4). 
Transportation and logistics are also integral in food and 
vaccine supply chains. The costs of supply chain are 
influenced by logistics, making transportation a crucial 
part in every supply chain planning5). Not only that, 
logistics and transportation cause huge impact towards 

food supply chain that usually caters a broad geographical 
area, since the product needs to be delivered via a special 
type of transportation in a timely manner6). Transportation 
systems, such as cold chains for product supply and 
delivery, require certain temperature controls7). Therefore, 
any disruptions to the food supply chain will not only 
affect its overall conservation but increase food demand 
globally. Food supply disruptions may occur as a result of 
natural disasters, economic crises, and shipping or 
production mishaps. The three most common types of 
disruptions arise from production, supply, and 
transportation-related issues. A study by Pariazar et al.8) 
found that any damages or disruptions in food chain 
operations can be overcome with careful management, 
thus, allowing food to be delivered to the consumer.  

Transportation-related issues in cold chain supply affect 
the delivery process from its suppliers to its distributors. 
The quality of the products also relies heavily on the 
manufacturing, packaging, handling, and transportation 
processes9). Cai & Zhou10) state that public transport 
services are often utilised due to low shipping costs to 
external markets, however, frequent disruptions in 
delivery schedules often result in more problems. In the 
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event of a disruption that delays the delivery of a product 
to the user, management attempts to mitigate the 
disruption by increasing production capacity. This 
increase in shipment frequency indirectly increases 
energy consumption and carbon emissions that adversely 
affect the environment11). Moreover, timing as well as 
timely deliveries is of utmost importance in the cold chain 
supply industry as late deliveries not only impair product 
quality but increase the likelihood of damage. 

As such, cold chain transportation; a special mode of 
logistics; was introduced to ensure that products are kept 
fresh at low temperatures throughout production, 
transportation, and sales to ensure product quality12). Cold 
chain supply not only provides uninterrupted transport 
temperatures as well as upstream cooling and storage 
systems but suppliers who are capable of ensuring product 
quality and safety13). Montoya et al.14) claim that rising 
greenhouse gas prices are a major contributor to global 
warming; a growing and critical concern. Global warming 
causes serious impact towards the environment including 
the increase of sea levels and global temperature due to 
the presence of greenhouse gases (GHG) in the air15). 
Sosiati et al.16) claimed that one of the leading factors for 
air pollution is the revolution of the automotive industry 
that involves the logistics and transportation systems in 
supply chain. Meanwhile, Shahriari et al.17) stated that air 
pollution and fuel consumption can be reduced as the 
transportation usage is minimized. Thus, by optimising 
transportation decisions, the air pollution can be reduced 
by reducing the emission of carbon to the environment, 
simultaneously reducing the costs18–20) of the supply chain.  

Over the centuries, carbon dioxide (CO2) is known as 
the main contributor to greenhouse gas, in which 
refrigerants is one of the causes of carbon emission21). As 
refrigerated vehicles or vehicles equipped with cooling 
systems are usually used to deliver food supplies, they 
have higher carbon footprints and emit other gasses that 
contribute to air pollution. Therefore, in the face of 
transportation disruptions, the disruption recovery cost 
increases as the number of deliveries increases to fulfill 
customer demand and backorders. This simultaneously 
increases carbon emissions which ultimately increases the 
overall carbon footprint. Therefore, the cold chain 
industry should be made aware of environmental 
protections and carbon emissions to reduce costs and, 
indirectly, learn about environmental impacts. 

There are several studies in the literature that propose 
optimization models on cold chain management. Al Theeb 
et al.22) formulated an optimization model to minimize the 
cost of transporting cold products that involve different 
types of vehicles, at the same time minimizing the penalty 
and inventory cost. Babagolzadeh et al.23) proposed a 
model that minimize the overall operational costs and tax 
of carbon emissions in the cold supply chain considering 
the uncertain demand in this industry. Esmizadeh et al.24) 
developed an optimization model for cold chain that 
involves several layers of supply chain network, in which 

every stage of the supply chain network is equipped with 
a refreshing procedure for the perishable goods, 
considering disruption such as uncertain demand and time 
frame for keeping freshness of the goods. Fang et al.25) 
formulated a model to optimize the cold chain for several 
types of imported agricultural goods with aims to 
minimize the total expenditure and carbon emissions. 
Garside 26) solved the cold chain problem by developing 
an optimization model that was able to minimize the total 
costs including energy cost, while considering the 
different characteristics of the transportation used. Hsu et 
al.27) proposed the optimal distribution cycle for cold 
chain that considers a variety range of temperature needed 
to keep the fresh condition of the perishable products and 
seasonal demand from the end user. Wei et al.28) 
formulated a model to minimize the total cost of a cold 
chain delivery system considering the different distances 
to deliver the goods to consumer location in which 
different types of vehicles were used for the short and long 
traveled distances. Ji et al.29) designed a model to 
minimize the total transportation cost that include several 
layers of cold chain stages considering the time of 
freshness for the agricultural goods supplied within the 
cold chain network. While various studies were performed 
for optimising different aspects of cold chains, there has 
not been a study to date that integrates disruption and 
carbon emissions for the cold chain setting. Thus, this 
work intends to fill this research gap.   

In this paper, a recovery model that takes into account 
carbon emissions from fuel consumption and refrigeration 
systems in a cold chain was developed to determine the 
optimum recovery cost for a production-inventory system. 
This model was based on a study conducted by 
Hishamuddin et al.30) who proposed a real-time 
rescheduling mechanism for transportation disruptions in 
a two-tier economic system of a supply chain. The purpose 
of our study was to determine the optimum number of 
production and shipment quantity orders to execute during 
the temporary recovery window in order to restore the 
original production schedule, as well as reduce the overall 
cold chain recovery and carbon emission costs. The main 
contribution of this study was the integration of the cost 
of carbon emissions from the refrigeration system of the 
cold chain trucks into the model.  

This paper is organized as follows: section 2 presents 
the development of the mathematical model; Section 3 
discusses the results of the analyses while section 4 
concludes the paper.  

 
2.  Model Formulation 

This section discusses the model development, which 
explains on the formulas and parameters used to form the 
mathematical model for the intended system. The system 
used in this study is a modified economic production 
quantity (EPQ) model. In the event of a disruption in the 
supply chain system, normal production is halted. After 
the disruption, recovery time is allocated to allow the 
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revision of the 

Fig. 1: Inventory Curve for the Problem. 
 

production schedule to recover to the original schedule as 
quickly as possible, while minimising the total system 
costs. Fig. 1 shows the inventory curve of the problem. 
The dotted line resembles the original schedule, while the 
solid line is the new recovery schedule. This figure shows 
six recovery cycles (n = 6) where the decision variable Xi 
is the production quantity, while Si is the shipment 
quantity.  

Based on the constructed inventory curve, several 
parameters and notations were used to complement the 
inventory curve of this study. The parameters and 
notations used to develop the mathematical model for the 
cost function can be found in the nomenclature section at 
the end of this manuscript. 

 
2.1  Mathematical Representation 

The mathematical model constructed in this study is a 
constrained nonlinear programming problem and was 
developed based on the inventory curve presented in Fig. 
1. The costs taken into account in this problem were setup 
cost (TC1), inventory holding cost (TC2), backorder cost 
(TC3), loss of sales cost (TC4), penalty cost (TC5), 
transportation cost (TC6), cooling cost (TC7), and total 
carbon cost (TC8). The setup, inventory and shortage 
costs are related to inventory management, particularly 
the EPQ system31), which was adopted for the single-stage 
inventory system considered in this study. These costs are 
standard cost components in inventory modeling that form 
the objective function, and have been modified to suit our 
problem under study. However, the unique extension of 
our model is the integration of the refrigeration and carbon 
emission costs from this source to the disruption recovery 
model. Applying the lot-for-lot policy, the production lot 
size Q was formulated as follows: 

 

𝑄𝑄 = �2𝐴𝐴𝐴𝐴
𝐻𝐻

 
 

  (1) 
 
Setup cost (TC1) is the cost required to start the process, 

for instance the equipment or machinery to be used. The 
cost of inventory is the cost of preparation for cycle A 
multiplied by the number of cycles n. 

 

TC1 = A* n   (2) 
  
Inventory holding cost (TC2) is the annual cost of 

holding an inventory H multiplied by the amount of 
inventory in holding during the recovery cycle 
corresponding to the area under the curve. This was 
calculated as follows: 

= 𝐻𝐻
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Backorder cost (TC3) was derived as follows: 
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Lost of sales cost (TC4) is the profit not received as the 

order cannot be fulfilled. Damaged products may also be 
included in this cost. 

 
𝑇𝑇𝑇𝑇4 = 𝐿𝐿(𝑛𝑛𝑛𝑛 − ∑ 𝑋𝑋𝑖𝑖 + 𝑄𝑄(𝑦𝑦 𝑛𝑛

𝑖𝑖=1 ) ) (5) 
 
Penalty cost (TC5) is the additional cost incurred when 

there is a change in the original schedule. The equation 
below was constructed as a function of cycles for 
recovery: 

 
TC5 = 𝑓𝑓(𝑛𝑛2) (6) 

 
Transportation cost (TC6) is the number of shipments 

executed upon completion of the recovery period. Vehicle 
maintenance, fuel consumption, travel distance, and other 
factors are indirectly involved in transportation costs. 
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𝑞𝑞𝑞𝑞

�
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(7)               

 
Cooling costs (TC7) is the hourly cost of cooling each 

product throughout the delivery process multiplied by the 
time travelled to reach a specified destination. Therefore, 
the cooling cost for this model was as follows: 

   
TC7 = 𝐶𝐶𝐶𝐶 ∗ 𝑡𝑡𝑡𝑡        (8) 

 
Social carbon cost (TC8) is the cost of damage to the 

environment as a result of carbon emissions. Carbon 
emissions arise from fuel for the transmission and cooling 
systems of transport vehicles. The equation for this cost 
multiplies various variables, such as the number of cycles 
in the recovery window with the distance traveled by the 
vehicle, load capacity of the vehicle, total reductions in 
carbon dioxide emission, and carbon emissions from 
refrigeration devices. To calculate a vehicle’s load 
capacity, the number of products in each vehicle is 
multiplied by the weight of one product. The social cost 
of carbon is shown in Equation 9: 

 
TC8 = (𝐶𝐶𝐶𝐶 + 𝑊𝑊) ∗ [𝑛𝑛 × 𝐷𝐷𝐷𝐷 × 𝑞𝑞𝑞𝑞 × 𝑆𝑆𝑆𝑆] (9) 

 
The optimum cost is the sum of all the eight costs that 

had been built into the mathematical model and is depicted 
below. 
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(10)

  

       
Subject to the following constraints (11)-(16): 
 
∑ 𝑋𝑋𝑖𝑖 =𝑛𝑛
𝑖𝑖=1 ∑ 𝑆𝑆𝑖𝑖𝑛𝑛

𝑖𝑖=1                                                           (11) 

𝑆𝑆𝑛𝑛 = Q          (12)                                                                             

𝑆𝑆𝑖𝑖 ≤ qt            (13)                                                                           

∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚 − (𝑛𝑛𝑛𝑛 − ∑ 𝑋𝑋𝑖𝑖 + 𝑄𝑄(𝑦𝑦 𝑛𝑛

𝑖𝑖=1 ))       (14)                      

∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 𝑃𝑃 ∗ (𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑇𝑇𝑑𝑑)                           (15)                     

∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 ≥ 𝑟𝑟𝑟𝑟 + (i + 1)𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑇𝑇𝑑𝑑 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃            (16)    

 
Equation 11 was established to ensure that the 

production amount tallied with the total delivery size. 
Equation 12 was used to ensure that the final shipment 
quantity tallied with the original production quantity. 
Equation 13 was established to ensure that the load 
capacity of the vehicle exceeded or equaled the amount of 
shipment. Equation 14 was used to illustrate the amount 
of revenue for a recovery rehabilitation cycle that can 
meet consumer demand while Equation 15 was used to 
illustrate the load capacity constraints in the recovery 
board cycle. Equation 16 was created to ensure that the 
number of pending orders were not in the negatives 
(backorders). 

 
2.2  Data Formulation 

This section presents the data formulation for several 
experiments to demonstrate the performance and evaluate 
the stability of the proposed model in this research with 
respect to varying parameter values. Five different test 
instances were generated by arbitrarily changing the cost 
parameters. The A, B, L, st, qt, and Td parameter values 
used in this study were adopted from Hishamuddin et 
al.30,32), which are the base models that we have extended 
in this study. The parameters of the five test problems are 
shown in Table 1. Test 1 was the benchmark test used to 
adjust the parameter values of subsequent tests. Test 2 was 
modified where B was raised, while L was lowered. Test 3 
had a higher parameter value for A. In addition, H was 
raised in Test 4, while for Test 5, Td was reduced to a 
lower value than in Test 1. 

 
Table 1. Parameters of the five test problems. 

Test U1 U2 U3 U4 U5 
A 20 20 30 20 20 
H 1.2 1.2 1.2 2.4 1.2 

P 
2500

00 
250000 250000 250000 250000 

D 
2000

00 
200000 200000 200000 200000 

B 1 10 1 1 1 
L 50 1 50 50 50 
Td 0.008 0.008 0.008 0.008 0.001 
CD 2000 2000 2000 2000 2000 
Cr 3 3 3 3 3 
qt 5000 5000 5000 5000 5000 

W 
0.006

6 
0.0066 0.0066 0.0066 0.0066 

SC 
0.000
044 

0.00004
4 

0.00004
4 

0.00004
4 

0.00004
4 

CO2 150 150 150 150 150 
Di 10 10 10 10 10 
ti 0.083 0.083 0.083 0.083 0.083 

st 
0.000
057 

0.00005
7 

0.00005
7 

0.00005
7 

0.00005
7 
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As the unique extension of our model is the integration 

of the refrigeration costs and cost of carbon emissions 
from this source, suitable parameters from related sources 
have been added to complement the contribution of our 
study. The CD parameter values were taken from 
Cardenas-Barron et al.33). References from Darom et al.11) 
were used to calculate the CO2, P, D, and SC parameter 
values, while the Cr and W parameter values were adopted 
from Wang et al.34).  
 
3.  Results and Discussion 

This study is a complex constrained nonlinear 
programming problem, where the optimal production 
quantity, Xi, and recovery cycles, n, were defined as the 
decision variables. LINGO was used to solve the 
developed mathematical model to obtain optimum results. 
The constructed mathematical model was coded in 
LINGO with constraints and errors analysed along with 
the total cost, TC. The results of this model provide 
optimum inventory recovery policies for a disruption 
occurence. 

 
3.1  Numerical Analysis  

A numerical analysis was conducted based on the data 
presented in Table 1. The total cost, TC, and the number 
of recovery cycles, n, were determined for each of the test 
problems. Note that n began at 2 because the software 
could not account for when the results of n = 1 due to 
assumptions and constraints that were set in place to limit 
the linkage of answers or non-existent answers. 

The experimental results for TC and n are presented in 
Table 2 and plotted in Fig. 2. The TC of each test was high 
because the cost of lost sales L was high except for U2 
where L was low. Based on the results, the optimum 
number of recovery cycles for U1 was n = 7 with a TC of 
$95975.25. The TC of U3 was higher than U1 due to an 
increase in the cost per unit setup, A. The optimum number 
of recovery cycles for U3 was n = 6 with a TC of 
$117130.5. The optimum number of recovery cycles for 
U4 was n = 8 with a TC of $80756.98 as the high annual 
inventory holding cost H increased TC. 

U5 had the lowest TC as the duration of disruption Td 
was low, enabling it to recover faster over a shorter period 
of time. As such, the optimum number of recovery cycles 
for U5 was n = 5 with a TC of $71671.29. 

 
Table 2. Tests and total number of recovery cycles n. 

n U1 U2 U3 U4 U5 

2 
195215.

9 
18468.7

4 
218036.

9 
165563.

8 
114741.

1 

3 
174719.

8 
21696.8

9 
192759.

7 
151366.

1 
94229.2

6 

4 
154250.

3 
24974.3

5 
167519.

9 
137204.

0 
73737.6

4 
5 133805. 28283.7 142310. 123044. 71671.2

8 3 6 6 9 

6 
113378.

4 
31619.1

1 
117130.

5 
108946.

4 
83732.9

4 

7 
95975.2

5 
34977.9

5 
117339.

2 
94811.5

3 
95811.3

1 

8 
108099.

9 
38358.9

5 
132173.

8 
80756.9

8 
107915.

6 

9 
120240.

4 
41761.3

9 
147039.

7 
86123.1

7 
120037.

2 
1
0 

132401.
8 

45184.8
4 

161934.
2 

94894.0
4 

132179.
7 

 
Fig. 2: TC with respect to n. 

 
In addition, a sensitivity analysis was performed to test 

the stability of the developed model. Selected parameters 
were varied to investigate its effect on total costs. Fig. 3 
shows that the effect of increasing the cost of lost sales L 
when the cost of backorders is fixed at B=$1. It was 
observed that when L increased from $5 to $65, the 
backorder quantity BOQ increased while the lost sales 
quantity LSQ decreased to zero. 

The duration of disruption Td was fixed between 
0.001 to 0.01 minutes. The total cost TC was found to 
increase as Td increased. Additionally, when Td 
increased, the number of recovery cycles, n, also 
increased as Td is very closely related to n (Fig. 4). 
Furthermore, it can be seen that the amount of carbon 
dioxide released increases as the distance traveled by the 
vehicle, Di, increases, thereby, affecting the environment. 
Therefore, frequent disruptions will significantly affect 
the sustainability of the environment, as well as increase 
the total recovery costs (Fig. 5). 

TC was found to decrease as the load capacity of the 
vehicle, qt, increased over a period of time (Fig. 6). 
Vehicles that ship with higher capacities have lower 
transmission frequencies. Therefore, carbon output from 
the vehicle and its cooling system can be decreased during 
disruptions, as carbon output depends on the vehicle’s 
load capacity. This indicates that TC can be reduced by 
optimising truck capacity usage in the recovery phase to 
preserve the environment, while minimising recovery 
costs. 
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Fig. 3: The effect of L on BOQ, LSQ, and n. 

Fig. 4: TC with respect to Td. 

Fig. 5: TC with respect to Di. 

Fig. 6: TC with respect to qt. 
 

3.2  Case Study 
In this work, a case study was performed to illustrate 

applicability of the developed model to a real-world 
scenario. Particularly, the model was applied to the 

logistics operation of a selected company to seek the 
optimal decision of recovery costs in the event of a 
disruption. Supply chain data was collected from an ice 
factory named Company X, which produces ice and 
delivers it within Selangor as well as Semenyih, Hulu 
Langat, and Cheras. 

Of the 23 lorries under Company X, only five 
participated in our study. Each of the five lorries carried 
and delivered varying quantities of ice to designated 
location as per customer requests. Therefore, while the 
make and model of the lorries were identical, the distances 
travelled, Di and capacities carried, qt varied. Table 3 
shows the distances travelled and load capacities carried 
by the five lorries in a day. 

 
Table 3. Lorry delivery data. 

Lorry Destination 
Travel 

Distance 
(km) 

Units 
Capacity 

(kg) 

Lorry A 
Lorry B 
Lorry C 
Lorry D 
 
Lorry E 

Sg. Ramal 
Cheras 
Semenyih 
Salak 
Tinggi 
Hulu 
Langat 

25 
42 
35 
50 

 
25 

281 
290 
366 
328 
 
381 

1124 
1160 
1464 
1312 
 
1525 

 
Table 4. Research parameters. 

Parameter Value 
A 
H 
B 
D 
L 
P 
Td 
st 

2.5 
3.0 
10 

604000 
70 

750000 
0.0008 
0.0006 

 
As each unit of ice package weighed 4 kg, the total 

number of units of ice package was multiplied by k = 4 kg 
to determine the load capacity (qt) carried by each lorry in 
kilograms. Carbon emission were calculated using 
EURO’s predetermined range of EURO 2 = 175g/km. 
LINGO was then utilised to determine the TC of each 
lorry using the data stated in Table 4. 

The total cost, from TC1 to TC8, of each of the five 
participating lorries is shown in Table 5. Lorry E had the 
lowest Min TC ($214321.8) although it carried the 
heaviest load qt compared to other lorries. Lorry D had the 
highest Min TC ($558022.9) of the five lorries, followed 
by Lorry B ($552970.1), Lorry C ($438969.2), and Lorry 
A ($421116.4).  

Based on Table 3, although Lorries A and E traveled the 
same distance (25 km), they each carried different load 
capacities with Lorry E carrying 1525 kg and Lorry A 
carrying only 1124 kg. This was because capacity 
maximisation reduces TC. The cooling cost of both lorries 
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were the same as both lorries took the same amount of 
time to reach their delivery destinations, however, the 
carbon cost of Lorry E ($1761.441) was higher than that 
of Lorry A ($1298.269) as Lorry E carried a heavier load 
(1525 kg). Lorry D had the highest TC as it traveled the 
longest distance (50 km) compared to the other four lorries 
(25 km to 42 km). 

 
Table 5. Total cost of each vehicle. 

TC 
Cost 

Lorry A Lorry B Lorry C 
Lorry 

D 
Lorry E 

TC1 15 15 15 15 15 

TC2 
13.242

84 
3.5396

03 
11.479

32 
3.5396

86 
12.028

38 

TC3 
190.43

27 
25.713

89 
203.38

82 
25.713

81 
189.28

04 

TC4 195756 
469574

.3 
195756 

469574
.3 

195756 

TC5 45 45 45 45 45 

TC6 
223742

.1 
80961.

08 
240492

.2 
85216.

01 
164909 

TC7 56.25 94.5 78.75 112.5 56.25 

TC8 
1298.2

69 
2250.9

49 
2367.3

77 
3030.8

34 
1761.4

41 
Min 
TC 

421116.
4 

552970
.1 

438969
.2 

558022
.9 

214321
.8 

 
It was determined that TC is closely related to the 

transportation cost and the load capacity of each lorry. 
Therefore, it is advisable to deliver goods to a destination 
when lorries are carrying their maximum capacities as it 
reduces the frequency of lorries shipped on a route. This 
simultaneously reduces not only transportation cost, but 
indirectly reduces the cooling and carbon cost as well. The 
effect of a long period disruption can be reduced by 
delivering products using lorries with larger load 
capacities. 

Based on the results provided by LINGO, cooling and 
carbon costs also contribute to an increase in total 
optimum costs (Min TC). As seen in Fig. 7, cooling cost is 
closely related to travel distance. 

 

Fig. 7: Cooling cost of each lorry. 

Lorry D had the highest cooling cost as it travelled the 
longest distance (50 km) while Lorries A and E had the 
lowest cooling costs as they travelled the shortest distance 
(25 km). 

Fig. 8 shows that carbon costs is closely related to travel 
distance and load capacity. Lorry D had the highest carbon 
cost ($3030,834) as it travelled the longest distance. As 
carbon costs is also influenced by load capacity, Lorry E 
had a higher carbon costs than Lorry A as Lorry E carried 
a heavier load. As cooling and carbon costs have a linear 
effect on the total recovery costs incurred by the company, 
hence, it is crucial to identify the shortest distance and the 
optimum truck capacity for each shipment schedule to 
minimise the total cost of recovery in the face of 
disruptions. This will in turn reduce the adverse effects of 
cold chain disruptions to the environment, and ultimately 
help preserve environmental sustainability in the long run.   

 

Fig. 8: Carbon costs of each lorry. 
 

4.  Conclusion 
Transportation disruptions are interruptions that delay 

deliveries and deviate the supply chain system from the 
stipulated delivery schedule. As such, not only is product 
quality affected but these disruptions in transportation also 
affect the environment, as logistics activity is known as 
the main contributor to carbon footprint in the supply 
chain. In this work, the effect of transportation disruption 
on the cold chain system has been studied. This study 
developed a single-stage inventory model to illustrate the 
problem of a cold chain system subject to transportation 
disruption. By solving the developed mathematical model, 
the new recovery schedule and costs involved in the 
recovery schedule of the cold chain can be determined.    

The results show that truck capacity has a significant 
effect on recovery costs, where a larger truck capacity is 
able to reduce delivery frequency, hence lowering the 
transportation related costs as well as carbon emissions 
from the fuel consumption and refrigeration system. In 
conclusion, this study proved that the operational 
decisions of the cold chain can be optimised to assist in 
reducing carbon footprint, especially during unexpected 
disruptions in the supply chain.  

An interesting extension of this study would be to 
integrate the vehicle routing problem into the model to 
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analyse the effect of using different routes to the optimal 
solution and total recovery costs. Additionally, 
incorporating the time factor and constraint for perishable 
goods would be another worthwhile extension to be 
explored. In conclusion, the developed optimisation tool 
is a useful method to assist decision makers on the optimal 
production and delivery decisions to minimize overall 
cold chain costs, thereby reducing carbon emissions and 
sustaining the environment.   
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Nomenclature 

A  cost of inventory for one cycle ($ / 
maintenance) 

D demand for each product (unit / year) 
H  annual inventory holding cost ($ / unit / year) 
P production rate (unit / year) 
Q production lot size in original table (unit) 
Td duration of disruption (–) 
u withdrawal time for normal cycle 

(maintenance time + idle time) (T - (Q / P)) 
t0 beginning of recovery window (–) 
t1 end of recovery window (–) 
Q production cycle time for original cycle (Q / 

P) 
p withdrawal time for original cycle (Q / P) 
B pending order cost per unit ($ / unit / time) 
L cost of lost sales ($ / unit) 
Si delivery for cycle i recovery view (unit) 
Xi production quantity for cycle i recovery view 

(unit) 
Ti production end of cycle recovery i in 

recovery view (Xi / P) 
st cycle preparation time (–) 
n  number of cycles in recovery view (–) 
m number of lots in recovery view (–) 
y  state of the product (–) 
r  quantity of safety stock (unit) 
ƒ penalty for delayed recovery in original table 
W  carbon emissions from cooling equipment 

during transportation for each distance 
travelled (g / kg.km) 

Cr hourly cost of cooling during shipment ($ / 
hour) 

ti time travelled to reach consumer (hours) 
(vehicle speed limit / limit) 

Di distance travelled by the vehicle (km) 
SC social cost of carbon ($ / g) 
CO2  carbon footprint of the vehicle (g / km) 
qt load capacity of the vehicle (unit) 
k unit of weight (1 unit = 4kg) 
CD transportation cost for each delivery ($ / 

distance / unit) 
 
Greek symbols 
δ cycle idle time (–) 
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