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Abstract 

This study proposes a numerical analysis for predicting fiber motion during injection 

molding of short-fiber-reinforced composites using the moving particle semi-implicit (MPS) 

method. Its meshless and Lagrangian nature enables us to track individual fibers and to easily 

represent free surfaces. In this study, the mechanism of fiber orientation in a T-shaped 

bifurcation was investigated experimentally and numerically. The fiber orientation of 

injection-molded glass-fiber/polypropylene composite was observed by X-ray CT. Despite the 

symmetric mold shape, there was asymmetric fiber orientation due to the mold filling process. 

Fiber motion in the bifurcation was then analyzed by the proposed simulation, and the fiber 

orientation was quantitatively evaluated in each small region. The prediction agreed well with 

the experiment, and the associated mechanism of fiber orientation is discussed. Furthermore, 

this approach explicitly demonstrates the interaction between fibers, which is an advantage of 

the proposed approach. 
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1. Introduction 

Fiber-reinforced plastics have recently been applied to structures to reduce their weight. 

Injection-molded short-fiber-reinforced composites have the advantages of excellent molding 

flexibility and a short mold cycle time, in addition to a certain level of stiffness and strength. 

The mechanical properties of injection-molded short-fiber-reinforced composites significantly 

depend on the condition of the fibers, i.e., their length, dispersion, and orientation. The 

microscopic structure is governed by the molding process. Accordingly, numerical analyses to 

predict fiber orientation have been conducted. 

Advani and Tucker [1] proposed orientation tensors that could represent fiber orientations 

with low calculation cost, and developed equations to predict changes in the orientation 

tensors due to the flow field. Fiber orientations in a thin plate, a weld-line, and a rib structure 

have been analyzed by using orientation tensors, and these predictions agreed well with 

observations of injection-molded composites [2-5]. Theoretical and numerical studies have 

been conducted to consider changes in the flow field due to fiber suspension [6-8]. 

Improvement of the closure approximation to obtain a higher-order orientation tensor, which 

is needed to analyze a change in the fiber orientation, has been studied [9,10], and several 

types of approximations have been evaluated experimentally and numerically [11,12]. Thus, 

orientation tensors have widely been used to analyze fiber orientation. However, numerical 

methods based on orientation tensors [1-12] cannot analyze more detailed microscopic 

structures, such as a heterogeneous distribution of fibers. 

Fiber condensation and fiber breaks sometimes occur during the injection-molding process, 
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and the expected mechanical properties cannot be obtained. In particular, these phenomena 

can frequently be observed when injecting fibers a few millimeters long into a thin cavity. 

Therefore, an approach that predicts the motion of individual fibers and the interaction 

between fibers is needed for accurately predicting material properties. Yamamoto et al. 

[13,14] proposed a particle simulation to analyze the motion of all fibers, in which each fiber 

was modeled as an assembly of particles. Although this approach can represent a 

heterogeneous distribution of fibers, the flow field and the fiber motion were analyzed 

separately, and thus the effect of fiber motion on the flow field could not be considered. 

In recent years, some molding simulations using smoothed particle hydrodynamics (SPH), 

which is a meshless and fully Lagrangian particle-simulation method, have been demonstrated 

for die casting [15], polymer processing [16], and concrete [17]. Moreover, Comas-Cardona et 

al. [18] proposed an analysis that combined SPH with the finite-element method and predicted 

resin flow during resin-transfer molding of a sandwich structure consisting of glass fabric and 

foam core. However, to the authors’ knowledge, no particle-based simulation of the fiber 

motion and resin flow of short-fiber-reinforced composites has been presented. 

This study, then, proposes a mold-filling simulation of short-fiber-reinforced composites 

using the moving particle semi-implicit (MPS) method [19]. The MPS method enables us to 

track the motion of individual fibers and to easily represent free surfaces such as flow-fronts 

because of its meshless and fully Lagrangian nature. Moreover, if all fibers and resin are 

modeled by particles, the interactions between fibers, as well as between the fibers and the 

resin, can be considered automatically. 

In this study, fiber orientation in a T-shaped bifurcation area of glass-fiber/polypropylene 

injection-molded composite was predicted using the MPS method. This paper is organized as 

follows. Section 2 evaluates the fiber orientation in a T-shaped bifurcation area of an injection 
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molded composite by X-ray CT. Section 3 provides a summary of the MPS method and a 

representation of the reinforcing fibers. Finally, Section 4 presents a particle model of the 

bifurcation area and analyzes the fiber motion during injection molding. The predicted fiber 

orientation is quantitatively compared with the experiment, and the mechanism of fiber 

orientation is discussed. 

 

2. Experiment 

The material used was an injection-molded composite with glass fibers (GF) and 

polypropylene (PP). The volume fraction of glass fibers was 8.3%, and the density of the 

composite was 1030 kg/m3. A schematic diagram of the flow path near the observed region is 

presented in Fig. 1. The right (+y) path was terminated 50 mm away from the branch point, 

and the left (-y) path was connected with the following path. The average width of all paths 

was 5 mm. The mold temperature was set to 140°C to prevent solidification of the resin and to 

observe the fiber orientation due only to the resin flow. 

The orientation of the glass fiber was investigated by X-ray CT and image processing. 

Figure 2a presents an X-ray CT image of the bifurcation area; glass fibers are represented by 

white lines in this image. Next, the fibers were thinned and branched lines were removed by 

image processing to extract the glass fibers. The observed region was then divided into twelve 

small areas, in which the probability of fibers was constant, to remove the influence of the 

image resolution, and the lengths and angles of all fibers were measured in each small area. 

The orientation angle was defined as the angle between the inflow (x) direction and the 

longitudinal direction of a fiber. Finally, the fiber orientation distribution in each area, 

specified as the fraction of fibers within a given angular range, was calculated for every 10° 

range. Here, the orientation distribution was obtained by dividing the sum of the fiber lengths 
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within a given angular range by the sum of all fiber lengths in the area. 

Figure 3 depicts the orientation distribution observed in the inlet region. Fibers were mainly 

oriented at 0° (=180°) along the mold wall in the side areas A and C (Figs. 3a and 3c). 

However, fibers were randomly oriented in center area B (Fig. 3b). Figure 4 compares the 

orientation distributions of the center areas of bifurcation, E, H, and K. Fibers were randomly 

oriented in area E (Fig. 4a), similarly to the neighboring area B. A peak appeared near the 90° 

direction in area H (Fig. 4b), and the peak became sharp and high in the bottom area K (Fig. 

4c). The fraction of fibers in the 90° direction increased with decreasing distance to the 

bottom wall. 

Figure 5 plots the orientation distributions in the corner areas. In the left corner D (Fig. 5a), 

fibers existed within an angular range of 70° to 180°, which represents the resin flow along 

the corner. However, in the right corner (Fig. 5b), fibers were mainly oriented over a range of 

0° to 40°, and the fiber orientations were completely different between the two corners, 

despite the symmetric mold shape. Similar asymmetric orientation distributions were 

observed in other areas. The angle at which fibers mostly aligned was different between areas 

G and I, which were the center areas of the inlets to the ±y paths. Although the highest 

fraction was observed at 90° in the left area G (Fig. 5c), fibers existed in a wider angular 

range around 120° in the right area I (Fig. 5d). Fibers were mostly aligned to the 90° direction 

in areas J and L (Figs. 5e and 5f), which were in contact with the bottom surface; in addition, 

fibers in the range of 120° to 130° were observed in area L. 

 

3. Moving particle semi-implicit (MPS) method 

3.1 Numerical approach for incompressible flow 

A continuum is represented by an assembly of particles in the MPS method. A particle 
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nearer to particle i is considered to have a greater influence on particle i, and the following 

weight function w is defined to represent the magnitude of the interaction at a distance r from 

particle i. 
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The effects of particles within radius re from particle i are then considered when analyzing the 

motion of particle i. The sum of weight functions, called the particle number density (PND) n, 

is given by 
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where r is the position vector and the subscript indicates the number of a particle. PND is 

proportional to the density of the fluid. Since the density of the fluid is constant for 

incompressible flow, PND should take a constant value n0. 

The MPS method analyzes the governing differential equations by using particle interaction 

models that correspond to differential operators. When a scalar variable i is stored in particle 

i, the gradient of  at the position of particle i is represented as 
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where the bracket  indicates the operator based on the particle interaction model and d is 

the dimension number. Equation (3) is the weighted average of the gradient vector between 

particles i and j considering the dimension number. The Laplacian model is defined as follows. 
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In the Laplacian model, a part of variable i is divided among neighboring particles 

considering the weight function, and λ is a constant to make the increase in statistical 
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dispersion conform to the analytical solution. 

The governing equations for incompressible flow are the conservation of mass and the 

Navier–Stokes equation. 

 0
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ρ is the density, u is the velocity, P is the pressure, ν is the dynamic coefficient of viscosity, 

and D/Dt denotes the Lagrangian differential. In order to apply a semi-implicit solving 

algorithm, the MPS method uses the mass-conservation equation for compressible flow 

instead of Eq. (6). 
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D
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When the position r, velocity u, and pressure P of all particles are known at time t, the 

following semi-implicit algorithm is applied to calculate physical quantities at the new time 

step t+Δt. First, temporary values for the velocity and position are explicitly calculated from 

only the second term of Eq. (7). The temporary PND distribution is not uniform, although the 

PND must be constant, as shown by Eq. (6). Adjustments in the velocity to keep the density 

constant are assumed to be caused by the first term of Eq. (7), and Poisson’s equation on 

pressure is then obtained from Eq. (8). The pressure is solved implicitly, and the adjustment in 

the velocity is calculated from the pressure distribution. Finally, the velocity and the position 

are updated to make the distribution of the PND uniform. The above semi-implicit algorithm 

has been described in previous studies [19,20]. 

Free surfaces can easily be detected using the PND. The PND of a particle on a free surface 

is smaller than that in a body, since no particle exists outside of the free surface. Therefore, a 

particle is considered to be on a free surface if its PND is smaller than a constant value 
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(0.97n0 in this study) after the explicit calculation. The pressure of these particles is zero, and 

this condition is imposed when solving the Poisson’s equation of pressure. 

 

3.2 Modeling of fibers 

Fibers are modeled as rigid bodies explicitly interacting with an incompressible fluid [19]. 

Rigid bodies are represented by connecting particles. The position of the center of gravity, rg, 

and the moment of inertia, I, of a rigid body consisting of N particles are given by 
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where m is the mass of a particle. Weak interaction between the fluid and the rigid bodies is 

assumed, and all particles are first moved, based on Eqs. (6) and (7), without distinguishing 

rigid bodies from the fluid at time step (k+1). The change in the center of gravity of a rigid 

body from the time step k to (k+1), r’g, is calculated as 
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where 1ˆ k
ir  denotes the position of particle i after the implicit calculation for fluid at step 

(k+1). The change in rotation angle θ’ is obtained from the relation between the angular 

momentum and the angular velocity. 
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The relative position between the particles in the rigid body is then corrected to the original 

shape while retaining the changes in the position of the center of gravity and the rotation 

angle. Here, the position change of particle i, r’i, is given by 
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Accordingly, the velocity and the position of particle i at time step (k+1) are calculated as 

follows. 
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The above calculations for rigid bodies correspond to analyzing the motion of a rigid body by 

integrating the force on particles in the rigid body affected by the fluid and other rigid bodies. 

The MPS method considers the equilibrium of force induced by interactions between resin 

and resin (i.e., a flow field), between a fiber and resin, and between a fiber and a fiber by 

solving Eqs. (6) and (7). Two particles repel each other when they move closer, and they 

cannot overlap. Similarly, two fibers repel each other when they move closer, and the particles 

in the fibers move due to the generated force and moment. Thus, the fiber-fiber interaction is 

considered automatically when solving the governing equations and is observed in the particle 

motion. It should be noted that the other interaction effects require additional interaction 

models in Eq. (7). 

 

4. Analysis 

4.1 Verification of the numerical approach 

The present approach was verified by comparing the prediction with a theoretical solution. 

Incompressible fluid with viscosity of 200 Paꞏs was injected in a straight path with a width of 

5 mm. In order to remove the influence of the initial condition on the flow front, the flow path 

was bent toward the x-direction following injection in the y-direction; the injection speed was 

0.5 m/s. The initial distance between particles was 0.25 mm. Figure 6 depicts the pressure 
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distribution. The pressure gradient was almost constant (dP/dx = -3.9×107) between the 

position without velocity in the y-direction and the flow front (6.5 < x < 32 mm) despite wide 

variations in the pressure. The predicted velocity in the x-direction is compared with the 

theory for Poiseuille flow in Fig. 7. The prediction agreed with the theory; the error in the 

velocity at the center was 8.7%, caused by the pressure fluctuation and the accuracy of the 

differential operator models for the MPS method. Figure 8 depicts the distribution of the 

velocity relative to that of a particle at the flow front. The velocity distribution exhibited a 

fountain flow at the flow front. These results demonstrate the validity of the MPS method. 

The motion of a single fiber was analyzed in a simple shear flow with a shear rate   of 

500 s-1, and the prediction accuracy of the orientation angle was investigated. Figure 9a 

depicts the analytical model for the simple shear flow with a single rigid fiber; the initial 

distance between particles was 0.25 mm. A rigid fiber (connected particles) was allocated at 

the center of the path at the initial orientation angle of 90° from the x-direction. The path 

width 2h exceeded the fiber length by three times, and the path length was four times greater 

than the path width. The upper and lower plates had a velocity of h , and the velocity of 

the simple shear flow (vx, vy) = ( y , 0) is assigned to all of the particles as the initial 

velocity. The periodic boundary condition was imposed on both ends of the path. The fiber 

density was 2540 kg/m3, and the viscosity and density of the fluid were 200 Paꞏs and 900 

kg/m3. Figure 9b plots the velocity in the x-direction at the center of the path (fiber aspect 

ratio of 10). Although a sparse particle distribution was generated due to the fluctuation of 

pressure [20], the velocity distribution agreed with the solution for simple shear flow. 

Figure 10 plots the predicted orientation angle   for aspect ratio re of 4, 10, 20, and 40; 

the dashed line represents the fiber orientation analyzed by the Jeffery’s model [21]. The 

Jeffery’s solution for simple shear flow is simplified as follows [22], where 0  is the initial 
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orientation angle. 
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The prediction agreed with the Jeffery’s solution for all fiber-aspect ratios. The errors 

observed after 0.05 s were caused by the sparse particle distribution due to the pressure 

fluctuation, and disappeared in a sufficiently long flow path. 

Finally, the orientation state obtained by the present analysis was compared with that 

predicted by the orientation distribution function [1]. Rigid fibers were injected in the straight 

path depicted in Fig. 6. The analytical conditions were the same as the above simulations, and 

the fiber length was 1 mm; the fiber volume fraction Vf was 10% and 40%. The fibers aligned 

in the x-direction were positioned randomly at the inlet. After the path was filled, the angles of 

the fibers within 10 < x < 35 mm were measured. The simulation was performed 10 times, 

and over 500 fibers were counted to obtain the orientation distribution. The path was divided 

into the core region with 60% of the path width and the remaining skin layers, and the 

orientation distributions in the two regions were evaluated. The orientation states were also 

predicted using the orientation distribution function. The calculated orientation distributions 

were then converted to the second-order orientation tensor aij [1] to compare the orientation 

states between the present analysis and the conventional method. The component a11 equals 

unity (0.5) at the unidirectional (completely random) orientation, while aii = 1. Table 1 lists 

the orientation tensors obtained by the present analysis. The smaller Vf exhibited a stronger 

trend of the unidirectional orientation. Figure 11 plots the component a11 against the 

interaction coefficient CI. The orientation state for 10% Vf suggested CI < 0.002, which was 

equivalent to the very week interaction between fibers. The results of 40% Vf corresponded to 

CI ≈ 0.01; CI increased with increasing Vf. These results indicated that the present analysis 

could represent interaction between fibers. It should be noted that the interaction effect in this 
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analysis was smaller than that in the actual molding, because the fiber aspect ratio (number of 

fibers) was small in this analysis. 

 

4.2 Analytical model of injection molding 

Figure 12 depicts the analytical model. The –y flow path is longer than the +y flow path to 

approximate the actual mold as seen in Fig. 1. The wall surface was represented by particles 

(Fig. 12b), with one inner layer on which the pressure was calculated and two outer layers 

where the pressure was not calculated. The initial distance between particles, l0, was 0.25 mm. 

The number of layers depends on the effective radius re (=2.1l0 in this study). Three layers 

were needed so that fluid particles neighboring the wall surface were judged not to be on a 

free surface. 

Particles for polypropylene (PP) and glass fibers (GF) were injected from the upper inflow 

part at a constant injection speed of 0.5 m/s until the mold was filled. The wall of the inflow 

part moved in the +x direction to push the fluid particles forward, and the moving wall was 

shifted back to the original position after it had moved the distance l0. New particles for 

polypropylene and glass fibers were introduced in the generated gap. Polypropylene was 

modeled as an incompressible fluid, with density and viscosity of 900 kg/m3 and 200 Paꞏs. 

Glass fibers were modeled as rigid bodies with a density of 2540 kg/m3. The number of 

particles for the mold wall was 2256, and that for the moving wall was 60. There were 10296 

particles after the mold was completely filled (0.20 s). The typical calculation time was 68 

hours using a computer with an Intel Xeon CPU at 2.67 GHz with 6 GB of memory. The 

memory usage was 613 MB. 

Among the generated particles at the inflow gate, four neighboring particles were 

considered to be a glass fiber 1mm in length whose position was determined by a random 
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number; the other particles represented polypropylene (Fig. 12b). The mold-filling simulation 

was conducted 25 times because of the use of random numbers. 

 

4.3 Results and discussion 

Figure 13 presents snapshots of the flow of the resin and fibers. The flow-front reached the 

bottom of the bifurcation at 0.04 s, and the resin flowed into the ±y paths. The +y path filled 

with resin at 0.13 s, and fibers in the +y path then hardly moved after the path was filled. The 

resin and fibers continued flowing into the -y path till 0.20 s. The resin sprang up from a 

backward position to the flow-front, and a fountain flow with a convex surface was generated. 

A sparse distribution of particles, corresponding to an unrealistic free surface in the resin 

(void), occasionally appeared at the flow front. This may be caused by instability in setting 

the pressure-free boundary condition. Therefore, it is difficult to discuss detailed phenomena 

at the flow front using the present approach, although fountain flow was observed in Fig. 8. 

Unrealistic free surfaces will be removed by considering the surface (interfacial) tension 

modeled as an external force in Eq. (7). The surface and interfacial tension will be discussed 

in our next study [23]. 

Rigid fibers mostly aligned in the flow direction near the side walls. However, random 

orientations were frequently observed in the middle of the path width. This phenomenon was 

caused by the gradient of the velocity in the flow direction due to viscosity. Figure 14 depicts 

the distribution of the shear rate and vorticity at 0.12 s. A high shear rate (vorticity) was 

generated near the side wall because of the steep velocity gradient, and fibers rotated to 

become oriented parallel to the side wall. Fibers hardly rotated in the middle region of a path 

because of the low shear rate (vorticity); instead, random orientation was observed. Thus, the 

fiber orientation in a straight path was represented qualitatively and agreed with conventional 
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knowledge. 

In order to quantitatively evaluate the predicted fiber orientation, the bifurcation area was 

divided into twelve areas as seen in Fig. 2b. The fiber-orientation distribution in each area was 

calculated after mold filling was finished (0.20 s), and the orientation angle was measured 

from the x direction. The predicted results of the fiber angles from 25 simulations were 

integrated to obtain the orientation distribution. Since the fiber length was constant in this 

analysis, the orientation distribution could be calculated by dividing the number of fibers in 

an angular range by the total number of fibers in a given area. The fiber aspect ratio was 4 in 

the simulation, but the aspect ratio in the experiment was expected to be 50 to 100. However, 

the influence of the small aspect ratio on the orientation distribution would be limited, since 

the Jeffery’s solution demonstrates that the change in orientation angle for an aspect ratio of 4 

is almost the same as that for a larger aspect ratio when  >20°, and that a given fiber 

experienced the greatest shear rate (600 s-1) only briefly. 

Figure 3 plots the predicted orientation distribution in the inlet region to the bifurcation, 

along with the experiment results. Most fibers were aligned in the 0° direction in the side 

areas (A and C; Figs. 3a and 3c), and fibers were randomly oriented in the middle area (B; Fig. 

3b). These predictions agreed well with the observations. Figure 4 plots the orientation 

distribution in the center areas (E, H, and K) of the bifurcation. Random orientation was 

predicted in upstream area E, and the fraction aligned to the 90° direction increased with 

decreasing distance to the bottom surface. These predictions also agreed with the experiment 

results.  

Figure 5 depicts the orientation distributions at the corners. As observed in the experiment, 

the fiber orientation differed between the left and right corner areas despite the symmetric 

corner shapes. In the left corner (D; Fig. 5a), fibers were oriented over a wide angular range 
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of 90° to 30° via 180°. However, in the right corner area (F; Fig. 5b), fibers were oriented 

over a range of 150° to 20°, which was smaller than that of the left corner, and this tendency 

agreed with the experiment. This difference was caused by the order of mold-filling, i.e., by 

the fact that the +y path was completely filled before –y path was filled. Figure 15 presents the 

velocity vector diagram at 0.16 s (after the +y path was filled); particles with velocities of 5% 

of the injection speed are represented by circles. A plane with minimal velocities (dashed line) 

appeared near the right corner, and this plane became a temporary wall surface. Fibers were 

then oriented parallel to the temporary wall (0° to 20°) in area F, and the angular range over 

which fibers existed was narrower than that of area D. Thus, the fiber orientation differed 

between the left and right corners depending on the mold-filling process. 

Effects of the temporary wall on the fiber orientation were observed in the other areas in 

the bifurcation. In the inlet of the –y path, a large fraction was predicted near 90° in the 

middle area (G; Fig. 5c) and the bottom area (J; Fig. 5e). However, in the inlet of the +y path, 

a large fraction was predicted in the range of 100° to 160° in the middle area (I; Fig. 5d), with 

fibers in the range of 120° to 140° existing in the bottom area (L; Fig. 5f). These orientation 

distributions in the right corner were generated by the flow along the temporary wall. Thus, 

the differences of the fiber orientations between the right and left corners agreed well with the 

experiment results, and the proposed approach can represent the fiber orientation of injection-

molded composites. 

Furthermore, fibers accumulated at some points during and/or after resin flow, as depicted 

in Fig. 13 (0.20 s). Since the flow velocity increased with increasing distance from the side 

wall due to the viscosity of the resin, fibers with a high velocity collided with low-velocity 

fibers, which were frequently positioned near a side wall. When these fibers existed in a small 

area, the fibers could not move freely so they accumulated. This physical interaction between 



16 

fibers disturbed the directions of the fibers, and irregular fiber orientation could appear due to 

the high fiber content. The explicit representation of the fiber-fiber interaction is an advantage 

of this particle simulation. 

 

5. Conclusions 

This study proposed a mold-filling simulation for short-fiber-reinforced composites using 

the MPS method. All of the fibers were modeled by several continuing particles, so this 

approach could analyze the motion of a specific fiber and automatically considered the 

interaction between fibers and resin and between fibers. In this study, fibers (resin) were 

considered as rigid bodies (an incompressible viscous fluid), and the motion of fibers during 

the injection-molding process was analyzed. Fiber orientation distributions in a bifurcation 

were predicted and quantitatively compared with the observed results of fiber orientation in 

injection-molded GF/PP composites. The conclusions are summarized below. 

1. The predicted fiber-orientation distributions agreed well with those observed by X-ray CT 

in all of the bifurcation areas. These results confirmed the validity of the proposed 

particle-based simulation. 

2. A plane on which the flow velocity almost vanished formed because of the difference in 

the time required to fill the branched paths. Resin flow along this temporary surface 

generated a fiber orientation parallel to that surface and resulted in a difference in fiber 

orientation between the left and right corners despite the symmetric corner shapes. Thus, 

the mechanism of fiber orientation near a corner was clarified. 

3. Direct modeling of fibers by continuing particles enabled us to explicitly reproduce the 

accumulation of fibers. 
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Figure captions 

Fig. 1 Schematic diagram of the injection mold near the observed area. 

Fig. 2 Observation of the bifurcation region for injection-molded GF/PP composite. 

Fig. 3 Fiber-orientation distribution at the inlet region of the bifurcation. Fibers were aligned 

in the x-direction near the side walls, and were randomly oriented in the middle of the 

flow path. 

Fig. 4 Fiber-orientation distribution at the center in the y-direction. The orientation parallel to 

the y-direction increased with decreasing distance to the bottom wall. 

Fig. 5 Fiber-orientation distribution near the corners. The orientation distributions differed 

between the left and right corners despite the symmetric corner shapes. 

Fig. 6 Pressure distribution in a straight flow path at 0.08 s. The pressure decreased linearly. 
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Fig. 7 Comparison of the velocity in the x-direction with the prediction and the solution of 

the Poiseuille flow. 

Fig. 8 Distribution of the velocity relative to that of a particle at the flow front, which 

exhibited fountain flow. 

Fig. 9 Analytical model for simple shear flow with a single rigid fiber. The path size was 

changed by the fiber aspect ratio. 

Fig. 10 Predicted orientation angle in simple shear flow. The Jeffery’s solution is also 

indicated by dashed lines. 

Fig. 11 Change in the orientation tensor component a11 against the fiber interaction coefficient 

calculated at the straight path using the orientation distribution function. 

Fig. 12 Analytical model of a mold with a bifurcation. The mold wall consisted of three layers 

of particles. Fibers were generated at random positions of the inflow particles. 

Fig. 13 Snapshots of the mold-filling flow. A fountain flow was generated at the flow-fronts. 

Fibers accumulated during resin flow. 

Fig. 14 Distribution of (a) shear rate and (b) vorticity at 0.12 s. 

Fig. 15 Velocity vector diagram at 0.16 s after the +y flow path was filled with resin. Particles 

with a velocity of 0.025 m/s (5% of the injection speed) are represented by circles. 

Resin flow almost vanished at the plane indicated by the dashed line. 

 

Table caption 

Table 1 The second-order orientation tensors at the straight path obtained by the present 

approach. 
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Table 1 The second-order orientation tensors at the straight path obtained by the present 

approach. 

 

Vf  a11 a12 

10% 
Skin 0.981 -1.32×10-3 

Core 0.832 -4.66×10-2 

40% 
Skin 0.957 1.66×10-2 

Core 0.791 -5.31×10-2 
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Fig. 1   Schematic diagram of the injection mold near the observed area.
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Fig. 2   Observation of the bifurcation region for injection-molded GF/PP composite.
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Fig. 3   Fiber-orientation distribution at the inlet region of the bifurcation. Fibers were aligned in the 

x-direction near the side walls, and were randomly oriented in the middle of the flow path.
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(a) Area E (b) Area H

(c) Area K

Fig. 4   Fiber-orientation distribution at the center in the y-direction. The orientation parallel to the 

y-direction increased with decreasing distance to the bottom wall.
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(a) Area D (b) Area F

Fig. 5   Fiber-orientation distribution near the corners. The orientation distributions differed between 

the left and right corners despite the symmetric corner shapes.
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(a) Contour plot 

(b) Pressure of particles within 6.5 < x < 32 mm 

Fig. 6  Pressure distribution in a straight flow path at 0.08 s. The pressure decreased linearly. 

Pressure (Pa) 

5 mm 

5 mm 35 mm 

x 

5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
re

ss
u

re
 (

M
P

a
)

x (mm)

Figure(s)



-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

 x = 10 mm

 x = 20 mm

 x = 30 mm

 Theory

V
x

 (
m

/s
)

y (mm)

Fig. 7  Comparison of the velocity in the x-direction with the prediction and the solution of the Poiseuille flow. 



Fig. 8  Distribution of the velocity relative to that of a particle at the flow front, which exhibited fountain flow. 



(a) Analytical model 

(b) Velocity distribution at 0.02 s 

Fig. 9 Analytical model for simple shear flow with a single rigid fiber. The path size was changed by the 

fiber aspect ratio. 
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(a) re = 4 (b) re = 10 

(c) re = 20 (d) re = 40 

Fig. 10  Predicted orientation angle in simple shear flow. The Jeffery’s solution is also indicated by dashed 

lines. 
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Fig. 11   Change in the orientation tensor component a
11

 against the fiber interaction coefficient 

calculated at the straight path using the orientation distribution function.
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Fig. 12   Analytical model of a mold with a bifurcation. The mold wall consisted of three layers of 

particles. Fibers were generated at random positions of the inflow particles.
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Fig. 13   Snapshots of the mold-filling flow. A fountain flow was generated at the flow-fronts. Fibers 

accumulated during resin flow. 
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Fig. 14   Distribution of (a) shear rate and (b) vorticity at 0.12 s. 
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Fig. 15  Velocity vector diagram at 0.16 s after the +y flow path was filled with resin. Particles with 

a velocity of 0.025 m/s (5% of the injection speed) are represented by circles. Resin flow almost 

vanished at the plane indicated by the dashed line.
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