
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

High-performance cryogenic computing using
superconductor single flux quantum logic

石田, 浩貴

https://hdl.handle.net/2324/4475154

出版情報：九州大学, 2020, 博士（工学）, 課程博士
バージョン：
権利関係：

High-Performance Cryogenic Computing Using

Superconductor Single Flux Quantum Logic

Koki Ishida

A DISSERTATION

Kyushu University

March, 2021

High-Performance Cryogenic Computing Using

Superconductor Single Flux Quantum Logic

Koki Ishida

Abstract

Processors, the essential part of computer systems, have dramatically improved

their performance with transistors’ shrinking technology since the first processors

are developed in the early 1970s. However, around the 2000s, the problem of power

consumption became apparent, and it became hard to improve the clock frequency,

which significantly contributed to the improvement of performance. Although pro-

cessors’ performance improvement has been maintained by introducing multi-core

designs, it will be challenging to improve chip performance only with conventional

CMOS computing technology continuously after the end of transistors’ scaling.

To solve these problems, this dissertation focuses on a cryogenic computing

technology using superconductor single flux quantum (SFQ) logic that has both

high speed and low power consumption. SFQ logic uses low-voltage impulse-

shaped signals for logic operations, which allows the ultra-fast (10−12s) and low-

energy switching (10−19J). Due to these potentials, several researchers have so far

contributed to SFQ-related research, and several physical implementations, includ-

ing processors, have successfully demonstrated at the outstanding frequency, e.g.,

several tens of GHz. However, this is the performance at the logic gate level in

the circuit, and when converted to the processor’s performance based on software

execution, it remains at the same level as conventional CMOS processors. The fun-

damental problem existing behind the SFQ processors is the lack of architectural

optimizations to exploit the full potential of SFQ devices. Moreover, although

several circuits’ demonstrations have successfully shown the device-level potential,

few studies focus on the architectural unit designs to show the SFQ computing

potential. Therefore, the following questions must be clearly addressed to show

the SFQ computing’s potential: (1) what architecture is promising for this tech-

nology, (2) how is the feasibility and effectiveness of the architecture, (3) how to

evaluate the effective performance and power efficiency of the target designs.

To solve the problem, this dissertation firstly explores the architectural design

space of SFQ processors to determine the basic design guidelines for the realization

of high-performance SFQ processors. Specifically, we assume a simple processor

(i.e., in-order scalar processor) and analyze the effect of two architectural param-

eters (i.e., instruction pipeline stages and bit-width) on performance and power

consumption. As a result, the bit-parallel processing and gate-level deep pipeline

structure are suitable for achieving high performance in SFQ processors. More-

over, the result indicates that SFQ processors must conceal almost all pipeline

stalls to achieve high performance in such an ultra-deep pipelining.

Second, this dissertation designs and implements a 4-bit SFQ processor chip

as a prototype to clarify our proposed architectural design guidelines’ effectiveness

and feasibility. As a result, we confirm the correct operation at 32 GHz of clock

frequency with 6.5 mW of power consumption. Moreover, this dissertation has

extended into the 64-bit processor based on these results and evaluated its power

efficiency with the cooling overhead for keeping SFQ circuits at 4 kelvin. The

power efficiency, including the cooling cost, is estimated to at most 7.1 GOPS/W,

and our processor outperforms the CMOS processor model 7.8 times.

Third, this dissertation proposes and evaluates the SFQ accelerator design

for neural network applications to show the real potential of SFQ computing.

Specifically, this dissertation designs the basic architecture of the neural network

accelerator based on the basic design guidelines for SFQ processors and develops

an evaluation environment based on power performance modeling. Besides, we

analyze the performance bottleneck and optimize the architecture. As a result of

the evaluation, our design outperforms about 23 and 1.2 times higher performance

and power efficiency with the cooling cost compared to a state-of-the-art CMOS

accelerator, respectively.

Contents

1 Introduction 1
1.1 Challenges in the conventional CMOS computing 1
1.2 Cryogenic computing using superconductor single flux quantum logic

and its challenges . 2
1.3 Thesis statement . 3
1.4 Contributions . 3
1.5 Dissertation Organization . 4

2 Background 5
2.1 Trend and challenges of CMOS processors 5
2.2 Cryogenic computing . 7

2.2.1 Low-temperature CMOS computing 7
2.2.2 Superconducting computing 8
2.2.3 Quantum computing . 9

2.3 Superconductor single flux quantum logic 9
2.3.1 Basic elements of SFQ circuit 10
2.3.2 Working principle of SFQ circuit 11
2.3.3 Frequency determination . 15
2.3.4 Power consumption . 18

2.4 Current status and research trend of SFQ technology 19
2.4.1 Fabrication process technology 19
2.4.2 Energy-efficient SFQ logic technology 20
2.4.3 Circuit demonstrations . 21
2.4.4 Memory technology . 21

3 Exploring design space of a SFQ processor 23
3.1 Introduction . 23
3.2 Architectural design space of SFQ processors 24

3.2.1 Architecture paramaters . 24
3.2.2 Performance model . 25
3.2.3 Delay parameters setup . 26

3.3 Design space exploration . 29
3.3.1 Datapath bit width evaluation 29
3.3.2 Pipeline depth evaluation 31

i

3.4 Design guidelines for high-performance SFQ processors 34
3.5 Conclusions . 36

4 Prototype design of SFQ processor 37
4.1 Introduction . 37
4.2 Specification of prototype processor 38

4.2.1 Architectural design guidelines 38
4.2.2 Instruction execution scheme 39
4.2.3 Instruction set . 40
4.2.4 Test program . 41

4.3 Design and implementation . 45
4.3.1 Design methodology . 45
4.3.2 Design challenges and solutions 47
4.3.3 Microarchitecture . 49

4.4 Evaluations . 50
4.4.1 Verification results of 4-bit processor 50
4.4.2 Evaluation of 4-bit processor 51
4.4.3 Extension to 64-bit processor 52
4.4.4 Estimating the energy efficiency of 64-bit processor 55

4.5 Conclusions . 58

5 Extremely fast SFQ neural processing unit architecture 59
5.1 Introduction . 59
5.2 Background & Motivation . 62

5.2.1 SFQ technology in the architect’s perspective 62
5.2.2 Challenges for designing SFQ-based architectural unit 64
5.2.3 Research goal: Provide SFQ design principles with NPU . . 65

5.3 Baseline SFQ-based NPU design . 65
5.3.1 On-chip network unit design 67
5.3.2 PE design . 68
5.3.3 Data alignment unit design 71

5.4 Simulation framework . 73
5.4.1 SFQ-NPU estimator . 73
5.4.2 SFQ-NPU simulator . 78

5.5 Optimizing SFQ-based NPU design 79
5.5.1 Design implications for the SFQ-optimal NPU architecture . 79
5.5.2 SuperNPU: SFQ-optimal NPU architecture 83

5.6 Evaluation . 88
5.6.1 Evaluation methodology . 88
5.6.2 Performance evaluation . 90
5.6.3 Power consumption evaluation 92
5.6.4 Power-efficiency evaluation 93

5.7 Related work . 94
5.8 Conclusion . 95

ii

6 Conclusions 97

List of Publications by the Author 103

References 104

iii

List of Figures

2.1 48-year CMOS processors’ trend . 6
2.2 Trends of Intel Xeon processors over generations 7
2.3 Classification of computing technologies 8
2.4 (a) Superconductor ring with SFQ (b) Electrical characteristics of

JJ (c) Serially connected SFQ rings and (d) its equivalent circuit
diagram . 10

2.5 (a) Circuit diagram of an SFQ-based DFF with (b) its operating
example . 11

2.6 (a) SFQ-based AND gate with (b) its circuit diagram 12
2.7 Operating examples of SFQ AND gate 13
2.8 Operating example of the serially connected DFFs 14
2.9 Example timing chart of an SFQ DFF gate 15
2.10 Illustration of flow clocking schemes (a) Concurrent-flow clocking

(b) Counter-flow clocking (c) Comparison of δt 17
2.11 Circuit diagram of a biased JJ . 18

3.1 Gate-level circuit diagram of the SFQ adder. 28
3.2 Performance comparison with fixed pipelines 30
3.3 Performance comparison with variable pipeline stages 31
3.4 Performance comparison between SFQ-BP and CMOS-BP consid-

ering the ratio of the average pipeline stall γ 32
3.5 Performance comparison between SFQ-BP and CMOS-BP consid-

ering the pipeline stall concealment rate θ 33
3.6 Overview of the proposed design policy 34

4.1 Instruction format . 40
4.2 Algorithm of the 2-by-2 matrix-vector product 42
4.3 Operating flow chart of the 2-by-2 matrix-vector product 44
4.4 The layout of 1-bit half adder . 45
4.5 Design flow of the prototype processor 46
4.6 Shift-register-based register file for fine-grained multithreading . . . 47
4.7 Brahcn clocking: combination of concurrent- and counter-flow clocking 48
4.8 Microarchitecture of prototype processor 49
4.9 Microphotograph of the 4-bit processor chip 51

iv

4.10 Chip measurement setup . 52
4.11 Illustration of on-chip high-speed testing 53
4.12 Frequency dependence of operating margin in supply voltage 54
4.13 Power consumption breakdown of the processor 55
4.14 Power efficiency comparison between 64-bit SFQ processor and CMOS

processor model . 57

5.1 Example of the SFQ technology’s architectural characteristics (a)
Gate-level-pipelined datapath (b) 1-bit N -entry shift register 62

5.2 Overview of our baseline SFQ-based NPU design 66
5.3 On-chip network structure for three alternative designs 68
5.4 Network unit designs’ (a) critical-path delay and (b) area comparison 69
5.5 PE designs with two different dataflows 69
5.6 Feedback loop’s impact on the frequency of SFQ circuits 70
5.7 Data ratio breakdown for unique and duplicated ifmap pixels 71
5.8 Data alignment unit’s structure with the working example 71
5.9 SFQ-NPU overview . 73
5.10 Frequency model illustration . 75
5.11 Model validation setup (a) Chip microphotograph of 4-bit MAC

unit (b) 4 K measurement setup (c) Layout of the 2× 2 PE-arrayed
NPU . 76

5.12 Model validation result . 77
5.13 SFQ-NPU simulator overview . 78
5.14 Baseline’s cycle breakdown normalized for each CNN workload . . . 80
5.15 Example data path of on-chip buffers 80
5.16 Limited performance improvement in Baseline due to the low com-

putational intensity with a single batch 82
5.17 On-chip buffer under-utilization in terms of (a) ofmap buffer’s length,

(b) ofmap buffer’s width, and (c) ifmap buffer’s length 83
5.18 SuperNPU overview . 84
5.19 Performance impact and area overhead of the buffer optimizations . 85
5.20 Performance and computational intensity with resource balancing . 85
5.21 Performance impact of number of registers in PE 87
5.22 Performance evaluation . 90
5.23 Power consumption breakdown of RSFQ-based NPU 92
5.24 Power consumption breakdown of ERSFQ-based NPU 92

v

List of Tables

3.1 Delay parameters . 26

4.1 Instruction set . 40
4.2 Assembly code of the 2-by-2 matrix-vector product 43
4.3 The number of JJs of each 64-bit extended module 53
4.4 Parameters . 56
4.5 CMOS processor model’s parameters 56

5.1 Evaluation setup . 89
5.2 Workload setup (batch size) . 90
5.3 Power-efficiency evaluation . 93

vi

Chapter 1 Introduction 1

Chapter 1

Introduction

1.1 Challenges in the conventional CMOS com-

puting

Processors are essential and fundamental components of various computer sys-

tems, e.g., computer servers, personal computers, and embedded systems. The

processors’ performance has continuously improved thanks to Moore’s Law, the

observation in which the number of transistors in a chip doubles every 18 months.

Until the early 2000s, the processors have achieved their performance improve-

ments by mainly increasing its frequency. However, in the early 2000s, the device

scaling became ineffective in increasing the chip frequency because of the negligible

power dissipation, i.e., power wall problem.

To get around the power wall problem, architects have introduced relatively

slow multi- or many-core designs to improve chip performance continuously. Nev-

ertheless, these circumventions can suffer from the parallelization overhead and

the increasing on-chip power consumption. Moreover, while device and manufac-

turing technologies have continued progressing, it seems challenging to maintain

the transistors shrinking because of physical or economic reasons, i.e., the end of

Moore’s Law is coming. After the end of Moore’s Law, we are running out of an

effective option to improve computer systems’ performance while maintaining its

power budget. Therefore, we believe that it is the right time to actively exploit

Chapter 1 Introduction 2

emerging device technologies with significant potentials and make a serious effort

to improve their feasibility by resolving their limitations.

1.2 Cryogenic computing using superconductor

single flux quantum logic and its challenges

Cryogenic computing, which is to run a computer device at extremely low temper-

atures, is an attractive direction to make a breakthrough for achieving sustainable

improvement of computer systems in the post-Moore’s era. Among several can-

didates, superconductor single-flux-quantum (SFQ) logic [49, 58] and its energy-

efficient families [43, 84, 86, 89, 78] are highly promising solutions thanks to their

ultra-fast speed and low-power consumption at 4 kelvin. SFQ logic uses low-voltage

impulse-shaped signals for logic operations, which allows the ultra-fast (10−12s)

and low-energy switching (10−19J). Because of these potentials, several researchers

have so far contributed to SFQ-related research in various aspects, especially in

the device and circuit area. There are physical implementations, including pro-

cessors, that have successfully demonstrated at the outstanding frequency, e.g.,

several tens of GHz [87, 77, 64].

Although several circuits have successfully demonstrated at several tens of GHz

circuit frequency, it is hard to say that these demonstrations have sufficiently

shown SFQ computing’s potential. For example, a state-of-the-art SFQ proces-

sor [64] operates at 50 GHz, the performance (i.e., throughput) is relatively low,

e.g., 333 million instructions per second (MIPS). The fundamental problem exist-

ing behind the SFQ processors is the lack of architectural optimizations to exploit

the full potential of SFQ devices. Due to its unique pulse-driven nature, SFQ logic

requires completely different architecture designs from conventional CMOS tech-

nology. Therefore, the following questions must be clearly addressed to show the

SFQ computing’s potential: (1) what architecture is promising for this technology,

(2) how is the feasibility and effectiveness of the architecture, (3) how to evaluate

the effective performance and power efficiency of the target designs.

Chapter 1 Introduction 3

1.3 Thesis statement

To resolve these challenges, this dissertation first proposes the architectural de-

sign guidelines for SFQ logic. Next, this dissertation shows the feasibility and

effectiveness of the architectural design guidelines with a prototype chip design.

Finally, this dissertation designs the neural processing unit (NPU) as a case-study

architecture design and evaluates its performance and power efficiency with the

cooling cost of 4 kelvin.

1.4 Contributions

This dissertation makes the following contributions:

• This dissertation explores the architectural design space of SFQ processors

and quantitively shows that the bit-parallel processing and gate-level deep

pipeline structure are suitable for achieving high performance. Moreover,

the result indicates that to achieve high performance by such an ultra-deep

pipelining, SFQ processors must conceal almost all pipeline stalls. Even with

the small pipeline stalls are occurred, the performance improvement degrades

63 times to 5.7 times. To resolve the problem, this dissertation proposes

fine-grained multithreading execution for hiding all pipeline stalls caused by

data and control hazards, i.e., this scheme enables processor interlock-free

streaming execution.

• To clarify our proposed architectural design guidelines’ effectiveness and fea-

sibility, this dissertation designs and implements a 4-bit SFQ processor as a

prototype and confirm the correct operation by real chip measurement. As a

result, the prototype chip has successfully operated at 32 GHz with 6.5 mW.

Moreover, to clarify the cooling overhead for keeping SFQ circuits at 4 kelvin,

this dissertation evaluates the power efficiency, including a cryocooler cost.

Specifically, this dissertation has extended into the 64-bit processor based

on these results and evaluated its power efficiency with two types of the

real cryocoolers’ cost. The best power efficiency (i.e., calculated by its peak

performance) with the cooling cost is estimated to at most 7.1 GOPS/W,

Chapter 1 Introduction 4

and our processor outperforms the CMOS processor model 7.8 times. The re-

sult indicates that our SFQ processor based on proposed architectural design

guidelines has the potential to achieve high performance and power efficiency

even with the cooling cost.

• To show the real potential of SFQ computing, this dissertation proposes and

evaluates the SFQ-based neural processing unit (NPU) architecture as a case

study. Specifically, first, this dissertation implements and validates an SFQ-

based NPU modeling framework. It is the first work to model and validate

a model and simulator for SFQ-based architectures. Next, by using the tool,

we identify critical challenges in architecting an SFQ-based NPU. Finally,

we present SuperNPU, our example SFQ-based NPU architecture, which ef-

fectively addresses the challenges at the architectural level. Our evaluation

shows that the proposed design outperforms a conventional state-of-the-art

NPU by 23 times with comparable power efficiency, including extremely ex-

pensive cooling costs.

1.5 Dissertation Organization

This dissertation is organized into 6 chapters. Chapter 2 introduces the chal-

lenges of CMOS processors, prior work that tackles the problem with cryogenic

computing, and clarifies our research field. Chapter 3 proposes the architectural

design guidelines for SFQ processors with architectural design space exploration

and quantitive evaluations. Chapter 4 prototypes the SFQ processor chip based on

the proposed guidelines and evaluates its feasibility and effectiveness. Chapter 5

shows the real potential of SFQ computing by designing and evaluating SFQ-based

NPU with a validated simulation framework. Chapter 6 concludes this disserta-

tion.

Chapter 2 Background 5

Chapter 2

Background

2.1 Trend and challenges of CMOS processors

Processors had improved their performance since 1971, when the first processor, In-

tel 4004, was developed [8]. Fig. 2.1 shows the 48-year CMOS processors’ trend [1].

Thanks to Dennard scaling [22] and Moore’s Law [65], architects can place more

logics and memories on the same sized chip and increase the frequency without

increasing its power consumption. However, Dennard scaling broke down in the

early 2000s because of the negligible power dissipation (i.e., leakage power), and

the device scaling has been ineffective in increasing the chip frequency. As you can

see in the Fig. 2.1, processors have been limited in their capacity for clock speed

improvement since the early 2000s. With the limit of clock frequency improvement,

it is hard to improve the single-thread performance significantly.

After the end of Dennard scaling, architects have introduced multi- or many-

core designs to improve chip performance. Specifically, they replace the fast single-

core processor with slow multiple processor cores to improve the multi-thread

performance while suppressing its power consumption. To execute a program in

parallel, programmers must explicitly describe where to be executed in parallel

in their source code. Ideally, the chip performance improves in proportion to the

number of cores in a chip. However, programs that cannot be executed in parallel

have no benefit from the multi-core designs, i.e., the single-thread performance is

still important. Moreover, if the end of Moore’s Law comes, we cannot expect

Chapter 2 Background 6

1.E-01

1.E+02

1.E+05

1.E+08

1960 1970 1980 1990 2000 2010 2020 2030

Cores

Frequency (MHz)

Transistors

Power (W)

Figure 2.1: 48-year CMOS processors’ trend

performance improvement by increasing the number of cores.

While device and manufacturing technologies have continued progressing, it

does not seem easy to maintain the transistors shrinking because of physical or

economic reasons. Fig. 2.2 shows the processor trends of Intel Xeon processors

over generations [71]. The figure plots the number of threads running on a single

core (i.e., SMT level), the number of cores integrated on a chip, and the package

size of these processors. Increasing the SMT level is completely stopping because

it requires much larger intra-core, memory-like architectural units (e.g., register

files, load, and store queues, reorder buffer) to keep many architectural states, and

it can decrease the number of cores in a chip. On the other hand, the number of

cores is still increasing year after year. However, the package size is also increasing

in proportion to the number of cores. There is a physical limit to relying on the

increase of the package size, and even if the package can be larger, the total number

of cores in the computer system will not change much. Thus, architects cannot put

more cores on a chip without increasing the package size or reducing each core’s

size anymore. Therefore, we believe that it is the right time to actively exploit

emerging device technologies with significant potentials and make a serious effort

to improve their feasibility by resolving their limitations.

Chapter 2 Background 7

0

30

60

0

50

100

2000 2005 2010 2015 2020

co

re
s

SM

T

Pa
ck

ag
e

siz
e

(c
m

2)

Year

Package size The number of cores SMT level

Figure 2.2: Trends of Intel Xeon processors over generations

2.2 Cryogenic computing

Cryogenic computing, which is to run a computer device at extremely low tem-

peratures (e.g., 77, 4, or sub-millikelvin), is a promising approach for achieving

sustainable improvement in the post-Moore’s era. Such ultra-low temperatures

allow introducing unique physical phenomena (e.g., superconductivity, quantum

mechanics) for improving computer systems’ performance. There are mainly three

types of cryogenic computing: conventional CMOS computing at low temperature,

superconducting computing, and quantum computing. These technologies are

comparatively classified on two axes (i.e., performance and versatility) in Fig. 2.3.

2.2.1 Low-temperature CMOS computing

Cryogenic CMOS computing aims to improve both performance and power effi-

ciency by reducing transistors’ leakage current and wire resistance. If the leakage

current decrease, we can apply a much higher clock frequency without increasing

dynamic power consumption. Moreover, reducing wire resistance makes the wire

latency lower, i.e., it becomes much easier to achieve high clock speed or low-

latency signal transfer. Recent studies focusing on cryogenic memory, cache, and

Chapter 2 Background 8

Performance

Versatility

Quantum
Computing

General Specific

High

Low

SFQ
Computing

Cryogenic
CMOS

CMOS

Figure 2.3: Classification of computing technologies

processor show the potential in both performance and power efficiency, including

their cooling cost [47, 11, 53].

[47] reports the results of three promising case studies using cryogenic memo-

ries to significantly improve the server performance up to 2.5 times, decrease the

server power to 6% on average, and reduce datacenter’s power cost by 8.4%. [53]

proposes cryogenic CMOS cache architecture that achieves 2 times faster cache

access and 2 times larger capacity compared to conventional caches running at

room temperature. [11] proposes two following types of cryogenic CMOS proces-

sor architectures. The high-performance design achieves 41% higher single-thread

performance for the same power budget and 2times higher multi-thread perfor-

mance for the same die area. The low-power design reduces power consumption

by 38% without sacrificing the single-thread performance.

2.2.2 Superconducting computing

Superconducting computing uses superconductors’ unique properties (e.g., zero-

resistance wires and quantization of magnetic flux) for high performance and power

efficiency computation. Superconducting circuits use Josephson junctions as basic

elements and require cooling to 4 kelvin. There are several superconducting logics

such as single-flux-quantum (SFQ) logic family [49, 58], reciprocal quantum logic

(RQL) [33], and adiabatic quantum-flux-parametron (AQFP) logic [51].

SFQ logic family is the most practical superconducting VLSI technology and

Chapter 2 Background 9

has ultrafast speed and low-power consumption natures. By focusing on these

high potentials, many serious SFQ-related research efforts have been made in var-

ious aspects, and a lot of SFQ circuits and their successful operations have been

demonstrated [23, 87, 77, 64, 56, 55, 24, 9, 80].

RQL and AQFP logics are relatively slow but more energy-efficient technology

compared to SFQ logic. Both use alternating current for power supply instead

of direct current, which is employed in SFQ logic. Therefore, they achieve more

energy efficiency with sacrificing speed compared to SFQ logic. There are several

circuit demonstrations and architecture consideration studies [12].

2.2.3 Quantum computing

Quantum computing is entirely different from conventional digital (or classical)

computing and uses quantum bits, or qubits, to encode information as logical ‘0’,

‘1’, or both at the same time. This superposition of states enables quantum com-

puters to manipulate enormous combinations of states at once. Therefore, quan-

tum computing has the potential to solve problems that conventional computers

could not solve in a realistic amount of time.

Real implementations that use a process called quantum annealing are available

in the market as quantum computers [30, 38]. Although they can effectively be

applied to specific purposes such as quantum annealing, there is a large gap regard-

ing functionality between classical digital computing and the application-specific

quantum acceleration. Therefore, there are several studies about more general-

purpose quantum computing using quantum logic gates, and several companies

try to build the first practically useful quantum computer [20, 27, 66].

2.3 Superconductor single flux quantum logic

Superconductor SFQ logic [49, 58] and its energy-efficient families [43, 84, 86, 89,

78] are representative ultra-fast and low-power VLSI technologies using supercon-

ducting devices, namely Josephson junctions (JJs). This dissertation focuses on

the SFQ logic technology because it is one of the most practical technology with

emerging device potential for the next-generation computer. In this section, first,

Chapter 2 Background 10

(b)

(c)

~
10
0µ
V

~1ps

Φ! =
2.07×10"#$Wb

I

V

𝐼%

(d)

Superconductor
Insulator

Superconductor

(a)

JJ structureSFQ

Figure 2.4: (a) Superconductor ring with SFQ (b) Electrical characteristics of JJ

(c) Serially connected SFQ rings and (d) its equivalent circuit diagram

the working principle of SFQ circuits is introduced. Next, this dissertation ex-

plains the frequency determination and power calculation of SFQ circuits based

on pulse-driven logic.

2.3.1 Basic elements of SFQ circuit

Fig. 2.4(a) shows a basic circuit element of SFQ technology, a superconductor

ring. SFQ circuits utilize the existence of a single magnetic flux quantum (SFQ)

in the superconductor ring as an information carrier, similar to the voltage level in

conventional CMOS circuits. Specifically, the presence or absence of an SFQ in the

ring represents a logical ‘1’ or ‘0’. The superconductor ring can store and transfer

the SFQ by using a superconducting device called Josephson junction (JJ). In this

dissertation, we use the superconductor-insulator-superconductor (SIS) structured

JJs, as shown in Fig. 2.4(a), that use niobium (Nb) as the superconductor and

aluminum oxide (AlOx) as the insulator layer. The JJ included in the ring acts

as a switching device like a transistor and JJs’ electrical characteristic is shown

Chapter 2 Background 11

SFQ
Left JJ

1

2

3

Gate driving

Input

Output

Input Output

“1”

“1”

“0”

“0”

1 2

Gate driving

Right JJ

(a) (b)

Figure 2.5: (a) Circuit diagram of an SFQ-based DFF with (b) its operating

example

in Fig. 2.4(b). If the current flowing JJ exceeds its critical current Ic, the JJ

will switch, and an impulse-shaped voltage pulse, called an SFQ pulse, will be

generated. SFQ pulses have a quantized area Φ0 due to magnetic flux quantization,

a fundamental property of superconductors, as shown in Eq. (2.1).∫
V(t)dt = Φ0 ' 2.07× 10−15Wb = 2.07mV · pH (2.1)

As shown in Fig. 2.4(b), the typical width and height of the SFQ pulse are a few

picoseconds and a few hundreds of microvolts, respectively. The SFQ pulse allows

the ultra-fast (10−12s) and low-energy switching (10−19J).

Fig. 2.4(c) shows the serially connected SFQ rings and Fig. 2.4(d) shows its

equivalent circuit diagram. Inductance and cross marks represent the supercon-

ductor part of the ring and JJs, respectively. These serially connected SFQ rings

are used to one of the SFQ wirings named Josephson transmission line (JTL). The

signal is propagated by switching the ring in order from the left in JTL. Besides,

SFQ signals can be split or merged using a few JJs, and easily stored in large

inductance superconducting rings, i.e., the ring can play the role of delay flip flops

(DFF). All SFQ gates or wire cells are composed of a combination of the SFQ

rings, and the working principle of the SFQ gates are explained in Section 2.3.2.

2.3.2 Working principle of SFQ circuit

Unlike voltage level logic, synchronization of an input signal with the reference

signal (from now on gate driving pulse) is essential at a storage ring in each SFQ

logic gate to distinguish between that the input signal has not arrived yet and

Chapter 2 Background 12

Gate driving pulse

Input A

Input B
Output

Gate driving pulse

Input A

Input B

Output

(b)(a)

Figure 2.6: (a) SFQ-based AND gate with (b) its circuit diagram

that a logic value ‘0’ has arrived. In other words, each storage ring intrinsically

has latch or memory functionality, and all the SFQ logic gates are clocked gates

except for wire cells such as pulse splitters and mergers.

First, an SFQ-based DFF is taken as our example due to its simplest structure

consisting of only a single superconductor ring and a gate driving pulse line. When

the input pulse comes to the ring, it makes the current flowing through the left

JJ of the ring higher than its critical current, Ic. With the electrical characteristic

shown in Fig. 2.4(b), the left JJ generates a voltage pulse and it is stored to the

ring as an SFQ (Fig. 2.5(a) ¶). Next, by taking a gate driving pulse (Fig. 2.5(a)

·), the right JJ is activated and the stored SFQ is transferred to the output as

a voltage pulse (Fig. 2.5(a) ¸). In this manner, SFQ gates can define the logical

value ‘1’ as the existence of stored SFQ between the gate driving pulses (Fig. 2.5(b)

¬). On the other hand, if no input pulse comes during a gate driving pulse period,

no voltage pulse is generated on the output, and it indicates the logical value ‘0’

(Fig. 2.5(b) ­).

Next, we introduce how to build SFQ-based AND gate with its operating ex-

amples. Fig. 2.6 shows the SFQ-based AND gate and its circuit diagram. As

mentioned in Section 2.3.1, SFQ logic gates are composed of a combination of the

SFQ rings, and AND gate is mainly composed of three SFQ rings. Fig. 2.7 shows

the operating examples of SFQ AND gate. When the input pulses come to the

AND gate (Fig. 2.7(a)), these signals are stored as SFQ in the AND gate’s SFQ

rings (Fig. 2.7(b)). Next, by taking a gate driving pulse, the JJs of the SFQ rings

storing inputs are activated, and the stored SFQ are transferred to the output

Chapter 2 Background 13

Output

Input A

Input B

Gate driving
pulse

Output

Input A

Input B

Gate driving
pulse

Output

Input A

Input B

Gate driving
pulse

Output

Input A

Input B

Gate driving
pulse

(b)(a)

(d)(c)

Figure 2.7: Operating examples of SFQ AND gate

as voltage pulses (Fig. 2.7(c)). The two data pulses switch the JJ at the output

port, and the logical AND operation is performed. The JJ at the output port only

switches when both two SFQ rings output data pulses.

Besides, we explain how to operate SFQ logic gates with serially connected

DFFs, as shown in Fig. 2.8. In this circuit, gate A and gate C have an SFQ inside

their ring initially; on the other hand, gate B has no data (Fig. 2.8 (a)). First,

a gate driving pulse arrives at gate A and an SFQ stored in gate A outputs as a

data pulse (Fig. 2.8 (b)). Second, the gate driving pulse arrives at gate B (Fig. 2.8

(c)). However, there is no output from gate B because gate B does not have an

SFQ in its ring. To guarantee the correct operation, gate B must get the gate

driving pulse before the data pulse input. In the timing design of SFQ circuits,

designers must adjust the arrival timing of the data pulse and gate driving pulse.

For example, inserting the delay elements in the data path can satisfy such timing

constraints. Finally, gate C gets the gate driving pulse and outputs the data pulse

(Fig. 2.8 (d)). In this way, the SFQ circuits consisting of memory functional logic

gates operate with gate driving signals.

Chapter 2 Background 14

Gate A Gate B Gate C
Data pulse

Gate driving pulse
(a)

Gate A Gate B Gate C
Data pulse

Gate driving pulse
(b)

Gate A Gate B Gate C
Data pulse

Gate driving pulse
(c)

Gate A Gate B Gate C
Data pulse

Gate driving pulse
(d)

Figure 2.8: Operating example of the serially connected DFFs

Chapter 2 Background 15

GDP

GDP period = 1/𝑓

𝑯𝒐𝒍𝒅𝑻𝒊𝒎𝒆 𝑺𝒆𝒕𝒖𝒑𝑻𝒊𝒎𝒆

Input

Output

𝜹𝒕

(b) Timing chart

GDP

Input Output

(a) Example DFF gate

Figure 2.9: Example timing chart of an SFQ DFF gate

2.3.3 Frequency determination

Unlike conventional CMOS technology, SFQ circuits’ frequency is determined by

the timing difference between the data and gate driving pulse (GDP) arrival and

timing constraints of origin and destination gates. In the CMOS technology, the

clock frequency is bounded by the longest datapath delay because it only can put

single digital information (i.e., voltage level) in a wire. On the other hand, SFQ

logic can put several data into a single wire because its data is encoded as a voltage

pulse. That pulse encoding enables SFQ circuits to flow many data pulses through

a single wire simultaneously. Therefore, the critical factor in determining SFQ

circuits’ frequency is the difference between the arrival timing of data and gate

driving pulse, not the wire length.

As mentioned in Section 2.3.1, SFQ logic gates have inherently memory or

latching functionality. In other words, each SFQ logic gate has its own two types

of timing constraints, HoldTime and SetupTime. Data from the origin gate should

arrive at the destination gate after the HoldTime of the destination gate, and the

next GDP should arrive after SetupTime elapsed from the data arrival. If the

input pulse violates the HoldTime or SetupTime, the pulse will not be recognized

as an input of logical ‘1’. Fig. 2.9 shows the example timing chart of an SFQ DFF

gate. The circuit frequency is calculated by following Eq. (5.1).

f = 1/GDP cycle time = 1/(SetupTime + Max(HoldTime, δt)) (2.2)

δt represents the timing difference between the data and GDP arrival and it de-

Chapter 2 Background 16

pends on the circuit structure.

One of the most influential factors on the δt is how to provide GDP (from now

on called the clocking scheme). SFQ circuits employ flow clocking schemes where

the GDP signals also propagate inside the circuits, i.e., not all but part of SFQ

logic gates are synchronized [49]. Thus, the clocking scheme is an essential factor

to determine the GDP frequency of SFQ circuits. There are mainly two clocking

schemes in SFQ logic designs; the concurrent-flow (Fig. 2.10(a)) and the counter-

flow clocking (Fig. 2.10(b)). In the concurrent-flow clocking, the GDP and data

pulses propagate in the same direction. On the other hand, the GDP and data

pulses propagate in the opposite direction in the counter-flow clocking.

To clarify the difference between the two clocking schemes, we calculate δt of

each clocking scheme. As shown in Fig. 2.9, δt is calculated by Eq. (2.3)

δt = Tdata − TGDP (2.3)

, where Tdata and TGDP are the arrival timing of data pulse and GDP, respectively.

Both δt of concurrent-flow clocking and counter-flow clocking are summarized in

Fig. 2.10(c). In the concurrent-flow clocking (Fig. 2.10(a)), the Tdata of gate B is

calculated to τc2 +τd . On the other hand, TGDP of gate B is represented in τc1 +τc2 .

Thus, the δt of gate B is τd − τc2 , and δt can be minimized by maching the data

pulse and GDP propagation delay. In other words, the concurrent-flow clocking

can achieve higher circuit frequency because it can hide the data propagation delay

by flowing the GDP and the data pulse. However, such clocking cannot be utilized

when the circuit includes the feedback loop, where the GDP and data pulses

propagate in the opposite direction. Because gate A should wait for the output of

gate D in Fig. 2.10(a), Tdata of gate A is calculated to 3τc1 + τc2 + 3τd . On the

other hand, TGDP is represented in τc2 . As a result, δt of gate A is 3τc1 +3τd and it

increases in propotion to the depth of feedback loop. The circuit’s frequency can

be significantly reduced because the next GDP should wait for a very long data

transfer through the feedback path.

On the other hand, this problem can be resolved with the counter-flow clocking,

which can entirely hide the data feedback delay. Specifically, δt of gate A is

represented in 3τd − 3τc and the long data transfer through the feedback path can

be hidden. However, the counter-flow circuit’s frequency is much lower than that

Chapter 2 Background 17

∆𝝉 w/o FB ∆𝝉 w/ FB

Concurrent flow 𝜏! − 𝜏" 3𝜏!+ 3𝜏"

Counter flow 𝜏! + 𝜏" 3𝜏!− 3𝜏"

𝜏!"

𝜏!#

𝜏$
A B C D

3×𝜏$

GDP

A B C D

𝜏!"

𝜏!#

𝜏$

3×𝜏$

GDP

(a) Concurrent flow

(b) Counter flow

(c) Comparison of ∆𝜏

Data

Data

Figure 2.10: Illustration of flow clocking schemes (a) Concurrent-flow clocking (b)

Counter-flow clocking (c) Comparison of δt

Chapter 2 Background 18

Static

Dynamic

𝑉!"#$

𝑅!"#$ 𝐼!"#$

Φ%

I

V
𝐼&

Figure 2.11: Circuit diagram of a biased JJ

of the concurrent-flow circuit without feedback. This is because the GDP and

data pulses propagate in the opposite direction in the feedforward path (i.e., δt is

τd−τc1). Therefore, the existence of a feedback loop is the key factor to determine

the clocking scheme.

2.3.4 Power consumption

The power consumption of the SFQ circuit consists of the static power consumed

by the bias current supply and the dynamic power consumed when the JJs are

activated. Fig. 2.11 shows a circuit diagram of a JJ biased by direct current. The

total power consumption of the SFQ circuit Ptotal is given by Eq. (2.4).

Ptotal = Pstatic + Pdynamic (2.4)

where Pstatic and Pdynamic is the static and dynamic power consumption, respec-

tively. As shown in Fig. 2.11, the bias current is continuously supplied to the JJ

in the SFQ circuit, and it consumes the power regardless of JJ’s switching. The

static power Pstatic is calculated by Eq. (2.5).

Pstatic = VbiasIbias ×NJJ (2.5)

where Vbias and Ibias is the bias voltage and bias current, respectively. NJJ is the

number of JJs included in the target circuit.

The dynamic power consumption in SFQ circuits is caused only during JJ’s

switching event; otherwise, the JJs are in the zero-voltage state (Fig. 2.4(b)), and

Chapter 2 Background 19

no energy is consumed. When the JJ switches, the current flowing JJ exceeds its

critical current Ic and generates SFQ pulse, that area corresponds to Φ0. Thus,

the dynamic energy for one JJ’s switching event is calculated by Eq. (2.6).

Edynamic = IcΦ0 (2.6)

Besides, the dynamic power is given by Eq. (2.7).

Pdynamic = Edynamic ×NactiveJJ/s (2.7)

where NactiveJJ/s is the number of activated JJs per second in the target circuit.

2.4 Current status and research trend of SFQ

technology

Due to the SFQ logic’s high potentials, many serious SFQ-related research efforts

have been made in various aspects to promote the technology. This dissertation

introduces the current research in fabrication process technology, energy-efficient

SFQ logic technology, circuit demonstrations, and SFQ memory technology in the

following subsections.

2.4.1 Fabrication process technology

In conventional CMOS technology, “technology node” or “feature size” represent

the minimum line width or the smallest machining dimension of CMOS transistors.

On the other hand, SFQ logic technology’s feature size represents the side length

of Josephson junctions. The National Institute of Advanced Industrial Science

and Technology (AIST) in Japan provides the AIST 1.0 µm Niobium (Nb) process

technology for chip fabrication [57]. There are several fabricated chips for SFQ

circuit demonstration by using this fabrication process technology. For instance,

the state of the art bit-serial 8-bit processor, CORE e2, which successfully operates

at 50 GHz, consists of 10,604 JJs [64]. In the 8-bit multiplier design, 20,251 JJs are

integrated on a 6.03 mm × 5,22 mm chip area [55]. With this technology, the chip

can integrate a few tens of thousands of JJs. It is possible to design prototypes

Chapter 2 Background 20

of element circuits such as adders, multipliers, and processors to demonstrate the

concept of architecture.

However, it is hard to design fully functional or practical units due to the

low JJs’ integration density. The AIST fabrication technology is relatively large

compared to CMOS technology because the AIST uses an i-line stepper with a

wavelength of 365 nm introduced to the market in the mid-1990s. The state-of-

the-art steppers using KrF or ArF excimer lasers would allow the fabrication of

ultrafine Josephson junctions and patterns. To the best of our knowledge, there is

no study that mentions the physical limit of JJ scaling. On the other hand, there

is the scaling rule that the frequency increases in proportion to the reduction rate

of JJ until 200˜300 nm [40], and T flip-flop (TFF) has successfully demonstrated

at up to 770 GHz with the technology [15]. Moreover, there are several schemes to

reduce the SFQ cell size without the JJ scaling, such as the introduction of a shunt-

resistor-free junctions [41], vertically-stacked junctions [13], multi-layer process

technology with high-inductance layers [82], and new materials, such as niobium

nitride. It is expected that process manufacturing technology will advance, and

the device performance will improve in the future.

2.4.2 Energy-efficient SFQ logic technology

To ensure a more advantage in energy efficiency towards CMOS technology even

with the cooling cost for 4 kelvin, researchers have so far contributed to developing

energy-efficient circuit technologies. SFQ circuits were biased using direct current

sources supplied by the external voltage sources with on-chip bias resistors. The

total power of SFQ circuits is dominated by Joule heating in bias resistors (i.e.,

static power) rather than the JJ switching (i.e., dynamic power). Therefore, several

studies are focusing on reducing SFQ circuit static power.

Inductance-load biasing [86], called LR biasing, replaces a bias resistor into

a large inductor with a small resistor to reduce the static power. On the other

hand, energy-efficient rapid SFQ (ERSFQ) logic technology [43, 84, 86, 89, 78] has

successfully eliminated the static power. The only difference from standard SFQ

gates is replacing bias resistors with the limiting JJs and series inductances. No

major redesign of the SFQ logic gates is required in both technologies.

Chapter 2 Background 21

2.4.3 Circuit demonstrations

FLUX-1, the first single-chip SFQ processor, has been designed and fabricated in

2001s [23]. FLUX-1 chip represents an 8-bit bit-parallel processor prototype with

a target GDP frequency of 17-20 GHz. This chip contains 65,759 JJs on a 10.6 mm

× 13.2 mm die with flip-chip packaging. Unfortunately, the operation verification

of the chip has failed.

Core 1 α, the first successfully operated SFQ processor, has been designed and

fabricated in 2004s [79]. This processor has employed 8-bit bit-serial processing

for successful demonstration and operated at 15 GHz with a power consumption

of 1.6 mW. This chip consists of 4,999 JJs. Other bit-serial processors have been

designed and successfully demonstrated its correct operation [77, 87, 64]. State of

the art bit-serial processor, CORE e2, operates at 50 GHz [64]. This processor

includes 10,604 JJs and consumes 2.52 mW.

As described above, the bit-serial operation leads to a lot of successful circuit

demonstrations. This is because bit-serial processing reduces hardware and long-

distance wiring, and the timing adjustment of SFQ pulses becomes easy. However,

such bit- by-bit fine-grained operations make the execution time much longer,

resulting in poor performance. Therefore, it is a straightforward next step to

consider the architecture exploiting the full potential of SFQ devices.

2.4.4 Memory technology

On-chip memory technology: For the SFQ logic’s on-chip memory, the shift-

register-based memory is much more practical than the random access memory

(RAM). Even though we can implement RAM with SFQ technology, it severely

suffers from low driving capability and scalability. Such limitations mainly re-

sult from the difficulty of driving the word lines and bit lines with the small

pulses [49, 88]. On the other hand, a shift-register-based memory does not have

those problems because it just consists of the serially connected DFFs and the

feedback loop. However, it is difficult for the shift-register-based memory to sup-

port the random memory access due to the complex control logic and the variable

access latency [37]. Therefore, the SFQ technology favors applications with se-

quential memory access when its on-chip memory implementation is considered.

Chapter 2 Background 22

Off-chip memory technology: It has been a long-standing challenge to

implement a large-scale and high-speed off-chip memory operating at the 4K envi-

ronment. There has been a few research about JJ-based memories [73, 45, 76], and

one of them is Vortex Transition Memory (VTM) [73]. The VTM is the largest

Josephson memory whose 4-kbit prototype has been demonstrated. Despite the

demonstration, it has been difficult to practically use the VTM mainly due to the

scaling and speed problems with the AC-biasing and the large superconductor-

ring-based memory cells. Even though several off-chip memory technologies (e.g.,

hybrid Josephson-CMOS memory [45, 76], Josephson magnetic memory [21]) are

currently being developed, these technologies also have not been put to practi-

cal use yet. For these reasons, it is currently practical to use CMOS memory

technology, which is slower than the 4-kelvin JJ-based memory but large and reli-

able. Therefore, SFQ technology favors computation-oriented applications with a

minimal number of off-chip memory access.

Chapter 3 Exploring design space of a SFQ processor 23

Chapter 3

Exploring design space of a SFQ

processor

3.1 Introduction

As mentioned in Chapter 2, researchers have so far greatly been contributed to

developing SFQ devices and logic design technologies; their physical designs and

the successful operations of SFQ microprocessors have been demonstrated [87,

77, 64]. A state-of-the-art SFQ processor [64] have successfully operated at 50

GHz of GDP frequency. However, its effective performance, i.e., throughput, is

significantly low compared to its circuit frequency, e.g., 333 million instructions

per second (MIPS).

The fundamental problem existing behind the SFQ processors is the lack of ar-

chitectural optimizations to exploit the full potential of SFQ devices. Specifically,

these processors employ bit-serial processing to reduce hardware and long-distance

wiring, and the timing adjustment of SFQ pulses becomes easy. However, such

bit- by-bit fine-grained operations make the execution time much longer, resulting

in poor performance. Moreover, the pipeline structure of these SFQ processors is

from a course-grained pipeline such as the traditional 5-stage pipeline that con-

sists of fetch, decode, execution, memory access, and writeback stages, despite

the difference of device characteristics. It is essential to revisit SFQ processor

architecture that fully exploits its device potential towards realizing extremely

Chapter 3 Exploring design space of a SFQ processor 24

high-performance SFQ processors.

To solve the problem, we clarify the conventional SFQ processors’ problems

and quantitively shows the design guidelines for high-performance SFQ processors

by conducting architectural design space exploration. As a result, we show the

bit-parallel processing with gate-level pipelining is suitable for high-performance

SFQ processors. Moreover, we propose fine-grained multithreading execution as

the pipeline stall concealment technologies not to degrade its performance.

3.2 Architectural design space of SFQ processors

3.2.1 Architecture paramaters

In this section, this dissertation introduces two key architecture parameters for

determining SFQ processors’ performance.

• Pipeline depth: Pipeline depth represents the number of pipeline stages.

Whichever CMOS and SFQ circuits, it is essential in determining a proces-

sor’s performance. First, a general five-stage pipeline structure is set as a

standard. Those with a deeper pipeline are called super pipeline structures,

improving the clock frequency by reducing one pipeline stage’s delay. Ulti-

mately, the most fine-grained pipeline structure, that a deeper pipeline to

the gate level is also conceivable. Although the clock frequency can be im-

proved by increasing the pipeline depth, there are drawbacks such as 1) area

overhead of the pipeline registers and 2) increased power consumption due

to the increased clock frequency. However, the SFQ logic gate has no such

drawbacks. Since all SFQ logic gates have a latch function, it is unnecessary

to add pipeline registers to deepen the pipeline. Moreover, the SFQ gates

can operate with less than 1 / 1,000 power consumption than the case of

CMOS gates [54]. By utilizing these fundamental features, it is possible to

solve the above two problems. Therefore, in SFQ design, it is expected that

the performance will be greatly improved by increasing the pipeline depth.

• Datapath bit width: The datapath bit width is also one of the architecture

parameters and represents the bit width handled by each unit, such as an

Chapter 3 Exploring design space of a SFQ processor 25

ALU or register file in one process. The data word length is the data that can

be handled by the processor. Slice corresponds to the data whose data word

length is divided. For example, each 8-bit data obtained by dividing 64 bits

into eight is called a slice. In this case, the number of slices is 8. Based on

the above, the design space is defined in the same way as the pipeline depth.

There are mainly three types of processing schemes, bit-serial, bit-slice, and

bit-parallel processing. In the bit-serial and slice processing schemes, divided

data are pipelines in the units (e.g., ALU or register file) at a bit or slice level.

On the other hand, data can be overlapped at the word level in bit-parallel

processing.

3.2.2 Performance model

In this section, to consider processor architecture suitable for SFQ circuits, we use

a performance model to clarify each architecture parameter’s effect on the SFQ

processor performance. In this architectural design space exploration, the time

per instruction (TPI) is used [31]. TPI is calculated by Eq. (3.1).

TPI =
T

NI

= (
to
α

+ γ
NH

NI

tp) +
tp
αp

+ γ
NH

NI

top (3.1)

Each paramater is shown as follows.

• T : Total execution time.

• NI : The number of total instructions.

• NH : The number of total pipeline hazards.

• to: The delay for latching data at pipeline registers. It depends on the

HoldTime and SetupTime.

• tp: The total gate delay of the longest path in the pipeline.

• p: The number of pipeline stages.

• α: The number of simultaneous issued instructions per cycle. If the α is 2,

2 instructions are issued at one clock cycle.

Chapter 3 Exploring design space of a SFQ processor 26

Table 3.1: Delay parameters

to (ps) tp (ps)

1.0µm SFQ-BP 2517.76

1.0µm SFQ-BSE 13.32 13232.8

1.0µm SFQ-BSL 4565.4

0.3µm SFQ-BP 755.328

0.3µm SFQ-BSE 3.995 3969.84

0.3µm SFQ-BSL 1369.62

CMOS-BP 86.76 4048.58

• γ: The ratio of the average pipeline stall time per the latency for instruction

execution, i.e., top+ tp. The maximum value is 1, which corresponds to the

situation where subsequent instructions cannot be started until the instruc-

tion existing in the first pipeline stage is committed. On the other hand, the

minimum value is 0, which indicates the situation where none pipeline stalls

occur. For simplicity, this model uses the average value as γ. Note that the

pipeline stalls caused by various hazards vary depending on the microarchi-

tecture and the hazard occurrence situation. In this model, it is expressed

as an average value.

The first item of Eq. (3.1) in parentheses represents the execution time increase

caused by stalls and to, which is independent of the number of pipeline stages. The

second item shows the effect of pipeline depth and α on the latency for processing

one instruction. The third item indicates the pipeline stall overheads.

3.2.3 Delay parameters setup

In this experiment, SFQ processors are assumed as scalar processors (i.e., α = 1),

and we evaluate SFQ-based bit-serial (SFQ-BSE), bit-slice (SFQ-BSL), and bit-

parallel processors (SFQ-BP). We also prepare the CMOS-based bit-parallel pro-

cessor (CMOS-BP) as a comparison. Here, CMOS-BP refers to the configuration

of a commercial processor that adopts the out-of-order instruction issuance scheme.

Chapter 3 Exploring design space of a SFQ processor 27

The delay parameters are summarized in Table 3.1. We use two delay parame-

ters for the SFQ processor: the 1.0 µm Nb process currently used in SFQ circuits’

demonstrations [57], and the 0.3 µm Nb process [40], where the scaling rule that

holds for SFQ devices reaches its limit. We estimate the delay parameter of the 0.3

µm Nb process based on the scaling rule; when the JJ scales to 1/a, the switching

speed and delay are also 1/a [40]. to is calculated by the sum of the arithmetic

average of SetupTime and HoldTime of typical logic gates used in SFQ processors

and the operating margin for countermeasures against manufacturing variations

and jitter. tp is determined based on the CORE 1β [77, 87], that is one of state

of the art SFQ processors. Specifically, tp is determined by multiplying the circuit

delay of the SFQ adder that constitutes the EX stage, which is the critical path of

CORE 1β, by 7, which is the number of pipeline stages of CORE 1β. The circuit

delay of this SFQ adder can be obtained by multiplying the GDP period by the

number of cycles required for processing by the SFQ adder, as shown in Eq. (3.2).

DSFQadder = TGDP × (Nstages +Nslices − 1) (3.2)

Where DSFQadder is the circuit delay of this SFQ adder, TGDP is the GDP cycle

time for driving SFQ adder’s gates, Nstages is the number of pipeline stages of SFQ

adder, and Nslices is the number of slices. For example, Nslices is 1 in SFQ-BP;

on the other hand, Nslices is the data bit width in SFQ-BSE because the data is

processed bit by bit. We use the value of the SFQ cell library of the 1.0 µm Nb

process as the circuit delay parameters. In addition, all circuit delays are assumed

to be obtained from 64-bit SFQ adders. Below, we explain how to obtain tp for

each of SFQ-BP, SFQ-BSE, and BSL.

In SFQ-BP, since there is no feedback loop in the SFQ adder, the GDP period

TGDP is to, which is the maximum value that can be supplied.

In SFQ-BSE and SFQ-BSL, there is a feedback loop path in the SFQ adder,

and it is necessary to wait for the input data in this loop, i.e., SFQ-BSE and SFQ-

BSL cannot apply the clock skewing and the TGDP is determined by the critical

path delay of the SFQ adder. Fig. 3.1 shows the gate-level circuit diagram of the

SFQ adder. There are two candidates for the critical path, path (A) and path

(B). In this adder, path (A) is longer than path (B), and the logic gate elements

contained in path (A) are the AND gate, the confluence buffers (CB), and the

Chapter 3 Exploring design space of a SFQ processor 28

Figure 3.1: Gate-level circuit diagram of the SFQ adder.

Chapter 3 Exploring design space of a SFQ processor 29

superconducting passive transmission line (PTL), and splitters (SPL). The signal

transmission time in PTL is determined by the delay required for transmission and

reception to the transmission line (DPTLtrans) and the transmission line’s length.

The delay of path (A) is calculated by Eq. (3.3).

DpathA = DAND +DCB +DPTLtrans +DSPL

+ (DPW − 1)×DPTLcell ×NPTLcell

(3.3)

Where DpathA is the delay of path (A), DAND , DCB , DSPL, and DPTLcell is the delay

of AND gate, the confluence buffer, the splitter, and the PTL cell, respectively.

DPW is the data path bit width and NPTLcell is the number of PTL cells that

exist between two bit lines as shown in Fig. 3.1. SFQ-BSL uses the 8-bit slice,

which was the best-performing slice width for 64-bit data word lengths. The tp of

bit-serial and slice processing in Table 3.1 are not just 64 times or 8 times that of

the bit-parallel scheme, respectively. This is because the slice- and bit-level overlap

execution reduces the processing delay. In the CMOS processor, referring to the

configuration of Intel’s 45 nm process Core i7 920, 14 stages of pipeline and clock

frequency of 2.66 GHz are used for each parameter calculation [3]. to and tp are

calculated by the clock cycle time with the best ratio between the latch overhead

and the delay of the pipeline stage (i.e., 1.8 to 6 [31]), as shown in Eq. (3.4),

Eq. (3.5), respectively.

to = 1/2.66(GHz)× 1.8/(1.8 + 6) (3.4)

tp = 1/2.66(GHz)× p− to × p (3.5)

3.3 Design space exploration

This section evaluates each architecture parameter mentioned in Section 3.2.1 to

determine the design guidelines for high-performance SFQ processors.

3.3.1 Datapath bit width evaluation

First, to show the effect of the datapath bit width on the processor performance,

we evaluate the performance with the fixed number of pipeline stages. In this

Chapter 3 Exploring design space of a SFQ processor 30

0

2

4

6

8

10

1.0μm
SFQ-BP

1.0μm
SFQ-BSE

1.0μm
SFQ-BSL

0.3μm
SFQ-BP

0.3μm
SFQ-BSE

0.3μm
SFQ-BSL

CMOS-BP

Pe
rfo

rm
an

ce
 (G

IP
S)

Figure 3.2: Performance comparison with fixed pipelines

evaluation, we set γ = 0 of the TPI shown in Eq. (3.1) to compare each processor

model’s peak performance. We use the number of instructions executed per second

(IPS) as the performance metric. IPS is calculated by Eq. (4.2).

IPS = 1/TPI (3.6)

Fig. 3.2 shows the IPS comparison when the number of pipeline stages is fixed

(SFQ and CMOS processors consist 7 and 14 stages, respectively). As the compar-

ison results, the performance of SFQ-BP, SFQ-BSE, and SFQ-BSL with 1.0 µm Nb

process are 2.78 Giga IPS (GIPS), 0.52 GIPS, and 1.53 GIPS, respectively. In the

0.3 µm Nb process, these clock frequencies are 9.27 GIPS, 1.76 GIPS, 5.11 GIPS,

respectively. In the bit-serial and bit-slice processing schemes, logic gates in the

pipeline stage are activated multiple times during the processing of one-word data,

resulting in increasing tp. The increase of tp has a significant adverse effect on the

IPS. The results clearly show that the bit-level parallelism of the bit-parallel pro-

cessing scheme is more effective in improving the IPS than the latency reduction

by the bit-level and slice-level overlapping execution.

In the 1.0 µm Nb process SFQ processors, the IPS of SFQ-BP, SFQ-BSE,

and SFQ-BSL are about the same as or lower than that of CMOS-BP. In the

Chapter 3 Exploring design space of a SFQ processor 31

0.1

1

10

100

1000

1 10 100 1000

Pe
rfo

rm
an

ce
 (

GI
PS

)

The number of pipeline stages

SFQ-BP SFQ-BSE SFQ-BSL CMOS-BP

Performance limit based on the real chip designs

Figure 3.3: Performance comparison with variable pipeline stages

0.3 µm Nb process, the IPS of SFQ-BSE and SFQ-BSL are also about the same

as or lower than that of CMOS-BP. On the other hand, SFQ-BSL and SFQ-BP

achieve 5.11 GIPS and 9.27 GIPS, which are higher than CMOS-BP performance,

respectively. This result also indicates that the bit-parallel processing scheme is

the most suitable and sufficient for achieving high-performance SFQ processors.

3.3.2 Pipeline depth evaluation

Next, we evaluate the peak performance (γ = 0) with variable pipeline stages to

show the effect of the pipeline depth. Fig. 3.3 shows the performance comparison

between SFQ-BP, SFQ-BSE, SFQ-BSL with a 0.3 µm Nb process, and CMOS-

BP. The y-axis represents the performance, i.e., IPS, and the x-axis represents

the number of pipeline stages. According to Fig. 3.3, the SFQ processors have

more capacity to improve their performance than CMOS processors by increasing

the number of pipeline stages. This is because the to of the SFQ circuit is much

smaller than that of the CMOS circuit, as shown in Table 3.1. Therefore, SFQ

processors can achieve higher clock frequency, i.e., higher performance. Moreover,

in the CMOS processors, it is tough to improve the clock frequency by deepening

Chapter 3 Exploring design space of a SFQ processor 32

0.1

1

10

100

1 10 100 1000

No
rm

ali
ze

d
pe

rfo
rm

an
ce

The number of pipeline stages

γ
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 3.4: Performance comparison between SFQ-BP and CMOS-BP considering

the ratio of the average pipeline stall γ

the pipeline due to their power consumption, i.e., the power-wall problem. In

contrast, in the SFQ circuits, the power consumption problem does not occur due

to their low-power nature.

The broken lines in Fig. 3.3 are the limit of peak performance calculated with

the limit of clock frequency based on the real chip design data of SFQ-BP, SFQ-

BSE, SFQ-BSL, which are 166.67 GIPS, 76.66 GIPS, and 119.90 GIPS, respec-

tively. When the number of SFQ-BP’s pipeline stages increases, the performance

of SFQ-BP reaches 166.67 GIPS at 377 pipeline stages, which is higher than that

of SFQ-BSE and SFQ-BSL with the same number of pipeline stages. On the other

hand, CMOS-BP with an increased number of pipeline stages cannot outperform

around 11 GIPS. To obtain higher performance in SFQ processors, SFQ processors

should adopt a bit-parallel processing scheme and a deep pipeline structure. How-

ever, the effect of pipeline stall increases in proportion to the number of pipeline

stages, increasing TPI, as shown in Eq. (3.1).

Next, let us consider the performance when pipeline stalls occur. Fig. 3.4

shows the performance comparison between SFQ-BP with 0.3 µm Nb process and

CMOS-BP in case of NH

NI
= 0.5 considering the ratio of the average pipeline stall, γ.

Chapter 3 Exploring design space of a SFQ processor 33

0.1

1

10

100

1 10 100 1000

No
rm

ali
ze

d
pe

rfo
rm

an
ce

The number of pipeline stages

θ
1
0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91
0.9

Figure 3.5: Performance comparison between SFQ-BP and CMOS-BP considering

the pipeline stall concealment rate θ

The performance is obtained by normalizing the IPS with the peak performance of

CMOS-BP. When γ = 0, that is, there is no pipeline stall, SFQ-BP achieves 62.66

times the performance of the CMOM-BP. However, the performance ratio between

degrades up to 5.67 in 60 pipeline stages when the pipeline stalls are considered

(γ = 0.1). In other words, if the pipeline stalls cannot be sufficiently concealed, the

performance will be low even with the deep pipeline structure. Thus, we introduce

θ, the pipeline stall concealment rate, to Eq. (3.1). θ can take a value from 0 to

1, and θ = 1 indicates that all stalls are concealed. TPI with θ is calculated as

shown in Eq. (3.7).

TPI =
T

NI

= (
to
α

+ (γ × (1− θ))NH

NI

tp)

+
tp
αp

+ (γ × (1− θ))NH

NI

top

(3.7)

Fig. 3.5 shows the performance comparison result in NH

NI
= 0.5 and γ = 0.5.

The y-axis represents the normalized performance, and the x-axis represents the

number of pipeline stages. Fig. 3.5 shows the result of increasing the value of θ

by 0.01 from 0.9 to 1, that is, increasing the pipeline stall concealment rate by

1% from 90% to 100%. In case that 99% of pipeline stalls are concealed, SFQ-BP

Chapter 3 Exploring design space of a SFQ processor 34

1st 2nd N-1th Nth

Clock

N stage pipeline

Input Output

Inst.
i

Inst.
i

Inst.
i

Inst.
i

Thread 1

Thread 2

Thread N-1

Thread N
MSB

LSB

Figure 3.6: Overview of the proposed design policy

with 300 pipeline stages outperforms 32.98 times than CMOS-BP. As a result,

by hiding 99% of the pipeline stalls, SFQ processors’ performance has a capacity

for improvement in an extremely deep pipeline structure, such as 300 pipeline

stages. Besides, advanced pipeline stall concealment technology is essential for

high-performance SFQ processors.

3.4 Design guidelines for high-performance SFQ

processors

To realize a dramatic performance improvement by the SFQ processors, architects

should introduce a microarchitecture that considers device and circuit character-

istics and various design constraints. Therefore, this dissertation proposes the

following policy for microarchitecture design, considering SFQ circuits and design

technology’s current situation and the result of architectural design space explo-

ration. Fig. 3.6 summarizes the following design policy.

• Bit-parallel processing scheme: Compared to the bit-serial and bit-slice

processing schemes that expand processing in the time direction, the bit-

parallel processing scheme has the following three advantages. 1) As shown

in Section 2.3.3, the bit-parallel processing scheme can avoid the feedback

loop inside the combinational circuit that exists in the bit-serial and bit-slice

processing schemes. As a result, the bit-parallel processing has the potential

Chapter 3 Exploring design space of a SFQ processor 35

to achieve a higher clock frequency than that of other processing schemes.

2) The latency of combinational circuits can be reduced by exploiting bit-

level parallelism. 3) Since iterative processing in the time direction is not

required in the bit-parallel processing scheme, the timing adjustment can be

relatively easy in circuit design and layout design.

• Gate-level pipeline structure: As shown in Section 3.3.2, SFQ processor

can significantly benefit from increasing the number of pipeline stages due to

its low-latency SetupTime and HoldTime. Gate-level pipelining is the most

fine-grained pipeline structure, in which the clock cycle time depends on

the delay of only one logic gate. Such super-pipelining cannot benefit from

increasing the frequency in CMOS because of two primary reasons: the heat

caused by increasing frequency, and another is frequency becomes limited by

SetupTime and HoldTime of pipeline registers. However, these disadvantages

do not appear in SFQ designs because SFQ circuits consume very little energy

compared to CMOS technology, and SFQ logic gates take only a few ps to

switch. Moreover, there is no overhead of additional pipeline registers due

to their latch or memory functionality. Furthermore, this pipeline structure

makes it possible to unify the GDP and global clock signal required for

controlling the pipeline registers. In other words, the gate-level-pipelined

processor can control the operation of the entire pipeline with the GDP, and

it also has advantages from the viewpoint of design simplification. From

now on, GDP is called the “clock” in this dissertation due to the gate-level

pipeline structure.

• Fine-grained multithread execution: To achieve high performance by

gate-level pipelining, SFQ processors must conceal almost all pipeline stalls.

Because SFQ logic uses a combination of SFQ pulses for logic operations,

adjusting the timing of pulses is one of the critical issues when targeting

the frequency around 100 GHz, which makes it hard to implement conven-

tional stall concealment technologies such as forwarding and branch predic-

tion. Therefore, we use fine-grained multithreading with as many threads

as the number of pipeline stages that interleaves those threads to execute

an instruction every cycle. It can prevent pipeline stalls due to data and

Chapter 3 Exploring design space of a SFQ processor 36

control hazards without increasing hardware complexity, i.e., no frequency

degradation is occurred.

3.5 Conclusions

This chapter clarifies conventional SFQ processors’ problems and quantitively

shows the design guidelines for high-performance SFQ processors by conducting

architectural design space exploration. Specifically, we focus on two key architec-

tural parameters; datapath bit width and pipeline depth. As a result, we show the

bit-parallel processing with gate-level pipelining is suitable for high-performance

SFQ processors. To achieve high performance by such an ultra-deep pipelining,

SFQ processors must conceal almost all pipeline stalls. For example, the perfor-

mance improvement degrades 63 times to 5.7 times even with the small pipeline

stalls are considered (i.e., γ = 0.1). Therefore, we propose fine-grained multi-

threading execution as the pipeline stall concealment technologies. The concept of

the fine-grained multithreading execution is filling the pipeline with independent

instructions. Thus, it can prevent all pipeline stalls caused by data and control

hazards. In the next step, we should evaluate the feasibility and potential of the

proposed architecture design guidelines.

Chapter 4 Prototype design of SFQ processor 37

Chapter 4

Prototype design of SFQ

processor

4.1 Introduction

Due to SFQ device’s ultra-high-speed and ultra-low-power natures, researchers

have so far significantly contributed to developing SFQ devices and design tech-

nologies, and SFQ processors have been successfully demonstrated [87, 77, 64]. Al-

though the SFQ processors operate with outstanding clock frequency, e.g., several

dozen GHz or even more than 100 GHz, unfortunately, their effective performance

regarding “program execution speed” is comparable or worse than that of state-

of-the-art CMOS processors. The fundamental problem existing behind the SFQ

processors is the lack of optimization from the viewpoint of microarchitecture.

Therefore, in Chapter 3, we have explored the architectural design space for

SFQ processors by standing on a device/circuit/architecture level co-designs. As

the architecture exploration results, we have proposed bit-parallel processing and

gate-level-pipelining with fine-grained multithreading for achieving extremely high

performance. We have designed an 8-bit bit-parallel, gate-level-pipelined ALU and

have successfully demonstrated operations of over 56 GHz with 1.6 mW. However,

it is still not clear how much the gate-level pipelined and bit-parallel organization

can improve the performance and power efficiency at the whole processor level.

Moreover, because SFQ circuits need a cryocooler that keeps the circuits in 4

Chapter 4 Prototype design of SFQ processor 38

kelvin, it is necessary to evaluate the cryocooler’s effect on power consumption.

To solve these problems, we have designed and fabricated a 4-bit SFQ processor

chip as a prototype. Moreover, we verify its operation by chip measurement.

As a result, the prototype chip has successfully operated at 32 GHz with 6.5

mW. Besides, the resultant power efficiency achieves 2.5 tera-operations per watt

(TOPS/W). Based on these results, we have estimated the 64-bit processor and

evaluated the power efficiency, including a cryocooler cost for 4 kelvin. The power

efficiency with the cooling cost is estimated to at most 7.1 GOPS/W.

4.2 Specification of prototype processor

4.2.1 Architectural design guidelines

The architecture which considers device features and design limitations are re-

quired to realize ultra-high-performance SFQ processors. We have explored the

architectural design space of SFQ processors in Chapter 3. As a result, we have

reached the following conclusions.

• Bit-parallel processing: Unlike bit-serial or bit-slice operations, the bit-

parallel processing handles the processor’s word size at the same time in

parallel. The latency of word-size operations can be reduced by exploiting

bit-level parallelism.

• Gate-level pipelining: Gate-level pipelining is the most fine-grained

pipeline structure, which the clock cycle time depends on the delay of only

one logic gate. Because SFQ logic gates have a latch function and take only a

few picoseconds to switch, the pipeline structure can benefit from increasing

the SFQ processors’ frequency without the overhead of inserting additional

pipeline registers.

• Fine-grained multithreading: To achieve high performance by introduc-

ing gate-level pipelining, almost all pipeline stalls caused by data and control

hazards must be concealed. However, it hard to implement conventional stall

concealment technologies such as forwarding and branch prediction because

such conventional schemes can incur significant frequency degradation in

Chapter 4 Prototype design of SFQ processor 39

the gate-level pipeline structure. Therefore, it is essential to hide almost

all pipeline stalls without increasing hardware complexity. For this chal-

lenge, we apply a fine-grained multithreading execution model with as many

threads as the number of pipeline stages. It can prevent pipeline stalls due

to data and control hazards without any frequency degradation.

4.2.2 Instruction execution scheme

As described in Section 4.2.1, a large-scale fine-grained multithreading execution

is adopted. Initially, it is necessary to maintain a program counter for each thread

and switch the execution thread every clock cycle. However, it is challenging

to prepare a memory that can follow a processor operating at several dozens of

GHz and read instructions every cycle. Therefore, we employ a single instruction

multiple threads (SIMT) execution. In the SIMT execution, the execution thread

is switched every clock cycle, but all threads execute the same instruction. By

expanding a single instruction in the time direction, the instructions’ reading time

is reduced in proportion to the number of threads for the operation of the processor.

Thus, the latency gap between the processor and the memory can be hidden.

Besides, to realize large-scale fine-grained multithreading, we introduce a reg-

ister file using a circulated shift register (from now on referred to as a circular

register file). It is necessary to switch the architecture state following to pro-

cessor’s speed. Moreover, the most practical SFQ memory technology that can

operate at the same speed as a processor is the shift register memory.

If one entry of the shift register corresponds to the register set for one thread,

the register set at the access port can be replaced every cycle. Moreover, it per-

forms a non-destructive readout due to its circular structure. The circuit scale of

the register file will increase in proportion to the number of threads. The number

of threads is reduced to half the number of pipeline stages to keep it at a level fea-

sible in the current fabrication process. In this case, it is necessary to schedule the

instructions so that there is no dependency between two consecutive instructions.

Chapter 4 Prototype design of SFQ processor 40

Table 4.1: Instruction set

instruction Operation Opcode Instruction format

ADD Integer addition 100000 Binary operation instruction

SUB Integer subtraction 101000 Binary operation instruction

ADDS0 Conditional integer addition 100100 Binary operation instruction

SUBS0 Conditional integer subtraction 101100 Binary operation instruction

ADDI Integer immediate addition 110000 Binary operation instruction

SUBI Integer immediate subtraction 111000 Binary operation instruction

LW Load word 111100 Data transfer instruction

LI Load immediate 010000 Data transfer instruction

SW Store word 010100 Data transfer instruction

SK6S0 Conditional skip instruction 000010 Control instruction

HLT Halt 000001 Control instruction

NOP Non operation 000000 Control instruction

9 4 3 21 0
opcode rsd rs (or imm)Binary operation instruction

Control instruction

9 4 3 21 0
opcode rd immData transfer instruction

9 4 3 0
opcode rd offset

Figure 4.1: Instruction format

4.2.3 Instruction set

Our processor employs a unique reduced instruction set computer (RISC) based

instruction set considering SFQ devices’ characteristics and current design con-

straints. Table 4.1 shows the implemented instructions. The bit width of instruc-

tions is fixed at 10 bits, and the instruction format is shown in Fig. 4.1. The upper

6-bits instruction represents the operation code (opcode). rs is the source register’s

address for the operation, and rd is the destination register’s address. rsd indicates

the address of a register that is both a source register and a destination register,

and it is used only for binary operation instructions. imm is 2-bit immediate data

embedded in the instruction, and it is expanded to 4 bits and used as an operand

for arithmetic operations and as an address for data transfer instructions.

Chapter 4 Prototype design of SFQ processor 41

In addition to the basic operation instructions and data transfer instructions,

we add some conditional operation and control instructions that consider the pro-

cessor’s instruction execution and SFQ design constraints. In the SIMT execution,

because the same instruction is executed in all threads, some mechanism is neces-

sary for performing different processing in each thread. Therefore, we add some

conditional operation instructions. Specifically, the processor holds a flag bit for

each thread, referring to the flag bit when executing a conditional instruction and

changing the processing accordingly.

Moreover, we add a control instruction that assumes an instruction memory

consisting of a 20-entry circular register file. A more complex instruction sequence

can be executed with a limited number of entries by controlling the number of

circulations and skipping instructions. Specifically, the instruction memory is di-

vided into three areas: the initialization area, the kernel area, and the termination

processing area. The instruction in the initialization area is executed only at the

beginning of the program sequence. The kernel area is executed a specified num-

ber of times, and the instruction ends after the specified number of executions. A

conditional skip instruction is employed to execute instructions in the termination

processing area after the kernel area execution.

4.2.4 Test program

One of the design objectives of the SFQ processor based on the architectural de-

sign guidelines is to demonstrate an effective program. An “effective program” is

not just a list of instructions but a somewhat complicated program that processes

data for some purpose. It is necessary to consider the program that has an ad-

vantage in SFQ processors and can be executed with limited hardware resources.

Specifically, it is necessary to consider that the instruction memory of the SFQ

processor consists of a circular shift register, and the number of entries (that is, the

number of instructions that can be stored) is 20. Furthermore, since the processor

employs SIMT execution, it seems suitable for applications that perform the same

processing on a large amount of data. The matrix-vector product is one of the

basic programs that satisfy these conditions. The matrix-vector product is used in

various fields such as chemical calculations and neutral network calculations, and

Chapter 4 Prototype design of SFQ processor 42

𝑐𝑜𝑢𝑛𝑡 = 𝑙𝑜𝑜𝑝)*+,𝑎𝑐𝑐 = 0

𝑏0 > 0

𝑎𝑐𝑐 = 𝑎𝑐𝑐 + 𝑎00 𝑎𝑐𝑐 = 𝑎𝑐𝑐

𝑏3 > 0

𝑎𝑐𝑐 = 𝑎𝑐𝑐 + 𝑎03 𝑎𝑐𝑐 = 𝑎𝑐𝑐

𝑏0 −−, 𝑏3 − −, 𝑐𝑜𝑢𝑛𝑡 − −

𝑐𝑜𝑢𝑛𝑡 == 0

𝑂𝑢𝑡 𝑎00𝑏0 + 𝑎03𝑏3 = 𝑎𝑐𝑐

Yes
No

Yes
No

No

Yes

Initialization

Kernel

Termination

Figure 4.2: Algorithm of the 2-by-2 matrix-vector product

the calculations of matrix elements are independent of each other and are highly

compatible with multithreaded execution.

(
a11 a12

a21 a22

)
×

(
b1

b2

)
=

(
a11b1 + a12b2

a21b1 + a22b2

)
(4.1)

Therefore, we use a program that calculates one element of a 2-by-2 matrix and

a 2-dimensional column vector, as shown in Eq. (4.1), as a test program. Since

the processor does not implement the multiplication instruction, the product is

performed by repeating the addition. The basic algorithm is shown in Fig. 4.2.

acc is the accumulator that adds the calculation results, and count is the counter

that represents the number of iterations required for the accumulation. Fig. 4.2

Chapter 4 Prototype design of SFQ processor 43

Table 4.2: Assembly code of the 2-by-2 matrix-vector product

0: LI r2 0x1 # Set count to 1

1: LI r3 0x0 # Set acc to 0

2: NOP

3: LW r1 M [2] # Load the multiplier

4: LW r0 M [0] # Load the multiplicand

5: SUBI r1 0x1 # Decrement the multiplier & set the value of the sign flag

6: ADDS0 r3 r0 # Add if the value of the sign flag is 0

7: SW r1 M [2] # Store the multiplier

8: LW r1 M [3] # Load the multiplier

9: LW r0 M [1] # Load the multiplicand

10: SUBI r1 0x1 # Decrement the multiplier & set the value of the sign flag

11: ADDS00 r3 r0 # Add if the value of the sign flag is 0

12: ST r1 M [3] # Store the multiplier

13: SUBI r2 0x1 # Decrement count & set the value of the sign flag

14: NOP

15: NOP

16: NOP

17: NOP

18: NOP

19: SK6S0 # Skip the initialization and termination area if the value of the sign flag is 0

20: NOP # Delay slot for skip instruction

21: SW r3 M [0] # Store the operation result

22: NOP

23: HLT # Termination

assumes the case of calculating the elements a11 b1 + a12 b2 of Eq. (4.1). In the

initialization area, count is set to loopMAX , the maximum number of iterations in

the kernel area, and acc is set to 0. In the kernel area, the multiplicand is added

to acc according to the sign of the multiplier result. At the end of the kernel area,

the multiplier and count are decremented, and count is determined whether 0 or

not. If count is 0, the number of iterations in the kernel area reaches to loopMAX ,

and the process moves to the termination area. Finally, the result of acc is output

as a11 b1 + a12 b2 of Eq. (4.1).

The operation flow is shown in Fig. 4.3, and the assembly code is shown in

Table 4.2. The assembly code is shown in Table 4.2. Considering the current

design constraints, the number of general-purpose registers is 4 per thread, the

number of sign flag registers used for conditional arithmetic instructions is 1 per

thread, the number of instruction memory entries is 24, and the number of data

Chapter 4 Prototype design of SFQ processor 44

𝑟2 = 1;
𝑟3 = 0;

𝑆𝑖𝑔𝑛 == 0

𝑟3 = 𝑟3 + 𝑟0; 𝑟3 = 𝑟3;

Yes
No

𝑟0 = 𝑀 0 ;
𝑟1 = 𝑀 2 ;
𝑟1 − −;

𝑀 2 = 𝑟1;

𝑟0 = 𝑀 1 ;
𝑟1 = 𝑀 3 ;
𝑟1 − −;

𝑆𝑖𝑔𝑛 == 0

𝑟3 = 𝑟3 + 𝑟0; 𝑟3 = 𝑟3;

Yes
No

𝑀 3 = 𝑟1;

𝑟2 − −;

𝑆𝑖𝑔𝑛 == 0

𝑀[0] = 𝑟3;
𝐻𝑎𝑙𝑡;

Initialization

Kernel

Termination

No

Yes

Figure 4.3: Operating flow chart of the 2-by-2 matrix-vector product

memory entries is 4 per thread. To avoid overflow, we set the matrix elements

values from -4 to 3, and the vector elements values from 0 to 2. Since the vector

element is a multiplier, the maximum number of loops, loopMAX , is 2. r0 and r1

in Fig. 4.3 are registers that hold the multiplier and multiplier, respectively. r2

and r3 are registers corresponding to count and acc in Fig. 4.3, respectively.

Chapter 4 Prototype design of SFQ processor 45

Figure 4.4: The layout of 1-bit half adder

4.3 Design and implementation

4.3.1 Design methodology

In this section, we design the processor by a method called cell-based design with

the layout editor called Cadence “Virtuoso”. It is a hierarchical design scheme to

design the target circuits by combining the cells, which are the basic circuits such

as logic gates or wiring designed in advance. We use a cell library developed in co-

operation with the International Superconductivity Technology Institute (AIST),

which is compatible with the advanced process (10kA/cm2 process with 9 layers of

niobium) [57]. Specifically, we design SFQ circuits by the custom layout method,

i.e., we put SFQ cells manually. Fig. 4.4 shows the 1-bit half-adder layout based

on SFQ circuits as an example. In this design method, the designer must put not

only the logic gate cells but also the wiring cells to design entire circuits due to the

lack of design automation tools. The designer can check the clock’s arrival timing

and data pulses by using a static timing analyzer (STA). The STA shows both the

first and last signals’ arrival, as shown in Fig. 4.4.

Fig. 4.5 shows the design flow of the prototype processor. First, we verify each

module’s correct operation at low speed (the clock cycle time is sufficiently large

for the pulse transmission delay such as 1 to 5 GHz and does not incur timing

errors). If an error is found, it is a logical error, not a timing error. After con-

Chapter 4 Prototype design of SFQ processor 46

Main modules design

Error

Integration of all modules

End of design

Low-speed test

High-speed test
Error

Correct operation

Correct operation at target frequency

Error
Low-speed test

High-speed test
Error

Correct operation

Correct operation at target frequency

Figure 4.5: Design flow of the prototype processor

firming the correct operation at low speed for each module, we test the operation

at high speed (i.e., several tens of GHz). If an error is found at a high-speed

test, it is a timing error of SFQ pulses. The timing should be adjusted by static

timing analysis and waveform observation of the simulation result. The timing ad-

justment is continuously performed until confirming the correct operation above

the target clock frequency. After confirming each module’s correct operation at

both low speed and high speed, the modules are integrated into the processor. We

verify the processor’s operation in the same manner as each module test, and the

design is completed when the correct operation is confirmed above the target clock

Chapter 4 Prototype design of SFQ processor 47

Th
re
ad
	1
		R
eg
is
te
r	S
et

Th
re
ad
	2
		R
eg
is
te
r	S
et

Th
re
ad
	3
		R
eg
is
te
r	S
et

Th
re
ad
	n
Re
gi
st
er
	Se
t

・・・

Shift-register-based register file

OutputInput

Figure 4.6: Shift-register-based register file for fine-grained multithreading

frequency.

We set the target frequency by following the past designs of SFQ processors.

Specifically, we refer to CORE 1β, one of the typical SFQ processors designed so

far [77, 87]. Although the clock frequency of CORE 1β is 1.5 GHz, each logic gate

operates at 25 GHz. This is because CORE 1β a bit-serial processing scheme and

a shallow pipeline structure, not the gate-level pipelining. On the other hand, our

processor employs a bit-parallel processing and gate-level pipeline structure, and

gates’ operation speed represents the circuit clock frequency. Therefore we set a

target frequency to 25 GHz.

4.3.2 Design challenges and solutions

There are two following challenges for designing the high-performance SFQ pro-

cessor supporting the specification shown in Section 4.2; 1) how to realize the large

register file for fine-grained multithreading, 2) more severe timing design compared

to conventional SFQ processors. We resolve the above problems as follows.

• Introducing the shift-register-based register file for fine-grained

multithreading: SFQ processor needs a large register file that can store all

threads’ architectural states and output an appropriate register set to the

subsequent pipeline stage for each clock cycle. On the other hand, although

several proposals about the SFQ on-chip memory technology have been made

so far, the most practical is the shift register-based memory. With the consid-

eration of the design constraint, we introduce the shift-register-based register

file for fine-grained multithreading, as shown in Fig. 4.6. The input and out-

Chapter 4 Prototype design of SFQ processor 48

A B

D C

clock

data

Concurrent-flow part

Counter-flow part

𝜏!𝜏"#

𝜏!

𝜏"$

Figure 4.7: Brahcn clocking: combination of concurrent- and counter-flow clocking

put of the shift register are connected for realizing non-destructive access.

Each entry of the shift register stores every thread’s architectural states’

value and the executed thread is switched every cycle.

• Clock arrival timing optimization: The main concept of the clocking

scheme of SFQ logic is not synchronized with all the gates like conven-

tional CMOS designs but point-to-point (or gate-to-gate) synchronization,

as shown in Section 2.3.3. There are mainly two clocking schemes in SFQ

logic designs; the concurrent-flow (Fig. 2.10(a)) and the counter-flow clock-

ing (Fig. 2.10(b)). The former is used for simple feedforward logic such as

multiplier [55], whereas the latter is suitable for feedback loops. Since our

processor have both the parts of feedforward and feedback logics, we apply

the combination of concurrent- and counter-flow clocking schemes, called

branch clocking, as shown in Fig. 4.7. The branch clocking can reduce the

wire length of the feedback loop. Moreover, if we apply the concurrent-flow

part for relatively complex circuits and the counter-flow part for simple cir-

cuits, the circuits can utilize the advantage of concurrent-flow clocking for

increasing clock frequency in complex circuits without frequency degradation

from the concurrent-flow clocking part.

Chapter 4 Prototype design of SFQ processor 49

・・・・

In
st

ru
ct

io
n

R
eg

is
te

r (
IR

)
/

Inst.
10 bit

・・・・

・・・・

/
imm

/
rs

rsd
/

/
addr

/
opcode

/
sig

n

0x0

fetch and circulation control

read / write control

wr
ite

 b
ac

k
co

nt
ro

l

・・・・

r3
r2

r1
r0

Controller (Ctrl)

Reg. File
(RF)

Inst. Mem.
(IM)

Data Mem.
(DM)

10-bit 24 entries

4-bit 4regs per thread 1-bit per thread

4-bit 4 data per thread

Sign Flag Reg.
(SFR)

ALU

Figure 4.8: Microarchitecture of prototype processor

We use the combination clocking in the datapath with a large feedback path

consisting of ALU and register files. Specifically, we apply concurrent-flow

clocking in the ALU part and counter-flow clocking in the register file part.

Therefore, in the ALU part, the concurrent-flow clocking can hide the data

transfer delay, resulting in high-speed operation. On the other hand, in the

register file part, the operation speed is still high even with the counter-flow

clocking because the register file mainly consists of DFF gates, which is the

fastest gate in SFQ design.

4.3.3 Microarchitecture

Fig. 4.8 shows the microarchitecture of the prototype processor. The processor

consists of 24 pipeline stages. Taking the current SFQ integration technology into

account, instructions and data are 10-bit and 4-bit wide, respectively. Besides, we

employ SIMT execution to suppress the increase of a circuit scale, as shown in

Section 4.2. We set the number of threads to 12 rather than 24 in this prototyping

to satisfy a strict area constraint. Although such degradation makes the total area

required to implement register file (RF) half, it also halves the peak performance

because we need to reduce the instruction issue bandwidth to half to ensure the

Chapter 4 Prototype design of SFQ processor 50

pipeline interlock-free streaming execution. The processor is composed of a 240-bit

instruction memory (IM), a 16-bit data memory (DM) per each thread, a 10-bit

instruction register (IR), a register file (RF) consists of 4-bit arithmetic registers

(r0, r1, r2, r3) per each thread, a 1-bit sign flag register (SFR) per each thread,

a 4bit-ALU, and a controller. As mentioned in Section 2.4.4, SFQ circuits cannot

efficiently implement large-scale RAM because of its low driving capability. Con-

sidering this issue, memories of the processor consist of loop-shaped shift registers

that input its output unless the values are not updated. Especially, RF consists

of a shift register with entries as the same number as threads. Each entry has an

architectural state associated with a thread and circulates by synchronizing with

the SIMT execution.

4.4 Evaluations

In this section, first, we verify the correct operation of the prototype 4-bit SFQ pro-

cessor chip. Next, we discuss the impact of a 64-bit SFQ processor by estimating

its power consumption and clock frequency.

4.4.1 Verification results of 4-bit processor

The 4-bit SFQ processor chip is designed and implemented using the CONNECT

cell library [88] and the AIST 10kA/cm2 advanced 1.0 µm Nb process [57]. Fig. 4.9

shows the microphotograph of the 4-bit processor chip. It is composed of 23,713

JJs on 4.1× 5.3mm2 area.

We verify our processor in two ways: by post-layout simulation and by fabri-

cated chip measurement. In the post-layout simulation, we use Cadence’s Verilog-

XL simulator. The netlist described in verilog of the processor is extracted from

its layout, and the Verilog-XL run the simulation considering all wire and gate

delay. We confirm the processor’s correct operation up to 31 GHz with 6.9 mW

in the test program shown in Section 4.2.4.

Fig. 4.10 shows the chip measurement setup. We use an electromagnetically

shielded room to eliminate the influence of external magnetic fields as much as

possible (Fig. 4.10(a)). Besides, we utilize the liquid helium bath for cooling chip

Chapter 4 Prototype design of SFQ processor 51

1 mm

IM and IR
RF and ALU

DM

SFRCtrl

Concurrent and counter

Counter

Counter

Concurrent

Clock flow

Data flow

Counter

On-chip
Clock Generator (CG)

Figure 4.9: Microphotograph of the 4-bit processor chip

at 4 kelvin (Fig. 4.10(b)). Fig. 4.11 illustrates the on-chip high-speed testing

methodology. First, we write instructions and initial data to on-chip memory at

low speed by using an external data generator. Next, we input trigger signal, which

triggers the on-chip clock generator, to start high-speed testing. After the end of

testing, we check the final architectural states (i.e., register file and data memory)

by using an external oscilloscope.

Fig. 4.12 displays the frequency dependence of operating margin in supply

voltage. Y-axis shows the bias voltage, and x-axis shows the clock frequency. In

the chip measurement, we confirm the correct operation of all instructions up to

32 GHz with 6.5 mW.

4.4.2 Evaluation of 4-bit processor

In this section, we evaluate the performance and power consumption of the 4-

bit processor based on the verification results shown in Section 4.4.1. We use

Chapter 4 Prototype design of SFQ processor 52

(a) Electromagnetic shielded room (b) Liquid helium bath

Figure 4.10: Chip measurement setup

operations per second (OPS) for performance metric which is given by Eq. (4.2),

OPS = f ×OPC (4.2)

where f and operations per cycle (OPC) is the clock frequency and the number

of executed instructions per cycle, respectively. Because our design halves the

number of register files compared to the number of pipeline stages to satisfy the

chip area constraints, the instruction issue bandwidth (i.e., OPC) is 0.5. Therefore,

the peak performance is 16 giga operations per second (GOPS). Moreover, the

resultant power efficiency achieves 2.5 TOPS/W.

Fig. 4.13 shows the power consumption breakdown of the 4-bit processor. In

the SFQ circuits, the static power consumption accounts for most of the power

consumption, it largely depends on the circuit scale. In this design, the mem-

ory occupies most of the processor due to the SIMT execution, resulting in high

memory power consumption.

4.4.3 Extension to 64-bit processor

In this section, we estimate clock frequency and the number of JJs of the 64-

bit processor based on the evaluation results of the 4-bit processor and discuss the

impact of the 64-bit SFQ processor, including the cooling cost for 4 kelvin. At first,

we estimate the clock frequency of the 64-bit processor. There are two primary

factors that affect the clock frequency when the bit width is extended: 1) the

Chapter 4 Prototype design of SFQ processor 53

Liquid helium at 4.2K

IM
Data pathCtrl

ALU

DM

Mem.

…

Clock (~ 30 GHz)

~ 1 kHz signals

Trigger

Differential
Amplifiers

Oscilloscope
Data

Generator

RF

On-chip
clock gen.

Figure 4.11: Illustration of on-chip high-speed testing

Table 4.3: The number of JJs of each 64-bit extended module

Module name JJ 64Reg JJ 64Dmem JJ 64ALU JJ 64MUX JJ 64Sign JJ 64Ctrl JJ 4ALU

The number of JJs 48,864 44,064 23,494 8,880 54 216 405

long wiring overhead, 2) the increase of jitter. For simplicity, the 64-bit processor

is assumed to operate at 32 GHz, which is the same as that of the 4-bit design.

Although there is the report about the impact of increasing jitter for frequency

is not large [10], the scale of the 64-bit processor is quite larger than that of the

4-bit design, and it can incur the clock frequency degradation. The experimental

study of the impact of extending the bit width for clock frequency is future work.

Secondly, we estimate the number of JJs of the 64-bit processor. The number

of JJs of the 64-bit processor is given by Eq. (4.3),

JJ 64MP = JJ 4MP + JJ 64EXT (4.3)

where, JJ 64MP is the number of JJs of 64-bit processor, JJ 4MP is the number of

JJs of 4-bit processor, and JJ 64EXT is the additonal JJs which needs to extend bit

width from 4 to 64. JJ 64EXT is given by Eq. (4.4)),

JJ 64EXT = JJ 64EXT logic × γ (4.4)

where, JJ 64EXT logic is the number of JJs of additional logic gates, i.e., JJ 64EXT

Chapter 4 Prototype design of SFQ processor 54

2.2

2.3

2.4

2.5

20 25 30 35

Bi
as

 v
ol

ta
ge

 (m
V)

Clock frequency (GHz)

Figure 4.12: Frequency dependence of operating margin in supply voltage

without the cost of wiring, and γ is the ratio of JJs of wiring to that of logic

gates. JJ 64EXT logic is calculated by the sum of additional JJs of component parts

of processor such as ALU, multiplexer, register file, controller, and data memory.

JJ 64EXT logic is given by the sum of additional JJs of component parts of processor

shown in Section 4.4.3.

JJ 64EXT logic = JJ 64Reg +JJ 64Dmem +JJ 64MUX +JJ 64Ctrl +JJ 64ALU (4.5)

We model the number of JJs of component parts of processor such as ALU, multi-

plexer, register file, controller, and estimate the number of additional JJs of each

component which shown in Table 4.3. We assume that the number of JJs of these

components linearly increases with its bit width, and JJ 64EXT logic is estimated to

about 125,000 JJs. We use 2.08 as γ, which is calculated based on 4-bit processor

configuration. According to Equation (4.4), JJ 64EXT is calculated to about 260,000

JJs, and JJ 64MP is estimated to 23, 713 + 260, 000 = 283, 713 JJs by Eq. (4.3)).

Chapter 4 Prototype design of SFQ processor 55

IM
23%

DM
30%

ALU+Reg
39%

Ctrl
4%

SFR
2%

CG
2%

Figure 4.13: Power consumption breakdown of the processor

4.4.4 Estimating the energy efficiency of 64-bit processor

We compare the SFQ processor and CMOS processor models in terms of energy

efficiency to evaluate the effectiveness of the SFQ processor. Based on the esti-

mation results, we evaluate the energy efficiency of the 64-bit processor with the

cooling cost. We use OPS per watt (OPS/W) for energy efficiency metric.

OPS/W = OPS/P (4.6)

In this evaluation, we assume that 64-bit processor employs energy efficient SFQ

circuit technology called ERSFQ [43] and 0.3 µm Nb process technology. We

calculate them from the parameters of a 1.0µm Nb process [57] by applying the

scaling rule for JJs. As a result, the clock frequency of the 64-bit processor with

0.3 µm Nb process is estimated to 107 GHz.

In ERSFQ logic, theoretically, although the dynamic power consumption be-

comes twice as conventional SFQ logic, the static power consumption is zero [54].

This is because ERSFQ provides the bias current using JJ with inductors (i.e.,

bias resistors are replaced to bias JJ); it does not consume static power, but the

number of JJs increases (i.e., twice higher dynamic energy per switching). We as-

sume that our processor employs ERSFQ without any configuration change. The

Chapter 4 Prototype design of SFQ processor 56

Table 4.4: Parameters

Parameters Values

Φ0 2.07 (mV · ps)

Ic 0.1 (mA)

Table 4.5: CMOS processor model’s parameters

Clock frequency 5 GHz

The number of pipeline stages 26 stages

The number of operations per cycle (64-bit integer) 2

Power consumption 11 W

power consumption of the 64-bit processor using ERSFQ, P is given by Eq. (4.7),

P = 2× αΦ0Icf × JJ 64MP (4.7)

where, α is switching probability, Φ0 is magnetic flux quantum, Ic is the critical

current of a JJ, and f is clock frequency. Because αΦ0Icf ×JJ 64MP represents the

dynamic power consumption, ‘2’ is multiplied for ERSFQ power estimation. Some

parameters are shown in Table 4.4.

By Eq. (4.7), the power consumption is estimated to 12.5 mW with the worst

case of switching probability, i.e., α = 1. Besides, we evaluate the power consump-

tion of the whole system, including the cost of the cryocooler, which is a specific

cooling system for SFQ circuits. The cooling cost is hard to model because the

cooler’s energy loss accounts for the majority of the whole cooler’s energy. On the

other hand, the coefficient of performance (COP), which is a ratio of efficient cool-

ing provided to work required, indicates the efficiency of the cooler [34]. Therefore,

we refer to the COP of two different cryocoolers: Gifford-McMahon (GM) cooler

and Claude cooler [34].

For CMOS processor models, we refer to the parameters of the clock frequency,

power consumption, and the number of pipeline stages (shown in Table 4.5) from

Cell Broadband Engine Synergistic Processor Element (90nm) [14, 26]. After these

processors, CMOS processors tend to improve multi-thread performance by in-

creasing the number of processing cores and decreasing each clock frequency to

Chapter 4 Prototype design of SFQ processor 57

0.1

1

10

100

1000

0.0001 0.001 0.01 0.1

Po
we

r e
ffi

cie
nc

y（
GO

PS
/W
）

Coefficient of performance （W/W）

0.3µmNb ERSFQ-based 64-bit SFQ processor CMOS model

GM cooler Claude cooler Theoretical limit

Figure 4.14: Power efficiency comparison between 64-bit SFQ processor and

CMOS processor model

reduce the total power consumption. This evaluation uses the Cell processor’s pa-

rameters because it is a representative processor following in-order execution and

a deep pipeline structure (26 stages) to achieve high clock frequency. Note that

this comparison is not the strict comparison between the SFQ processor and the

Cell processor.

Fig. 4.14 shows the estimation results. The y-axis shows the energy efficiency,

namely OPS/W, and the x-axis shows the COP. Fig. 4.14 displays the COP of two

cryocoolers and theoretical limit as a guide. The energy efficiency of the 64-bit

SFQ processor is estimated to 2.1 GOPS/W and 7.1 GOPS/W with GM cooler and

Claude cooler, respectively. As a result shown in Fig. 4.14, the energy efficiency

of the SFQ processor is about 2.3 and 7.8 times better than that of the CMOS

model. The result shows that our SFQ processor has the potential to achieve high

performance and power efficiency even with the cooling cost.

Chapter 4 Prototype design of SFQ processor 58

4.5 Conclusions

This chapter has designed and implemented a 4-bit SFQ processor as a prototype

and confirmed the correct operation by real chip measurement to clarify our pro-

posed architectural design guidelines’ effectiveness. As a result, the prototype chip

has successfully operated at 32 GHz with 6.5 mW. Based on these results, we have

estimated the 64-bit processor and evaluated the power efficiency, including a cry-

ocooler cost for 4 kelvin. The power efficiency with the cooling cost is estimated

to at most 7.1 GOPS/W, and our processor outperforms the CMOS processor

model 7.8 times. The result indicates that our SFQ processor based on proposed

architectural design guidelines has the potential to achieve high performance and

power efficiency even with the cooling cost. Although these results only show the

high potential of the proposed architecture by evaluating peak performance, the

effective performance of the SFQ processor is still unclear. Moreover, our pro-

cessor adopts fine-grained multithreading to conceal almost all pipeline stalls for

achieving high performance. Although the multithreading can keep the circuits

simple (i.e., achieving higher clock frequency), the target applications are limited,

and selecting the target application carefully for achieving high performance is

necessary. Therefore, we must select the appropriate applications suitable for such

SFQ characteristics for achieving high-performance SFQ computing.

This prototype processor consists of 23,713 JJs on 4.1 × 5.3mm2 area, and

this is one of the largest demonstrated circuits designed and implemented without

any design automation tools. Although the circuit scale is limited to a few tens

of thousands of JJs due to the chip area constraint, if the fabrication process

technology evolves in the future, it is easily expected that it will be quite hard to

design manually. Especially, the detailed timing adjustment for SFQ pulses is one

of the critical issues for achieving large-scale high-performance SFQ circuits. Thus,

placement and routing automation will significantly contribute to the growth of

SFQ design. For the future development of SFQ computing, it is essential not only

to study architecture but also to develop design automation tools, and we believe

that our work highly motivates industry and academia to work on SFQ design

automation technology.

Chapter 5 Extremely fast SFQ neural processing unit architecture 59

Chapter 5

Extremely fast SFQ neural

processing unit architecture

5.1 Introduction

We are now facing the era where both Moore’s Law [65] and Dennard scaling [22]

do not hold anymore. In this era, we are running out of a convincing option to

improve the performance of the computer system, while maintaining its power

and temperature budget. Therefore, we believe that it is the right time to actively

exploit emerging device technologies with significant potentials and make a serious

effort to improve their feasibility by resolving their limitations.

Among several candidates, superconductor SFQ logic family [49, 54] is a highly

promising solution thanks to its ultra-fast speed and low-power consumption at

4 K. The SFQ technology enables a low-level voltage impulse-driven switching

which allows both extremely-fast switching and low-energy consumption (10−19 J

per switching) [49, 54]. That is, with this technology, it is feasible to improve

the device’s clock frequency (and thus performance) by order of magnitude (i.e.,

several tens of GHz [55, 56]).

By focusing on these high potentials, many serious SFQ-related research efforts

have been made in various aspects to promote the technology and automate its

device and circuit-level design process (e.g., technology hardening, low-cost fab-

rication, design tool development) [59, 60]. As a result, the SFQ logic is now

Chapter 5 Extremely fast SFQ neural processing unit architecture 60

considered for an extreme-performance computing and a promising post-Moore

solution.

However, due to its unique pulse-driven nature, SFQ logic requires completely

different architecture designs from conventional CMOS technology. Therefore,

with the architectural trade-offs considered, the following questions must be clearly

addressed to computer architects: (1) what architecture is promising for this tech-

nology, (2) how to implement various microarchitectural units with the voltage

pulse-driven logics, (3) how to maximize its potential at the architecture level

while minimizing its limitations, and (4) how to simulate and validate a proposed

architecture design.

In this paper, we resolve the fundamental challenges by (1) providing straight-

forward answers to the questions above, and (2) presenting SuperNPU, our example

SFQ-based neural processing unit (NPU) design. First, as our case-study archi-

tecture in this work, we choose to architect a conventional NPU and present the

basic structure with carefully designed microarchitectural units. For instance, we

design our baseline NPU architecture consists of processing elements (PEs) with

the weight-stationary dataflow, systolic array network, and data alignment unit.

This baseline NPU architecture well satisfies the requirements of SFQ-based logics

such as fast computation, dataflow-like data movements, and shift-register-based

memory implementation, respectively.

Next, we implement an architecture-level simulation framework to model an

SFQ-based NPU architecture accurately. Our simulator can accurately estimate

the under-the-design NPU’s performance, power consumption, area at various lev-

els (i.e., gate, microarchitecture, architecture). For the purpose, the simulator

constructs a target SFQ-based NPU architecture by integrating SFQ-based mi-

croarchitecture and gate modules using AIST 1.0 µm fabrication process tech-

nology [57]. We carefully validate the simulator by comparing the results ob-

tained from our die-level microarchitecture prototypes and post-layout simulations

against our modeling results.

Third, based on the validated model, we identify key performance bottlenecks

in a naively designed SFQ-based NPU. First, the data movement among different

units and within a single unit takes too long, mainly due to the shifting register-

Chapter 5 Extremely fast SFQ neural processing unit architecture 61

based operation. Next, fast computing units often become idle due to the work-

load’s low computational intensity and relatively slow memory access. Also, the

on-chip memory underutilization can make the above overheads much worse.

Lastly, we present SuperNPU, our example SFQ-based NPU design, which

effectively resolves the performance bottlenecks at the architecture level. First, it

merges the partial-sum and output memories to avoid unnecessary inter-memory

data movements. Second, it partitions a larger on-chip buffer to multiple small

chunks to reduce the length of intra-memory shifting as well as the underutilization.

Third, it increases the computational intensity by balancing hardware resources

for a larger-batch purpose. Fourth, it further increases each PE’s utilization by

assigning more registers to each PE for enabling multi-kernel execution.

Our evaluation shows that SuperNPU significantly outperforms a conventional

NPU design by 23 times when running various CNN workloads. However, without

the SFQ-aware architectural optimizations, the SFQ-based NPU design’s perfor-

mance drastically drops to the point even below the conventional design. There-

fore, it is extremely essential to identify the SFQ-unfriendly bottlenecks and ar-

chitect an optimized design to resolve them. With the cooling cost considered,

SuperNPU’s performance per watt is slightly higher than the conventional design.

But, with free cooling cost assumed, SuperNPU’s performance per watt becomes

significantly higher than the conventional design by 490 times.

In summary, our work makes the following contributions:

• Architecting an SFQ-based NPU: To the best of our knowledge, this

is the first work to design an NPU which addresses the SFQ technology’s

architectural trade-offs.

• Simulation framework: It is also the first work to model and validate a

simulator for SFQ-based architectures.

• SFQ-specific architectural optimizations: We identify critical architec-

tural bottlenecks and optimizations which can cause a performance variance

around 60 times.

• Significant results: SuperNPU provides extreme performance and power

efficiency by outperforming a conventional design by 23 times and 490 times,

Chapter 5 Extremely fast SFQ neural processing unit architecture 62

M
UX

Input Output
N entries

(b)(a)

1st
stage

DFF DFF DFF

Clock

2nd
stage

N th
stage

Figure 5.1: Example of the SFQ technology’s architectural characteristics (a)

Gate-level-pipelined datapath (b) 1-bit N -entry shift register

respectively.

• Applicability: Our modeling-driven methodology can be applied to other

architectures favoring the SFQ logic.

5.2 Background & Motivation

5.2.1 SFQ technology in the architect’s perspective

In the architect’s perspective, it is essential to understand SFQ logic’s architectural

characteristics originated from the pulse-driven nature. Therefore, we summarize

some notable features as follows.

Deeply pipelined datapath

In the SFQ logic, architects can naturally apply the gate-level pipelining without

any overhead. All SFQ logic gates are synchronized with the clock because they

need a clock pulse to transfer the stored SFQ to the adjacent gates. In other words,

every SFQ gate has the latch functionality and thus can be pipelined without addi-

tional DFFs (Fig. 5.1(a)). With this property, several chips have been successfully

demonstrated at several tens of GHz [55, 56]. However, the deep pipeline struc-

ture can suffer from performance degradation because it is difficult to avoid data

(or control) hazards and the huge pipeline stalls. Therefore, the SFQ technology

favors streaming execution rather than applications with complex control flows.

Chapter 5 Extremely fast SFQ neural processing unit architecture 63

Frequency determination with pulse-driven clocking

Unlike conventional CMOS technology, SFQ circuits’ frequency is determined by

the timing difference between the data and clock pulse arrival. In the CMOS

technology, the clock frequency is bounded by the longest datapath delay because

it only can put single digital information (i.e., voltage level) in a wire. On the

other hand, SFQ logic can put several data into a single wire because its data is

encoded as a voltage pulse. That is, SFQ circuits can achieve high frequency by

flowing many data pulses through a single wire, simultaneously. However, if there

is a large difference between the data and clock arrival timing for an SFQ gate, its

frequency can be significantly reduced. This is because the next clock pulse should

wait for the slow data pulse propagation, and thus the time interval between two

adjacent clock pulses increases. Therefore, it is crucial to match the data and clock

pulse arrival timing for maximizing the SFQ circuits’ frequency.

Shift-register-based on-chip memory

For the SFQ logic’s on-chip memory, the shift-register-based memory is much more

practical than the random access memory (RAM). Even though we can implement

RAM with SFQ technology, it severely suffers from low driving capability and

scalability. Such limitations mainly result from the difficulty of driving the word

lines and bit lines with the small pulses [49, 88]. On the other hand, a shift-

register-based memory does not have those problems because it just consists of

the serially connected DFFs and the feedback loop (Fig. 5.1(b)). However, it is

difficult for the shift-register-based memory to support the random memory access

due to the complex control logic and the variable access latency [37]. Therefore,

the SFQ technology favors applications with sequential memory access when its

on-chip memory implementation is considered.

Lack of off-chip memory technology

It has been a long-standing challenge to implement a large-scale and high-speed

off-chip memory operating at the 4K environment. There has been a few re-

search about JJ-based memories [73, 45, 76], and one of them is Vortex Transition

Memory (VTM) [73]. The VTM is the largest Josephson memory whose 4-kbit

Chapter 5 Extremely fast SFQ neural processing unit architecture 64

prototype has been demonstrated. Despite the demonstration, it has been diffi-

cult to practically use the VTM mainly due to the scaling and speed problems

with the AC-biasing and the large superconductor-ring-based memory cells. Even

though several off-chip memory technologies (e.g., hybrid Josephson-CMOS mem-

ory [45, 76], Josephson magnetic memory [21]) are currently being developed, these

technologies also have not been put to practical use yet. For these reasons, it is

currently practical to use CMOS memory technology, which is slower than the

4 K JJ-based memory but large and reliable. Therefore, SFQ technology favors

computation-oriented applications with a minimal number of off-chip memory ac-

cess.

5.2.2 Challenges for designing SFQ-based architectural

unit

Even though there have been several studies regarding the SFQ architecture’s

features [81, 23, 87, 77, 55], there still exist critical challenges for designing SFQ-

based architectural units.

SFQ-optimal architecture design: First, for the target architecture appli-

cation, architects should carefully design each microarchitectural unit because the

novel circuit-level trade-offs occur in SFQ logic (e.g., frequency trade-off with the

applied clocking scheme). Furthermore, architects must carefully analyze the per-

formance bottlenecks and propose the best SFQ architecture design based on the

analyses. However, as far as we know, there does not exist either such SFQ-friendly

microarchitecture implementation or the SFQ-optimal architecture proposed with

the bottleneck analysis.

Absence of an SFQ-based architecture modeling tool: Architects are

in dire need of high-level architecture modeling tools to design and evaluate their

architectural innovations, especially for emerging technologies such as SFQ logic

devices. Even though researchers recently have made an effort to develop several

SFQ design automation tools [59, 60], to the best of our knowledge, a reliable

SFQ-based architecture modeling tool is currently absent.

Chapter 5 Extremely fast SFQ neural processing unit architecture 65

5.2.3 Research goal: Provide SFQ design principles with

NPU

In this paper, we resolve the challenges and provide the guidelines for designing an

SFQ-optimal architectural unit by presenting an extreme-performance SFQ-based

NPU. We first conduct thorough analyses and introduce the baseline SFQ-based

NPU architecture by designing all microarchitectural units in the SFQ-friendly

manner (Section 5.3). Next, on top of the baseline NPU architecture, we develop

SFQ-NPU, a validated SFQ-based architecture modeling tool (Section 5.4). Fi-

nally, we use the tool to identify critical performance bottlenecks and propose our

SFQ-optimal NPU, which successfully resolves the bottlenecks at the architecture

level (Section 5.5).

In this work, we choose NPU as one of the promising examples to apply our

design principles for the following reasons. First, there are no complex control flows

in Deep Neural Network (DNN) applications, and therefore we can fully exploit the

SFQ’s gate-level pipelining nature without control hazard. Second, we can take the

best advantage of shift-register-based memory and avoid its disadvantage thanks to

the static memory access pattern of DNN algorithms. Finally, NPUs can reduce off-

chip memory access by utilizing the data-reuse pattern in DNN applications. Note

that the underlying SFQ circuits, such as multipliers and adders, have already been

demonstrated with around 50 GHz frequency [55, 56]. Besides, we currently target

the DNN inference as the first case study to show SFQ-based NPU’s potential.

5.3 Baseline SFQ-based NPU design

In this section, we design the baseline SFQ-based NPU architecture by identifying

the SFQ-friendly implementation for key microarchitectural units. Fig. 5.2 shows

the overview of our baseline SFQ-based NPU which mainly consists of four mi-

croarchitectural units: on-chip network unit (NW unit), processing element (PE),

data alignment unit (DAU), and on-chip buffers. We perform detailed circuit-level

analyses to describe our design choice for each unit, except for the shift-register-

based on-chip buffers explained in Section 5.2.1.

Chapter 5 Extremely fast SFQ neural processing unit architecture 66

Baseline architecture

PE array

Da
ta

 a
lig

nm
en

t u
ni

t
(D

AU
)

Ofmap buffer

Ifm
ap

bu
ffe

r

Of
f-c

hi
p

DR
AM

W
ei

gh
t b

uf
fe

r

Psum buffer

Of
f-c

hi
p

DR
AM

1

2

3

M
UX

Input
OutputDFF DFF DFF

PE

×

+

Weight

Ifmap Psum

Psum or Ofmap

Shift-register-based memory

2D Systolic array Weight Stationary PE

1

2 3

Figure 5.2: Overview of our baseline SFQ-based NPU design

Chapter 5 Extremely fast SFQ neural processing unit architecture 67

5.3.1 On-chip network unit design

To design the SFQ-friendly on-chip network, we compare two representative net-

work unit (NW unit) designs: fan-out network and store-and-forward chain. The

fan-out network multicasts the data to several PEs simultaneously by using the

bus or tree structure. On the other hand, the store-and-forward chain provides

the data and subsequently forwards it from a PE to the adjacent PE. Note that

a network branch consists of a DFF (D in Fig. 5.3) and a wire component called

splitter (S in Fig. 5.3), which splits a pulse into two identical pulses.

Among these two network designs, we adopt the store-and-forward chain be-

cause it is superior to the fan-out network in terms of both clock frequency and

area. Fig. 5.3 shows the structures of three network design candidates: two splitter

tree (2D and 1D) designs (fan-out network) and a 2D systolic array (store-and-

forward chain). In our analysis, we include both 2D and 1D splitter tree designs

which can be applied to the output stationary (OS) and weight stationary (WS)

dataflow, respectively. Also, we assume that all network designs target 2D square-

shaped PE array.

Fig. 5.4 shows the critical-path delay (i.e., the inverse of maximum frequency)

and the area comparison for the three network designs, obtained with JSIM [25].

First, the 2D splitter tree significantly suffers from the long critical-path delay due

to the increasing timing difference of two PE inputs. As shown in Fig. 5.3(a), a

single PE requires two inputs from each splitter tree. As both splitter trees share

a global clock line, the critical-path delay increases in proportion to the PE array

width (Input arrival timing in Fig. 5.3(a)). As a result, the critical-path delay of

the 2D splitter tree keeps increasing with the PE width and reaches above 800 ps

in 64×64 PE array. Even though we can mitigate this problem with the aggresive

clock skewing (i.e., intentionally increase the clock propagation delay in path ¶),

it incurs much more area overhead and lowers the yield of fabrication [75]. Next,

even if there is no such a timing issue in the 1D splitter tree, its area overhead is

high as the same with the 2D tree. The large area overhead is mainly due to the

large number of wire cells for the tree construction.

On the other hand, the 2D systolic network has the shortest critical-path delay

and the smallest area, as shown in Fig. 5.4. Even though the 2D systolic network

Chapter 5 Extremely fast SFQ neural processing unit architecture 68

Ifm
ap

bu
f.

PE

Weight buf.

PE

PE PE

(c
)

2D
 sy

st
ol

ic
ar

ra
y

(a
)

2D
 sp

lit
te

r t
re

e
(b

) 1
D

sp
lit

te
r t

re
e

S
D

D
S

S
D

Ifm
ap

bu
f.

½ PE array width
D
S

PE

DS

Clock
Ifm

ap
bu

f.

PE PE

PE PE

D
S
PE

Clock

+

❷

Ifm
ap

bu
f. PE

Weight buf.

PE

PE PE

Weight
Reg.

×
+

PE array overview

D DS S

PEPEPE

Ifm
ap

bu
f.

PEPEPE

PE width

∝ PE array width

D S

PE
D
S

Clock
∝ PE width

S
D

D
S

S
D

Ifm
ap

bu
f.

½ PE array width

PEPEPE

Detail network structure Input arrival timing

❶

❶

❶ ❷

+

Ex: OS

Ex: WS

Ex: OS

Figure 5.3: On-chip network structure for three alternative designs

also provides two different inputs to a single PE as same with the 2D splitter tree,

their timing difference is negligible (Fig. 5.3(c)). Besides, its simple structure does

not require much wire cells. For these reasons, we conclude that the systolic array

is more suitable and adopt it as our on-chip network design.

5.3.2 PE design

For the SFQ-friendly PE design, we identify the most suitable dataflow by care-

fully considering the SFQ logic’s circuit-level characteristics. Among three major

dataflows in a 2D systolic network, Weight Stationary (WS), Output Stationary

(OS), and Input Stationary (IS) [16, 63], we focus on WS and OS because the PE

with IS has almost the same hardware structure as the PE with WS. Fig. 5.5(a)

shows the PE with WS dataflow, where PE holds a weight in its register, multiplies

Chapter 5 Extremely fast SFQ neural processing unit architecture 69

0 500 1000

4

16

64

Critical-path delay (ps)

PE
 a

rr
ay

 w
id

th

0 1 2 3 4 5

4

16

64

Area (mm2)

PE
 a

rr
ay

 w
id

th

2D splitter tree 1D splitter tree Systolic array

(b)(a)

Figure 5.4: Network unit designs’ (a) critical-path delay and (b) area comparison

PE

×

+

Weight

Ifmap Psum

Psum or Ofmap

(a) PE with WS dataflow (b) PE with OS dataflow

PE

×

+

WeightIfmap

Psum

Ofmap

Figure 5.5: PE designs with two different dataflows

it with the input feature map data (ifmap), and adds the result to the partial sum

input (psum). On the other hand, the PE with OS dataflow has a feedback loop

consisting of the adder and its register, and continuously accumulates the partial

sums to generate final output feature map data (ofmap) (Fig. 5.5(b)).

Among these two PE designs, we choose the PE with WS to maximize the clock

frequency because it does not include any feedback loop. Unlike the CMOS tech-

nology, the existence of the loop significantly degrades the SFQ circuit’s frequency

as the loop enforest the slower clocking scheme.

Fig. 5.6 provides the example with two representative clocking schemes: (a)

concurrent-flow clocking and (b) counter-flow clocking. In our example, we show

Chapter 5 Extremely fast SFQ neural processing unit architecture 70

0

50

100

150

FA SR

Fr
eq

ue
nc

y
(G

Hz
)

(c) Frequency comparison

Without feedback
With feedback

1
2

(a) Example of concurrent-flow clocking

(b) Example of counter-flow clocking

1 Without feedback

Clock

Input

Clock

Input

1
2

Clock
Data 2 With feedback

Figure 5.6: Feedback loop’s impact on the frequency of SFQ circuits

how the SFQ circuit’s frequency is affected by the feedback loop. As Fig. 5.6(a)¶

shows, when there is no feedback loop, SFQ circuits can hide the data propaga-

tion delay by flowing the clock pulse along with the data. However, such clocking

cannot be utilized when the circuit includes the feedback loop. In fact, the cir-

cuit’s frequency is significantly reduced because the next clock pulse should wait

for a very long data transfer through the feedback path (Fig. 5.6(a)·). On the

other hand, we can resolve this problem with the counter-flow clocking, which can

perfectly hide the data feedback delay (Fig. 5.6(b)·). However, the frequency of

the counter-flow clocked circuit is much lower than that of the concurrent-clocked

circuit without feedback. Such difference is due to the unhidden feed-forward delay

of the counter-flow clocking (Fig. 5.6(b)¶).

Fig. 5.6(c) shows the feedback loop’s impact on the SFQ circuit’s clock fre-

quency by running JSIM [25] simulations with simple example circuits, a full adder

(FA), and a shift register (SR). For the circuits without the feedback loop and with

the loop, we apply the concurrent-flow clocking and counter-flow clocking, respec-

tively. As Fig. 5.6(c) clearly shows, the existence of the feedback loop significantly

degrades the clock frequency, from 66 GHz to 30 GHz in FA and from 133 GHz

to 71 GHz in SR. Thus, we conclude that the PE design without a feedback loop,

PE with WS, is a more SFQ-friendly choice and adopt it as our PE design.

Chapter 5 Extremely fast SFQ neural processing unit architecture 71

0% 50% 100%

AlexNet

ResNet50
VGG16

Unique pixels Duplicated pixels

Figure 5.7: Data ratio breakdown for unique and duplicated ifmap pixels

Data alignment unitIfmap buffer PE array

D D

w1

w2

w4

D
Data

Ctrl

i9 i8 i2 i1

w3

D D

“0”

“0”

“0”

“0”

0 0 0 0 i5 i4 0 i2 i1

0 i6 i5 0 i3 i2 0

PE
 3

 st
ag

es
 =

 3
 c

yc
le

s

D D D

D D D

0 i5 i4 0 0 0

0 0 0 0
D

D

o4
o3
o2
o1

Ifmap Weight

=
Ofmap

2D Conv. example

C

C

C

C

1
2

4

3

o1o2o3o4

Figure 5.8: Data alignment unit’s structure with the working example

5.3.3 Data alignment unit design

In the SFQ-based NPU adopting systolic network and WS dataflow, the ifmap

buffer can suffer from a large amount of duplicated data. As the ifmap buffer is

the shift-register-based memory, each ifmap buffer row dedicatedly feeds data to

the corresponding PE array row. However, in CNN execution, weights mapped to

the adjacent PE array rows require partly the same ifmap data due to the weight

sharing property of CNN. Therefore, the duplicated data significantly wastes the

buffer capacity if adjacent ifamp buffer rows hold all ifmap data shared across the

different weights. Fig. 5.7 clearly shows that the amount of duplicated data can

be over 90% for three CNN networks. Note that such a massive waste of on-chip

buffer capacity incurs a severe off-chip memory pressure.

To resolve the problem, we design a data alignment unit (DAU), which repli-

Chapter 5 Extremely fast SFQ neural processing unit architecture 72

cates and forwards data to the appropriate PE rows at exact timing. Fig. 5.8 shows

the DAU’s structure with a working example that runs a simple 2D-convolutional

operation. Our DAU consists of sets of a selector, a controller, and cascaded spe-

cial DFFs for each PE row. The DAU operates in two steps: 1) data selection and

2) timing adjustment.

Data selection: Before starting computation, each ifmap buffer row dedicat-

edly holds data for a given ifmap channel. First, each ifmap buffer row provides

its data to all DAU rows through a splitter tree, where each DAU row is dedicated

to a single PE row’s weight. For example, nine ifmap pixels are transferred to all

four DAU rows in Fig. 5.8 (¶). Next, the selector in each DAU row selectively

takes the required input for the weight mapped in the corresponding PE array

row. The first row in Fig. 5.8 takes only i1, i2, i4, and i5, and 0 for others as a

bubble to avoid the computation stall (·). The bubbles are filtered at the end

of computation by using a valid bit. For such data selection, the controller in

each DAU row dynamically generates control signals. Note that the controllers

can identify whether the given input is required or not based on the DNN layer

configuration and current weight mapping information (e.g., current ifmap and

weight pixel index).

Timing adjustment: To adjust the arrival timing of selected ifmap pixels,

DAU utilizes the cascaded special DFFs with different lengths. By using the DFFs,

each DAU row delays to feed the data because the computed psum in the above

PE and the ifmap data should simultaneously arrive at the PE. For example, if

the PE consists of three pipeline stages, the inputs from the second row should be

delayed at most 2 (= 3 − 1) cycles. In fact, our 8-bit PE consists of 15 pipeline

stages. Also, we bypass some DFFs when the adjacent PE rows map the weights

with different row index. For example, as the weight’s row index mapped to the

third PE increases from that of the second PE (from 1 (w2) to 2 (w3)), we should

bypass one DFF for the correct operation (¸). To support the bypassing, our

special DFF has a bypassing line, whose control signal is statically determined by

weight filter width, strides, and current weight index (¹).

Chapter 5 Extremely fast SFQ neural processing unit architecture 73

Gate parameters
Name Delay Static pow. Dynamic energy
AND 8.3 ps 3.6 µW 1.4 aJ
XOR 6.5 ps 3.0 µW 1.4 aJ

JSIM

1µm SFQ cell library

Device param.
• Feature size
• Bias voltage
• Critical current
• RSFQ/ERSFQ

Gate level

µArch. unit freq./power/area models

NW PE
Buf.

µArch.
structure
model

Intra-unit gate pairs
AND -> AND
OR -> XOR

Gate count
AND 10
XOR 32

User input

µArchitecture level

Architecture level

NPU freq./power/area models

Inter-unit connection
AND(Buf) -> XOR(PE)

OR(PE) -> DFF(NWunit)

Unit count
PE 256
Buf. 4

SFQ-NPU simulator

SFQ-NPU
estimator

Arch.
structure
model

DNN description
• Network size
• Batch size

µArchitecture param.
• NW unit : bit width
• PE : bit width,

MAC type, #Reg.
• Buf. Entry: bit width

Architecture param.
• Array: Height, Width,
• Buf.: Size, #chunk

Area Power Performance

DAU

Figure 5.9: SFQ-NPU overview

5.4 Simulation framework

In this section, we describe our architectural simulation framework, SFQ-NPU, to

explore and optimize the SFQ-based NPU architecture. Fig. 5.9 shows the overview

of SFQ-NPU, which consists of two simulation engines: SFQ-NPU estimator and

SFQ-NPU simulator. SFQ-NPU estimator takes device-level, microarchitecture-

level, architecture-level information as inputs, and derives the frequency, power,

and area of the target NPU design. Based on the obtained frequency and power

information, the SFQ-NPU simulator reports the effective performance and power

consumption by simulating target DNN applications. In the following sections, we

explain the implementation details of each engine.

5.4.1 SFQ-NPU estimator

To carefully consider the SFQ logic’s unique features ranging from the device to

architecture, our SFQ-NPU estimator takes a strategy of three-layer abstraction:

Chapter 5 Extremely fast SFQ neural processing unit architecture 74

gate-level, microarchitecture-level, and architecture-level estimation.

Gate-level estimation

The gate-level estimation layer accurately provides the timing parameters (i.e.,

SetupTime, HoldTime, and delay), the power information (i.e., static power and

access energy), and the area for all SFQ logic gates and wire cells with the given de-

vice parameters (e.g., bias voltage, critical current). The gate models are compati-

ble with two SFQ technologies; rapid single-flux-quantum (RSFQ) [49, 86, 89, 78],

and energy-efficient RSFQ (ERSFQ) [43]. RSFQ is the most practical and proven

technology in the successful demonstrations, whereas ERSFQ is a promising tech-

nology that completely excludes the static power dissipation. The only difference

is how to supply the DC bias current, i.e., RSFQ uses the bias resistors; on the

other hand, ERSFQ uses the bias JJs.

For the RSFQ gates, we extract all gate parameters by running JSIM [25] simu-

lations with RSFQ cell library for AIST 1.0µm fabrication process technology [57].

For example, the access energy is derived by taking an average of the dynamic

energy for all the possible states. Besides, we calculate each gate’s area based on

its number of JJs.

On the other hand, we estimate gate parameters of ERSFQ based on those

of RSFQ gates due to the lack of fabrication information (or cell library) about

ERSFQ technology. Specifically, the timing parameters and area of ERSFQ gates

are assumed to be the same as those of RSFQ because all their gate structures

are the same, except for the bias current supply line. Meanwhile, we estimate the

access energy and static power of ERSFQ gates as twice as that of RSFQ and

zero, respectively. Note that the difference in both access energy and static power

originates from the JJ-based DC biasing scheme [43].

Microarchitecture-level estimation

This abstraction layer estimates the frequency, static power, access energy, and

area of each microarchitectural unit designed in Section 5.3 (i.e., NW units, PE,

DAU, and on-chip buffers). For the accurate estimation, the microarchitecture-

level layer first generates the intra-unit gate pair and the gate count information

Chapter 5 Extremely fast SFQ neural processing unit architecture 75

Clock

Clock cycle time (CCT) = 1/𝑓

T
𝑯𝒐𝒍𝒅𝑻𝒊𝒎𝒆 𝑺𝒆𝒕𝒖𝒑𝑻𝒊𝒎𝒆

Clock

Data

Clock

Data

(b) Concurrent-flow

(c) Counter-flow

Input
Output

𝜹𝒕

𝝉𝒄𝒍𝒐𝒄𝒌 𝝉𝒅𝒂𝒕𝒂

(a) Example timing chart with a DFF

Clock
Input Output

Figure 5.10: Frequency model illustration

for each unit based on the gate-level circuit structure model. The intra-unit pair

and the gate count are utilized to derive each unit’s frequency and power/area,

respectively.

f = 1/CCT = 1/(SetupTime + Max(HoldTime, δt)) (5.1)

With the gate-level pipelining nature considered, the microarchitecture-level

frequency model calculates the frequency of all gate pairs in the target unit and

takes the minimum value as the unit’s frequency. Fig. 5.10 and Eq. (5.1) illustrate

the model to calculate the frequency of one gate pair, where δt is the difference

between the data and clock propagation delay (i.e., τdata − τclock). Note that

Eq. (5.1) is the direct translation of the two timing constraints: 1) data should

arrive after the HoldTime and 2) the next clock pulse should arrive after SetupTime

elapsed from the data arrival.

To reflect the real-world SFQ circuit design practice, we model both represen-

tative clocking schemes, concurrent-flow clocking (Fig. 5.10(b)) and counter-flow

clocking (Fig. 5.10(c)). As explained in Section 5.3.2, to achieve high frequency,

we apply the concurrent-flow clocking to all circuits without the feedback loop.

Also, we include the frequency-enhancing technique called clock skewing, which

minimizes δt by adjusting the length of data and clock line. On the other hand,

we apply the counter-flow clocking to the circuits with the feedback loop, such as

shift-register-based on-chip buffers.

Meanwhile, the microarchitecture-level power and area models calculate the

Chapter 5 Extremely fast SFQ neural processing unit architecture 76

1 mm

4-bit MAC unit

On
-c

hi
p

clo
ck

 g
en

.
Sh

ift
 re

g.

Sh
ift

 re
g.

(a)

1 mm

2x2 PE-arrayed NPU

Ifm
ap

Bu
f.

NW unit
Psum Buf.

(b)

W
eig

ht
 B

uf
.

Reg.

PE

Ofmap Buf.

(c)

MAC unit

PE

PE

PE

Figure 5.11: Model validation setup (a) Chip microphotograph of 4-bit MAC unit

(b) 4 K measurement setup (c) Layout of the 2× 2 PE-arrayed NPU

power information (i.e., static power and access energy) and area of each unit

based on the gate count information and the gate parameters.

Architecture-level estimation

The architecture-level layer reports the final estimation results regarding the area,

static power, access energy, and clock frequency of the target NPU configuration.

For the accurate prediction, this layer not only integrates the microarchitecture-

level estimations based on the unit counts but also considers the inter-unit gate pair

information. For instance, we calculate all the inter-unit communication latency

based on the interfacing gates’ timing parameters and include them to derive the

highest frequency in NPU. Also, based on the estimated unit-to-unit distance, we

calculate the area of wire cells required to connect each unit and include it to the

final area estimation.

Model validation

We carefully validate our SFQ-NPU estimator in terms of the frequency, power,

and area by comparing it with a fabricated 4-bit MAC unit (Fig. 5.11(a)) measured

Chapter 5 Extremely fast SFQ neural processing unit architecture 77

Model output Layout design Fabricated chip

(a) Frequency (b) Power consumption (c) Area

0

50

100

MAC
 un

it

SR
mem NPU

Fr
eq

ue
nc

y
(G

Hz
)

0

0.5

1

1.5

MAC
 un

it

SR
mem

NW un
it

NPU

St
at

ic
Po

w
er

 (m
W

)
0

5

10

15

MAC
 un

it

SR
mem

NW un
it

NPU

Ar
ea

 (m
m
2)

Figure 5.12: Model validation result

in the 4 K environment (Fig. 5.11(b)). Also, we compare the model’s output

with the post-layout characterizations for 8-bit 8-entry shift-register-based memory

(SRmem), 8-bit NW unit, and a 4-bit 2× 2 PE-arrayed NPU (Fig. 5.11(c)). Note

that our gate-level estimation is already validated in its accuracy because it is

based on the validated cell library, which succeeded in fabricating real chips for

many times.

First, we validate our microarchitecture-level estimation with MAC unit,

SRmem, and NW unit. Note that there is no frequency result for a single NW

unit because it only consists of DFF-splitter pairs. As Fig. 5.12 shows, SFQ-NPU

estimator accurately predicts all the frequency, power, area for each unit with the

average error of 5.6%, 1.2%, and 1.3%, respectively.

Next, we also validate the architecture-level estimation with the 4-bit 2×2 PE-

arrayed NPU design (Fig. 5.11(c)). Even though it is a small NPU prototype, the

layout design is enough to show the inter-unit connections’ impact on the frequency

due to the 2D-systolic network’s scalable structure. As shown in Fig. 5.12’s NPU,

our model well matches the frequency, power, and area result of the post-layout

simulation with the error of 4.7%, 2.3%, and 9.5%, respectively.

Chapter 5 Extremely fast SFQ neural processing unit architecture 78

SFQ-NPU simulator

Preparation sim.

Buffer fill/drain

Weight mapping

Psum buf.

DA
U

Ofmap buf.

W
eig

ht
 b

uf
.

Ifm
ap

bu
f.

Of
f-c

hi
p

DR
AM

Of
f-c

hi
p

DR
AM

Computation sim.

Computation cycle

Stall analyzer

Access
trace

analyzer

DNN description
• Network size
• Batch size

Arch. description
• Array: Height,

Width
• Buf.: Size,

#chunk

Trace

Cycles

Performance Power

Power info.

Frequency

Memory info.
• Bandwidth

Figure 5.13: SFQ-NPU simulator overview

5.4.2 SFQ-NPU simulator

For the given SFQ-based NPU design running DNN applications, SFQ-NPU sim-

ulator reports the effective performance and power consumption based on the

obtained frequency and power information from the SFQ-NPU estimator. As the

first step for the simulation, SFQ-NPU simulator analyzes all required weight map-

pings by taking the DNN description file (i.e., ifmap window size, filter window

size, the number of filters, the number of strides) and architecture description file

as inputs. We use a batch of typical DNN input images (224× 224× 3) as inputs.

Next, for each weight mapping, the simulator runs the cycle-based simulation to

calculate the consumed cycles and the activated cycles for each hardware unit.

During the simulation, the simulator also models the memory stall incurred by

limited memory bandwidth by taking memory bandwidth as its input. Finally,

the SFQ-NPU simulator aggregates the result of each mapping and reports the

performance numbers (e.g., latency, throughput, PE utilization) and the power

values (i.e., static power, dynamic power).

Chapter 5 Extremely fast SFQ neural processing unit architecture 79

5.5 Optimizing SFQ-based NPU design

In this section, with our simulation framework, we architect an extreme-

performance SFQ-based NPU by taking the best advantage of SFQ technology.

Similar to other devices, SFQ-based NPUs have a large design space that can-

not be easily explored even with the modeling tool. Therefore, we start from our

baseline SFQ-based NPU architecture (Section 5.3) and identify the major per-

formance bottlenecks to be resolved (Section 5.5.1). Next, we propose an optimal

SFQ-based NPU architecture, SuperNPU, which resolves the identified bottlenecks

with the architecture-level solutions (Section 5.5.2).

In the following sections, we conduct performance analyses by running six CNN

workloads (i.e., AlexNet [46], FasterR-CNN [62], GoogLeNet [72], MobileNet [35],

ResNet 50 [32], VGG16 [70]) with our simulation framework. As the input fabrica-

tion process information, we take the currently available AIST 1.0 µm process to

show the SFQ technology’s performance potential conservatively1. Moreover, we

assume the memory bandwidth of 300 GB/s, which is the typical value of HBM

used by the recent TPUv2 [2].

5.5.1 Design implications for the SFQ-optimal NPU archi-

tecture

Baseline SFQ-based NPU setup

We first introduce performance-side design implications by conducting analyses

with the baseline SFQ-based NPU design introduced in Section 5.3 (hereinafter

called Baseline). To show the implications, we start from Baseline following the

TPU core’s [39] architectural specification for three reasons. First, we target the

server-side NPU due to the need for cryogenic cooling support. Second, Base-

line has a similar hardware structure with the TPU core (i.e., weight-stationary

dataflow and systolic-array network). Third, its estimated area might be compa-

rable to the TPU core (< 330 mm2) if the SFQ circuits or JJs are equivalently

1 An i-line stepper with a wavelength of 365 nm (introduced to the market in the mid-1990s)

is used in the fabrication. The state-of-the-art steppers using KrF or ArF excimer lasers would

allow the fabrication of ultrafine Josephson junctions and patterns.

Chapter 5 Extremely fast SFQ neural processing unit architecture 80

0%

50%

100%

Ale
xN
et

Fa
ste
rRC
NN

Go
og
Le
Ne
t

Mo
bil
eN
et

Re
sN
et5
0
VG
G1
6

Cy
cle

 b
re

ak
do

w
n

(N
or

m
al

ize
d)

Workloads

Preparation Computation

Figure 5.14: Baseline’s cycle breakdown nor-

malized for each CNN workload

PE
array

DD
A
U

Ifmap
buffer

Ofmap
buffer

Psum
buffer

Input data
Data path

❷

❶

Figure 5.15: Example data

path of on-chip buffers

scaled to 28 nm as CMOS technology used in the TPU design2. We summarize

Baseline’s specification including the architectural configurations in Table 5.1.

As Table 5.1 shows, the peak performance of Baseline is significantly high,

3366 TMAC/s, with the clock frequency over 52 GHz. However, we find that the

effective performance of Baseline is only about 6.45 TMAC/s on average, which

is even lower than 0.2% of its peak performance (Fig. 5.16). In the following

subsections, we identify the performance bottlenecks and set the design directions

to resolve the identified challenges.

Bottleneck 1. Huge data movement overhead

We first emphasize the importance of reducing the overhead of data movement

among different on-chip buffers and within a single buffer. Fig. 5.14 shows the

2 To the best of our knowledge, no study mentions the physical limit of JJ scaling. On the

other hand, there is the scaling rule that the frequency increases in proportion to the reduction

rate of JJ until 200 nm [40], and T-flip-flop (TFF) has successfully demonstrated at up to 770 GHz

with the technology [15]. Moreover, there are several schemes to reduce the SFQ cell size without

the JJ scaling, such as the introduction of shunt-resistor-free junctions [41], vertically-stacked

junctions [13], multi-layer process technology with high-inductance layers [82] and new materials.

Chapter 5 Extremely fast SFQ neural processing unit architecture 81

Baseline’s cycle breakdown normalized for each CNN workload. As the figure

clearly indicates, the Baseline’s performance is highly dominated by the prepa-

ration step (above 90%), which moves data to the appropriate location before

starting computation. Based on this analysis, we identify the huge data move-

ment overhead as the first performance bottleneck.

Fig. 5.15 shows the data movement overhead with the example showing the

data location right after the end of computation for one weight mapping. First,

the calculated partial sums in the ofmap buffer should move to the psum buffer

when they need to be accumulated with the next computation result (Fig. 5.15 ¶).

In this case, the Baseline should consume a huge amount of cycles corresponding

to the sum of two buffers’ length, 65,536 cycles (= 16 MB ÷ 256 B/cycle), due

to the shift-register-based memory implementation. Also, the ifmap buffer suffers

from a similar situation to move the data from its tail to the head when the used

ifmap data is required for the next computation again (Fig. 5.15 ·). Therefore,

we conclude that we should minimize the wasteful length of the data movement.

Bottleneck 2. Fast but idle computing units

Next, we emphasize the importance of improving the computing unit’s (i.e., PE

array) utilization. Fig. 5.16 shows the Baseline’s roofline plot, which represents the

highest achievable performance for a given computational intensity. In this work,

we define computational intensity as the number of MAC operations executed with

one weight data mapped on the PE. Note that it includes the impact of input batch

size on the amount of data reuse.

With the roofline model, Fig. 5.16 shows the performance and computational

intensity of each workload with a single input batch. Even though the Baseline’s

computing units are fast, they are mostly idle with the maximum PE utilization

(= roofline performance ÷ peak performance) below 2% on average. The under-

utilization directly results from the workloads’ low computational intensity and

the relatively slow memory access (vs. 52 GHz computation speed). Therefore,

we conclude that we should maximize the PE utilization by increasing the com-

putational intensity.

Chapter 5 Extremely fast SFQ neural processing unit architecture 82

1.E+02

1.E+04

1.E+06

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

GM
AC

/s

MAC/Byte (computational intensity)

AlexNet
FasterRCNN
GoogLeNet
MobileNet
ResNet50
VGG16

> 98%

Peak perf.

Roofline perf.
(average)

Figure 5.16: Limited performance improvement in Baseline due to the low com-

putational intensity with a single batch

Bottleneck 3. Waste of on-chip buffer capacity

Lastly, we highlight that it is crucial to resolve the on-chip buffer underutilization

issue. To increase the computational intensity, it is required to increase the input

batch size for DNN workloads. However, it is highly difficult for the Baseline to

take larger batch sizes (i.e., more than one) without additional off-chip memory

access because the on-chip buffer can be significantly underutilized.

Fig. 5.17 shows the three scenarios to explain the buffer underutilization prob-

lem, which happens even with a single batch. First, even with the huge amount of

empty space, the ofmap buffer should flush the data when the next computation

is for the different set of output channels (Fig. 5.17(a)). Second, we waste the

ofmap buffer’s capacity when the number of active PE columns is smaller than the

ofmap buffer’s width (Fig. 5.17(b)). Third, we cannot map the remaining ifmap

channels to the ifmap buffer because each buffer row is dedicated to a given ifmap

channel (Fig. 5.17(c)). Therefore, we conclude that we should maximize the buffer

utilization by resolving all the mentioned cases.

Chapter 5 Extremely fast SFQ neural processing unit architecture 83

PE
array

Weights from
different filters

Under-
utilized

(a)

PE
array

Small number of
active columns

Under-
utilized

(b)

PE
array

Remaining
ifmap
channels

Under-
utilized

(c)

Figure 5.17: On-chip buffer under-utilization in terms of (a) ofmap buffer’s length,

(b) ofmap buffer’s width, and (c) ifmap buffer’s length

5.5.2 SuperNPU: SFQ-optimal NPU architecture

The design implications for optimizing SFQ-based NPU are summarized as follows.

First, the optimal design should have a short path for the on-chip buffer data

movement. Next, the optimal design should be able to take a large batch size

without additional off-chip memory access. Lastly, to achieve the goal, the buffer

underutilization problem also should be resolved.

Following all the implications, we design the optimal SFQ-based NPU archi-

tecture, SuperNPU, as shown in Fig. 5.18. First, SuperNPU has the optimized

on-chip buffer architecture where each on-chip buffer is divided into small chunks

and connected by the multiplexer and demultiplexer trees. Note that SuperNPU

does not have a separated psum buffer but integrates it with the ofmap buffer.

Next, the PE array width of SuperNPU is reduced to 1/4, and the on-chip buffer

capacity becomes twice compared to the Baseline. Finally, each PE in SuperNPU

has eight registers, so a PE can hold eight different weights simultaneously. In the

following subsections, we explain how each design choice resolves the identified

performance bottlenecks in detail.

Optimized on-chip buffer architecture

The optimized on-chip buffer architecture meets the design implications as follows.

First, SuperNPU removes the unnecessary data movement and increases the ef-

fective buffer capacity by integrating the psum buffer and the ofmap buffer. For

Chapter 5 Extremely fast SFQ neural processing unit architecture 84

MUX

D
A
U

DE
M

UX

DEMUX

PE array
(64 x 256)

Ifmap buffer
(64 x 384 KB)

Integrated
output buffer
(256 x 96 KB)

M
UX

to
PE array

to
ifmap buffer

to
off-chip
memory

M
U
L

ADD
8

regs
PE design

❸

❹

Ofmap
buffer
select

Psum
buffer
select

❷

❶

❶

Buffer
chunk

Figure 5.18: SuperNPU overview

example, SuperNPU does not have to move the calculated psum to other buffer

chunks. Instead, it just selects the buffer chunk with the psum data as the psum

buffer, and one of the empty buffer chunks as the ofmap buffer (Fig. 5.18 ¶).

Moreover, by individually selecting the ofmap buffer and psum buffer through

the separated multiplexer/decoder, we can flexibly utilize the integrated buffer.

Fig. 5.19 shows the performance impact of buffer integration. To match the ca-

pacity of input and output buffer, we adjust each buffer’s capacity to 12 MB.

Next, by dividing each buffer to several small buffer chunks, SuperNPU sig-

nificantly reduces data movement overhead in the on-chip buffer (Fig. 5.18 ·).

Our simulation results (Fig. 5.19) show the performance impact of dividing buffer

with the various degree of division. With the increasing division degree, the single

batch performance continuously increases and achieves 6.26 times higher perfor-

mance compared to Baseline, from the division degree of 64. Such performance

improvement mainly originates from the shortened buffer length, which correpond-

ingly reduces the data-shifting cycles. This result indicates that the buffer division

Chapter 5 Extremely fast SFQ neural processing unit architecture 85

0

0.5

1

1.5

0

10

20

Ba
sel

ine

+Int
eg

rat
ion

+Divis
ion

 4

+Divis
ion

 16

+Divis
on

 64

+Divis
ion

 25
6

+Divis
ion

 10
24

+Divis
ion

 40
96

Ar
ea

(N
or

m
al

ize
d

by
 B

as
el

in
e)

Pe
rfo

rm
an

ce
(N

or
m

al
ize

d
by

 B
as

el
in

e)
Single batch performance Max batch performance Area

+Int
eg

rat
ion

(Di
vis

ion
 2)

Figure 5.19: Performance impact and area overhead of the buffer optimizations

0

10

20

30

40

0

20

40

60

256, 24 MB
(Buffer opt.)

128, 38 MB 64, 46 MB 32, 50 MB 16, 51 MB

Co
m

pu
ta

tio
na

l i
nt

en
sit

y
(N

or
m

al
ize

d
by

 B
as

el
in

e)

Pe
rfo

rm
an

ce
(N

or
m

al
ize

d
by

 B
as

el
in

e)

PE array width, on-chip buffer capacity

Max batch performance
(without added buffer)

Max batch performance
(with added buffer)

Computational intensity
(wiith added buffer)

Figure 5.20: Performance and computational intensity with resource balancing

Chapter 5 Extremely fast SFQ neural processing unit architecture 86

successfully resolves the performance bottleneck resulting form data movement

overhead.

The buffer division also mitigates the buffer underutilization issues. For ex-

ample, the NPU does not need to flush the calculated data in ofmap buffer if

there are remaining buffer chunks to hold it, as shown in Fig. 5.18 ¸ (i.e., resolves

Fig. 5.17(a)). Moreover, divided ifmap buffer can hold many input channels, cor-

responding to the PE array height multiplied by the number of buffer chunks in

maximum, as shown in Fig. 5.18 ¹ (i.e., resolves Fig. 5.17(c)). Fig. 5.19 shows the

impact of improved buffer utilization on the performance with the maximum batch

size for each workload. The performance continuously increases and achieves 20

times higher performance from the division degree of 64. Based on the result, we

set the buffer division degree as 64 because the performance is saturated. Note

that further division incurs the exponentially increasing area overhead of multi-

plexer/decoder (Fig. 5.19).

Efficient resource balancing

Next, in SuperNPU, we increase the on-chip buffer capacity by reducing the num-

ber of PEs in the PE array. The insight for this design choice is that there is

more room to increase the computational intensity by sacrificing the excessively-

high peak performance. Note that we cannot utilize the current peak performance

without increasing the computational intensity furthermore (Fig. 5.16).

When reducing the number of PEs, we do not reduce the height of the PE

array but its width, to simultaneously resolve the remaining buffer underutiliza-

tion issue. Even with the optimized on-chip buffer architecture, we still cannot

fully utilize the output buffer due to the problem shown in Fig. 5.17b. However,

this underutilization issue naturally disappears with the reduced PE array width

because the width of the output buffer correspondingly decreases. While reducing

the PE array width, we correspondingly divide the integrated output buffer further

(i.e., division degree from 64 to 256) to maintain the length of each buffer chunk.

Fig. 5.20 shows the performance impact of resouce balancing which increases

the on-chip buffer capacity while reducing the PE array width. In our analysis,

we start from the design with the optimized on-chip buffer (256, 24 MB (Buffer

Chapter 5 Extremely fast SFQ neural processing unit architecture 87

0 10 20 30 40 50 60

1

2

4

8

16

32

Performance (Normalized by Baseline)

Nu
m

be
r o

f r
eg

ist
er

s
in

 P
E

PE array width 64 (with added buffer) PE array width 128 (with added buffer)

Figure 5.21: Performance impact of number of registers in PE

opt.)). Max batch (without added buffer) indicates that the NPU with the given

PE array width and fixed 24 MB on-chip buffer (i.e., no additional capacity). On

the other hand, Max batch (with added buffer) has the increased buffer capacity

corresponding to the values shown in the graph. We derive each on-chip buffer

capacity based on the area occupancy of the PE array and the on-chip buffers.

First, Max batch performance (without added buffer) increases to around 30

times higher compared to Baseline, even though the peak performance decreases.

This result indicates that the PE array width reduction itself increases the com-

putational intensity by improving the buffer utilization. Next, with the increased

buffer capacity, performance (Max batch performance (with added buffer)) is fur-

ther improved to 47 times and 42 times higher compared to Baseline in the PE-

array width of 128 and 64, respectively. Although the optimal PE array width

is 128 in this analysis, the design with the PE array width of 64 has more room

for the performance improvement with a much higher computational intensity.

Therefore, we focus on these two NPU architectures in the following subsection.

Chapter 5 Extremely fast SFQ neural processing unit architecture 88

Increasing the number of registers in PE

Finally, to further improve the performance, we increase the number of weight

registers in PE. With the larger number of weight registers in each PE, SuperNPU

increases the PE utilization by filling several PE pipeline stages with a single ifmap

data. For example, if each PE holds four different weights from different weight

filters, PE can compute four different MAC operations with one ifmap pixel.

Fig. 5.21 shows the performance impact of the number of registers in PE on

two chosen designs (128-width and 64-width PE arrays). First, the PE array

width of 128 (with added buffer) cannot improve its performance further due to

its lower computational intensity, i.e., performance is bounded by the relatively

slow memory access. On the other hand, in the PE array width of 64, we get

much higher performance improvement thanks to its high computational intensity

(Fig. 5.20). Based on this performance analysis, we take the PE array width of 64,

the on-chip buffer capacity of 46 MB, and eight registers per PE in SuperNPU.

5.6 Evaluation

In this section, we show the system-level performance and power efficiency of

SuperNPU by pointing out the impact of each optimization scheme step by step.

We first introduce our evaluation methodology (Section 5.6.1). Next, we evaluate

SuperNPU in terms of the performance (Section 5.6.2) and performance per Watt

(Section 5.6.4).

5.6.1 Evaluation methodology

Evaluation setup

We evaluate SuperNPU by comparing it with the TPU core [39], one of the most

representative server-side DNN accelerators. To estimate the TPU core’s perfor-

mance, we use SCALE-SIM [63], systolic-array-based cycle-accurate DNN acceler-

ator simulator, with the hardware specification summarized in Table 5.1. For the

TPU’s power consumption, we take 40 W as its average value based on [39]. Also,

we set the memory bandwidth of TPU core as 300 GB/s following TPUv2 board

Chapter 5 Extremely fast SFQ neural processing unit architecture 89

Table 5.1: Evaluation setup

TPU Baseline
Buffer

opt.

Resource

opt.

Super-

NPU

PE array

width
256 256 256 64 64

PE array

height
256 256 256 256 256

Ifmap buf.

24 MB

8 MB 12 MB 24 MB 24 MB

Ofmap buf. 8 MB
12 MB 24 MB 24 MB

Psum buf. 8 MB

Weight buf. 64 KB 64 KB 16 KB 128 KB

regs in PE 1 1 1 1 8

Frequency

(GHz)
0.7 52.6 52.6 52.6 52.6

Peak perf.

(TMAC/s)
45 3366 3366 842 842

Area (mm2)

(28nm)
<330 ∼283 ∼285 ∼298 ∼299

specification [2].

In our performance evaluation, we explicitly show the performance impact of

each optimization step by accumulatively evaluating three intermediate SFQ-based

NPU architecture designs: architecture introduced in Section 5.5.1 (Baseline), with

optimized on-chip buffer (Buffer opt.), and with reduced PE array and larger buffer

capacity (Resource opt.). We also set the memory bandwidth for SFQ-based NPU

designs as same as the TPU core, 300 GB/s. As the fabrication technology, we

take AIST 1.0 µm process as same as in Section 5.5. We summarize the setup for

each architecture in Table 5.1.

For the evaluation, we use six representative CNN workloads that have various

application characteristics (e.g., computational intensity, layer configurations). We

set each workload’s batch size as the maximum value, which can be held by a given

on-chip buffer capacity without additional off-chip memory access. For example,

for TPU, we set the batch size of AlexNet as 22 because its largest layer’s (second

layer) input/output data size is 1.05 MB, where 22 input batches can be held

within 24 MB in maximum. Our batch setup is conservative because there is

Chapter 5 Extremely fast SFQ neural processing unit architecture 90

Table 5.2: Workload setup (batch size)

TPU Baseline
Buffer

opt.

Resource

opt.

Super-

NPU

AlexNet 22 1 15 30 30

FasterRCNN 20 1 3 30 30

GoogLeNet 20 1 3 30 30

MobileNet 20 1 3 30 30

ResNet50 20 1 3 30 30

VGG16 3 1 1 7 7

0

20

40

Ale
xN

et

Fa
ste

rRC
NN

Go
og

Le
Ne

t

Mob
ileN

et

Re
sN

et5
0

VG
G1

6

Av
era

ge

Pe
rfo

rm
an

ce

(N
or

m
al

ize
d

to
 T

PU
)

Workloads

TPU
Baseline
Buffer opt.
Resource opt.
SuperNPU

Figure 5.22: Performance evaluation

room to increase the batch size while improving performance. We summarize each

workload’s batch size setup for all NPU designs in Table 5.2.

5.6.2 Performance evaluation

Fig. 5.22 shows the speed-up of SFQ-based NPU designs. The speed-up is calcu-

lated by the throughput (i.e., TMAC/s) normalized to that of the TPU. In our

performance evaluation, SuperNPU achieves the significant speed-up (23 times) as

three architectural optimizations are applied one by one.

The baseline SFQ-based NPU design (Baseline) shows the poor performance,

Chapter 5 Extremely fast SFQ neural processing unit architecture 91

only 40% of TPU’s performance on average. The low performance mainly results

from the data movement overhead between the on-chip buffers, idle PEs, and

low on-chip buffer utilization, as identified in Section 5.5.1. Note that we cannot

put even one more input image without off-chip memory overhead in Baseline

(Table 5.1).

With the optimized buffer architecture, Buffer opt. achieves the speed-up of

7.7 times on average by resolving the performance bottlenecks in Baseline. The

divided and integrated on-chip buffers significantly improve the performance of all

workloads by removing the wasteful on-chip buffer data movement. Furthermore,

by mitigating the buffer underutilization (Fig. 5.17(a), (c)), most workloads can

take benefit of larger batch size (15 in AlexNet and 3 for others except for VGG16).

In Resource opt., average speed-up reaches 17.3 times, mainly thanks to the

much higher computational intensity in all workloads. For example, FasterRCNN,

GoogLeNet, and MobileNet show the drastically increasing performance in this

optimization step with the 10 times larger batch size compared to Buffer opt.

Among them, MobileNet shows the highest speed-up (around 40 times) because of

its small number of weight filters, usually lower than 64. Note that even with the

reduced PE array width, there is no performance degradation in layers consisting

of few weight filters. On the other hand, the performance of AlexNet is reduced

in Resource opt. due to the reduced peak performance. This is the exact opposite

case compared to MobileNet. However, the performance degradation is almost

mitigated by the doubled batch size in AlexNet.

Finally, with the increased number of registers in PE, SuperNPU boosts all

workloads over 10 times, 23 times on average, and 42 times in MobileNet. In the

previous step, the layers consisting of less than 64 filters suffer from performance

degradation corresponding to the reduced PE array width. However, in SuperNPU,

we mitigate performance degradation by increasing the number of weights in PE

(i.e., improving the PE pipeline utilization). For example, in AlexNet, we com-

pensate the performance reduction in Resource opt. by filling the PE pipeline

several times with the single input data. As a result, SuperNPU not only success-

fully shows the performance potential of SFQ-based NPU design but also clearly

indicates the importance of optimizing SFQ processors in the right direction.

Chapter 5 Extremely fast SFQ neural processing unit architecture 92

0

500

1000

Baseline Buffer opt. Resource opt. SuperNPU Baseline
(TDP)

Buffer opt.
(TDP)

Resource opt.
(TDP)

SuperNPU
(TDP)

Po
w

er
 co

ns
um

pt
io

n
(W

)
PE array Dynamic PE array Static Buffer Dynamic Buffer Static

Figure 5.23: Power consumption breakdown of RSFQ-based NPU

0

25

50

Baseline Buffer opt. Resource opt. SuperNPU Baseline
(TDP)

Buffer opt.
(TDP)

Resource opt.
(TDP)

SuperNPU
(TDP)

Po
w

er
 co

ns
um

pt
io

n
(W

)

PE array Buffer

Figure 5.24: Power consumption breakdown of ERSFQ-based NPU

5.6.3 Power consumption evaluation

We evaluate SuperNPU’s power consumption for two different SFQ device tech-

nologies, RSFQ [49], and ERSFQ technology [43]. Fig. 5.23 shows the power con-

sumption breakdown of RSFQ-based NPU. We evaluate both power consumption

in CNN execution and the thermal design power (TDP). In the TDP evaluation,

we assume that all JJs included in the target NPU switches every cycle. As a

result, in the RSFQ-based designs, the static power of both PE array and buffer

parts are dominant. This is the reason why many energy-efficient SFQ logic fam-

ilies try to eliminate their static power. Fig. 5.23 also shows the change in the

power breakdown between before and after the architectural optimizations. After

resource balancing, the buffers’ power consumption occupies the majority of total

Chapter 5 Extremely fast SFQ neural processing unit architecture 93

Table 5.3: Power-efficiency evaluation

Power (W)
Performance/W

(Normalized to TPU)

TPU 40 1

RSFQ-SuperNPU

(w/o cooling cost)
964 0.95

RSFQ-SuperNPU

(w/ cooling cost)
3.8x105 0.002

ERSFQ-SuperNPU

(w/o cooling cost)
1.9 490

ERSFQ-SuperNPU

(w/ cooling cost)
751 1.23

power. Therefore, in the RSFQ logic, the power of the memory part is much larger

than that of the computation part if the speed of computation and memory are

well balanced.

Fig. 5.24 shows the power consumption breakdown of ERSFQ-based NPU. In

contrast to RSFQ power evaluation, the PE array’s power consumption occupies

most of the total power. This is because the buffer optimization enables NPU to

efficiently performs the CNN computation. On the other hand, the result indi-

cates that the baseline seriously suffers from the buffer underutilization and long

buffer length, i.e., the long preparing cycles. Moreover, this difference implies that

the power-efficiency optimization direction can be totally different in RSFQ and

ERSFQ technologies.

5.6.4 Power-efficiency evaluation

We evaluate SuperNPU’s power-efficiency for two different SFQ device technolo-

gies, RSFQ [49], and ERSFQ technology [43]. Table 5.3 shows the power consump-

tion and performance per Watt (i.e., power-efficiency) for SuperNPUs and TPU

core. Power-efficiency values are normalized to that of TPU core, which dissipates

40 W in its operation [39]. Also, to include the cooling cost for the 4 K, we set the

cooling cost as the 400 times of NPU’s power consumption following [34]. Note

Chapter 5 Extremely fast SFQ neural processing unit architecture 94

that the cooling cost is the power consumption of cryocooler for maintaining the

target chip at 4 kelvin and does not include the power consumption to build a

4-kelvin environment. In our power-efficiency evaluation, SuperNPU shows 490

times higher power-efficiency provided the free cooling, with ERSFQ technology.

With RSFQ device technology, SuperNPU consumes 964 W, which is infeasible

power consumption, due to its huge static power dissipation. Even though its low

switching energy, RSFQ technology requires to supply DC-biased current (i.e., DC-

biased voltage with bias resistor) for each JJ for the operation (2.5 mV and 70 µA,

respectively). Recently, although several device-level optimizations are proposed

to reduce the static power, 960 W is too high to make this technology feasible. As

Table 5.3 shows, the power efficiency of RSFQ-SuperNPU is not much lower than

TPU (95%) thanks to the 23 times of speed-up. However, with the cooling cost

included, the normalized power efficiency value becomes 0.002.

On the other hand, ERSFQ-SuperNPU consumes only 1.9 W because there

is no static power consumption in ERSFQ technology [43, 54]. As ERSFQ pro-

vides the bias current using JJ with inductors (i.e., bias resistors are replaced

to bias JJ), it does not consume static power, but the number of JJs increases

(i.e., twice higher dynamic energy per switching). However, thanks to the signifi-

cantly low switching energy of JJs, ERSFQ-SuperNPU achieves 490 times higher

power efficiency compared to the TPU with free cooling provided. Even including

the 400 times of cooling cost, ERSFQ-SuperNPU attains 1.23 times higher power

efficiency. That is, with ERSFQ-SuperNPU, architects can increase the server-

side NPU’s performance to 23 times with 490 times higher power-efficiency with

assuming free cooling.

5.7 Related work

Exploiting emerging devices is a critical challenge to design next-generation com-

puter systems. Many researchers have so far been proposed and discussed such

novel architectures. In this section, we discuss prior work from the viewpoint of

neural network (NN) acceleration and superconducting computing to clarify the

novelty of this paper.

Chapter 5 Extremely fast SFQ neural processing unit architecture 95

A lot of researchers have proposed NN accelerators for power-efficient pro-

cessing [17, 4, 29, 61, 48]. A representative approach exploiting an emerging de-

vice is to implement memristor-based dot-product operations [67, 18, 7]. Another

direction is to introduce PIM (Processor-In-Memory) and die-stacking technolo-

gies [50, 18, 85, 42]. A more challenging attempt is to apply nanophotonic tech-

nology [28, 69, 44, 74, 68], or superconducting SQUIDs [19, 5] to NN operations.

Unlike previous researches, this paper focuses on SFQ circuits and achieves better

performance in both the computing power and energy efficiency than the conven-

tional CMOS designs even with the cooling penalty.

Prior researches regarding SFQ demonstrated its significant potential from the

viewpoint of circuit implementation. Regardless of its high-speed operations, un-

fortunately, their throughput was quite low due to the simple but bit-serial de-

signs [87, 6]. Although a recent design successfully demonstrated high-throughout

bit-parallel multiplier [55, 36], it is still not clear whether or not the SFQ technology

can realize at the system level. Swamit et al. proposed an accelerator for SHA-256

for low latency operations [81]. Tzimpragos et al. introduced an interesting idea

that attempts to apply the concept of the delay-based logic (race logic) [52] to

SFQ [83]. Another relating proposal is to use not SFQ but AQFP [51] for stochas-

tic computing [12]. Our target is to explore and optimize the architecture of the

SFQ-based NPU and to clarify the system-wide potential. To achieve this goal, we

have developed a simulation framework, including power/frequency/area models

validated based on physical chip fabrication or post-layout characterizations. Also,

we have deeply evaluated and presented the significant potential of SFQ devices

at the architectural level.

5.8 Conclusion

Superconductor SFQ technology is a highly promising solution in post-Moore’s

era. However, SFQ computing has not yet been realized because of the lack of

understanding of SFQ technologies’ potentials and limitations. This chapter re-

solves the challenge as follows. First, we implement and validate an SFQ-based

NPU modeling framework. Next, by using the tool, we identify critical challenges

Chapter 5 Extremely fast SFQ neural processing unit architecture 96

in architecting an SFQ-based NPU. Finally, we present SuperNPU, our example

SFQ-based NPU architecture, which effectively addresses the challenges at the ar-

chitectural level. Our evaluation shows that the proposed design outperforms a

conventional state-of-the-art NPU by 23 times with comparable power efficiency,

even including the extremely expensive cooling costs. We believe that our design

methodology can also be applied to architect other SFQ-based architectural units.

This is the first work to show the real potential of SFQ computing, and it

focuses on only the inference part of neural networks as a first step. We believe

that our work can also be applied to the learning part because the learning part

of neural networks also mainly consists of MAC operations. It requires higher pre-

cision calculations compared to the inference, such as floating-point calculations.

However, there are no floating-point adders or multipliers which employ our pro-

posed architecture design guideline. Therefore, this is the future work to support

the learning part of neural networks. Moreover, we only consider the cooling cost

for keeping the target chip at 4 kelvin in this chapter. However, it is necessary to

consider various other factors such as the communication cost with a conventional

CMOS-based computer at room temperature and the SFQ computer’s installa-

tion location when considering practical use. For SFQ computers to see the light

of day in the future, it is necessary to carefully investigate the target applica-

tion of SFQ computers and evaluate their power performance in consideration of

installing these computers and the communication cost with room-temperature

computers. We believe that our work is the starting point to realize SFQ-based

high-performance computing.

Chapter 6 Conclusions 97

Chapter 6

Conclusions

We are currently facing the era where Moore’s Law, which has so far contributed

to the computer systems’ improvement, does not hold anymore. In this era, we

are running out of an effective option to improve the performance of the computer

system while maintaining its power and temperature budget. This dissertation

tackles the problem by using superconductor SFQ technology.

Due to its device’s high potentials, many SFQ-related research efforts have been

made in various aspects, especially in the device and circuit area. Many physical

implementations have successfully demonstrated at the outstanding frequency to

show the device potential and feasibility of SFQ logic. However, these designs have

prioritized successful demonstrations, and the real potential and effectiveness of

SFQ computing are still not clear.

Therefore, this dissertation firstly explores the architectural design space of

SFQ processors to maximize the device potential at the system level while min-

imizing its limitations. As a result, we propose the architectural design guide-

lines, bit-parallel processing with gate-level deep pipeline structure, are suitable

for achieving high performance. This is a novel architecture exploiting its unique

natures and entirely different from conventional CMOS technology. Besides, we

propose fine-grained multithreading execution as the pipeline stall concealment

technologies to prevent significant performance degradation. Although the fine-

grained multithreading can keep the circuits simple, the target applications are

limited. Moreover, it will be challenging to achieve the peak performance due to

Chapter 6 Conclusions 98

the required number of threads increasing in proportion to the number of pipeline

stages (i.e., the circuit’s scale). Therefore, we must select the appropriate applica-

tions suitable for such a deep pipeline nature for achieving high-performance SFQ

computing.

Next, this dissertation design and implement a 4-bit SFQ processor based on

our proposed architecture to evaluate our proposal’s effectiveness and feasibility.

As a result of real chip measurement, we confirm the correct operation at 32 GHz

with 6.5 mW. The chip consists of 23,713 JJs on 4.1×5.3mm2 area, and this is one

of the largest demonstrated circuits. Fortunately, the circuit scale is limited to a

few tens of thousands of JJs due to the chip area constraint. However, it becomes

quite hard to design SFQ circuits without any design automation tools if the fabri-

cation process technology evolves. For the future development of SFQ computing,

it is essential not only to study architecture but also to develop such automation

tools. We believe that our work highly motivates industry and academia to work

on SFQ design automation technology.

Finally, this dissertation proposes the SFQ-based NPU architecture based on

the architectural bottleneck analyses to show the real potential of SFQ computing.

Specifically, we implement and validate the SFQ-based NPU simulation framework

and optimize the architecture. It is the first work to model and validate a simulator

for SFQ-based architectures. Besides, we identify and resolve critical architectural

bottlenecks by using the tool and propose the optimized architecture, SuperNPU,

that provides extreme performance and power efficiency by outperforming a con-

ventional CMOS design by 23 times and 490 times, respectively. This work focuses

on the inference part of neural networks as a first step, and we simply estimate

the cooling cost for keeping the target chip at 4 kelvin to evaluate system-level

potential. However, it is necessary to consider various other factors such as the

communication cost with a conventional CMOS-based computer at room tempera-

ture and the SFQ computer’s installation location when considering practical use.

For SFQ computers to see the light of day in the future, it is necessary to carefully

investigate the target application of SFQ computers and evaluate their power per-

formance in consideration of installing these computers and the communication

cost with room-temperature computers. We believe that our work is the starting

Chapter 6 Conclusions 99

point to realize SFQ-based high-performance computing.

This dissertation focuses on SFQ technology and applying it to processors and

accelerators. This is just one application of SFQ technology, and various other

applications are possible such as quantum computer’s controller or completely

different computation logic, e.g., time-domain computing. This technology is still

full of wonders and unclear things for us; in other words, SFQ logic has infinite

potential. On the other hand, there are still a lot of limitations or constraints for

realizing the practical use of SFQ computing, and these issues are summarized as

follows.

• Lack of on-chip and off-chip memory: SFQ circuits can operate at

outstanding speed, such as several tens of GHz even with immature device

size. It is essential to build a high-speed memory system that can exploit

SFQ circuits’ ultra-high-speed nature.

• Low integration density: Although SFQ circuits have high-performance

potential with current device technology, the device size is quite larger than

that of conventional CMOS technology, and it is hard to integrate JJs in a

chip.

• High cooling cost: Our results clearly shows the expensive cooling cost

for keeping the target chip at 4 kelvin, i.e., 490 times higher power effi-

ciency becomes only 1.2 times when considering the cooling cost. There are

mainly two ways to suppress the cooling cost: 1) improving the efficiency of

cryocooler, 2) high-temperature (e.g., 10 or 30 kelvin) operation with new

materials.

• Interface with room temperature: This dissertation shows SFQ com-

puting is suitable for the accelerators. In other words, SFQ computers need

to communicate with conventional CMOS-based computers at room temper-

ature. The interface can be one of the bottlenecks, and thus, it is essential to

develop low-cost interface technology between SFQ and conventional CMOS

computers.

Although there are still several challenges for practical use, this dissertation suc-

cessfully shows the high potential of SFQ computing by device/circuit/architecture

Chapter 6 Conclusions 100

level co-designs even with the immature device technology. We believe that our

work highly motivates industry and academia to work on SFQ technology to pre-

pare for post-Moore’s era. We also believe that our methodology (e.g., exploring

and designing the architecture for a novel technology) can also be applied to other

emerging technology.

Chapter 6 Conclusions 101

Acknowledgement

Many teachers, friends, colleagues, and family members have contributed to

this dissertation. I am deeply grateful for their contributions.

First and foremost, I want to thank my advisor, Prof. Koji Inoue, for providing

me the freedom and resources to pursue my interests, for giving me so many

thoughtful and constructive advice on my research, for making an opportunity

to go to study abroad. I feel very fortunate to complete a Ph.D. under your

supervision.

Besides my advisor, I would like to thank my dissertation committee members,

Prof. Kenji Hisazumi and Prof. Yusuke Matsunaga, for their essential comments

from the different point of view. These advice from the specialists are irreplaceable

for this dissertation.

Next, I would like to thank Prof. Tanaka, who has supported my research for a

long time. Thank you for teaching me the fundamentals of research and discussing

many research topics with me so often. My research would not have come to be

without your dedication and encouragement.

Furthermore, I would like to express my sincere gratitude to Prof. Takatsugu

Ono. He managed to find time to attend my meeting and gave me essential

comments and advice. He taught not only about the technical things but also

what research life to be.

I would like to be grateful to Prof. Jangwoo Kim, who accepted my visit to his

laboratory at Seoul University. His advice is essential for my study to progress. I

also thank Dr. Ilkwon Byun for his support about my life in Korea and my study

to progress.

Special thanks to all the members of the Cyber-Physical Computing Labo-

ratory, including Prof. Teruo Tanimoto, Prof. Satoshi Kawakami, Dr. Keitaro

Chapter 6 Conclusions 102

Oka, Mr. Kosuke Fukumitsu, Ms. Hiroko Fujise, and Ms. Junko Ochiai. I want

to thank the Nagoya University members, including Prof. Akira Fujimaki, Prof

Taro Yamashita, Dr. Ikki Nagaoka, and Ms. Yasuyo Ogawa. I also thank the

Seoul University members, including Mr. Dongmoon Min and Mr. Gyu-Hyeon

Lee. Thanks to my dissertation committee members, Prof. Kenji Hisazumi and

Prof. Yusuke Matsunaga. To my friends: thank you very much for your love and

support.

Finally, I would like to express my deepest gratitude to my family for supporting

me and watching over me warmly. I also thank my girlfriend for her encouragement

and support.

List of Publications by the Author 103

List of Publications by the

Author

1. Koki Ishida, Masamitsu Tanaka, Takatsugu Ono, and Koji Inoue, “Single-

flux-quantum cache memory architecture”, 2016 International SoC Design

Conference (ISOCC), pp. 105-106, 2016.

2. Koki Ishida, Masamitsu Tanaka, Takatsugu Ono, and Koji Inoue, “Exploring

design space of a single-flux-quantum microprocessor (In Japanese)”, IPSJ

Journal, vol.58, no.3, 2017.

3. Koki Ishida, Masamitsu Tanaka, Ikki Nagaoka, Takatsugu Ono, Satoshi

Kawakami, Teruo Tanimoto, Akira Fujimaki, and Koji Inoue, “32 GHz

6.5 mW Gate-Level-Pipelined 4-Bit Processor using Superconductor Single-

Flux-Quantum Logic”, 2020 IEEE Symposium on VLSI Circuits, pp. 1-2,

2020.

4. Koki Ishida, Ilkwon Byun, Ikki Nagaoka, Kosuke Fukumitsu, Masamitsu

Tanaka, Satoshi Kawakami, Teruo Tanimoto, Takatsugu Ono, Jangwoo Kim,

and Koji Inoue, “SuperNPU: An Extremely Fast Neural Processing Unit Us-

ing Superconducting Logic Devices”, 2020 53rd Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO), pp. 58-72, 2020.

References 104

References

[1] 42 Years of Microprocessor Trend Data. https://www.karlrupp.net/2018/

02/42-years-of-microprocessor-trend-data/.

[2] Hot Chips 2017: A Closer Look At Google’s TPU v2. https://

www.tomshardware.com/news/tpu-v2-google-machine-learning,35370.

html.

[3] Intel’s Core i7 processors. https://techreport.com/review/15818/

intels-core-i7-processors/.

[4] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie En-

right Jerger, and Andreas Moshovos. Cnvlutin: Ineffectual-neuron-free deep

neural network computing. ACM SIGARCH Computer Architecture News,

44(3):1–13, 2016.

[5] M. Altay Karamuftuoglu and Ali Bozbey. Single Flux Quantum Based Ultra-

high Speed Spiking Neuron. arXiv e-prints, page arXiv:1812.10354, December

2018.

[6] Y. Ando, R. Sato, M. Tanaka, K. Takagi, N. Takagi, and A. Fujimaki. Design

and demonstration of an 8-bit bit-serial RSFQ microprocessor: CORE e4.

IEEE Transactions on Applied Superconductivity, 26(5):1–5, 2016.

[7] Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu, Martin

Foltin, R. Stanley Williams, Paolo Faraboschi, Wen-mei W Hwu, John Paul

Strachan, Kaushik Roy, and Dejan S. Milojicic. PUMA: A programmable

ultra-efficient memristor-based accelerator for machine learning inference. In

Proceedings of the 24th International Conference on Architectural Support for

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.tomshardware.com/news/tpu-v2-google-machine-learning,35370.html
https://www.tomshardware.com/news/tpu-v2-google-machine-learning,35370.html
https://www.tomshardware.com/news/tpu-v2-google-machine-learning,35370.html
https://techreport.com/review/15818/intels-core-i7-processors/
https://techreport.com/review/15818/intels-core-i7-processors/

References 105

Programming Languages and Operating Systems, ASPLOS ’19, page 715–731,

New York, NY, USA, 2019. Association for Computing Machinery.

[8] W. Aspray. The intel 4004 microprocessor: what constituted invention? IEEE

Annals of the History of Computing, 19(3):4–15, 1997.

[9] Manjul Bhushan, Paul Bunyk, Michael Cuthbert, Erik P. DeBenedictis,

Michael Frank, and Travis Humble. Cryogenic electronics and quantum in-

formation processing. 6 2019.

[10] P. Bunyk and P. Litskevitch. Case study in rsfq design: fast pipelined paral-

lel adder. IEEE Transactions on Applied Superconductivity, 9(2):3714–3720,

June 1999.

[11] I. Byun, D. Min, G. Lee, S. Na, and J. Kim. Cryocore: A fast and dense

processor architecture for cryogenic computing. In 2020 ACM/IEEE 47th

Annual International Symposium on Computer Architecture (ISCA), pages

335–348, 2020.

[12] Ruizhe Cai, Ao Ren, Olivia Chen, Ning Liu, Caiwen Ding, Xuehai Qian, Jie

Han, Wenhui Luo, Nobuyuki Yoshikawa, and Yanzhi Wang. A stochastic-

computing based deep learning framework using adiabatic quantum-flux-

parametron superconducting technology. In Proceedings of the 46th Interna-

tional Symposium on Computer Architecture, ISCA ’19, page 567–578, New

York, NY, USA, 2019. Association for Computing Machinery.

[13] M. A. Castellanos-Beltran, D. I. Olaya, A. J. Sirois, P. D. Dresselhaus, S. P.

Benz, and P. F. Hopkins. Stacked Josephson junctions as inductors for sin-

gle flux quantum circuits. IEEE Transactions on Applied Superconductivity,

29(5):1–5, 2019.

[14] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell broadband engine

architecture and its first implementation: A performance view. IBM J. Res.

Dev., 51(5):559–572, September 2007.

[15] Wei Chen, Alexander Rylyakov, V. Patel, J.E. Lukens, and K.K. Likharev.

References 106

Rapid single flux quantum t-flip flop operating up to 770 GHz. Applied Su-

perconductivity, IEEE Transactions on, 9:3212 – 3215, 07 1999.

[16] Y. Chen, J. Emer, and V. Sze. Eyeriss: A spatial architecture for energy-

efficient dataflow for convolutional neural networks. In 2016 ACM/IEEE 43rd

Annual International Symposium on Computer Architecture (ISCA), pages

367–379, 2016.

[17] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,

N. Sun, and O. Temam. Dadiannao: A machine-learning supercomputer.

In Proceedings of the 47th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 609–622, 2014.

[18] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu,

Yu Wang, and Yuan Xie. PRIME: A novel processing-in-memory architec-

ture for neural network computation in ReRAM-based main memory. In

Proceedings of the 43rd International Symposium on Computer Architecture,

ISCA ’16, page 27–39. IEEE Press, 2016.

[19] F Chiarello, P Carelli, M G Castellano, and G Torrioli. Artificial neural

network based on SQUIDs: demonstration of network training and operation.

Superconductor Science and Technology, 26(12):125009, oct 2013.

[20] R. Courtland. Google aims for quantum computing supremacy [news]. IEEE

Spectrum, 54(6):9–10, 2017.

[21] I. M. Dayton, T. Sage, E. C. Gingrich, M. G. Loving, T. F. Ambrose, N. P.

Siwak, S. Keebaugh, C. Kirby, D. L. Miller, A. Y. Herr, Q. P. Herr, and

O. Naaman. Experimental demonstration of a Josephson magnetic memory

cell with a programmable π-junction. IEEE Magnetics Letters, 9:1–5, 2018.

[22] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and

A. R. LeBlanc. Design of ion-implanted MOSFET’s with very small physical

dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.

[23] M. Dorojevets, P. Bunyk, and D. Zinoviev. Flux chip: Design of a 20-GHz

16-bit ultrapipelined rsfq processor prototype based on 1.75-/spl mu/m lts

References 107

technology. IEEE Transactions on Applied Superconductivity, 11(1):326–332,

2001.

[24] M. Dorojevets, Z. Chen, C. L. Ayala, and A. K. Kasperek. Towards 32-

bit energy-efficient superconductor RQL processors: The cell-level design and

analysis of key processing and on-chip storage units. IEEE Transactions on

Applied Superconductivity, 25(3):1–8, 2015.

[25] E.S. Fang and T. Van Duzer. A Josephson integrated circuit simulator (JSIM)

for superconductive electronics application. Extended Abstracts of 1989 In-

ternational Superconductivity Electronics Conference, pages 407–410, 1989.

[26] B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee, G. Gervais, Roy Kim, T. Le,

Peichun Liu, J. Leenstra, J. Liberty, B. Michael, Hwa-Joon Oh, S. M. Mueller,

O. Takahashi, A. Hatakeyama, Y. Watanabe, N. Yano, D. A. Brokenshire,

M. Peyravian, Vandung To, and E. Iwata. The microarchitecture of the syn-

ergistic processor for a cell processor. IEEE Journal of Solid-State Circuits,

41(1):63–70, Jan 2006.

[27] L. Gomes. Quantum computing: Both here and not here. IEEE Spectrum,

55(4):42–47, 2018.

[28] Matthias Gruber, Jürgen Jahns, and Stefan Sinzinger. Planar-integrated op-

tical vector-matrix multiplier. Appl. Opt., 39(29):5367–5373, Oct 2000.

[29] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A

Horowitz, and William J Dally. Eie: efficient inference engine on com-

pressed deep neural network. ACM SIGARCH Computer Architecture News,

44(3):243–254, 2016.

[30] R. Harris, M. W. Johnson, T. Lanting, A. J. Berkley, J. Johansson, P. Bunyk,

E. Tolkacheva, E. Ladizinsky, N. Ladizinsky, T. Oh, F. Cioata, I. Perminov,

P. Spear, C. Enderud, C. Rich, S. Uchaikin, M. C. Thom, E. M. Chapple,

J. Wang, B. Wilson, M. H. S. Amin, N. Dickson, K. Karimi, B. Macready,

C. J. S. Truncik, and G. Rose. Experimental investigation of an eight-

qubit unit cell in a superconducting optimization processor. Phys. Rev. B,

82:024511, Jul 2010.

References 108

[31] Allan Hartstein and Thomas R Puzak. The optimum pipeline depth for a

microprocessor. In ACM SIGARCH Computer Architecture News, volume 30,

pages 7–13. IEEE Computer Society, 2002.

[32] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-

tion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 770–778, 2016.

[33] Quentin P. Herr, Anna Y. Herr, Oliver T. Oberg, and Alexander G. Ioan-

nidis. Ultra-low-power superconductor logic. Journal of Applied Physics,

109(10):103903–103903–8, May 2011.

[34] D. S. Holmes, A. L. Ripple, and M. A. Manheimer. Energy-efficient supercon-

ducting computing—power budgets and requirements. IEEE Transactions on

Applied Superconductivity, 23(3):1701610–1701610, 2013.

[35] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Wei-

jun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mo-

bileNets: Efficient Convolutional Neural Networks for Mobile Vision Applica-

tions. arXiv e-prints, page arXiv:1704.04861, April 2017.

[36] K. Ishida, M. Tanaka, I. Nagaoka, T. Ono, S. Kawakami, T. Tanimoto, A. Fu-

jimaki, and K. Inoue. 32 GHz 6.5 mW gate-level-pipelined 4-bit processor

using superconductor single-flux-quantum logic. In 2020 IEEE Symposium

on VLSI Circuits, pages 1–2, 2020.

[37] K. Ishida, M. Tanaka, T. Ono, and K. Inoue. Single-flux-quantum cache

memory architecture. In 2016 International SoC Design Conference (ISOCC),

pages 105–106, 2016.

[38] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson,

R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud,

J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov,

C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang,

B. Wilson, and G. Rose. Quantum annealing with manufactured spins. Na-

ture, 473(7346):194–198, 2011.

References 109

[39] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-

rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,

Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,

Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir

Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann,

C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Ju-

lian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan,

Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,

James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,

Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul

Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark

Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,

Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snel-

ham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thor-

son, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter,

Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter performance

analysis of a tensor processing unit. In Proceedings of the 44th Annual In-

ternational Symposium on Computer Architecture, ISCA ’17, page 1–12, New

York, NY, USA, 2017. Association for Computing Machinery.

[40] Alan M Kadin, Cesar A Mancini, Marc J Feldman, and Darren K Brock.

Can RSFQ logic circuits be scaled to deep submicron junctions? Applied

Superconductivity, IEEE Transactions on, 11(1):1050–1055, 2001.

[41] Ryohei Kanada, Yuki Nagai, Hiroyuki Akaike, and Akira Fujimaki. Self-

Shunted NbN Junctions With NbNx/AlN Bilayered Barriers for 4 K Opera-

tion. IEEE Transactions on Applied Superconductivity, 19(3):249–252, June

2009.

[42] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal

Mukhopadhyay. Neurocube: A programmable digital neuromorphic archi-

tecture with High-Density 3D memory. SIGARCH Comput. Archit. News,

44(3):380–392, June 2016.

[43] D. E. Kirichenko, S. Sarwana, and A. F. Kirichenko. Zero static power dis-

References 110

sipation biasing of RSFQ circuits. IEEE Transactions on Applied Supercon-

ductivity, 21(3):776–779, June 2011.

[44] Ken’ichi Kitayama, Masaya Notomi, Makoto Naruse, Koji Inoue, Satoshi

Kawakami, and Atsushi Uchida. Novel frontier of photonics for data

processing–photonic accelerator. APL Photonics, 4(9):090901, 2019.

[45] G. Konno, Y. Yamanashi, and N. Yoshikawa. Fully functional operation of

low-power 64-kb Josephson-CMOS hybrid memories. IEEE Transactions on

Applied Superconductivity, 27(4):1–7, 2017.

[46] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifi-

cation with deep convolutional neural networks. In Proceedings of the 25th

International Conference on Neural Information Processing Systems - Volume

1, NIPS’12, page 1097–1105, Red Hook, NY, USA, 2012. Curran Associates

Inc.

[47] Gyu-hyeon Lee, Dongmoon Min, Ilkwon Byun, and Jangwoo Kim. Cryogenic

computer architecture modeling with memory-side case studies. In Proceed-

ings of the 46th International Symposium on Computer Architecture, ISCA

’19, page 774–787, New York, NY, USA, 2019. Association for Computing

Machinery.

[48] Robert LiKamWa, Yunhui Hou, Julian Gao, Mia Polansky, and Lin Zhong.

Redeye: analog convnet image sensor architecture for continuous mobile vi-

sion. ACM SIGARCH Computer Architecture News, 44(3):255–266, 2016.

[49] K. K. Likharev and V. K. Semenov. RSFQ logic/memory family: a new

Josephson-junction technology for sub-terahertz-clock-frequency digital sys-

tems. IEEE Transactions on Applied Superconductivity, 1(1):3–28, March

1991.

[50] Jiawen Liu, Hengyu Zhao, Matheus Almeida Ogleari, Dong Li, and Jishen

Zhao. Processing-in-Memory for energy-efficient neural network training: A

heterogeneous approach. In Proceedings of the 51st Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, MICRO-51, page 655–668. IEEE

Press, 2018.

References 111

[51] K. Loe and E. Goto. Analysis of flux input and output josephson pair device.

IEEE Transactions on Magnetics, 21(2):884–887, 1985.

[52] Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. Race logic: A

hardware acceleration for dynamic programming algorithms. SIGARCH Com-

put. Archit. News, 42(3):517–528, June 2014.

[53] Dongmoon Min, Ilkwon Byun, Gyu-Hyeon Lee, Seongmin Na, and Jangwoo

Kim. Cryocache: A fast, large, and cost-effective cache architecture for cryo-

genic computing. In Proceedings of the Twenty-Fifth International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’20, page 449–464, New York, NY, USA, 2020. Association for Com-

puting Machinery.

[54] O. A. Mukhanov. Energy-efficient single flux quantum technology. IEEE

Transactions on Applied Superconductivity, 21(3):760–769, 2011.

[55] I. Nagaoka, M. Tanaka, K. Inoue, and A. Fujimaki. A 48GHz 5.6mW gate-

level-pipelined multiplier using single-flux quantum logic. In 2019 IEEE In-

ternational Solid- State Circuits Conference - (ISSCC), pages 460–462, 2019.

[56] I. Nagaoka, M. Tanaka, K. Sano, T. Yamashita, A. Fujimaki, and K. In-

oue. Demonstration of an energy-efficient, gate-level-pipelined 100 TOPS/W

arithmetic logic unit based on low-voltage rapid single-flux-quantum logic.

In 2019 IEEE International Superconductive Electronics Conference (ISEC),

pages 1–3, 2019.

[57] Shuichi Nagasawa, Kenji Hinode, Tetsuro Satoh, Mutsuo Hidaka, Hiroyuki

Akaike, Akira Fujimaki, Nobuyuki Yoshikawa, Kazuyoshi Takagi, and Nao-

fumi Takagi. Nb 9-layer fabrication process for superconducting large-scale

SFQ circuits and its process evaluation. IEICE Transactions on Electronics,

E97.C(3):132–140, 2014.

[58] K. Nakajima, Y. Onodera, and Y. Ogawa. Logic design of Josephson network.

Journal of Applied Physics, 47(4):1620–1627, 1976.

References 112

[59] Ghasem Pasandi, Alireza Shafaei, and Massoud Pedram. SFQmap: A Tech-

nology Mapping Tool for Single Flux Quantum Logic Circuits. arXiv e-prints,

page arXiv:1901.00894, January 2019.

[60] M. Pedram and Y. Wang. Design automation methodology and tools for

superconductive electronics. In 2018 IEEE/ACM International Conference

on Computer-Aided Design (ICCAD), pages 1–6, 2018.

[61] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang

Lee, Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David

Brooks. Minerva: Enabling low-power, highly-accurate deep neural network

accelerators. In 2016 ACM/IEEE 43rd Annual International Symposium on

Computer Architecture (ISCA), pages 267–278. IEEE, 2016.

[62] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal Networks. arXiv

e-prints, page arXiv:1506.01497, June 2015.

[63] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and

Tushar Krishna. SCALE-Sim: Systolic CNN Accelerator Simulator. arXiv

e-prints, page arXiv:1811.02883, October 2018.

[64] R. Sato, Y. Hatanaka, Y. Ando, M. Tanaka, A. Fujimaki, K. Takagi, and

N. Takagi. High-speed operation of random-access-memory-embedded micro-

processor with minimal instruction set architecture based on rapid single-flux-

quantum logic. IEEE Transactions on Applied Superconductivity, 27(4):1–5,

June 2017.

[65] R. R. Schaller. Moore’s law: past, present and future. IEEE Spectrum,

34(6):52–59, 1997.

[66] E. A. Sete, W. J. Zeng, and C. T. Rigetti. A functional architecture for

scalable quantum computing. In 2016 IEEE International Conference on

Rebooting Computing (ICRC), pages 1–6, 2016.

[67] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,

John Paul Strachan, Miao Hu, R. Stanley Williams, and Vivek Srikumar.

References 113

ISAAC: A convolutional neural network accelerator with in-Situ analog arith-

metic in crossbars. SIGARCH Comput. Archit. News, 44(3):14–26, June 2016.

[68] Yichen Shen, Nicholas C Harris, Scott Skirlo, Mihika Prabhu, Tom Baehr-

Jones, Michael Hochberg, Xin Sun, Shijie Zhao, Hugo Larochelle, Dirk En-

glund, et al. Deep learning with coherent nanophotonic circuits. Nature

Photonics, 2017.

[69] Kyle Shiflett, Dylan Wright, Avinash Karanth, and Ahmed Louri. PIXEL:

Photonic neural network accelerator. In Proceedings of the 26th IEEE In-

ternational Symposium on High-Performance Computer Architecture, HPCA

’20, February 2020.

[70] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv 1409.1556, 09 2014.

[71] Eric Sprangle and Doug Carmean. Increasing processor performance by im-

plementing deeper pipelines. In Computer Architecture, 2002. Proceedings.

29th Annual International Symposium on, pages 25–34. IEEE, 2002.

[72] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew

Rabinovich. Going Deeper with Convolutions. arXiv e-prints, page

arXiv:1409.4842, September 2014.

[73] Shuichi Tahara, Ichiro Ishida, Yumi Ajisawa, and Yoshifusa Wada. Exper-

imental vortex transitional nondestructive read-out Josephson memory cell.

Journal of Applied Physics, 65(2):851–856, January 1989.

[74] Alexander N. Tait, Thomas Ferreira de Lima, Ellen Zhou, Allie X. Wu,

Mitchell A. Nahmias, Bhavin J. Shastri, and Paul R. Prucnal. Neuromorphic

photonic networks using silicon photonic weight banks. Scientific Reports,

7(1), Aug 2017.

[75] K. Takagi, M. Tanaka, S. Iwasaki, R. Kasagi, I. Kataeva, S. Nagasawa,

T. Satoh, H. Akaike, and A. Fujimaki. SFQ propagation properties in passive

References 114

transmission lines based on a 10-Nb-layer structure. IEEE Transactions on

Applied Superconductivity, 19(3):617–620, 2009.

[76] M. Tanaka, M. Suzuki, G. Konno, Y. Ito, A. Fujimaki, and N. Yoshikawa.

Josephson-CMOS hybrid memory with nanocryotrons. IEEE Transactions

on Applied Superconductivity, 27(4):1–4, 2017.

[77] M Tanaka, Y Yamanashi, N Irie, HJ Park, S Iwasaki, K Takagi, K Taketomi,

A Fujimaki, N Yoshikawa, H Terai, et al. Design and implementation of a

pipelined 8 bit-serial single-flux-quantum microprocessor with cache memo-

ries. Superconductor Science and Technology, 20(11):S305–S309, 2007.

[78] Masamitsu Tanaka, Masato Ito, Atsushi Kitayama, Tomohito Kouketsu, and

Akira Fujimaki. 18-GHz, 4.0-aJ/bit operation of ultra-low-energy rapid single-

flux-quantum shift registers. Japanese Journal of Applied Physics, 51:053102,

may 2012.

[79] Masamitsu Tanaka, F. Matsuzaki, T. Kondo, N. Nakajima, Yuki Yamanashi,

A. Fujimaki, H. Hayakawa, Nobuyuki Yoshikawa, H. Terai, and S. Yorozu. A

single-flux-quantum logic prototype microprocessor. volume 47, pages 298 –

529 Vol.1, 03 2004.

[80] Guang-Ming Tang, Pei-Yao Qu, Xiao-Chun Ye, and Dong-Rui Fan. Logic de-

sign of a 16-bit bit-slice arithmetic logic unit for 32-/64-bit RSFQ micropro-

cessors. IEEE Transactions on Applied Superconductivity, PP:1–1, 01 2018.

[81] Swamit S. Tannu, Poulami Das, Michael L. Lewis, Robert Krick, Douglas M.

Carmean, and Moinuddin K. Qureshi. A case for superconducting accelera-

tors. In Proceedings of the 16th ACM International Conference on Computing

Frontiers, CF ’19, page 67–75, New York, NY, USA, 2019. Association for

Computing Machinery.

[82] S. K. Tolpygo, V. Bolkhovsky, T. J. Weir, A. Wynn, D. E. Oates, L. M.

Johnson, and M. A. Gouker. Advanced fabrication processes for supercon-

ducting very large-scale integrated circuits. IEEE Transactions on Applied

Superconductivity, 26(3):1–10, 2016.

References 115

[83] Georgios Tzimpragos, Dilip Vasudevan, Nestan Tsiskaridze, George Michelo-

giannakis, Advait Madhavan, Jennifer Volk, John Shalf, and Timothy Sher-

wood. A computational temporal logic for superconducting accelerators. In

Proceedings of the 24th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’20, page 435–448,

New York, NY, USA, 2020. Association for Computing Machinery.

[84] M H Volkmann, A Sahu, C J Fourie, and O A Mukhanov. Implementation of

energy efficient single flux quantum digital circuits with sub-aJ/bit operation.

Superconductor Science and Technology, 26(1):015002, 2013.

[85] P. Wang, Y. Ji, C. Hong, Y. Lyu, D. Wang, and Y. Xie. SNrram: An efficient

sparse neural network computation architecture based on resistive random-

access memory. In Proceedings of the 55th ACM/ESDA/IEEE Design Au-

tomation Conference (DAC), pages 1–6, 2018.

[86] Y. Yamanashi, T. Nishigai, and N. Yoshikawa. Study of LR-loading technique

for low-power single flux quantum circuits. IEEE Transactions on Applied

Superconductivity, 17(2):150–153, June 2007.

[87] Y Yamanashi, M Tanaka, A Akimoto, H Park, Y Kamiya, N Irie,

N Yoshikawa, A Fujimaki, H Terai, and Y Hashimoto. Design and imple-

mentation of a pipelined bit-serial SFQ microprocessor, CORE 1β. IEEE

Transactions on Applied Superconductivity, 17(2):474–477, 2007.

[88] Yuki Yamanashi, Toshiki Kainuma, Nobuyuki Yoshikawa, Irina Kataeva, Hi-

royuki Akaike, Akira Fujimaki, Masamitsu Tanaka, Naofumi Takagi, Shuichi

Nagasawa, and Mutsuo Hidaka. 100 GHz demonstrations based on the single-

flux-quantum cell library for the 10 kA/cm2 Nb multi-layer process. IEICE

Transactions on Electronics, 93(4):440–444, apr 2010.

[89] N Yoshikawa and Y Kato. Reduction of power consumption of RSFQ cir-

cuits by inductance-load biasing. Superconductor Science and Technology,

12(11):918–920, nov 1999.

	1 Introduction
	1.1 Challenges in the conventional CMOS computing
	1.2 Cryogenic computing using superconductor single flux quantum logic and its challenges
	1.3 Thesis statement
	1.4 Contributions
	1.5 Dissertation Organization

	2 Background
	2.1 Trend and challenges of CMOS processors
	2.2 Cryogenic computing
	2.2.1 Low-temperature CMOS computing
	2.2.2 Superconducting computing
	2.2.3 Quantum computing

	2.3 Superconductor single flux quantum logic
	2.3.1 Basic elements of SFQ circuit
	2.3.2 Working principle of SFQ circuit
	2.3.3 Frequency determination
	2.3.4 Power consumption

	2.4 Current status and research trend of SFQ technology
	2.4.1 Fabrication process technology
	2.4.2 Energy-efficient SFQ logic technology
	2.4.3 Circuit demonstrations
	2.4.4 Memory technology

	3 Exploring design space of a SFQ processor
	3.1 Introduction
	3.2 Architectural design space of SFQ processors
	3.2.1 Architecture paramaters
	3.2.2 Performance model
	3.2.3 Delay parameters setup

	3.3 Design space exploration
	3.3.1 Datapath bit width evaluation
	3.3.2 Pipeline depth evaluation

	3.4 Design guidelines for high-performance SFQ processors
	3.5 Conclusions

	4 Prototype design of SFQ processor
	4.1 Introduction
	4.2 Specification of prototype processor
	4.2.1 Architectural design guidelines
	4.2.2 Instruction execution scheme
	4.2.3 Instruction set
	4.2.4 Test program

	4.3 Design and implementation
	4.3.1 Design methodology
	4.3.2 Design challenges and solutions
	4.3.3 Microarchitecture

	4.4 Evaluations
	4.4.1 Verification results of 4-bit processor
	4.4.2 Evaluation of 4-bit processor
	4.4.3 Extension to 64-bit processor
	4.4.4 Estimating the energy efficiency of 64-bit processor

	4.5 Conclusions

	5 Extremely fast SFQ neural processing unit architecture
	5.1 Introduction
	5.2 Background & Motivation
	5.2.1 SFQ technology in the architect's perspective
	5.2.2 Challenges for designing SFQ-based architectural unit
	5.2.3 Research goal: Provide SFQ design principles with NPU

	5.3 Baseline SFQ-based NPU design
	5.3.1 On-chip network unit design
	5.3.2 PE design
	5.3.3 Data alignment unit design

	5.4 Simulation framework
	5.4.1 SFQ-NPU estimator
	5.4.2 SFQ-NPU simulator

	5.5 Optimizing SFQ-based NPU design
	5.5.1 Design implications for the SFQ-optimal NPU architecture
	5.5.2 SuperNPU: SFQ-optimal NPU architecture

	5.6 Evaluation
	5.6.1 Evaluation methodology
	5.6.2 Performance evaluation
	5.6.3 Power consumption evaluation
	5.6.4 Power-efficiency evaluation

	5.7 Related work
	5.8 Conclusion

	6 Conclusions
	List of Publications by the Author
	References

