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Output Regulation Control for Satellite Formation

Flying Using Differential Drag

Mohamed Shouman, 1 Mai Bando, 2 and Shinji Hokamoto 3

Kyushu University, 744 Motoka, Nishi-ku, Fukuoka 819-0395, JAPAN

This paper proposes a new approach of using differentials in aerodynamic drag in combi-

nation with thrusters to control satellite formation flying in low Earth orbits. Parameterized

output regulation theory for formation flying missions with combined control action is devel-

oped based on the Schweighart-Sedwick relative dynamics equations. The theory is imple-

mented to precisely track the different trajectories of reference relative motion and eliminates

the effects of the J2 perturbations. The parametric Lyapunov algebraic equation is proposed

to ensure the stability of the linear relative model subject to saturated inputs. The main goal

of this study is to approve the viability of using the differentials in aerodynamic drag to pre-

cisely control different formation flying missions. Numerical simulations using a high fidelity

relative dynamics model and a high-precision orbit propagator are implemented to validate

and analyze the performance of the proposed control algorithm in comparison with the linear

quadratic regulator algorithm based on actual satellite models.

I. Introduction

Satellite formation flying (SFF), a research area that forms part of spacecraft dynamics and

control, has become an important field of research in recent years because it has several applica-

tions in Earth-observing missions. SFF can distribute the functionality of a single large satellite to

multiple small satellites, thereby obviating the need for a complicated design. It also has attrac-
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tive benefits such as offering a low-cost solution and adding flexibility to space-based programs

by reducing the size and complexity of the spacecraft, which in turn enhances the reliability. SFF

is also a key technology for missions that use interferometry, which, compared to using a single

aperture, can achieve a higher resolution by combining images captured by several sensors.

A challenge that needs to be overcome when implementing SFF is to maintain the flying

formation in the face of various perturbing factors. In this regard, the utilization of aerodynamic

drag to generate control action has been suggested as a technology to maintain the formation in

Low Earth Orbits (LEOs). An example of the practical mission is JC2Sat, which had been planned

to be a joint mission of JAXA (Japan Aerospace Exploration Agency) and CSA (Canadian Space

Agency) for formation flying using differential atmospheric drag though it hasn’t been launched

[1, 2]. The use of perturbation forces to maintain a formation has several advantages. It does not

require a conventional propulsion system, which leads to mass savings. Moreover, because the

accelerations generated by aerodynamic drag are relatively small, the technology is applicable to

SFF missions with shock sensitive devices [2].

Thus far, the main contributions to this field can be classified into two areas. Researchers

working in the first area aim to gain insight into the effect of the different perturbations of two

satellites in an attempt to derive more precise relative motion equations. The other area of work

is concerned with the development of a control algorithm to handle uncertainties and model

inaccuracy in relative equations to maintain formation flying [3].

The equations that express the relative motion of satellites with respect to a circular orbit

are known as the Hill-Clohessy–Wiltshire (HCW) equations [4]. These equations are derived

as a set of linearized differential equations describing the relative motion of any two objects in

near-circular orbits [5]. However, the HCW equations contain a great source of error in that

Earth is assumed to be a perfect sphere. Several papers have contributed to the development

of relative motion equations to incorporate the effects of various perturbations with significant

effects on the relative motion [6–12]. These approaches involve different representations of relative

states: translational relative states, curvilinear relative states, and orbital elements illustrating

unperturbed and perturbed relative motion [13]. Important modifications in the translational
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states were achieved by Sedwick et al. [6]. He began his work by incorporating the J2 effect for

polar orbits. Schweighart and Sedwick then partially incorporated the mean motion of satellites

into the relative motion equations by including the time average of the gradient of the J2 potential

to form a new set of constant coefficient linearized equations. Their model in [7] is referred to as

the SS model in this paper. This model was further modified to provide a fairly accurate model

of the cross-track motion under the influence of the J2 potential in [8]. Finally, they linearized the

trigonometric functions of cross-track motion for small-angle approximations [14].

Various control algorithms have been studied with the aim of enhancing the ability of satel-

lites using aerodynamic drag to control the formation flying satellites. In 1989, Leonard et al. used

a simple PID controller to achieve this goal [15]. Later, Hong et al. [16] developed an autonomous

control method using a Lagrangian derivation that enables SFFs to successfully maintain their

relative positions using aerodynamic drag. Jigang and Yulin [17] applied the phase plane when

developing their control methods for co-planar motion. Bevilacqua et al. [18] proposed a two-

phase hybrid controller to optimize propellant consumption by using thrust and aerodynamic

drag for rendezvous missions. They designed the first phase to effect a propellant-free trajectory

close to the target spacecraft using the differentials in aerodynamic drag, and then used a fuel-

optimal control strategy via continuous low-thrust engines to effect precision docking. Kumar et

al. [19] studied the maintenance of satellite formations using aerodynamic drag and solar radia-

tion pressure separately, by integrating the results of a study of the modified HCW equations in

[20] and the control methodology developed later [21]. Pastorelli and Bevilacqua [22] proposed a

novel technique to utilize drag sails to control both the relative motion and orientation of satellites

simultaneously for rendezvous missions. Cho et al. [23] designed a sliding mode controller using

the SS model to achieve propellantless rendezvous missions by using differential aerodynamic

drag. Mazal and Perez [24] derived simple Gaussian variational equations (GVE) to control ren-

dezvous mission with uncertain parameters and subject to saturation by using differentials in the

drag forces between spacecraft.

The differential in aerodynamic drag has been demonstrated to have the ability to alone elim-

inate the effects of different perturbations in in-plane motion for missions that need to maintain
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a formation in LEO [25]. The differential can also be used as the initial phase for rendezvous

missions [18]; however, the integration of thrust and the differential in aerodynamic drag to de-

rive a practical control algorithm for different formation flying missions has not been studied

to the best of our knowledge. Our work is mainly concerned with designing a practical control

algorithm to implement aerodynamic drag and thrust with different saturation levels to control

the in-plane motion for various formation flying missions. First, when only atmospheric drag is

implemented, the lack of the solvability of the tracking problem is pointed out. Then continuous

thrust is integrated to ensure solvability and the stability region of the problem of formation flying

is identified considering input saturation. A parameterized output regulation (POR) algorithm is

designed to track the reference trajectories and eliminate the effects of different perturbations in

the dynamics model. Semi-global stability is assured by using the parametric Lyapunov algebraic

equation (PLAE), which is based on the low-gain state feedback theorem [26, 27] and parametric

Lyapunov differential equation (PLDE) approach [28]. Input saturation can be included in the

design process through parametric variation in PLAE. The control algorithm is numerically val-

idated with the parameters of actual formation flying satellites (JC2Sat, Techsat21) by using the

SS perturbed relative motion and high-precision orbit propagator (HPOP). The first contribution

of our research to this state of the art is the integration between two different control actions to

design a precise control algorithm for different reference trajectories. The derivation of a low

conservative stable algorithm for parameterized output regulation for formation flying missions

subject to different components of input saturation is the second achievement. The third contri-

bution is the analysis of the performance of the PLAE control algorithm by using the SS relative

model and HPOP numerical simulator.

In this paper, Section II presents the SS relative dynamics model. The differentials in aero-

dynamic drag and a method to implement the model for control action are explained in Sec.

III. Section IV describes the development of the output regulation algorithm with PLAE and the

stability conditions for combining the thrust and aerodynamic drag with different values of the

saturation limits. Section V outlines the specifications of the numerical simulator and its built-in

perturbation models. This section also presents test cases and their procedures. Subsequently, the
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performance of these test cases for the relative SS model is compared using the HPOP numerical

simulator. The final section presents the conclusion of this paper and provides recommendations

for future work. In this paper, the following notations are used for a vector-valued function x and

T ≥ 0.

‖x‖∞ = sup
t

∥∥x(t)∥∥ , ‖x‖∞,T = sup
t≥T

∥∥x(t)∥∥
where ‖ . ‖ denotes the standard Euclidean norm.

II. Dynamics Models of Satellite Formation Flying

This section introduces the SS relative equations as a precise model, which is derived by

incorporating the J2 perturbation effects into the HCW relative dynamics model [29, 30]. The

system of formation flying consists of leader (chief) and follower (deputy) satellites, where the

SS equations describe the relative states between them in the Radial–Tangential-Normal (RTN)

coordinate system. The final SS relative equations proposed in [8] are written as

ẍ− 2ncẏ− (5c2 − 2)n2x = ax

ÿ + 2ncẋ = ay

z̈ + q2z = 2lq cos
(
qt + φ

)
+ az

(1)

where x, y, and z represent the relative difference in the position of the leader and follower under

J2 perturbation and n is the mean motion of the reference unperturbed circular orbit and is equal

to
√

µ/r3
re f , where rre f is the mean radius for the virtual reference circular orbit. This virtual

reference orbit is defined by an unperturbed circular orbit with the equivalent orbital period of

the leader satellite as presented in [8]. Parameters ax, ay, az are perturbations and control forces

per unit mass in the x-, y-, and z-directions, respectively, and φ is the phase angle between the

follower and leader satellites.

Because the control action of aerodynamic drag has no components in the out-of-plane motion

as presented by Hajovsky [31], the in-plane motion of the SS model in Eq. (1) is treated in this

paper. For this motion, the parameter c governs the natural frequency of the SS model, depending
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on the reference orbit inclination. c is defined as follows

c =
√

1 + s

s =
3J2R2

e

8r2
re f

(
1 + 3 cos 2ire f

) (2)

where ire f is the inclination of the reference circular orbit, the geopotential constant J2 is defined

as the second spherical harmonics of Earth’s geopotential, which is equal to 1.0826× 10−3 and Re

is the mean radius of the Earth Re = 6.3781× 106 m. The other parameters in Eq. (1) are related

to the cross track motion as l, q and are defined elsewhere [8].

In this paper, the leader and follower satellites are placed in a "free-orbit ellipse". This el-

lipse describes the formation configuration in which the projection onto the in-plane motion is a

two-by-one ellipse and forms a circle in three-dimensional motion [32]; however, it is necessary to

modify the initial conditions to accommodate the SS model frequency. The initial velocity com-

ponents ẋ0 and ẏ0 for the leader and follower satellites need to be adjusted to remove the secular

motion and constant offset terms due to J2 effects. Now, the initial values x0, y0, and z0 and their

derivatives for the SS model are given by

x0 =
rrel
2

cos φ, y0 = rrel sin φ

ẋ0 = n
1− s

2
√

1 + s
y0, ẏ0 = −2n

√
1 + sx0

(3)

where rrel is the initial formation radius. Based on these initial conditions, the analytical solution

for the relative SS equations of in-plane motion becomes

x(t) = x0 cos
(

nt
√

1− s
)
+

ẋ0

n
√

1− s
sin
(

nt
√

1− s
)

y(t) = y0 cos
(

nt
√

1− s
)
+

ẏ0

n
√

1− s
sin
(

nt
√

1− s
) (4)

where x0 and y0 represent the initial difference between the leader and follower.

III. Model of Aerodynamic Drag

Aerodynamic drag represents the largest non-gravitational force acting on LEO satellites. The

magnitude of acceleration required to counteract the aerodynamic drag decreases dramatically

according to the altitude of satellites compared to other perturbations [29]. This is why the use

of aerodynamic drag to control formation flying is viable only for LEO satellites with altitudes
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less than 600 km. The differential in atmospheric drag between the leader and follower can be

expressed as

∆fd = fd f − fdl

= −1
2

ρ f Cd
A f

m f
Vrel f

∥∥∥Vrel f

∥∥∥+ 1
2

ρlCd
Al
ml
Vrell

∥∥∥Vrell

∥∥∥ (5)

where fdl and fd f are the aerodynamic drag force vectors for the leader and follower, respectively,

Vrell and Vrel f are the relative velocity vectors of the leader and follower with respect to the local

atmosphere in the RTN coordinate system [20, 29], Al
ml

and
A f
m f

are the areas over the mass ratio

of the leader and follower, respectively, Cd is the drag coefficient, and ρl and ρ f are the local

aerodynamic densities of the leader and follower, respectively. In our study, the formation radius

is assumed to be very small compared to the mean radius, hence we can assume that the relative

velocities to the local atmosphere Vrel for the leader and the follwer satellites are equal.

It is difficult to determine the exact values of the density in the upper aerodynamic layers, and

many international standards attempt to promote one density model over another by specifying

numerous parameters to select the best model for a particular mission and application [33, 34].

Among these models is the exponential density model (CIRA 72) [29], which we employed in our

study, and which is expressed as follows

ρ = ρ0e

(
−

hellp−h0
H

)
(6)

where hellp, h0, ρ0 , and H are the actual altitude, base attitude, nominal density at the base

attitude, and scale height, respectively [29].

Incorporating the attitude dynamics to calculate the cross-sectional area has the effect of

complicating the derivation of the control algorithm. To reduce the complexity of the problem,

the coordinate system of the satellite body is assumed to coincide with the RTN coordinate system

of the reference orbit. The cross-sectional areas for the leader and follower satellites Al and A f

are designed to be equal to

Al = Adl sin(α0 + δα)

A f = Ad f sin(α0 − δα)

(7)

where Adl , Ad f are satellite drag plate areas for the leader and follower, respectively, α0 is the

7



initial rotation angle of the drag plates and δα is the change in the rotation angle due to the

control action. The general form of actual drag plate angle of leader and follower satellites is α,

which is equal to α0 ± δα. To simplify the problem, the follower and leader satellites are assumed

to have the same drag plate areas, Ad = Adl = Ad f . Considering that only the drag plate areas

contribute to the differential atmospheric drag, the difference in aerodynamic drag force becomes

∆fd = ρCd
Ad
m
Vrel‖Vrel‖ cos α0 sin δα (8)

For a small formation radius, the velocity vector can be substituted by the scalar component in its

tangential coordinate as

Vrel =

[
0 Vrel 0

]
(9)

such that the control equation becomes

∆ fd = ρCd
Ad
m

V2
rel cos α0δα̂ (10)

where δα̂ is a presentation for sin δα.

This configuration for implementing drag plates to control the relative position is presented

in Fig. 1, where the black solid lines of the drag plates indicate the initial orientation α0 and the

blue lines represent the actual orientation of the drag plates α0 ± δα. Figure 1(a) illustrates the

configuration for ∆ fd > 0, where the leader’s drag plate angle αl increases with a consequent

increase in its aerodynamic drag force fdl
and the follower drag plate angle α f decreases with a

consequent decrease in its aerodynamic drag force fd f
. Figure 1(b) presents the opposite config-

uration for ∆ fd < 0. It should be noted that the assumption that both satellites have the same

density and relative velocities is valid only for missions flying in close formation with a formation

radius r ≤ 10 km [19].

IV. Output Regulation for Linear Time-Invariant Systems

The objective of the output regulation problem is to find a feedback control setting such that

the output of the system converges to zero as time tends to infinity. This problem can be used to
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Fig. 1: Configuration of drag plates: (a) ∆ fd > 0, (b) ∆ fd < 0

model asymptotic tracking as well as asymptotic disturbance rejection. The dynamic equations,

including those of an exogenous system, can be stated as follows

ẋ(t) = Ax(t) + B1ω(t) + B2u(t)

ω̇(t) = Sω(t)

e(t) = Cx(t) + D11ω(t) + D12u(t)

(11)

where x ∈ Rn is the state vector, u ∈ Rm is the control input, e ∈ Rl is the output to be regulated,

and ω ∈ Rd is the reference signal or external disturbances generated by an antistable exosystem.

The full-information output regulation problem is solvable, if and only if (A, B2) is stabilizable

and there exist control gain matrices Π(∈ Rn×d) and Γ(∈ Rd×d), which satisfy the regulator

equation [35].

ΠS = AΠ + B2Γ + B1

0 = CΠ + D12Γ + D11

(12)
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For clarity, we assume D12 = 0. Under these conditions, admissible controllers are given by

u(t) = Kx(t) + Lω(t) (13)

where K is any matrix such that A + B2K is Hurwitz stable and L = Γ− KΠ. As seen in Eq. (13),

the control input mainly consists of two parts: Kx, which is the feedback term used to steer x to

ω, and Lω, which is the feedforward term to adjust for the trajectory frequency. Equation (13)

can be rewritten as

u(t) = Kx̂(t) + Γω(t) (14)

where x̂ = x−Πω. Using x̂ and ω, the output signal e(t) is given by

e(t) = Ce(A+B2K)tx̂0 + (CΠ + D11)eStω0 (15)

From the regulator equation (12), the second term in the left hand side of Eq.(15) is zero. There-

fore, output regulation is achieved, i.e., limt→∞ e(t) = 0.

A. Control input saturation

This subsection considers the stability of the output regulation problem subject to input sat-

uration with different saturation values. The analysis can easily be generalized to a vector input

case with the following state space representation

ẋ(t) = Ax(t) + B1ω(t) + B2µ∞σ(u(t))

ω̇(t) = Sω(t)

e(t) = Cx(t) + D11ω(t)

(16)

Parameter σ(u(t)) is the normalized saturation function to assure
∥∥σ(u(t))

∥∥
∞ ≤ 1, and it is

defined as

σ(ui(t)) =



ui
µ∞i

i f |ui| ≤ µ∞i

1 i f ui > µ∞i

−1 i f ui < −µ∞i

(17)
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The coefficient matrix µ∞ ∈ Rm×m represents the saturation limits for different control inputs,

which is stated as follows

µ∞ =


µ∞1 0

. . .

0 µ∞m


(18)

The solvability conditions for the output regulation problem for linear systems subject to

input saturation are given in the following Theorem.

Theorem 1 [27]: Consider system (16) and the given compact set W0 ⊂ Rd. The classical semi-

global linear state feedback output regulation problem is solvable if the following conditions

hold:

(i) (A, B2) is stabilizable and A has all its eigenvalues in the closed left half plane.

(ii) There exist matrices Π and Γ such that:

(a) they solve output regulator equation (12) i.e.,

ΠS = AΠ + B2Γ + B1

0 = CΠ + D12Γ + D11

(19)

(b) there exists 0 < δ < 1 and T ≥ 0 such that ‖Γω‖∞,T ≤ (1− δ) for all ω with ω(0) ∈W0.

One way to select such a state feedback is to use a parameterized feedback gain matrix.

Previously [27, 36], the Riccati equation

Pε A + AT Pε − PεB2R−1BT
2 Pε + Qε = 0 (20)

where Qε = εI and R > 0, was used to construct a family of linear state feedback parameterized

in ε. The important properties of the parameterized Riccati equation (20) are that Qε > 0, dQε
dε > 0

for any ε ∈ (0, 1] and limε→0 Qε = 0.

However, it is known that solving the parameterized Riccati equation might be numerically

stiff as stated in [27]. Furthermore, the convergence of e(t) using low-gain feedback is also known

to be very slow due to the restrictions on parameterized gains [26].
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To overcome these difficulties in solving the parameterized Riccati equation, we propose the

use of a parameterized Lyapunov algebraic equation (PLAE). Let Pε be a unique positive definite

solution of the Riccati equation (20) with Qε = εPε, then Wε = P−1
ε is the unique positive definite

solution to the following PLAE:

0 = AT
ε Wε + Wε Aε + CT

1 C1 (21)

where Aε = −AT − 1
2 εIn and C1 = R−

1
2 BT

2 . This solution can generate a stable feedback gain Kε =

−R−1BT
2 Pε, while assuring the boundedness of the magnitude of state feedback [28]. Moreover,

the properties Qε > 0, dQε
dε > 0 for any ε ∈ (0, ε∗], and limε→0 Qε = 0 hold (see Appendix A).

Therefore, if the parameter ε is sufficiently small to assure the conditions of the developed

PLAE approach, then the output regulation subject to the input saturation is achieved by

u(t) = Kεx(t) + Lω(t) (22)

where L = Γ− KεΠ.

This implementation of the PLAE mainly aims to ensure that the parameterized equations

are less numerically stiff and to raise the limit for the parameter ε while approving the stability

conditions. Moreover, the solution Pε can be solved analytically for a linear time-invariant (LTI)

system.

B. Formation flying using thrust and aerodynamic drag

The main reason for applying the output regulation problem is the viability of using aero-

dynamic drag as a practical way to control various formation flying missions subject to input

saturation. This cannot be precisely controlled by using any other linear control algorithm. Sta-

bility analysis was conducted for various reference trajectories. In-plane formation flying using

only aerodynamic drag is fully controllable [25] for rendezvous and formation keeping missions.

However, tracking control for in-plane motion cannot be fully solved as pointed out below.

Control of in-plane formation flying should incorporate control action in the x-direction to

achieve full solvability of the output regulation problem. In our problem, this control action is
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implemented as thrust. For the SS model, the matrices A, B1 and B2 in Eq. (16) are given by

A =



0 0 1 0

0 0 0 1(
5c2 − 2

)
n2 0 0 2nc

0 0 −2nc 0


, B1 = 0, B2 =



0 0

0 0

1 0

0 By


(23)

where By = ρCd
A
m V2

rel cos α0 and u =

[
ux δα̂

]T

is the control input for the leader and follower

satellites, where ‖x‖∞ = rrel , which represents the initial formation radius. Moreover, the free

orbit ellipse is generated by

ω̇ = Sω, ω(0) = ω0

For the tracking problem, matrices C, D11, and D12 become

C =

 1 0 0 0

0 1 0 0

 , D11 =

 −1 0

0 −1

 , D12 = 0 (24)

To satisfy ω(τ) =

[
a cos ωre f τ b sin ωre f τ

]T

, S needs to satisfy

S =

 0 S1

S2 0

 (25)

where S1 =
−aωre f

b and S2 =
bωre f

a , hence S1S2 = −ω2
re f . The output regulation problem is solvable

because the matrix

A1 =

 A− λI B2

C D12


has full rank for each eigenvalue λ of S [37]. It should be noted that the output regulation problem

is not solvable when only atmospheric drag is used. This can be confirmed by replacing B2 in Eq.

(23) by B2 =

[
0 0 0 By

]T

.

This problem is considered as a full-information problem with state feedback; therefore, ac-

tual state x and reference trajectory state ω are available for control. For the formation flying
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problem (Eqs. (23) and (24)), solutions to the regulator equation (19) are explicitly given by

Π =



1 0

0 1

0 − aωre f
b

bωre f
a 0


, Γ =

 −
aω2

re f +an2(5c2−2)+2bncωre f
a 0

0 −
bω2

re f +2ncaωre f

bBy

 (26)

Now the explicit expressions for µ∞, δ, and Pε in the PLAE approach are derived for each com-

bination of the thrust and differentials in aerodynamic drag, where weighting matrices Qε = εPε.

We choose R =

 1 0

0 B2
y

 to normalize the input part of the cost function uT Ru, where the matrix

µ∞ is equal to

µ∞ =

 umax 0

0 α0

 (27)

where umax, α0 are the saturation limits of thruster and atmospheric drag control actions re-

spectively. The saturation limit for atmospheric drag α0 is selected so that the normalized con-

trol action of differential atmospheric drag is existed in the subset [−1, 1] and this implies that

‖δα‖∞ ≤ |α0| ≤ π/4. On the basis of the free-ellipse initial conditions of formation trajectories

Eq. (3), the reference trajectory vector can be stated as follows

ω =

[
r
2 cos ωre f τ r sin ωre f τ

]T

(28)

where r, ωre f are the magnitude and the frequency of the reference trajectory, respectively. We can

substitute ωre f = Dn, where D presents the constant frequency factor, to illustrate the relation

between the reference trajectory frequency and unperturbed HCW frequency. On the other hand,

from Theorem 1, we have ‖Γω‖∞,T ≤ 1− δ, where ‖ ‖∞,T denotes the L∞-norm after time T. This

means that

δ < min

1−
∣∣∣∣∣ n2r
2umax

(D2 − 4cD + (5c2 − 2))

∣∣∣∣∣, 1−
∣∣∣∣∣ n2r
Byα0

(D2 − cD)

∣∣∣∣∣
 (29)

Test cases are mainly set for JC2Sat satellites with their physical parameters provided in Table 1

[1, 2], while umax is set to be 0.1 mN.
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Table 1: Parameters of JC2Sat

Parameter Symbol Unit Value

Mass M kg 18

Drag Plate Area Ad m2 0.09

Drag Coefficient Cd − 2.2

Fig. 2: Simulation of δ values for different frequencies factors D for altitudes

hellp = 350, 400, 450, 500 km for JC2Sat

Figure 2 presents the relation between frequency factor D and δ, which is the ratio of feedback

control action ‖Kx̂‖∞ to the saturation value of the control input as presented in Theorem 1, with

|c| ≈ 1, mean radius for the virtual reference circular orbit rre f = Re and initial drag plate angle

α0 = π/4. If it is equal to zero, it means that there is no feedback action Kx̂ to eliminate the error

signal and if it is equal to one, it means that there is no output regulation action Γω to track the

reference trajectory.

The results in Fig. 2 show that the margin of reference frequencies that can be achieved using
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Fig. 3: Simulation of δ values for different frequencies factors D for altitudes

hellp = 150, 200, 250, 300 km for JC2Sat

aerodynamic drag and thrust for JC2Sat satellites at altitudes hellp ∈ [350, 500] is highly restricted,

where a change of approximately 5% in frequency factor D leads to saturation of the control

action for altitudes hellp = 450 and 500 km, whereas it decreases the available control action for

feedback Kx̂ to more than 50% and 20% of its total value at altitudes hellp = 400 and 350 km,

respectively. The restriction on frequency can be relaxed by considering two methods

1. Decreasing the reference altitudes.

2. Increasing the area-to-mass ratio.

Figure 3 shows the result of the first approach by decreasing the altitude to hellp = 150− 300

km . As shown in Fig. 3, the margin of frequency value ωre f at altitude hellp = 150 km is

expanded to be ωre f > 4n, whereas for hellp = 500 km it is approximately equal to ωre f = 1.018n

as presented in Fig. 2.

Figure 4 shows the result of the second approach where the area-to-mass ratio increases from
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Table 2: Parameters of Techsat21

Parameter Symbol Unit Value

Mass M kg 175

Drag Plate Area Ad m2 2.22

Drag Coefficient Cd − 2.3

Fig. 4: Simulation of δ values for different frequencies factors D for altitudes

hellp = 350, 400, 450, 500 km for Techsat21

0.005 for JC2Sat (Table 1) to 1.269× 10−2 of Techsat21 (Table 2). As shown in Figs. 2 and 4, the

marginal frequency increases from ωre f = 1.2n to ωre f = 1.474n for altitude hellp = 350 km. For

the feedback, the solution to the parameteric Lyapunov algebraic equation (PLAE) is explicitly

obtained by using the Sylvester equation and Kronecker product for symmetric matrices [38].

The PLAE approach presents a minimally conservative and low numerically stiffness approach to

achieve semi-global stability of linear time invariant systems subject to different input saturation

limits. It is derived with the parameterized Lyapunov equation that can be solved analytically for
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any generalized state representation form. The control gain is given by

Kε = −BT
2 R−1Pε =

1
Wn

 K11 K12 K13 K14

K21
By

K22
By

K23
By

K24
By

 (30)

where

Wn =ε8 +
(

6 M2 − 4 N
)

ε6 +
(

9 M4 − 8 M2N + 6 N2
)

ε4

+
(

4 M6 − 4 M4N + 10 M2N2 − 4 N3
)

ε2 + 4
(

M2 − N/2
)2

N2

K11 =− ε10 −
(

6 M2 − 4 N
)

ε8 −
(

9 M4 −M2N + 6 N2
)

ε6

−
(

4 M6 + 7 M4N + 10 M2N2 − 4 N3
)

ε4 −
(

4 M6N + 4 M4N2 − 3 M2N3 + N4
)

ε2

K12 =M
(

M2 + ε2 − N
)

ε3
(

4 M4 + 5 M2ε2 + ε4 − N2
)

K13 =− 2 ε9 −
(

12 M2 − 8 N
)

ε7 −
(

18 M4 − 10 M2N + 12 N2
)

ε5

−
(

8 M6 − 2 M4N + 16 M2N2 − 8 N3
)

ε3 −
(

4 M4N2 − 6 M2N3 + 2 N4
)

ε

K14 =ε2MN
(

2ε4 − (2 M2 + 4N)ε2 − 4M4 − 4M2N + 2N2
)

K21 =− ε8 −
(

6 M2 − 7 N
)

ε6 −
(

9 M4 − 11 M2N + 11 N2
)

ε4

−
(

4M6 − 4M4N + 19 M2N2 − 5 N3
)

ε2 − 8 M4N2 + 4M2N3

K22 =− ε2
(

ε6 +
(

5 M2 − 3 N
)

ε4 +
(

4M2 − 3 N
) (

M2 − N
)

ε2 − N
(

2M2 − N
)2
)

.
(

ε2 + M2 − N
)

K23 =ε2MN
(

2ε4 − (2 M2 + 4N)ε2 − 4M4 − 4M2N + 2N2
)

K24 =− 2 ε9 −
(

12 M2 − 8N
)

ε6 −
(

18 M4 − 22 M2N + 12 N2
)

ε4

−
(

8M6 − 14 M4N + 24 M2N2 − 8N3
)

ε2 −
(

12 M4N2 − 10 M2N3 + 2 N4
)

(31)

for M = 2nc and N = n2(5c2 − 2).

In Fig. 2, for D = 1, the value of δ changes from 99.69% to 95.97%, which guarantees a stable

region for feedback control action ‖Kεx̂‖∞ ≤ δ, where ‖x̂‖∞ ≤ (rrel + r).

At this point, the stability ranges of control parameter ε∗ for different reference orbits are

analyzed by using the PLAE approach. Figure 5 shows the relation between ε and the L∞-norm

of Kεx̂ for different altitudes (hellp ∈ [350, 500]) with JC2Sat parameters, initial formation radius

rrel = 100 m, reference formation radius r = 10 m , and reference frequency ωre f = n. Figure 5
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Fig. 5: Simulation of PLAE approach for maximum values for ε with ε∗ conditions.

illustrates the limits of stable control gains, which are estimated using PLAE approach by calcu-

lating L∞-norm of Kεx̂. The Kεx̂ curves monotonically increase as the altitude increases. From

Fig. 5, it can be seen that the limits of ε∗x for all altitudes hellp ≤ 500 km are larger than 6× 10−10.

V. Simulation Results

A. Relative Model

This subsection examines the effect of the control parameter ε on the steady-state error and

the corresponding control action for the SS model. The performance of parameterized control

action (22) is tested for a circular LEO with different altitudes hellp ∈ [350, 500] and inclination

ire f = 0, which represents the greatest effect of the J2 perturbation force on the SS model. The

propagation runtime was obtained for a period of 30 days for each test case with the time step

h = 10 seconds. The numerical simulations were carried out in conjunction with the proposed

output regulation controller and LQR controller. Test cases were specified for JC2Sat satellites

with their physical parameters listed in Table 1 [1, 2].

The remaining orbital elements of the follower satellite i f , Ω f , and M f were calculated accord-
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ing to the equations of the SS model presented in [8]. Furthermore, the initial formation radius

rrel = 100 m, reference formation radius r = 10 m , and phase angle φ = 45 deg were used.

Let the in-plane state of the SS model (1) and reference trajectory (28) be δx and δxre f , respec-

tively. Then the L2-norm of the steady-state error is defined as

ν2 =
∥∥∥W

(
δx(ti)− δxre f (ti)

)∥∥∥
2
, ti ∈

[
tss, t f

]
(32)

where W is a weighting matrix given by W = diag
(

1, 1, n−1, n−1
)

[13] and tss, t f are the settling

time and final time, respectively.

Figure 6 shows the L2-norm of the steady-state error (32) as a function of q = log10 ε for

different altitudes hellp. All the results in Figs. 6(a) and 6(b) present a monotonically decreasing

function for q in both figures. Although the control action of aerodynamic drag increases as the

altitude decreases, at lower altitudes the error becomes larger because of increasing J2 perturba-

tion effects in the SS model. The control actions for the steady-state signal can be expressed as

‖ux‖2 =
∥∥K1x̂(ti) + Γ1ω(ti)

∥∥
2, ti ∈

[
tss, t f

]
‖δα̂‖2 =

∥∥K2x̂(ti) + Γ2ω(ti)
∥∥

2, ti ∈
[
tss, t f

] (33)

Figures 7 and 8 present the L2-norm of the control input for the steady state as a function of q

for the parameterized linear quadratic regulator (PLQR) and the parametrized output regulation

(POR) for various altitudes, where the limits of the normalized feedback control action for the

PLQR is estimated by ‖Kεx̂‖∞ ≤ 1 and Kε = −R−1BT
2 Pε, where Pε is the solution to the Riccati

equation (20). In Fig. 8, for the PLQR control, the steady-state control action increases dramatically

as the control gain increases, because lim
t→∞

e 6= 0 for the periodic trajectory. On the other hand, this

does not occur for output regulation as presented in Fig. 7 because lim
t→∞

e = 0. The steady state

control action is equal to Γω, which is independent of q; hence, the steady-state control action is

constant for all q and for each altitude.

Both Fig. 7(b) and Fig. 8(b) show that, the higher the altitude becomes, the more the L2-norm

of δα increases. This is because an increase in the altitude hellp leads to a decrease in density ρ as

presented in Eq. (6), which means that the control action δα should be increased to compensate

for the reduction in density. Conversely, Figs. 7(a) and 8(a) present a negative correlation between
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(a) Parameterized linear quadratic regulator (PLQR)
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Fig. 6: L2-norm of steady state error w.r.t different weighting factor q and different altitudes for

(a) PLQR (b) POR

ux and the altitude hellp, which is attributed to the decrease in the perturbation effects of J2 as

the altitude increases. This leads to a reduction in the required control action by thrust; however,

this reduction in the J2 perturbation effect is lower than the reduction in the aerodynamic density
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value [29], which means that the control action δα increases. The results in Fig. 6 show that, when

using the output regulation control, the L2-norm of the steady-state error is reduced to less than

0.6, which represents an error of less than 1% of that of the PLQR algorithm. In contrast, the

control action for both control algorithms remains at the same level as presented in Figs. 7 and 8

Figures 7 and 8 suggest that the stability conditions for the control parameter ε∗ of the PLAE

approach established in Sec. IV B is highly restrictive in comparison with numerical simulation.

Figure 6 shows that the effect of saturation can be accommodated for q ≤ −2 for all altitudes,

whereas it is restricted by q ≤ −8 for the stability analysis presented in Sec. IV B.

B. High Precision Orbit Propagator

This section presents the implementation of our control algorithm in the high precision orbit

propagator (HPOP). The same procedure is applicable to the real space environment to demon-

strate its viability to eliminate perturbations that have not been modeled.

The HPOP is based on AstroLib software [39], which incorporates high-fidelity force models,

a high-accuracy numerical integrator, and precise transformation for both time scales and ref-

erence systems. It is used as benchmark for the verification and validation of the performance

of the control algorithm. The description of the force models and numerical integration method

implemented in AstroLib software is presented in Table 3. The test cases for HPOP simulation are

designed for JC2Sat parameters with altitudes hellp = 250, 300, 350 and 400 km, reference inclina-

tion ire f = 0, control weighting factor ε = 10−4, and for the same initial and reference formation

flying trajectories in Sec. V A.

The procedure that was used to test the feedback control system is shown in Fig. 9, where

õe represents the oscillatory orbital elements (semi-major axis a, eccentricity e, inclination i, right

ascension of ascending node Ω, argument of perigee ω, and mean anomaly M), x is the relative

position vector, u is the control action vector u = [ux, δα], and ∆ represents the difference be-

tween vectors of the actual and reference states. The subscripts (2− body, HPOP, f , l, re f ) denote

the two-body orbit propagator, high-precision orbit propagator, follower, leader, and reference

trajectory, respectively. The superscripts (ECI, RTN) refer to the Earth-centered inertial and RTN
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Fig. 7: L2-norm of output regulation actions ux and δα as a function of weighting factor q for (a)

L2-norm of ux (b) L2-norm of δα

coordinate systems, respectively [29].

The sequence of the closed-loop verification procedure starts with the transformation of the

initial leader oscillatory orbital elements to the state described in the ECI coordinate system. These
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Fig. 8: L2-norm of PLQR control actions ux and δα as a function of weighting factor q for (a)

L2-norm of ux (b) L2-norm of δα

initial conditions of the leader and follower satellites with the control actions are propagated using

HPOP, whereas the reference trajectories are propagated by using unperturbed two-body models.

Then, the propagated inertial states are transformed to the RTN coordinate system to calculate the
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Table 3: Reference numerical propagation force models

Force models

Geopotential 70× 70 EGM-96

Drag Exponential model CD = 2.2

Third-Body Solar/Lunar point masses based on Jet Propulsion Labo-

ratory ephemerides, DE405

Solar radiation Conical shadow model, reflectivity factor Cr = 1.2

Tidal effects No tide forces.

Integrator Runge Kutta 4th order

Time step 10 s

Simulation period Two days

relative states between them [13, 30]. The proposed PLAE-based controller is used to generate ux

for implementation in the generation of thrust for the follower satellite and the estimation of δα

to be used in the calculation of the areas of the leader and follower drag plates using the relations

presented in Eq. (7).

Figure 10 illustrates the error components of the in-plane motion in the HPOP numerical

simulation. The steady state of the error components for different altitudes are approximately

equal to 0.1053, 0.0740, 0.0647 and 0.0638 m in x-direction and 0.7703, 0.6826, 0.6446 and 0.6442 m

in y-direction, respectively. These represent errors less than 0.25% and 0.8% of the initial errors

in x and y-directions. The controlled trajectories of the follower satellite are presented in Fig. 11.

These results show that the parameterized output regulation algorithm is robust against all the

perturbations that have not been modeled in HPOP for different altitudes. The control actions

are presented in Fig. 12, which shows that the control input is already saturated in the transient

region for altitudes hellp ≥ 350 km, in which the stability is not guaranteed by the PLAE approach.

The limits for the controller gains using the PLAE approach are highly restricted in comparison

with the numerical simulations. Although, according to PLAE approach, the weighing factor ε∗

should be lower than 10−8 for all the altitudes hellp ≥ 350 km, as presented in Fig. 5, it is increased

to ε ≤ 10−2 by using numerical simulations. This is because the stability margins are estimated
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Fig. 9: Procedure for HPOP simulation.

based on the L∞ norm of the error signal when using the PLAE approach.

The numerical simulations do not take the assumptions of equal and scalar Vrel for the leader

and follower satellites into consideration. Any control algorithm based on these assumptions

with extreme low gains would not be robust to handle errors for different Vrel vectors in more

realistic models of the SS and HPOP numerical simulation. Furthermore, the need to address

the uncertainties in the aerodynamic drag models [24, 33] also adversely affects the results for

low-gain feedback systems. These errors may be handled by using an integral controller with the

output regulation algorithm or by developing an adaptive output regulation control algorithm

[40].
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Fig. 10: HPOP error components for altitudes hellp = 250, 300, 350, 400 km

VI. Conclusion

This paper presented a practical approach to precisely control formation flying missions us-

ing a hybrid control action of thrust and differentials in aerodynamic drag. The control algorithm

for the Sedwick-Schweighart perturbed linearized model was derived based on the parameter-

ized output regulation theory. The low conservative PLAE approach was designed to approve the

stability of the output regulation control system. The approach was developed to solve the output

regulation problem subject to input saturation with different saturation limits using the paramet-

ric Lyapunov algebraic equation. Moreover, the region in which the parameter of the parametric

Lyapunov algebraic equation remains stable can be determined for all formation flying missions.
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Fig. 11: HPOP in-plane formation flying controlled trajectories for altitudes

hellp = 250, 300, 350, 400 km

The performance of the control algorithm was validated by using the high precision orbit prop-

agator. The results obtained with the controlled numerical simulator models show that control

action consisting of a combination of aerodynamic drag and thrust can track different reference

trajectories with accurate steady-state errors of the order of centimeters. In the future work, we

plan to concern ourselves with the inclusion of integration gains in the output regulation algo-

rithm or the development of an adaptive output regulation algorithm to eliminate the need for

the assumption of small formation radius and dealing with the uncertainties in the parameters

such as atmospheric density and drag coefficient.
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Fig. 12: HPOP control actions
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VIII. Appendix

A. Derivation of PLAE

Assume that the algebraic Riccati equation (ARE)

AT Pε + Pε A− PεB2R−1BT
2 Pε + Qε = 0 (34)
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with Qε = εPε. Then

AT Pε + Pε A− PεB2R−1BT
2 Pε + εPε = 0 (35)

⇔P−1
ε AT + AP−1

ε − B2R−1BT
2 + P−1

ε ε = 0 (36)

⇔Wε AT + AWε − B2R−1BT
2 + Wεε = 0 (37)

⇔Wε AT
ε + AεWε − B2R−1BT

2 = 0 (38)

where Wε = P−1
ε and Aε = A + 1

2 εIn. This equation can be transformed to A∗Tε Wε + Wε A∗ε +

CT
1 C1 = 0 that presents the PLAE where A∗ε = −AT − 1

2 εIn and C1 = R−1/2BT
2 . Therefore if

Wε = P−1
ε is the positive definite solution to the PLAE, Pε is the positive definite solution for

the ARE (34) and limε→0 Pε = 0. This proves that Qε is positive definite ∀ε > 0. It can also be

confirmed that dQε
dε = Pε + ε dPε

dε > 0, as (AT
ε

dPε
dε + dPε

dε Aε) = −Pε, while Aε is Hurwitz for Qε = εPε

and Pε is positive definite, so dPε
dε > 0 and consequently dQε

dε > 0.
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