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Abstract

The amount of machine-readable data is increasing at an enormous and unprecedented rate. For

many institutions and companies, the costs required to store and manage all of this increasing

data make it virtually impossible to do so. Therefore, new foundational technologies for infor-

mation systems that allow us to store, manage, search, and analyze data at smaller expenses, are

strongly desired.

In this thesis we address (1) the substring search problem, (2) the prefix search problem and

(3) the shortest unique substring (SUS) problem, and develop space-efficient data structures that

enable us to quickly respond to queries.

The substring search problem is, given two strings T and P , called the text and pattern, to

find all occurrences of P within T . In the case of static text, it is possible to build from T a data

structure, called an index structure, for fast query processing. The most well-known examples

of such index structures would be the suffix trees (Weiner 1973), the directed acyclic word

graphs (Blumer et al. 1985; Crochemore 1986), the suffix arrays (Manber and Myers 1993).

However, such an index structure consumes about 5 through 20 times the memory size of T .

For this reason, several studies have been undertaken on compressing index structures. There

are two lines. One is to compress indices from an information-theoretic viewpoint, and the other

is to augment compressed texts with additional data structures. In this thesis, we focus on the

latter, especially on index structures based on the grammar-based compression. A context-free

grammar is said to admissible if it generates a single string. The grammar-based compression

is a compression scheme which builds from T an admissible grammar G generating T . This

compression scheme is most suited for highly-repetitive texts.

Claude and Navarro (2012) proposed the first grammar-based index structure of size O(g)

which can be built from an admissible grammar G generating T in O(n + g lg g) time, where

n is the length of T and g is the size of G. It answers a substring query in O(m2 lg logg n +

(m+occ) lg g), wherem is the length of P and occ is the number of occurrences of P within T .
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We note that this method is applicable to an arbitrary admissible grammar. However, it is

impractical for a large value of m. Inspired by the Lyndon trees (Barcelo 1990), we introduce

the Lyndon SLPs, a subclass of admissible grammars. We then propose the Lyndon SLP based

index, a new index structure of O(gL) words of space which can be built in O(n lg n) expected

time using O(n) space, where gL is the size of the Lyndon SLP. The proposed index is capable

of finding all occurrences of P within T in O(m + lgm lg n + occ lg gL) time. That is, we

successfully remove them2 factor. Moreover, we show that the compression ratio of this method

is competitive to some of the existing grammar-based indices by computational experiments.

The prefix search problem is, given a finite set K of k strings and a pattern P , to determine

the subset of K consisting of texts that begin with P . An example of index structures for this

problem is the Patricia tree (Morrison 1968). In this thesis, we focus on the dynamic case where

K dynamically changes. Assuming that the symbols of strings ofK are drawn from an alphabet

of size σ ≤ 2w, we propose dynamic index structures of N lg σ + Θ(k lgN) bits of space or

of t lg σ + Θ(kw) bits of space, where N is the total length of strings of K, t is the number of

nodes of a trie representing K and w is the computer word length, under the assumption of the

w-bit word RAM model.. It responds to a prefix query P of length m in O(m/α+ lgα+ ans)

time expected time, and performs an insertion/deletion of a string of lengthm inO(m/α+lgα)

time, where ans is the number of answer strings in K, α = w/ lg σ. The proposed indices are

faster than existing dynamic indices when m ≥ α.

The shortest unique substring (SUS) problem is, given a text T of length n and a positive

integer p with 1 ≤ p ≤ n, to compute the set SUS(p) of shortest unique substrings T [i..j]

with i ≤ p ≤ j, where a substring of T is said to be unique if it occurs just once in T . Pei

et al. (2013) addressed the problem of finding one element of SUS(p) and presented an index

structure of O(n) words of space that enables constant-time response. However, construction

of this index structure consumes O(n2) time. In this thesis, we tackle the problem of finding all

SUSs and present a new index structure that enables us to enumerate the elements of SUS(p)

in linear time proportional to |SUS(p)|. We also show an algorithm for constructing the index

structure in O(n) time and space.
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Chapter 1

Introduction

1.1 Problems and Contributions

In this thesis we address the following three problems:

Substring search problem. Given two strings T and P called text and pattern respectively, to

find all occurrences of P within T .

Prefix search problem. Given a finite set D of strings, called dictionary, and another string P

called pattern, to determine the strings in D that begin with P .

Shortest unique substring (SUS) problem. Given a string T called text and a positive integer

p with 1 ≤ p ≤ |T |, to find all shortest substring T [i..j] with i ≤ p ≤ j occurring just

once in T .

For each problem, we develop a compact data structure for time efficient query processing.

1.1.1 Self-index for substring search

A context-free grammar is said to represent a string T if it generates the language consisting

only of T . Grammar-based compression [61] is, given a string T , to find a small size description

of T based on a context-free grammar that represents T . By eliminating repetitions, grammar-

based compression is especially useful for highly-repetitive strings. Due to this merit, it has

attracted research interests not only in improving the compression ratio but also in applications

of this compressed representation. Notable applications are substring extraction or compressed

string processing, such as the q-gram frequency calculation [38]. Compressed string processing

is the approach to process a string given by its compressed representation, i.e., without explicitly
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CHAPTER 1. INTRODUCTION

decompressing it. The goal of all these applications is to propose approaches that are faster than

the naive way of explicitly decompressing and processing compressed strings, all while working

in compressed space.

A self-index is a data structure that is a full-text index, i.e., supports various pattern matching

queries on the text, and also provides random access to the text, usually without explicitly hold-

ing the text itself. Examples are the compressed suffix array [40, 43, 64], the compressed com-

pact suffix array [70], and the FM index [32]. These self-indexes are, however, unable to fully

exploit the redundancy of highly repetitive strings. To exploit such repetitiveness, Claude and

Navarro [22] proposed the first self-index based on grammar-based compression. The method is

based on a straight-line program (SLP), a context-free grammar representing a single string in

the Chomsky normal form. Plenty of grammar-based self-indexes have already been proposed

(e.g., [23, 24, 84, 97, 98]).

In this thesis, we first introduce a new class of SLPs, named the Lyndon SLP, inspired by

the Lyndon tree [8]. We then propose a self-index structure of O(g) words of space that can be

built from a string T in O(n lg n) expected time. The proposed self-index can find the starting

positions of all occurrences of a pattern P of length m in O(m + lgm lg n + occ lg g) time,

where n is the length of T , g is the size of the Lyndon SLP for T , and occ is the number of

occurrences of P in T .

1.1.2 Compact dynamic index for prefix search

A keyword K is a string that is uniquely associated with an integer called the identifier of K

(see Example 1). A keyword dictionary is a data structure that maintains a dynamic set K of

keywords, and provides the following operations for a string S on it:

• insert(S) inserts S intoK, and returns its identifier. The keyword dictionary must guaran-

tee that the identifiers of all stored keywords are unique and that each identifier is constant

until its respective keyword is deleted.

• lookup(S) returns the identifier of S if S ∈ K, or returns the invalid identifier ⊥ other-

wise.

• delete(K) removes the keyword K from K.

• locatePrefix(S) returns an iterator on the set of identifiers of all keyword in K having S

2



CHAPTER 1. INTRODUCTION

as a prefix. The iterator can report the next occurrence in constant time1.

Example 1. For the keywordsK1 = brausende,K2 = brauereibräute,K3 = brauen,

K4 = brauchbares, K5 = brausendes and K6 = brauereibier, each subscript i is

the identifier of keyword Ki.

We neglect the string dictionary operation access(i) returning the keyword of an identifier i,

as this function can be realized by a separate data structure (in case of a trie, e.g., an array of

pointers in which the i-th entry points to the node of the trie representing the keyword access(i)).

For the performance of practical keyword dictionaries like RDF stores (e.g., [74]), insertions,

lookups, and prefix queries are the most crucial operations, on which we want to focus in this

thesis.

Keyword dictionaries are an integral data structure with a plethora of applications, e.g., n-

gram language models [87], compression [33], input method editors [63], query auto-completion

[45], or range query filtering [109].

In this thesis, we present a new keyword dictionary based on the compact trie: Given a

dynamic set K of k keywords whose characters are drawn from an integer alphabet of size σ ≤
2w, there is a keyword dictionary representingK in either n lg σ+Θ(k lg n) or |T | lg σ+Θ(kw)

bits of space, where n =
∑

K∈K |K| is the total length of all keywords of K, |T | is the number

of nodes of a trie representing K and w is the computer word length. It supports all keyword

dictionary operations in O(m/α + lgα) expected time with α = w/ lg σ on an input string of

length m.

The above time and space bounds are an improvement to all previously known compact trie

representations such as [12, 99]. One of the most important applications to compact tries is

the suffix tree [104], which is a compact trie of all suffixes of the input string. Prefix searches

arise in various uses of suffix trees, e.g., computing matching statistics [41], online suffix tree

construction [103], online Lempel-Ziv 77 factorization [110], just to name a few. Hence, the

time bound for prefix search is of significant theoretical interest, and our compact trie moves

the best known upper bound closer to the trivial lower bound Ω(m/α) for reading a pattern of

length m word-packed. Also, with delete and insert operations, one can efficiently maintain the

sparse suffix tree [55] for a dynamic set of suffixes to index.

Our experiments reveal that the above improvements are also practically significant. We

note that other previous trie data structures mentioned earlier have the following drawbacks: (1)
1We return an iterator instead of this set, since most of the later explained data structures support all operations

in the same time O(t) for some t, while this operation would take O(t+ s) time, if the returned set has size s.

3



CHAPTER 1. INTRODUCTION

For the HAT-trie or the double array, there are no known non-trivial space and construction time

bounds as their constructions are based on heuristics. In practice, they are also not favorable for

prefix queries. (2) Trie data structures based on the Bonsai trie have the major drawback that

enumerating children is done by querying for each possible edge label in a brute force manner.

So they are no-good candidates for prefix search queries, and are therefore omitted in our prac-

tical evaluation. (3) The trie data structure of Jansson et al. [50] looks theoretically appealing,

but uses theoretically sophisticated data structures for which an efficient implementation looks

cumbersome.

1.1.3 Optimal solution to SUS problem

The shortest unique substring problem was proposed by Pei et al. [86]. Given a string S and

position p, the problem is to find a shortest unique substring (SUS) of S that contains position p,

that is, a substring that only occurs once in S, and whose occurrence contains position p. They

also consider a version of the problem where S may be preprocessed, and SUS queries for

arbitrary positions may be answered efficiently.

For the first version of the problem, Pei et al. [86] presented an algorithm that computes the

SUS for any given position p in O(n) time and space, where n is the length of string S. For

the second version, they present an O(hn) time and O(n) space preprocessing algorithm which

allows queries to be answered in constant time, where h is a value depending on S. However, h

is only bounded by O(n), and in the worst case, this results in O(n2) time preprocessing.

First, we give optimal time solutions for both problems and show that S can be preprocessed

in O(n) time so that a SUS for any query position can be answered in O(1) time. This consid-

erably improves the theoretical worst case running time compared to Pei et al. [86], allowing

us to output a SUS for all positions in the string in O(n) total time. Second, we consider the

general problem of computing all SUSs that contain a given position. Although there can be

multiple shortest substrings that contain a given query position, Pei et al. [86] only considered

the problem of answering a single SUS that contains a position. We show that the same linear

time preprocessing above also allows us to return all SUSs that contain a given query position in

O(k) time, where k is the size of output. Finally, we implement our algorithm and show through

computational experiments that our algorithm is much more practical and scalable compared to

an the algorithm by Pei et al.

After this work, many studies have been performed on the SUS problem and its variants.

4



CHAPTER 1. INTRODUCTION

We mention some of such studies. Ileri et al. [48] presented another optimal solution to the

same problem, which consumes less memory than ours from a practical viewpoint. Hon et

al. [44] presented an in-place algorithm for solving the single-SUS problem. Ganguly et al. [37]

discussed time-space trade-offs on the single-SUS problem. They showed that given a query

position p, a SUS for p can be computed (1) in O(nτ 2 log n
τ
) time using S and an additional

O(n/τ) words of working space; and (2) inO(nτ 2 log n) time using S and an additionalO(n/τ)

words and 4n + o(n) bits of working space, where τ is a given parameter. Hu et al. [46]

considered a more general problem: Given a query interval [i..j] with [i..j] ⊆ [1..n], output

all SUSs that contain [i..j]. They proposed a data structure that returns all SUSs for the query

interval in optimal time. Mieno et al. [79] proposed a data structure of d(log2 3 + 1)ne +

o(n) bits of space that returns all SUSs for a given query interval in optimal time. Mieno et

al. [78] considered a compressed version of this problem: Given a run-length encoded string

S, construct a data structure that returns all SUSs for a query interval. They presented a data

structure of O(r) space, which can be constructed in O(r log r) time and answers queries in

O(
√

logm/ log logm+ k) time, where r is the compressed size of S.

1.2 Organization of This Thesis

The rest of this thesis is organized as follows. In Chapter 2 we give some notations. In Chap-

ter 3, we introduce a new grammar-based compression scheme named Lyndon grammar com-

pression, and compare its compression performance with several other grammar compression

methods by computational experiments. Then we develop a new self-index structure based on

it. In Chapter 4, we present a compact dynamic index structure for prefix search, and compare

its performance with existing dynamic index structures. In Chapter 5, we address the SUS

problem and show an optimal algorithm.
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Chapter 2

Preliminaries

2.1 Notation

Let Σ be an alphabet. An element of Σ∗ is called a string. The length of a string T is denoted

by |T |. The empty string ε is the string of length 0. For a string T = xyz, x, y and z are called

a prefix, substring, and suffix of T , respectively. A prefix (resp. suffix) x of T is called a proper

prefix (resp. suffix) of T if x 6= T . T ` denotes the ` times concatenation of the string T . The i-th

character of a string T is denoted by T [i], where i ∈ [1..|T |]. For a string T and two integers i

and j with 1 ≤ i ≤ j ≤ |T |, let T [i..j] denote the substring of T that begins at position i and

ends at position j. For convenience, let T [i..j] = ε when i > j. For any string P and T , we call

a position i an occurrence of P in T , if T [i..i+ |P | − 1] = P .

For any integers i ≤ j, let [i..j] denote an interval, i.e., the set of integers {i, . . . , j}, and let

|[i..j]| = j− i+ 1 denote the length of the interval. For convenience, let [i..j] denote the empty

set when i > j.

Given two distinct positions i, j (i < j), we say that i is to the left and j the right. Two

distinct intervals are nested, if one is a subset of the other. For two non-nested intervals [i..j]

and [i′..j′], we say that [i..j] is to the left and [i′..j′] is to the right, if i < j. Since, for any

interval [i..j] (1 ≤ i ≤ j ≤ |T |) there is a corresponding substring T [i..j] of T , we abuse the

language and will many times call an interval a substring.

We denote by logb x the logarithm of x to the base b. We often use lg x as an abbreviation

of log2 x.

6



CHAPTER 2. PRELIMINARIES

2.2 Computation Model

Our model of computation is the standard word RAM model of word size w. We can read

and process O(w) bits in constant time. Let n be a natural number with n = O(2w). Storing

an integer of the domain [1..n] costs lg n bits such that pointers for the problem size n can be

represented in lg n bits (like in the transdichotomous model). The choice of this model (severing

the connection between word size and the logarithm of the problem size) is justified by the fact

that the register sizes of SIMD instruction sets is increasing since the recent years significantly

(e.g., AVX512 with 512-bit registers).

7



Chapter 3

Grammar-compressed Self-index with
Lyndon Words

A context-free grammar is said to represent a string T if it generates the language consisting

of T and only T . Grammar-based compression [61] is, given a string T , to find a small size

description of T based on a context-free grammar that represents T . By eliminating repetitions,

grammar-based compression is especially useful for highly-repetitive strings. Due to this merit,

it has attracted research interests not only in improving the compression ratio but also in applica-

tions of this compressed representation. Notable applications are substring extraction or com-

pressed string processing, such as the q-gram frequency calculation [38]. Compressed string

processing is the approach to process a string given by its compressed representation, i.e., with-

out explicitly decompressing it. The goal of all these applications is to propose approaches that

are faster than the naive way of explicitly decompressing and processing compressed strings,

all while working in compressed space.

A self-index is a data structure that is a full-text index, i.e., supports various pattern matching

queries on the text, and also provides random access to the text, usually without explicitly hold-

ing the text itself. Examples are the compressed suffix array [40, 43, 64], the compressed com-

pact suffix array [70], and the FM index [32]2. These self-indexes are, however, unable to fully

exploit the redundancy of highly repetitive strings. To exploit such repetitiveness, Claude and

Navarro [22] proposed the first self-index based on grammar-based compression. The method is

based on a straight-line program (SLP), a context-free grammar representing a single string in

the Chomsky normal form. Plenty of grammar-based self-indexes have already been proposed

(e.g., [23, 98, 97, 84]).

2Navarro and Mäkinen [81] published an excellent survey on this topic.

8



CHAPTER 3. GRAMMAR-COMPRESSED SELF-INDEX WITH LYNDON WORDS

In this chapter, we first introduce a new class of SLPs, named the Lyndon SLP, inspired by

the Lyndon tree [8]. We then propose a self-index structure of O(g) words of space that can be

built from a string T in O(n lg n) expected time. The proposed self-index can find the starting

positions of all occurrences of a pattern P of length m in O(m + lgm lg n + occ lg g) time,

where n is the length of T , g is the size of the Lyndon SLP for T and occ is the number of

occurrences of P in T .

This result was originally published in [102].

3.1 Related Work

The smallest grammar problem is, given a string T , to find the context-free grammar G repre-

senting T with the smallest possible size, where the size ofG is the total length of the right-hand

sides of the production rules in G. Since the smallest grammar problem is NP-hard [96], many

attempts have been made to develop small-sized context-free grammars representing a given

string T . LZ78 [111], LZW [105], Sequitur [83], Sequential [61], LongestMatch [61], Re-

Pair [65], and Bisection [60] are grammars based on simple greedy heuristics. Among them

Re-Pair is known for achieving high compression ratios in practice.

Approximations for the smallest grammar have also been proposed. The AVL grammars [89]

and the α-balanced grammars [19] can be computed in linear time and achieve the currently best

approximation ratio of O(lg(|T |/g∗T )) by using the LZ77 factorization and the balanced binary

grammars, where g∗T denotes the smallest grammar size for T . Other grammars with linear-time

algorithms achieving the approximation O(lg(|T |/g∗T )) are LevelwiseRePair [91] and Recom-

pression [51]. They basically replace di-grams with a new variable in a bottom-up manner simi-

lar to Re-Pair, but use different mechanisms to select the di-grams. On the other hand, LCA [92]

and its variants [93, 72, 73] are known as scalable practical approximation algorithms. The core

idea of LCA is the edit-sensitive parsing (ESP) [26], a parsing algorithm developed for approx-

imately computing the edit distance with moves. The locally-consistent-parsing (LCP) [90] is

a generalization of ESP. The signature encoding (SE) [75], developed for equality testing on a

dynamic set of strings, is based on LCP and can be used as a grammar-transform method. The

ESP index [98, 97] and the SE index [84] are grammar-based self-indexes based on ESP and

SE, respectively.

While our experimental section (Section 3.3.3) serves as a practical comparison between

the sizes of some of the above mentioned grammars, Table 3.1 gives a comparison with some

9



CHAPTER 3. GRAMMAR-COMPRESSED SELF-INDEX WITH LYNDON WORDS

theoretically appealing index data structures based on grammar compression. There, we chose

the indexes of Claude and Navarro [23], Gagie et al. [34], and Christiansen et al. [21] because

these indexes have non-trivial time complexities for answering queries. We observe that our

proposed index has the fastest construction among the chosen grammar indexes, and is compet-

itively small if g = o(γ lg(n/γ)) while being clearly faster than the first two approaches for long

patterns. It is worth pointing out that the grammar index of Christiansen et al. [21] achieves a

grammar size whose upper bound O(γ lg(n/γ)) matches the upper bound of the size g∗T of the

smallest possible grammar. Unfortunately, we do not know how to compare our result within

these terms in general.

Table 3.1: Complexity bounds of self-indexes based on grammar compression.

n is the length of T , z is the number of LZ77 [110] phrases of T , γ is the size of the smallest
string attractor [59] of T , g is the size of the Lyndon SLP of T , ĝ is the size of a given admis-
sible grammar, ε > 0 is a constant, m is the length of a pattern P , and occ is the number of
occurrences of P in T .

Construction space (in words) and time
Index Space Time
[23] O(n) O(n+ ĝ lg ĝ)
[21] O(n) O(n lg n) expected
[21] O(n) O(n lg n) expected
ours O(n) O(n lg n) expected

Needed space (in words) and query time for a pattern of length m
Index Space Locate Time

[23] O(ĝ) O(m2 lg logĝ n+ (m+ occ) lg ĝ)
[34] O(ĝ + z lg lg z) O(m2 + (m+ occ) lg lg n)
[21] O(γ lg(n/γ)) O(m+ lgε γ + occ lgε(γ lg(n/γ)))
[21] O(γ lg(n/γ) lgε(γ lg(n/γ))) O(m+ occ)
Theorem 2 O(g) O(m+ lgm lg n+ occ lg g)

3.2 Preliminaries

3.2.1 Lyndon words and Lyndon trees

Let � denote some total order on Σ that induces the lexicographic order � on Σ∗. We write

u ≺ v to imply u � v and u 6= v for any u, v ∈ Σ∗.

10
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Definition 1 (Lyndon Word [69]). A non-empty string w ∈ Σ+ is said to be a Lyndon word

with respect to ≺ if w ≺ u for every non-empty proper suffix u of w.

By this definition, all characters (∈ Σ1) are Lyndon words.

Definition 2 (Standard Factorization [20, 67]). The standard factorization of a Lyndon word w

with |w| ≥ 2 is an ordered pair (u, v) of strings u, v such that w = uv and v is the longest

proper suffix of w that is also a Lyndon word.

Lemma 1 ([9, 67]). For a Lyndon word w with |w| > 1, the standard factorization (u, v) of w

always exists, and the strings u and v are Lyndon words.

The Lyndon tree of a Lyndon word w, defined below, is the full binary tree induced by

recursively applying the standard factorization on w.

Definition 3 (Lyndon Tree [8]). The Lyndon tree of a Lyndon word w, denoted by LTree(w), is

an ordered full binary tree defined recursively as follows:

• if |w| = 1, then LTree(w) consists of a single node labeled by w;

• if |w| ≥ 2, then the root of LTree(w), labeled by w, has the left child LTree(u) and the

right child LTree(v), where (u, v) is the standard factorization of w.

3.1 shows an example of a Lyndon tree for the Lyndon word aababaababb.

3.2.2 Admissible grammars and straight-line programs (SLPs)

An admissible grammar [61] is a context-free grammar that generates a language consisting

only of a single string. Formally, an admissible grammar (AG) is a set of production rules

GAG = {Xi → expri}
g
i=1, where Xi is a variable and expri is a non-empty string over Σ ∪

{X1, . . . , Xi−1}, called an expression. The variable Xg is called the start symbol. We denote by

val(Xi) the string derived by Xi. We say that an admissible grammar GAG represents a string T

if T = val(Xg). To ease notation, we sometimes associate val(Xi) with Xi. The size of GAG is

the total length of all expressions expri. We assume that any admissible grammar has no useless

symbols.

It should be stated that the above definition of admissible grammar is different with but

equivalent to the original definition in [61], which defines an admissible grammar to be a

11
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aababaababb

aabab

aababb

ababb

aab

ab ab

abb

ab

a a b a b a b a b ba

ab

Figure 3.1: The Lyndon tree for the Lyndon word aababaababb with respect to the order a ≺ b,
where each node is accompanied by its derived string to its right.

context-free grammar G satisfying the conditions: (1) G is deterministic, i.e., for every vari-

able A there is exactly one production rule of the form A → γ, where γ is a non-empty string

consisting of variables and characters; (2) G has no production rule of the form A→ ε; (3) The

language L(G) of G is not empty; and (4) G has no useless symbols, i.e., every symbol appears

in some derivation that begins with the start symbol and ends with a string consisting only of

characters.

A straight-line program (SLP) is an admissible grammar in the Chomsky normal form,

namely, each production rule is either of the form Xi → a for some a ∈ Σ or Xi → XiLXiR

with i > iL, iR. Note that GSLP can derive a string up to length O(2g). This can be seen by

the example string T = a · · · a consisting of n = 2` a’s, where the smallest SLP {X1 →
a} ∪

⋃`+1
j=2{Xj → Xj−1Xj−1} has size 2`+ 1.

The derivation tree TGSLP
of GSLP is a labeled ordered binary tree, where each internal node

is labeled with a variable in {X1, . . . , Xg}, and each leaf is labeled with a character in Σ. The

root node has the start symbol Xg as label. An example of the derivation tree of an SLP is

shown in Figure 3.2.

3.2.3 Grammar irreducibility

An admissible grammar is said to be irreducible if it satisfies the following conditions:

12
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C-1. Every variable other than the start symbol is used more than once (rule utility);

C-2. All pairs of symbols have at most one non-overlapping occurrence in the right-hand sides

of the production rules (di-gram uniqueness); and

C-3. Distinct variables derive different strings.

Grammar-based compression is a combination of

1. the grammar transform, i.e., the computation of an admissible grammar G representing

the input string T , and

2. the grammar encoding, i.e., an encoding for G.

Kieffer and Yang [61] showed that a combination of an irreducible grammar transform and a

zero order arithmetic code is universal, where a grammar transform is said to be irreducible if

the resulting grammars are irreducible.

If an admissible grammar G is not irreducible, we can apply at least one of the following

reduction rules [61] to make G irreducible:

R-1. Replace each variable Xi occurring only once in the right-hand sides of the production

rules with expri and remove the rule Xi → expri. We also remove all production rules

with useless symbols.

R-2. Given there are at least two non-overlapping occurrences of a string γ of symbols with

|γ| ≥ 2 in the right-hand sides of the production rules, replace each of the occurrences

of γ with the variable Xi, where Xi → γ is an existing or newly created production rule.

Recurse until no such γ longer exists.

R-3. For each two distinct variables Xi and Xj deriving an identical string, (a) replace all

occurrences ofXj withXi in the right-hand sides of the production rules, and (b) remove

the production rule Xj → exprj and discard the variable Xj . Consequently, there are

no two distinct variables Xi and Xj with val(Xi) = val(Xj). This operation possibly

makes some variables useless; the production rules with such variables will be removed

by R-1.

13
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3.3 Lyndon SLP

In what follows, we propose a new SLP, called Lyndon SLP. A Lyndon SLP is an SLP GLYN =

{Xi → expri}
g
i=1 representing a Lyndon word, and satisfies the following properties:

• The strings val(Xi) are Lyndon words for all variables Xi.

• The standard factorization of the string val(Xi) is (val(XiL), val(XiR)) for every rule

Xi → XiLXiR .

• No pair of distinct variables Xi and Xj satisfies val(Xi) = val(Xj).

The derivation tree (when excluding its leaves) of TGLYN
is isomorphic to the Lyndon tree of T

(cf. Figure 3.2).

X
7

X
6

X
5

X
4

X
2

X
3

X
8

X
9

ba a ba ba a ba b

X
1

X
1

X
1

X
1

X
1

X
1

X
2

X
2

X
2

X
2

X
3

X
3

X
3

X1 → a

X2 → b

X3 → X1X2

X4 → X3X2

X5 → X3X4

X6 → X1X5

X7 → X1X3

X8 → X7X3

X9 → X8X6

Figure 3.2: Left: The derivation tree of the Lyndon SLP GLYN with g = 9 representing the
Lyndon word T = aababaababb. Right: The production rules of GLYN.

The rest of this chapter is devoted to algorithmic aspects regarding the Lyndon SLP. We

study its construction (Section 3.3.1), practically evaluate its size (Section 3.3.3), and propose

an index data structure on it (Section 3.4). For that, we work in the word RAM model supporting

packing characters of sufficiently small bit widths into a single machine word. Let w denote the

machine word size in bits.

We fix a text T [1..n] over an integer alphabet Σ with size σ = nO(1). If T is not a Lyndon

word, we prepend T with a character smaller than all other characters appearing in T . Let g

denote the size |GLYN| of the Lyndon SLP GLYN of T .

14
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Lemma 2 (Algorithm 1 of [7]). We can construct the Lyndon tree of T in O(n) time.

3.3.1 Constructing Lyndon SLPs

The algorithm of Bannai et al. [7, Algorithm 1] builds the Lyndon tree online from right to

left. We can modify this algorithm to create the Lyndon SLP of T by storing a dictionary

for the rules and a reverse dictionary for looking up rules: Whenever the algorithm creates a

new node u, we query the reverse dictionary with u’s two children v and w for an existing

rule X → XvXw, where Xv and Xw are the variables representing v and w. If such a rule

exists, we assign u the variable X , otherwise we create a new rule Xu → XvXw and put this

new rule into both dictionaries. The dictionaries can be implemented as balanced search trees or

hash tables, featuring O(n lg g) deterministic construction time or O(n) expected construction

time, respectively.

In the static setting (i.e., we do not work online), deterministic O(n) time can be achieved

with the enhanced suffix array [71, 1] supporting constant time longest common extension

queries. We associate each node v of the Lyndon tree with the pair (|T [i..j]|, rank(i)), where

T [i..j] is the substring derived from the non-terminal representing v, and rank(i) is the lexico-

graphic rank of the suffix starting at position i. Then, sort all nodes according to their associated

pairs with a linear-time integer sorting algorithm. By using longest common extension queries

between adjacent nodes of equal length in the sorted order, we can determine in O(1) time

per node whether they represent the same string, and if so, assign the same variable (otherwise

assign a new variable).

3.3.2 Lyndon array simulation

As a by-product, we can equip the Lyndon SLP of T with the indexing data structure of Bille

et al. [15] to support character extraction and navigation in O(lg n) time. This allows us to

compute the i-th entry of the Lyndon array [7] in O(lg n) time, where the i-th entry of the

Lyndon array of T stores the length of the longest Lyndon word starting at T [i]. For that, given

a text position i, we search for the highest Lyndon tree node having T [i] as its leftmost leaf.

Given the rightmost leaf of this node represents T [j], the longest Lyndon word starting at T [i]

has the length j−i+1. (Otherwise, there would be a higher node in the Lyndon tree representing

a longer Lyndon word starting at T [i].)
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Lemma 3. There is a data structure of size O(g) that can retrieve the longest Lyndon word

starting at T [i] in O(lg n) time.

3.3.3 Computational experiments

We empirically benchmark the grammar sizes obtained by the Lyndon SLP to highlight its po-

tential as a grammar compressor. As benchmark datasets we used four highly repetitive texts

consisting of the files cere, einstein.de.txt, kernel, and world leaders from

the Pizza & Chili corpus (http://pizzachili.dcc.uchile.cl). We used the natu-

ral order implied by the ASCII code for building the Lyndon SLPs. We compared the size

of the resulting Lyndon grammars with the resulting grammars of Re-Pair, LCA, Recompres-

sion. We used existing implementations of Re-Pair (https://users.dcc.uchile.cl/

˜gnavarro/software/) and of LCA (http://code.google.com/p/lcacomp/).

The outputs of LCA, Recompression and our method are SLPs, while those of Re-Pair are AGs

(and not necessarily SLPs). For a fair comparison, we compared the resulting grammar sizes

either in an SLP representation, or in a common AG representation.

SLP We keep the resulting grammar of the Lyndon SLP, LCA, and Recompression as it is, but

transform the output of Re-Pair to an SLP. To this end, we observe that Re-Pair consists

of (a) a list of non-terminals whose right hand sides are already of length two, and (b) a

start symbol whose right hand side is a string of symbols of arbitrary size. Consequently,

to transform this grammar to an SLP, it is left to focus on the start symbol: We replace

greedily di-grams in the right hand side of the start symbol until it consists only of two

symbols.

AG We process each grammar in the following way: First, we remove the production rules of

the form Xi → a ∈ Σ by replacing all occurrences of Xi with a. Subsequently, we apply

the reduction rule R-1 of Section 3.2.3.

We collected the obtained grammar sizes in Table 3.2. There, we observe that the Lyndon

SLP is no match for Re-Pair, but competitive with LCA and Recompression. Although this

evaluation puts Re-Pair in a good light, it seems hard to build an index data structure on this

grammar that can be as efficient as the self-index data structure based on the Lyndon SLP, which

we present in the next section.
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Table 3.2: Sizes of the resulting grammars benchmarked in Section 3.3.3.

collection Re-Pair LCA Recompression Lyndon SLP
cere SLP 6,433,183 9,931,777 8,537,747 13,026,562

AG 4,057,693 6,513,345 5,309,789 7,469,979
einstein.de.txt SLP 125,343 251,411 202,749 205,348

AG 84,493 168,193 127,790 123,963
kernel SLP 2,254,840 4,065,522 3,587,382 4,201,895

AG 1,373,244 2,507,291 2,135,779 2,400,211
world leaders SLP 601,757 1,243,757 1,023,739 911,222

AG 398,234 809,163 636,700 552,497

!

" #!! !"

$%

$%"$%!

Figure 3.3: A partition pair (PL, PR) of a pattern P with one of its associated tuples (Xi, α, β).

3.4 Lyndon SLP Based Self-Index

Given a Lyndon SLP of size g, we can build an indexing data structure on it to query all oc-

currences of a pattern P of length m ∈ [1..n] in T . We call this query locate(P ). Our data

structure is based on the approach of [22]. This approach separates the occurrences of a pat-

tern into so-called primary occurrences and secondary occurrences. It first locates the primary

occurrences and, with the help of these, it subsequently locates the secondary occurrences. To

this end, it locates primary occurrences with a labeled binary relation data structure, and sub-

sequently locates the secondary occurrences with the grammar tree. In our case, we find the

primary occurrences with so-called partition pairs.

A partition pair (at position i) of a pattern P [1..m] is a pair (P [1..i], P [i + 1..m]) with

i ∈ [1..m] such that there exists a rule Xi → XiLXiR with val(XiL) and val(XiR) having

P [1..i] and P [i+ 1..m] as a (not necessarily proper) suffix and as a prefix, respectively. Similar

to the grammar proposed in Section 6.1 of [21], we can bound the number of partition pairs by
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O(lgm) by carefully selecting all possible partition pairs:

Given a partition pair (PL, PR) of P , let Xi → XiLXiR be a rule such that val(XiL) and

val(XiR) have PL and PR as a suffix and as a prefix, respectively. Consequently, there exist

two strings α and β such that val(XiL) = αPL and val(XiR) = PRβ (cf. Figure 3.3). By

the definition of the Lyndon tree of the text T , (val(XiL), val(XiR)) = (αPL, PRβ) is the

standard factorization of val(Xi) = αPLPRβ. According to the standard factorization, PRβ

is the longest suffix of val(Xi) that is a Lyndon word. For the proofs of Lemmas 10 and 11, we

use this notation and call the tuple (Xi, α, β) a tuple associated with (PL, PR).

Let us take P := bab as an example. The only partition pair is (b,ab). Considering the

Lyndon grammar of our example text given in Figure 3.2, the tuples associated with (b,ab) are

(X8,aa, ε) and (X5,a,b).

Note that |α| = 0 if P is a Lyndon word. If P is a proper prefix of a Lyndon word3, then α

may be empty. If P is a not a (not necessarily proper) prefix of a Lyndon word, then |α| > 0

(since αPLPRβ is a Lyndon word).

3.4.1 Associated tuples with non-empty α

We want to reduce the number of possible partition pairs from m to O(lgm). A first idea is that

only the beginning positions of the Lyndon factors of P contribute to potentially partition pairs.

We prove this in Lemma 8, after defining the Lyndon factors:

The (composed) Lyndon factorization [20] of a string P ∈ Σ+ is the factorization of P

into a sequence P τ1
1 · · ·P

τp
p of lexicographically decreasing Lyndon words P1, . . . , Pp, where

(a) each Px ∈ Σ+ is a Lyndon word, and (b) Px � Px+1 for each x ∈ [1..p). Px and P τx
x are

called Lyndon factor and composed Lyndon factor, respectively.

Lemma 4 (Algorithm 2.1 of [29]). The Lyndon-factorization of a string can be computed in

linear time.

We borrow from Section 2.2 of [47] the notation lfsP (x) := P τx
x · · ·P

τp
p for the suffix of

P starting with the x-th Lyndon factor. Given λP ∈ [1..p] is the smallest integer such that

lfsP (x+ 1) is a prefix of Px for every x ∈ [λP ..p− 1], lfsP (x) is called a significant suffix of P

for every x ∈ [λP ..p]. Consequently, lfsP (p) = P
τp
p is a significant suffix.

In what follows, we show that PR of a partition pair (PL, PR) has to start with a Lyndon

factor (Lemma 8), and further has to start with a composed Lyndon factor (Lemma 10). Finally,
3I.e., there is a string S ∈ Σ+ such that PS is a Lyndon word.
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we refine this result by restricting PR to begin with a significant suffix (Lemma 11) whose

number is bounded by the following lemma:

Lemma 5 (Lemma 12 of [47]). The number of significant suffixes of P is O(lgm).

In what follows, we study the occurrences of P in T under the circumstances that T is

represented by its Lyndon tree induced by the standard factorization, while P is represented by

its Lyndon factors.

Lemma 6 (Proposition 1.10 of [29]). The longest prefix of P that is a Lyndon word is the first

Lyndon factor P1 of P .

Lemma 7 (Lemma 5.4 of [7]). Given a production Xj → XjLXjR ∈ GLYN, there is no Lyndon

word that is a substring of val(Xj) = val(XjL)val(XjR) beginning in val(XjL) and ending in

val(XjR), except val(Xj).

Lemma 8. Given (PL, PR) is a partition pair of a pattern P , PR starts with a Lyndon factor of

P if there is an associated tuple (Xi, α, β) with |α| > 0.

Proof. Since |α| > 0 holds, P is a proper substring of val(Xi). Then PR must start with a

Lyndon factor of P according to Lemma 7.

Lemma 9 (Proposition 1.3 of [29]). Given two Lyndon words α, β with α ≺ β, the concatena-

tion αβ is also a Lyndon word.

Lemma 10. Given (PL, PR) is a partition pair of a pattern P , PR starts with a composed

Lyndon factor of P if there is an associated tuple (Xi, α, β) with |α| > 0.

Proof. Let (Xi, α, β) be a tuple associated with (PL, PR). Assume for the contrary that PR

does not start with any composed Lyndon factors of P , namely, there exists x ∈ [1..p] and

k ∈ [1..τx − 1] such that PL and PR have P τx−k
x and P k

x as a suffix and prefix, respectively (cf.

Figure 3.4). By the assumption, val(XiR) = P k
x lfsP (x + 1)β is the longest Lyndon word that

is a suffix of val(Xi). Since Px ≺ val(XiR) and Px is a Lyndon word, Pxval(XiR) is also a

Lyndon word by Lemma 9. This contradicts that val(XiR) is the longest Lyndon word that is a

suffix of val(Xi).

Lemma 10 helps us to concentrate on the composed Lyndon factors. Next, we show that

only those composed Lyndon factors are interesting that start with a significant suffix:
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Figure 3.4: Setting of the proof of Lemma 10.

Lemma 11. Given (PL, PR) is a partition pair of a pattern P , then PR is a significant suffix of

P if there is an associated tuple (Xi, α, β) with |α| > 0.

Proof. Let (Xi, α, β) be a tuple associated with (PL, PR) and |α| > 0. By Lemma 10, there

exists x ∈ [1..p] such that PR = P τx
x · · ·P

τp
p . Assume for the contrary that x < λP , i.e., PR is

not a significant suffix of P . By definition, lfsP (x) � lfsP (x + 1) holds. Since lfsP (x + 1) is

not a prefix of lfsP (x), lfsP (x)β � lfsP (x + 1)β also holds. This implies that PR = lfsP (x)β

is not a Lyndon word, a contradiction.

This, together with Lemma 5, yields the following corollary.

Corollary 1. There are O(lgm) partition pairs of P associated with a tuple (Xi, α, β) with

|α| > 1.

Let us take P := abacabadabacababa as an elaborated example. Its composed Lyndon

factorization is P = P1P2P
2
3P4, where its Lyndon factors are P1 = abacabad, P2 = abac,

P3 = ab, and P4 = a with λP = 3. Hence, lfsP (3) and lfsP (4) are significant suffixes.

Its potential partition pairs are (P1P2, P
2
3P4), (P1P2P

2
3 , P4). There is no Lyndon SLP such

that another partitioning like (P1, P2P
2
3P4) or (P1P2P3, P3P4) would have an associated tuple

according to Lemmas 11 and 10, respectively.

3.4.2 Associated tuples with empty α

Given a partition pair (PL, PR) associated with a tuple (Xi, ε, β), we consider two cases de-

pending on |PL|: In the case of |PL| = 1, (P [1], P [2..m]) may be a partition pair of P . In the
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case of |PL| ≥ 2, suppose that P ′ = P [2..m], α′ = P [1] and (P ′L, P
′
R) is a partition pair of P ′

with associated tuple (Xi, α
′, β). Then, (P [1]P ′L, P

′
R) is a partition pair of P with associated

tuple (Xi, ε, β). We can use Lemmas 8, 10 and 11 to restrict P ′R starting with a significant suffix

of P [2..m] (cf. Figure 1).

Corollary 2. There are O(lgm) partition pairs of P associated with a tuple (Xi, ε, β).

Combining Corollary 1 with Corollary 2 yields the following theorem and the main result

of this subsection:

Theorem 1. There are O(lgm) partition pairs of a pattern of length m.

3.4.3 Locating a pattern

In the following, we use the partition pairs to find all primary occurrences. We do this analo-

gously as for the Γ-tree (Section 3.1 of [82]) or for special grammars (Section 6.1 of [21]).

Lemma 12 (Lemma 5.2 of [36]). Let S be a set of strings and assume that we can (a) ex-

tract a substring of length ` of a string in S in time fe(`) and (b) compute the Karp-Rabin

fingerprint [57] of a substring of a string in S in time fh. Then we can build a data structure

of O(|S|) words solving the following problem in O(m lg σ/w + t(fh + lgm) + fe(m)) time:

given a pattern P [1..m] and t > 0 suffixes Q1, . . . , Qt of P , discover the ranges of strings in

(the lexicographically-sorted) S prefixed by Q1, . . . , Qt.

Lemma 13 (Theorem 1.1 of [15]). For an AG of size g representing a string of length n we can

extract a substring of length ` in time O(`+ lg n) after O(g) preprocessing time and space.

Lemma 14 (Theorem 1 of [13]). Given a string of length n represented by an SLP of size g,

we can construct a data structure supporting fingerprint queries in O(g) space and O(lg n)

deterministic query time. This data structure can be constructed in O(n lg n) randomized

time (cf. Section 2.4 of [35]) by using Karp, Miller and Rosenberg’s [56] renaming algorithm

to make all fingerprints unique.

With Lemmas 13 and 14 we have fe(`) = O(` + lg n) and fh = O(lg n) in Lemma 12,

respectively, leading to:

Corollary 3. There is a data structure usingO(g) space such that, given a pattern P [1..m] with

m ≤ n, it can find all variables whose derived strings have one of t selected suffix of P as a

prefix in O(m lg σ/w + t(lg n+ lgm) + `+ lg n) time.
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Corollary 3 yields O(m lg n) time for t = m, i.e., when we need to split the pattern at each

position. It yields O(m lg σ/w + lgm lg n) time for t = lgm, i.e., the case for Section 6.1 of

[21] and for the Lyndon SLP thanks to Lemma 11 (we assume that the pattern is not longer than

the text).

We can retrieve the associated tuples of all primary occurrences by plugging the variables

retrieved in Corollary 3 into a data structure for labeled binary relations [22].

For that, we generate two list L and LREV of all variablesX1, · · · , Xg of the grammar sorted

lexicographically by their derived strings and the reverses of their derived strings, respectively.

Both lists allow us to answer a prefix (resp. suffix) query by returning a range of variables having

the prefix (resp. suffix) in question. The query is performed by the data structure described in

Lemma 12 (with S being either L or LREV). Finally, we can plug the obtained ranges into the

labeled binary relation data structure of Claude and Navarro [22]:

Lemma 15 (Theorem 3.1 of [22]). Given two list L and LREV of variables sorted lexicograph-

ically by their expressions and its reversed strings, we can built a data structure of O(g) words

of space in O(g lg g) time for supporting the following query: Given a partition pair (PL, PR)

and ranges in L and LREV of those variables whose derived strings have val(PR) as a prefix

and val(PL) as a suffix, this data structure can retrieve all associated tuples of (PL, PR) in

O((1 + occ ′) lg g) time, where occ ′ denotes their number.

The time complexity of Corollary 3 and Lemma 12 is based on the assumption that we have

(static) z-fast tries [11] built on the lists L and LREV4, which we can build in O(g) expected

time and space (Section 6.6 (3) of [21]).

Since there are O(lgm) partition pairs according to Corollary 1, applying Lemma 15 over

all O(lgm) partition pairs yields O(lgm lg g+ occ lg g) time, where occ denotes the number of

all primary occurrences.

Corollary 4. We can find the primary occurrences of a pattern P in

O(m)︸ ︷︷ ︸
Lemma 4

+O(m lg σ/w + lgm lg n)︸ ︷︷ ︸
Lemma 3

+O(lgm lg g + occ lg g)︸ ︷︷ ︸
Lemma 15

= O(m+ lgm lg n+ occ lg g) time.

4We use again the derived string or, respectively, the reverse of the derived string of each non-terminal in one
of the lists as its respective keyword to insert into the trie.

22



CHAPTER 3. GRAMMAR-COMPRESSED SELF-INDEX WITH LYNDON WORDS

Finally, we use the derivation tree to find the remaining (secondary) occurrences of the

pattern:

3.4.4 Search for secondary occurrences

We follow Claude and Navarro [23] improving the search of the secondary occurrences in [22]

by applying reduction rule R-1 to enforce C-1 (see Section 3.2.3). The resulting admissible

grammar GAG is no longer an SLP in general. Since we only remove variables with a single

occurrence, the size of GAG is O(g). Consequently, we can store both GAG and GSLP in O(g)

space.

Lemma 16 (Section 5.2 of [23]). Given the associated tuples of all partition pairs, we can find

all occ occurrences of P in T with GAG in O(occ lg g) time.

Remembering that we split the analysis of an associated tuple in the cases |α| = 0 (Sec-

tion 3.4.2) and |α| > 0 (Corollary 4), we observe that the time complexity of the latter case

dominates. Combining this time with Lemma 16 yields the time complexity for answering

locate(P ) with the Lyndon SLP:

Theorem 2. Given the Lyndon SLP of T , there is a data structure using O(g) words that can

be constructed in O(n lg n) expected time, supporting locate(P ) in O(m+ lgm lg n+ occ lg g)

time for a pattern P of length m.

Note that the O(n lg n) expected construction time is due to the data structure described in

Lemma 14.

3.5 Conclusion

We introduced a new class of SLPs, named the Lyndon SLP, and proposed a self-index struc-

ture of O(g) words of space, which can be built from an input string T in O(n lg n) expected

time, where n is the length of T and g is the size of the Lyndon SLP for T . By exploit-

ing combinatorial properties on Lyndon SLPs, we showed that locate(P ) can be computed in

O(m + lgm lg n + occ lg g) time for a pattern P of length m, where occ is the number of

occurrences of P . This is better than the O(m2 lg logĝ n+ (m+ occ) lg ĝ) query time of the

SLP-index by Claude and Navarro [23] (cf. Table 3.1), which works for a general admissible

grammar of size ĝ.
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We have not implemented the proposed self-index structure, and comparing it with other

self-index implementations such as the FM index [30], the LZ index [3], the ESP index [98],

or the LZ-end index [62] will be a future work. Also, we want to speed up the query time

to O(m lg σ/w + lgm lg n + occ lg g) by applying broadword techniques for determining the

Lyndon factors of the pattern P (cf. Corollary 4), where σ is the alphabet size and w is the

computer word length.
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Chapter 4

A Dynamic Trie Tailored for Fast Prefix
Searches

A keyword K is a string that is uniquely associated with an integer called the identifier of K. A

keyword dictionary is a data structure that maintains a dynamic set of keywordsK, and provides

the following operations for a string S on it:

• insert(S) makes S a keyword, inserts S into K, and returns its identifier. The keyword

dictionary must guarantee that the identifiers of all stored keywords are unique and that

each identifier is constant until its respective keyword is deleted.

• lookup(S) returns the identifier of S if S ∈ K, or returns the invalid identifier ⊥ other-

wise.

• delete(K) removes the keyword K from K.

• locatePrefix(S) returns an iterator on the set of identifiers of all keyword in K having S

as a prefix. The iterator can report the next occurrence in constant time5.

We neglect the string dictionary operation access(i) returning the keyword of an identifier i,

as this function can be realized by a separate data structure (in case of a trie, e.g., an array of

pointers in which the i-th entry points to the node of the trie representing the keyword access(i)).

For the performance of practical keyword dictionaries like RDF stores (e.g., [74]), insertions,

lookups, and prefix queries are the most crucial operations, on which we want to focus in this

chapter.

5We return an iterator instead of this set, since most of the later explained data structures support all operations
in the same time O(t) for some t, while this operation would take O(t+ s) time, if the returned set has size s.
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In this chapter, we present a new keyword dictionary based on the compact trie:

Theorem 3. Given a dynamic set K of k keywords whose characters are drawn from an integer

alphabet of size σ ≤ 2w, there is a keyword dictionary representingK in either n lg σ+Θ(k lg n)

or |T | lg σ + Θ(kw) bits of space, where n =
∑

K∈K |K| is the total length of all keywords of

K and |T | is the number of nodes of a trie representing K. It supports all keyword dictionary

operations in O(m/α + lgα) expected time with α = w/ lg σ on an input string of length m.

The time and space bounds of Theorem 3 are an improvement to all previously known

compact trie representations such as [12, 99]. One of the most important applications to compact

tries is the suffix tree [104], which is a compact trie of all suffixes of the input string. Prefix

searches arise in various uses of suffix trees, e.g., computing matching statistics [41], online

suffix tree construction [103], online Lempel-Ziv 77 factorization [110], just to name a few.

Hence, the time bound for prefix search is of significant theoretical interest, and our compact

trie moves the best known upper bound closer to the trivial lower bound Ω(m/α) for reading

a pattern of length m word-packed. Also, with delete and insert operations, one can efficiently

maintain the sparse suffix tree [55] for a dynamic set of suffixes to index.

Our experiments reveal that the above improvements are also practically significant. We

note that other previous trie data structures mentioned earlier have the following drawbacks: (1)

For the HAT-trie or the double array, there are no known non-trivial space and construction time

bounds as their constructions are based on heuristics. In practice, they are also not favorable for

prefix queries. (2) Trie data structures based on the Bonsai trie have the major drawback that

enumerating children is done by querying for each possible edge label in a brute force manner.

So they are no-good candidates for prefix search queries, and are therefore omitted in our prac-

tical evaluation. (3) The trie data structure of Jansson et at. [50] looks theoretically appealing,

but uses theoretically sophisticated data structures for which an efficient implementation looks

cumbersome.

For the rest of this chapter, we fix a dynamic set K consisting of k keywords with a total

length of n =
∑

K∈K |K|. The keywords of K do not have to be prefix-free.

This result primarily appeared in [101].
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4.1 Related Work

Keyword dictionaries are an integral data structure with a plethora of applications (e.g., n-gram

language models [87], compression [33], input method editors [63], query auto-completion [45],

or range query filtering [109]). As a well-studied abstract data type they also have many rep-

resentations. We refer to standard literature like [94, Chapter 5.2], [76, Chapter 28], or [80,

Chapter 8.5.3] for an introduction to common representations like tries. Here, we highlight

some of the most recent representations. For the analysis, let |T | ≤ n denote the number of

nodes of a trie T storing K, and let m be the length of an input string for one of the keyword

dictionary operations.

• The HAT-trie [5] is a practically optimized version of the burst trie [42]. It suppresses the

number of trie nodes by selectively collapsing subtries into cache-conscious hash tables of

strings [6]. Although there is no discussion of prefix searches in [5], the implementation

of Tessil6 supports locatePrefix. We are unaware of any theoretical results regarding space

or time.

• The Bonsai trie [27] is a trie whose nodes are maintained in a compact hash table [25].

Modern variants [88] use O(n lg σ) bits of space in expectancy, and perform insert and

lookup in O(m) expected time. However, it is not clear how to perform locatePrefix

efficiently.

• Kanda et al. [53] proposed a dynamic variant of the path decomposed trie of Grossi and

Ottaviano [39] by means of incremental path decomposition. This dynamic trie supports

insert and lookup in O(m) expected time. However, there is no discussion about prefix

searches. Actually, as Kanda’s trie is based on the Bonsai trie, it faces the same problem

for locatePrefix.

• The double array [2] simulates a trie by using two integer arrays to find a child in constant

time, and thus can perform lookup in O(m) time. Although the double array includes

some vacant slots and consumes Ω(n lg n) bits, those vacant slots have a negligible mem-

ory effect in practical implementations such as the Cedar trie [108]. In the static setting,

Kanda et al. [52] proposed a practically compressed data structure for the two arrays.

However, for any of these data structures, it is not clear to us what time is needed for

answering locatePrefix.
6https://github.com/Tessil/hat-trie
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• Jansson et at. [50] presented a dynamic trie using O(|T | lg σ) bits, in which a leaf can

be inserted or deleted in O((lg lg |T |)2/ lg lg lg |T |) time. This trie can compute a prefix

search in O((m/ lgσ |T |)(lg lg |T |)2/ lg lg lg |T |) time [50, Theorem 1]. In an alternative

representation, this trie supports insertions and deletions of leaves inO(lg lg |T |) expected

amortized time while supporting a prefix search in O(m/ lgσ |T | + lg lg |T |) worst-case

time [50, Theorem 2].

• The (dynamic) z-fast trie is a keyword dictionary of Belazzougui et al. [12], which uses

|T | lg σ + Θ(kw) bits of space, and supports all operations in O(m/α + lgm + lg lg σ)

expected time7.

• Takagi et al. [99] proposed the dynamic packed compact trie, whose name we abbreviate

to packed c-trie. The packed c-trie uses |T | lg σ + Θ(kw) bits of space, and supports all

operations in O(m/α + lgw) expected time.

• HOT [17] is an algorithmically engineered trie that applied different strategies depending

on the distribution of the common prefix lengths of the keywords to obtain high fan-outs

and minimize the depth of the trie. It also applies AVX2 instructions for lookup queries.

The following keyword dictionaries are static, but share common traits with our proposed

data structure:

• Grossi and Ottaviano [39] proposed a cache-friendly trie dictionary through path decom-

position [31]. An operation can be carried out in O(m + h lg σ) time, where h is the

height of the path-decomposed trie. The data structure is stored in compressed space by

exploiting text compression techniques and succinct data structures.

• Marisa trie, developed by Yata [107], is a static trie that consists of recursively com-

pressed Patricia tries stored in the LOUDS representation [49]. It recursively encodes

edge labels in a Patricia trie using another Patricia trie. Yata’s implementation8 supports

prefix searches.

• Arz and Fischer [4] proposed a static compressed trie by adapting the LZ78 parsing to

basic dictionary operations such as lookup. It represents K in O(k lg n + n lg σ) bits
7This time bound can be achieved by omitting the jump pointers in [12, Section 3.4] since their maintenance

needs additional time. The jump pointers are used to enable additional operations on the trie such as predecessor
queries, on which we do not put a focus in this chapter.

8https://github.com/s-yata/marisa-trie
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of space by leveraging the LZ78 compression. It can answer lookup in O(m) expected

time. However, we are not aware of whether this data structure supports efficient prefix

searches.

• Bille et al. [14] presented a static keyword dictionary using O(n lg n) bits of space and

O(n) time to represent K. It supports queries in O(m/α + lgm+ lg lg σ) time.

• A recent approach is due to Bille et al. [16], who proposed a static keyword dictionary

with O(n lg σ) bits of space using O(min(m lg σ,m + lg n)) time for an operation in the

pointer machine model.

• The fast succinct trie (FST) is a trie data structure used in the succinct range filter [109].

An FST is divided into two layers at a specific height. The top layer is represented by

a speed-optimized trie while the bottom layer is represented by a space-optimized trie.

Both tries are represented as level-order unary degree sequences [49].

4.2 Keyword Dictionary c-trie++

Focusing on fast prefix searches, our idea is to devise a new keyword dictionary based on the

compact trie data structures, as they are practically faster than approaches based on the double

array when the prefixes in question are relatively short to the stored keywords. Our approach,

called c-trie++ for improved compact trie, is a hybrid of the z-fast trie and the packed c-trie.

Like these two trie representations, the compact trie is decomposed in a macro trie storing

micro tries.

For a formal explanation of this decomposition, let the string depth of a node u denote the

length of the concatenation of all labels on the path from the macro trie root to u. Further, we

assume that the keyword set K is prefix-free such that each leaf corresponds to one keyword.

In the general case, we would not only consider leaves but also internal nodes corresponding

to a keyword. Our starting point is a compact trie. If there is an edge leading to an internal

node, we split up this edge by creating additional nodes on this edge whose string depths are a

multiple of α. Subsequently, we put all nodes whose string depths are a multiple of α into the

macro trie. Let u be one of these nodes, and let dα be its string depth. Then u becomes the root

of a micro trie if it has more than one descendant in the compact trie whose string depth is at

most (d + 1)α. Suppose that u is the root of a micro trie, then this micro trie stores all of u’s
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Figure 4.1: The macro trie of a c-trie++ instance. Micro tries are represented by shaded triangles
(cf. [99, Figure 2]). Circles filled with black color are macro trie nodes. Hollow circles are nodes
stored exclusively in a micro trie. Cross-hatched circles are nodes of a micro trie that are not
present in the compact trie (as they have only one child). These nodes are leaves of a micro trie,
and are needed for navigating between the micro trie and the macro trie nodes below of it.

descendants (of the compact trie) whose string depths are at most (d + 1)α. Every edge (w, v)

from a node w of u’s micro trie leading to a descendant v of u with a string depth larger than

(d + 1)α is split to (w, x) and (x, v) for an artificial node x with string depth (d + 1)α (cf. the

cross-hatched circles in Figure 4.1). Finally, leaves of the compact trie are macro trie nodes.

As previously explained, there can additionally be micro trie nodes if (a) their string depth is

between dα and (d + 1)α and (b) they have an ancestor with string depth dα that is the root

of the respective micro trie. Consequently, the total number of micro and macro trie nodes in

bounded by O(k), where k is the number of nodes in the compact trie. Figure 4.1 captures this

schematically.

For c-trie++, we use the trie decomposition of the packed c-trie for the macro trie. Our

micro tries are alphabet-aware z-fast tries. We maintain all keywords in an array of pointers to

keywords of total size k lg n+n lg σ bits. We represent a substring of a keyword with a starting

position and a length, which can be stored in 2 lg n bits.

The z-fast trie proposed by Belazzougui et al. [12] works on binary strings. Their results on

micro trees work for binary strings up to lengthO(w). However, it is easy to modify these micro
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Figure 4.2: The micro trie built on our running example K = {K1 = brausende, K2 =
brauereibräute, K3 = brauen, K4 = brauchbares, K5 = brausendes, K6 =
brauereibier}, which is not prefix-free. A leaf u storing number i is associated with the
identifier i, i.e., extent(u) = Ki. In this example, the node v storing the extent brauereib
has two children w1 and w2, which are determined by their keys key(w1) = i and key(w2) = r,
respectively. If we assume that eight characters fit into a computer word, then the extent of v
is outside of the micro trie containing the root node. This fact is symbolized by the dashed line
separating the eighth and the ninth character of extent(v).

trees [12, Theorem 1] to work with strings on the alphabet Σ up to length O(w/ lg σ) = O(α)

by packing O(α) characters in a constant number of machine words:

Lemma 17. LetK be a dynamic set of k keywords whose characters are drawn from an alphabet

of size σ ≤ 2w. Given that each keyword of K has a length of O(α), there is a keyword

dictionary representing K in either n lg σ + Θ(k lg n) or |T | lg σ + Θ(kw) bits of space, where

α = w/ lg σ, n =
∑

K∈K |K| ≤ α|K| is the total length of all keywords of K, and |T | is the

number of nodes of a trie representingK. It supports all keyword dictionary operations in either

O(lgα) expected time or O(lgα lg2 lg σ/ lg lg lg σ) deterministic time.

Proof. The main difference is that the original micro trie is a binary tree as its edge labels are

drawn from a binary alphabet. Since the edge labels in our alphabet-aware variant are char-

acters drawn from the integer alphabet Σ, traversing from a node to a specific child now costs

O(σ) time. We improve this time by augmenting each node with a data structure maintaining

its children such that, given a node v and a character c, we can navigate from v to its child
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connected with the edge starting with c by querying this data structure having stored c and v

as key and value, respectively. This data structure can be realized with a hash table with con-

stant expected time, or with a predecessor data structure like [10] taking O(m lg n) bits and

supporting all operations in O(lg lg σ lg lgm/ lg lg lg σ) = O(lg2 lg σ/ lg lg lg σ) deterministic

time when storing m ≤ σ elements (the space bounds are due to the fact that we store pointers

to the specific children as satellite data). This sums up to O(k lg n) bits as we have O(k) trie

nodes.

An operation with a string of length m with m = Ω(α) (but with m = O(2w)) involves the

traversal of the macro tree, which is done in O(m/α) expected time9 for all keyword dictionary

operations [99]. Combining the operations in the macro trie and in micro tries gives O(m/α +

lgα) total time, and concludes Theorem 3.

4.2.1 Micro Tries

For explaining c-trie++ in detail, we start with a review of the z-fast trie under the light of our

alphabet-aware variant. We say that a node v is associated with the identifier of a keyword K

if we can read K by following the path from the root to v. The alphabet-aware z-fast trie is

a compact trie in which each leaf v is associated with the identifier of a keyword. An internal

node has at least two children unless it is also associated with the identifier of a keyword. If the

set of keywords K is prefix-free, then there are no nodes with a single child.

Figure 4.2 shows an instance of such a trie. The figure also depicts the following definitions

that are substrings or nodes associated to each node of an alphabet-aware z-fast trie.

• key(v) is the first character in label of the edge connecting v with its parent. It is undefined

if v is the root.

• extent(v) is the string obtained by concatenating the edge labels of the path from the root

node to v.

• exit(S) is the highest node v for which, among all other nodes, the longest common prefix

between S and extent(v) is the longest.

• parex(S) is the parent node of exit(S), or a special symbol ⊥ with extent(⊥) = 1 if

exit(S) is the root node.

9See Section 4.2.2 for a detailed description of the macro trie.
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It is left to explain for what handle(v) stands in the figure. For that we need the notion of 2-

fattest numbers [12, Definition 1]. The 2-fattest number of an interval [`..r] of positive integers

0 < ` < r is the integer in [`..r] with the most trailing zeros in its binary representation. Given a

node v with its parent u, we can compute the 2-fattest number f of [|extent(u)|+ 1..|extent(v)|]
to determine the handle of v, which is handle(v) := extent(v)[1..f ]. In case that v is the root,

we set handle(v) to the empty string.

For supporting the keyword dictionary operations, we need operations to descend in a micro

tree. For that, as already described in the proof of Lemma 17, each internal node u stores a

dictionary DicChildu to access one of its child nodes v by the character key(v). Additionally,

the trie maintains a dictionary DicHandle that can address each internal node u by its handle

handle(u).

For the algorithmic part, we follow Algorithm 1 and Section 3.3 of [12]. Given a pattern P

of length O(α), this algorithm locates exit(P) and parex(P). Having exit(P) and parex(P), we

can perform all keyword dictionary operations as in the z-fast trie. The idea of the algorithm

is to perform a search on the interval [`..r], which is set to [1..|P |] at the beginning to try to

find the lowest node whose handle is a prefix of P . The search handles this interval similarly

to a binary search. For explanation, the algorithm is divided into rounds. In each round, it

(a) either enlarges ` or shrinks r, (b) computes the 2-fattest number f of [`..r], and (c) queries

DicHandle with the handle P [1..f ]. If there is a node v with handle(v) = P [1..f ], the algorithm

has matched P [1..f ] with this node and simulates the descending to this trie node by setting `←
|extent(v)|. Otherwise (there is no such node v), the algorithm sets r ← f−1 to aim for jumping

to a node whose extent is less than f . The algorithm stops when it finds either exit(P) and

parex(P) [12, Theorem 3], which is after O(lg |P |) rounds. If exit(P) is found, it has previously

already computed parex(P). Otherwise, it takes that child of parex(P) whose edge connected to

parex(P) leads us to exit(P). For finding this child, the algorithm uses DicChildparex(P ). Finally,

for updates we follow the same steps as described in [12, Section 5].

In the context of the example of Figure 4.2, this algorithm applied to P = brauereibock

gives us the node exit(P), which is the node v visualized in Figure 4.2. From there, we can query

DicChildexit(P ) for the predecessor (resp. successor) with the character o to find the predecessor

(resp. successor) of P , which is K6 (resp. K2).
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4.2.2 Macro Trie

It is left to describe the macro trie borrowed from the packed c-trie, and to analyze the space

and time complexity of c-trie++. The macro trie is needed to cope with keywords longer than

α characters, or w bits. The rough idea is to partition a long keyword into chunks of w bits, and

maintain the chunks in a dictionary DicChunk similar to DicHandle, mapping w-bit chunks to

macro trie nodes. Given that the root is at height 0, a node on a height h of the macro trie is

endowed with

• a micro trie representing its descendants whose extents are at most (h + 1)w bits long,

and with

• a DicChunk representing its children whose extents are longer than (h+ 1)w bits.

Its DicChunk stores the w-bit substring starting at the (hw + 1)-th bit of the extents of its

respective children. An update of the trie involves a lookup of the insertion or deletion position,

and a modification of DicChunk or a micro trie.

Space Complexity Our keyword dictionary c-trie++ maintains O(k) macro and O(k) micro

nodes. Each node stores a pointer to a substring of a keyword. The keywords are stored either

in a concatenated string of length n lg σ, or are compressed via front coding [106, Section 4.1]

taking |T | lg σ bits in total. We store extent(v) of a node v either as two n-bit pointers to the

concatenated string (former case) or verbatim in w-bits (latter case). Since the number of total

nodes stored in the DicChilds, the DicHandles and the DicChunks is O(k), the data structure

needs in total either n lg σ +O(k lg n) or |T | lg σ + Θ(kw) bits.

Time Complexity Given a pattern P of length m, we can traverse the macro trie by visiting

at most m/α macro trie nodes to find the micro trie τ storing the node whose extent has the

longest common prefix with P . After reaching τ , we can compute the handle of a node from

its extent in constant time, since the 2-fattest number in [`..r] is the integer (−1 << msb((` −
1)⊕ r)) & r, where <<, msb, ⊕ and & denote the bitwise left shift, the function retrieving the

most significant bit, the bitwise exclusive-OR and the bitwise AND operators, respectively. In

total, we query O(m/α) DicChunks, τ ’s DicHandle O(lgα) times, and DicChildparex(P ) at most

one time, yielding O(m/α+ lgα) expected time as claimed in Theorem 3 if all dictionaries can

lookup an entry in constant expected time. Choosing a suitable representation for DicHandle,
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DicChild, and DicChunk is the major task of the next subsection dealing with practical aspects

of c-trie++.

4.2.3 Implementation Techniques

On the practical side, our major improvements are based on the following ideas:

• Representing each node by an identifier (ID) to store IDs instead of node pointers.

• Storing a global mapping from extent(v) to node IDs.

• Represent the dictionaries with different data structures with focus on either speed or

memory efficiency.

Micro Tries Each node v stores its extent extent(v), which can be represented in a constant

number of computer words. From extent(v) we can deduce handle(v) and key(v) in constant

time. Therefore, the dictionaries DicChild and DicHandle have no need to store the keys of

their entries, as they both only have to maintain the nodes with which a dictionary can restore

the respective keys on demand. That said, a lookup of a node v with a key handle(v) (resp.

key(v)) needs to compute handle(w) (resp. key(w)) of each node w in question for comparison.

By conducting this check, the benefits of current processors featuring large cache lines become

negligible in this context. Here, we embrace the cuckoo hashing [85] technique, which has

strong theoretical results in the pointer machine model.

Cuckoo Hashing Our cuckoo hash table H uses three hash functions. For faster hashing, we

restrict the hash table size |H| to be a power of two. This allows us to map a hash value to

[1..|H|] more quickly by using bit shifts instead of a modulo operation (cf. the discussion in

[95, Section 1]; however, new techniques [66] can speed this up). An insertion collision occurs

if each of the entries located by the hash functions is already occupied. Given such a collision

on inserting an element e, we start a random walk by selecting the i-th hash functions hi for a

random i, swappingH[hi] with e and recurse. If this walk is unsuccessful after a certain number

of steps, the hash table doubles its size. To keep the memory requirement at minimum, the

chosen hash functions are determined at startup and are the same across all cuckoo hash tables.

The hash functions are based on three xorshift operations borrowed from MurmurHash10 and

10https://github.com/aappleby/smhasher/wiki/MurmurHash3
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two multiplications with different 64-bit integer seeds. Unwisely chosen seeds can result in

a failure of the data structure, as the hash functions are immutable (changing would cause to

rehash all cuckoo hash table instances). However, this was not a problem in our experiments.

While insertions take O(1) expected time for a sufficiently small load factor, i.e., the maximum

ratio between the number of stored elements and |H| before doubling the size of H , a lookup

takesO(1) worst case time. The load factor does not have much influence on the final size, since

a higher load factor makes it more probable that an insertion collision exceeds the threshold

of maximal iterations. Setting this threshold to a smaller value boosts the insertion speed at

the expense of a higher risk of creating an unnecessarily large table. However, preliminary

experiments were in favor for a small threshold around 100 iterations. For the experiments in

the following section, we fixed it to 100, and set the load factor to 0.9.

Node Factory In our setting, we assume that k is much small than n. Otherwise, c-trie++

becomes unfavorable with respect to other trie data structures like the Bonsai trie. That is

because our trie data structure contains Θ(k) nodes in total. However, using w bits for a pointer

to a node is wasteful. Instead, we want to store node pointers in Θ(lg k) bits as hinted in the

description of our computational model in Chapter 2. For that, we store each node in a global

two-dimensional array that assigns each node an integer represented in Θ(lg k) bits, which we

set to 32 bits for the experiments. By storing 32-bit integers instead of pointers on commodity

computers with a word size of w = 64 bits, we can roughly halve the memory requirement for

maintaining DicChild and DicHandle.

Macro Trie Like for DicHandle, we use a cuckoo hash table for representing the DicChunks.

We again just store the nodes in the cuckoo hash table, since we can restore their keys by

extracting the respective w bit substring in constant time. We also maintain a separate node

factory storing the macro trie nodes.

Practical Considerations In practice, the Cuckoo hash tables used for representing the dic-

tionaries DicChild waste non-negligible space as (a) each micro trie node stores such a hash

table, and (b) the hash tables may not always become full. For space efficiency, we did not

follow this approach, but instead represent all DicChild dictionaries of a micro trie with a single

trie data structure in first-child next-sibling representation (see [68] for a definition). In this rep-

resentation, we maintain two arrays for (a) the first children and (b) the next siblings, where (a)
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Table 4.1: Characteristics of our keyword sets. The total length of all keywords is n. The
number of keywords is k. The average and maximum length of a keyword is written in the
columns ∅len and max-len, respectively. The columns ∅LCP and max-LCP show, respectively,
the average length and the maximal length of the longest common prefixes of all keywords. The
number of nodes a compact trie C stores is given by |C|. The packed c-trie, the z-fast trie, and
c-trie++ have the same number of nodes.

K n
106

σ k
103

∅len max-len ∅LCP max-LCP |T |
106

|C|
103

proteins 903 26 2,982 302.8 36,805 38.8 16,190 787 5,778
urls 1,413 98 18,564 76.1 2,048 60.9 2,006 282 35,343
dblp.xml 169 96 2,950 57.6 685 34.4 104 68 5,900
geographic 107 134 7,308 14.6 151 8.5 247 45 12,802
commoncrawl 121 113 1,995 61.0 1,194,988 12.9 119,276 96 3,740
vital 243 203 494 493.3 9,794 12.7 1,806 238 986

and (b) are pointers gained from the node factory. For navigation in the first-child next-sibling

representation it is necessary to know the character of the in-going edge of each node v, but this

information is already given by querying key(v).

4.3 Experiments

Finally, we analyze the empirical performance of c-trie++ with respect to time and mem-

ory consumption. In particular, we are interested in the running time of insert, lookup, and

locatePrefix. For that, we implemented c-trie++ in C++. Our implementation is available at

https://gitlab.com/habatakitai/ctriepp. For the experiments, we set up a ma-

chine equipped with CentOS 6.10, with an Intel Xeon X5560 processor running at 2.80 GHz,

and with 198GB of main memory.

4.3.1 Datasets

For an objective evaluation, we took a variety of data sets having different characteristics (cf.

Table 4.1):

• proteins contains different sequences of amino acids.

• dblp.xml is part of the XML dump of the dblp.org website.

• urls is a crawl of webpages of the .uk domain from the WebGraph framework11.

11http://law.di.unimi.it/webdata/uk-2002

37



CHAPTER 4. A DYNAMIC TRIE TAILORED FOR FAST PREFIX SEARCHES

100

1000

10000

100000

1× 106

10 20 30 40 50 60 70 80 90100

proteins

100

1000

10000

100000

1× 106

10 20 30 40 50 60 70 80 90100

urls

100

1000

10000

100000

1× 106

10 20 30 40 50 60 70 80 90100

dblp.xml

100

1000

10000

100000

1× 106

10 20 30 40 50 60 70 80 90100

geographic

100

1000

10000

100000

1× 106

10 20 30 40 50 60 70 80 90100

commoncrawl

100

1000

10000

100000

1× 106

10 20 30 40 50 60 70 80 90100

vital

Figure 4.3: Time for answering locatePrefix(S). The y-
axis is the average amount of time in nanoseconds (log-
arithmic scale) for one query. The x-axis is the prefix
length (in percentage) of the original keyword lengths,
i.e., we search the prefix of length p|S|/100 of S at the
x-axis position p% for each keyword S.
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Table 4.2: Insertion of all keywords in random order. We measured (a) the average time per
keyword and (b) the memory needed for inserting all keywords of the respective data set. The
(a) fastest time and the (b) lowest memory footprint for each keyword set and for each group of
contestants (compact tries or double array tries) is highlighted in bold font. For each instance,
we measured the maximal virtual memory resident set size (VmRSS), which is the second
integer in the file /proc/self/statm.

(a) Time in Nanoseconds

K CT PCTbit PCThash ZFT c-trie++ DA HAT-T
proteins 45,508.6 45,041.0 51,994.3 3,683.2 2,349.2 2,088.1 1,805.5
urls 13,459.0 10,580.3 8,659.0 4,216.7 4,646.1 2,702.8 1,228.9
dblp.xml 10,066.5 8,595.6 8,413.1 3,309.3 3,035.1 1,202.8 1,371.4
geographic 4,711.8 4,791.4 4,548.5 2,223.4 2,427.5 961.6 595.6
commoncrawl 11,077.5 11,029.6 12,269.6 2,368.5 2,260.2 904.9 824.3
vital 71,666.6 75,433.8 96,319.3 3,515.9 2,002.2 1,869.5 2,151.1

(b) Memory in Megabytes

K CT PCTbit PCThash ZFT c-trie++ DA HAT-T
proteins 3,053.12 3,053.12 4,424.64 549.88 418.10 2,142.68 892.66
urls 8,551.47 8,551.48 9,465.49 3,731.14 2,046.61 932.01 1,317.75
dblp.xml 1,450.76 1,450.77 1,871.57 552.14 305.74 187.41 144.77
geographic 3,029.85 3,029.86 5,252.34 1,204.07 719.36 234.96 164.29
commoncrawl 1,040.79 1,040.77 1,685.80 330.03 214.35 269.03 140.81
vital 743.69 743.70 1,130.68 84.29 58.12 322.22 239.12

Table 4.3: Average time for lookup(K) in nanoseconds. We created a list L storing all key-
words K ∈ K, and shuffled it. We measured the time of a linear scan over L during which we
locate each visited keyword in the respective trie created in Table 4.2, and divided this time by
|K|, which yields the average times shown in this table.

K CT PCTbit PCThash ZFT c-trie++ DA HAT-T
proteins 42,199.7 33,678.0 20,011.6 2,530.4 1,332.2 1,413.3 609.0
urls 14,411.8 13,087.0 10,279.9 3,067.1 2,801.6 2,624.1 559.1
dblp.xml 10,454.9 8,990.6 6,869.7 2,205.5 1,161.4 989.6 439.6
geographic 4,764.3 5,016.1 2,726.1 1,449.5 711.1 423.0 243.6
commoncrawl 10,667.9 9,071.7 5,423.6 1,646.8 742.4 636.8 299.6
vital 71,552.6 52,391.1 29,774.7 2,806.9 1,204.6 1,138.9 682.6
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• geographic contains names of different geographic locations collected by the GeoN-

ames database12. Our keywords are extracted from the ascii name column.

• commoncrawl is a web crawl containing the ASCII-encoded content (without HTML

tags) of random web pages extracted from Common Crawl13.

• vital is the main text extracted from the most vital Wikipedia articles.

The data sets proteins and dblp.xml are from the Pizza&Chili Corpus14. The data sets

commoncrawl and vital are provided by the tudocomp framework [28].

We interpreted each data set as a single string on the byte alphabet. We partitioned this

string into keywords by splitting it either at newline characters or at full stops, and removed all

duplicates afterwards. The resulting keyword sets are the input of our experiments.

4.3.2 Contestants

We compared c-trie++ with keyword dictionary representations featuring also a low memory

footprint. We present two groups of contestants. The first group consists of trie data structures

based on the double array:

• DA: the double array [2] implementation of the Cedar library15.

• HAT-T: the HAT-trie [5] implementation of Tessil16. This implementation exploits that

keywords have a small length in practice. The default implementation assumes that all

these lengths can be stored in 16 bits, which is not true for the data set commoncrawl.

We therefore evaluated the HAT-trie with 16 and 32 bits for the lengths, and took the

minimum time and minimum space of both variants for the evaluation.

As we will see in the following, the keyword dictionaries of the first group are lightweight and

overall efficient but perform prefix searches poorly. The second group consists of other compact

trie data structures:

• CT: a compact trie without word packing.

12http://download.geonames.org/export/dump/allCountries.zip
13https://commoncrawl.org/
14http://pizzachili.dcc.uchile.cl
15http://www.tkl.iis.u-tokyo.ac.jp/˜ynaga/cedar/
16https://github.com/Tessil/hat-trie
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• PCTbit: a packed c-trie using bit parallelism to compare compact words.

• PCThash: a packed c-trie using additionally the hash table implementation

unordered map of the C++ standard library as a dictionary in each micro trie for re-

trieving a node by its extent (it is similar to our DicHandle, but uses the extents instead of

the handles as keys).

• ZFT: our z-fast trie transportation from an implementation in Java17 to C++.

The implementations of the compact trie and the packed c-tries are due to Takagi et al. [99].

The implementations PCTbit and PCThash pack characters in 32-bit integers, whereas all other

implementations use 64-bit integers, which reflect the machine word size of commodity com-

puters nowadays. All implementations (of both groups) are written in C++, and compiled with

gcc-8.2.0 in the highest optimization mode -O3.

In what follows, we evaluate c-trie++ with our contestants on the aforementioned data sets.

Our focus is set on prefix queries, as this operation is one of the main purposes for using compact

tries.

4.3.3 Evaluation of the Construction

In the first experiment, we measured the time it takes to insert all keywords of a data set into

a keyword dictionary in random order. We give the results in Table 4.2. This table reveals that

the construction of c-trie++ is faster than the construction of every packed trie (i.e., CT, PCTbit,

PCThash, and ZFT). Except for ZFT, its final size is also an improvement to the sizes of those

data structures. If the average keyword length is sufficiently large, c-trie++ is also superior

to DA and HAT-T in both time and space while being inferior when maintaining mostly short

keywords.

4.3.4 Evaluation of the Queries

Our next and final experiments measure the performance of lookup and locatePrefix queries.

Locate Prefix Queries A major highlight is the time needed for locatePrefix(S) queries

shown in Figure 4.3. Instead of returning an iterator to a set as requested at the beginning

of this chapter, we require each keyword dictionary to return the complete set of all keywords
17This implementation is part of Vigna’s Sux4J library, located at https://github.com/vigna/Sux4J.
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having S as a prefix. In this setting, c-trie++ dominates most of the time. Interestingly, DA

becomes faster for longer prefixes. This effect can be explained as follows: First recognize by

Table 4.3 that DA has competitive lookup times, allowing the trie to match a pattern at high

speed. The matching locates the lowest node v whose extent is a prefix of S. After locating v, it

resorts to exploring the entire subtree of v. If v is a deep node, chances are that its subtree size

is rather small, enabling DA to process v’s subtree quickly.

Lookup Queries The results for lookup are collected in Table 4.3. In all instances, c-trie++

answered lookup queries faster than all packed tries. However, HAT-T, followed by DA, provide

the fastest solutions for answering lookup.
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4.4 Detailed Space Analysis

At the beginning of this chapter, we gave the space bounds of the packed trie data structures in

terms of the total length of all keywords n and in the size of the non-compact trie T . To ease

the understanding, we present a tabular representation.

Trie Space in Bits Setting
c-trie++ n lg σ +O(k lg n) 1
c-trie++ |T | lg σ +O(kw) 2
compact trie |T | lg σ +O(k lg |T |) 2
z-fast trie [12] |T | lg σ +O(kw) 2
c-packed trie [99] |T | lg σ +O(kw) 2

In Setting 1, we concatenate all keywords to a large string of length n. In this large string,

we can address every substring with two pointers of lg n bits. We omit Setting 1 for the other

compact trie data structures as these (expect the plain compact trie) use auxiliary data struc-

tures taking O(kw) bits. In Setting 2, we represent each keyword K with front coding [106,

Section 4.1], i.e., we represent K by K[` + 1..|K|] if the longest common prefix of K with

its lexicographically preceding keyword in K is `. Hence, we store the suffix K[` + 1..|K|] in

a string. By doing so for each keyword, we store k strings with a total length of |T |. To ac-

cess packed characters like handle(v) in constant time, we store handle(v) (using w bits) in the

node v, causing O(kw) bits of additional space. In the plain compact trie, we do not augment

the nodes with packed characters.

4.5 Additional Experiments

In the following, we present some additional statistics and evaluations.

Statistics The statistics in the previous section only sketch the characteristics of the used key-

word sets. Here, we like to present a more profound analysis by showing different distributions

in Tables 4.4,4.5a and 4.6. We see that the lengths have a distribution that is more Gaussian,

and by no means uniform. The lengths have also an impact on the sizes and shapes of the

dictionaries, as can be seen in Table 4.6.
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Dictionary Representations of c-trie++ The distributions in Tables 4.6a and 4.6b justify

our selection of a lightweight data structure with worse asymptotic behavior (sorted lists) for

DicChild, and the use of the more heavyweight cuckoo hash table for DicHandle. We also did

experiments with unsorted lists storing newly inserted elements at their end. These experiments

showed that unsorted lists feature a small speed-up for tiny instances while becoming early slow

after a number of insertions.

Sorted Insertion In the previous section, we covered the case of creating a trie on keywords

shuffled in a random order R, and subsequently queried the trie with the keywords in another

random order R′. However, one might question whether other possibilities like building a key-

word dictionary with lexicographically sorted keywords, or querying it with keywords arranged

in the same order as in the construction is advantageous. For that, we revisit the construction

in Table 4.7, filling a keyword dictionary now with keywords in lexicographically sorted order.

Comparing to Table 4.2, the space requirement in both scenarios is nearly the same for each

keyword dictionary. However, a lexicographically sorted insertion speeds up the construction

of all of instances.

More Queries Having two scenarios for trie construction, we can also think about different

orders of how to query the data structures. Here, we present a Cartesian product of these orders,

shown in Table 4.8 for lookup, and in Figures 4.4, 4.5, 4.6, and 4.7 for locatePrefix. We see a

remarkable speedup of the query operations of all keyword dictionary implementations when

they are fed with keywords in lexicographically order. The best bets can be placed on the setting

of Table 4.8a and Figure 4.4. A slightly slower variant is to query in random order (Table 4.8b

and Figure 4.5). The execution times of the keyword dictionaries fed in random order follow

with a large gap. Here, the order in which the queries are executed has again only a slight impact

on the execution times. We obtain the fastest execution times when querying the keywords in

the same order as we built a keyword dictionary (Table 4.8d and Figure 4.5). ZFT and c-trie++

can take advantage of the case when the queries are in lexicographic order (Table 4.8c and

Figure 4.6), while the other implementations are slightly faster in the random case (Table 4.3

and Figure 4.3).

Deletions We also ran experiments for the delete operation, which we conducted in the same

fashion as the experiments for lookup. We put the results in Table 4.9.
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Table 4.4: Histogram ofs keyword lengths of the longest common prefixes (LCPs) of the key-
words. While Table 4.1 captures the average and maximal lengths of the keywords and their
LCPs, these tables give an insight in the distributions of the lengths and the LCPs. A length is
counted in the i-th row if is i for i = 1 and i = 2, or belongs in [2i−2 + 1..2i−1] for i ≥ 3.

(a) #len↔ |len| Histogram

i proteins urls dblp.xml geographic commoncrawl vital
1 19 85 2 11 97 39
2 132 851 1 262 1,546 26
4 5,485 7,888 0 31,036 31,931 131
8 36,973 25,921 5 1,270,765 137,074 726

16 75,796 24,188 25 3,899,303 636,922 2,298
32 66,530 197,634 395,244 1,838,186 445,153 4,932
64 130,527 8,620,706 1,801,952 263,086 369,674 12,007

128 481,117 8,463,502 723,011 5,398 255,830 32,038
256 818,538 1,100,909 29,782 7 61,018 75,871
512 955,403 100,867 213 0 36,936 166,775

1,024 343,983 19,207 2 0 11,627 165,169
2,048 57,653 2,946 0 0 4,464 33,599
4,096 8,691 0 0 0 1,878 857
8,192 1,145 0 0 0 795 14

16,384 83 0 0 0 256 1
32,768 15 0 0 0 99 0
65,536 2 0 0 0 52 0

131,072 0 0 0 0 39 0
262,144 0 0 0 0 5 0
524,288 0 0 0 0 3 0

1,048,576 0 0 0 0 2 0
2,097,152 0 0 0 0 1 0

Original z-fast trie The original implementation of the z-fast trie of Vigna is written in Java

as part of his Sux4J library. As a supplement, we conducted our experiments of this implemen-

tation on the same machine. However, we could not build this trie for the keyword set vital.

The time and space needed for the trie construction are given in Table 4.10. Its time for lookup

and locatePrefix are shown in Table 4.11 and Figure 4.8, respectively. Its time for delete is

given in Table 4.12. Unfortunately, we received runtime failures on several instances, which we

marked with N/A (for not available) in the experiments.
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Table 4.5: Histogram of the lengths of the longest common prefixes (LCPs) of the keywords.
While Table 4.1 captures the average and maximal lengths of the keywords and their LCPs,
these tables give an insight in the distributions of the lengths and the LCPs. A length is counted
in the i-th row if is i for i = 1 and i = 2, or belongs in [2i−2 + 1..2i−1] for i ≥ 3.

(a) #LCP ↔ |LCP | Histogram

i proteins urls dblp.xml geographic commoncrawl vital
0 22 91 2 84 101 111
1 490 2,633 19 2,225 6,012 1,850
2 9,014 11,115 20 19,636 50,615 6,079
4 470,608 29,492 5 635,924 306,121 28,013
8 1,432,010 26,723 2,663 3,838,361 574,787 118,627

16 203,019 76,180 556,906 2,457,041 780,370 240,884
32 207,474 1,459,143 862,179 319,203 173,276 92,179
64 205,067 10,668,966 1,398,593 34,830 77,137 4,730

128 204,307 5,814,357 129,715 749 21,026 1,043
256 155,849 429,835 134 0 3,870 559
512 73,927 37,058 0 0 1,247 309

1,024 17,440 8,263 0 0 507 93
2,048 2,468 847 0 0 193 5
4,096 335 0 0 0 48 0
8,192 60 0 0 0 18 0

16,384 1 0 0 0 70 0
32,768 0 0 0 0 0 0
65,536 0 0 0 0 0 0

131,072 0 0 0 0 3 0
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Table 4.6: Histogram of (a) micro tries or (b) internal micro trie nodes storing a specific number
of (a) child nodes or (b) internal nodes representing the sizes of (a) all DicHandle instances or
(b) all DicChild instances. A (a) micro trie or (b) internal node is counted in the i-th row if the
number of its stored nodes is i for i = 1 and i = 2, or in [2i−2 + 1..2i−1] for i ≥ 3. None of
the keyword sets is prefix-free, as can be seen by the fact that there are nodes with only a single
child.

(a) #DicHandle↔ |DicHandle| Histogram

i proteins urls dblp.xml geographic commoncrawl vital
1 692,786 1,996,651 233,983 474,823 180107 57649
2 72,926 419,911 46,975 126,163 36273 13791
4 26,863 278,813 27,291 70,145 19255 8641
8 7,696 143,852 16,392 30,265 8500 4097

16 1,705 66,594 1,1386 13,357 3449 1651
32 420 27,161 6,411 6,424 1195 618
64 89 11,108 3,214 2,952 488 254

128 24 4,574 1,152 1,241 194 105
256 5 1,633 302 472 100 25
512 1 580 110 191 38 13

1024 1 75 37 68 37 3
2048 0 0 18 21 1 0
4096 0 0 8 9 0 0
8192 0 0 4 0 0 0

16384 0 1 0 1 0 0
32768 0 1 0 0 0 0
65536 0 0 0 0 0 1

131072 0 0 1 0 0 0
262144 0 0 0 0 0 0
524288 0 0 0 0 1 0

1048576 1 0 0 0 0 0

(b) #DicChild ↔ |DicChild| Histogram

i proteins urls dblp.xml geographic commoncrawl vital
1 27,933 189,554 106 204,565 30,276 279
2 1,220,896 3,939,539 808,559 1,644,531 468,330 164,154
4 231,439 1,594,225 313,011 716,500 175,809 54,646
8 86,483 886,825 116,020 288,994 69,654 19,579

16 42,571 507,437 53,258 104,526 47,619 6,272
32 13,894 34,609 14,298 28,445 6365 1,466
64 0 1,221 656 301 1,201 283

128 0 5 7 8 124 7
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Figure 4.4: Time for answering locatePrefix when the
data structures are built and queried with the keywords in
lexicographical sorted order. The setting is, except from
the different order, the same as in Figure 4.3.
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Figure 4.5: Time for answering locatePrefix when the
data structures are built with the keywords in lexico-
graphical sorted order, but queried with the keywords in
random order. The setting is, except from the different
orders, the same as in Figure 4.3.
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Figure 4.6: Time for answering locatePrefix when the
data structures are built with the keywords in random or-
der, but queried with the keywords sorted in lexicograph-
ical order. The setting is, except from the different orders,
the same as in Figure 4.3.
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Figure 4.7: Time for answering locatePrefix when the
data structures are built with the keywords in a random
order O, and queried with the keywords in the same or-
der O. The setting is, except from the different order, the
same as in Figure 4.3.
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Table 4.7: Insertion of all keywords in lexicographical order. Except to the ordering of the
keywords, the setting is the same as in Table 4.2.

(a) Time in Nanoseconds

K CT PCTbit PCThash ZFT c-trie++ DA HAT-T
proteins 39,716.6 38,547.4 48,384.0 2,623.4 1,369.1 1,225.3 853.3
urls 9,849.2 6,398.6 4,786.9 2,604.1 709.5 610.9 480.7
dblp.xml 7,736.4 5,713.0 5,645.8 2,051.3 736.6 451.9 810.4
geographic 2,342.1 2,089.6 2,605.7 1,305.1 1,035.8 237.0 258.3
commoncrawl 8,419.2 8,012.2 9,930.3 1,485.4 1,072.3 370.3 385.4
vital 63,719.1 65,684.8 90,066.2 3,187.2 865.9 1,313.2 1,266.6

(b) Memory in Megabytes

K CT PCTbit PCThash ZFT c-trie++ DA HAT-T
proteins 2,889.31 2,889.32 4,376.2 549.87 422.68 1,779.47 890.14
urls 8,533.40 8,533.41 10,027.4 3,731.14 2,046.45 1,017.18 1,302.21
dblp.xml 1,445.39 1,445.40 1,850.2 552.14 305.70 173.62 141.59
geographic 3,029.50 3,029.51 4,952.8 1,204.07 719.35 251.86 159.23
commoncrawl 1,023.88 1,023.87 1,598.8 330.03 220.18 174.45 139.61
vital 695.96 695.97 1,098.4 84.29 58.12 261.09 238.09
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Table 4.8: Average time for lookup(K) in nanoseconds. We create a trie by inserting keywords
contained a list L whose elements are (a-b) lexicographically sorted or (c-d) in a random or-
der R. We stick to the setting of Table 4.8, where we used L for the queries. However, before
the querying, we (b) shuffled L, (a,c) sorted the elements in L lexicographically, or (d) kept L
as it is.

(a) Sorted - Sorted

K CT PCTbit PCThash ZFT c-trie++ DA HAT-T
proteins 39,357.5 30,758.8 18,392.0 1,748.6 421.1 391.6 256.0
URLs 10,296.2 8,781.5 5,945.6 1,223.0 240.6 155.2 138.7
dblp.xml 7,957.8 6,372.7 4,481.0 1,121.3 190.4 111.9 136.0
geographic 1,839.2 1,925.0 1,436.4 717.3 179.6 44.8 65.4
commoncrawl 8,273.8 6,555.0 4,294.6 930.4 169.7 95.9 99.6
vital 69,059.5 49,871.5 28,850.4 2,046.7 404.6 526.3 346.1

(b) Sorted - Order R

K CT PCTbit PCThash ZFT c-trie++ DA HAT-T
proteins 40,154.2 31,487.0 18,817.7 2,440.1 1,155.6 1,084.5 627.3
urls 10,725.0 9,287.6 6,376.8 2,476.8 2,470.9 1,739.7 575.4
dblp.xml 8,194.8 6,609.8 4,781.5 2,054.1 1,084.9 746.0 459.7
geographic 2,054.8 2,130.7 1,376.0 1,288.4 636.4 353.5 246.9
commoncrawl 8,697.6 6,892.4 4,220.5 1,575.9 627.5 470.1 305.6
vital 71,081.0 53,701.4 29,366.9 2,726.1 1,111.8 1,020.7 681.9

(c) Order R - Sorted

K CT PCTbit PCThash ZFT c-trie++ DA HAT-T
proteins 42,934.5 33,231.1 19,988.6 2,050.3 805.6 691.6 309.3
urls 14,563.1 12,500.3 9,321.5 1,598.1 635.6 361.4 177.5
dblp.xml 10,180.9 8,702.2 6,496.8 1,451.4 473.0 297.9 161.5
geographic 4,408.0 4,665.0 3,746.0 959.1 407.6 162.3 84.9
commoncrawl 10,370.6 8,761.5 6,016.1 1,175.2 423.4 267.0 123.3
vital 71,992.7 53,526.8 30,583.7 2,341.1 778.6 788.0 411.4

(d) Order R - Order R

K CT PCTbit PCThash ZFT c-trie++ DA HAT-T
proteins 42,134.8 33,626.8 19,904.1 2,299.5 1,016.8 1,211.9 605.4
urls 14,329.6 13,008.3 10,187.0 2,462.7 2,410.2 2,491.6 556.6
dblp.xml 10,398.2 8,938.6 6,801.3 1,979.3 920.32 863.5 436.3
geographic 4,703.1 4,966.8 2,644.0 1,296.5 501.7 387.6 240.4
commoncrawl 10,624.8 9,040.9 5,353.6 1,496.8 550.5 553.6 295.7
vital 71,523.2 52,342.0 29,680.5 2,579.2 943.7 952.8 665.1
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Table 4.9: Average time for delete(K) in nanoseconds. For Sub-Table (Order R - Order R′),
the setting with two different random orders R and R′ is the same as in Table 4.3. For the other
sub-tables, the setting is giving in Table 4.8.

(a) Order R - Order R′

K CT PCTbit PCThash ZFT c-trie++ DA HAT-T
proteins - - - 3,676.4 2,012.0 1,606.1 1,187.7
urls - - - 5,677.7 4,045.5 3,060.8 886.5
dblp.xml - - - 3,501.5 2,219.4 1,211.7 667.4
geographic - - - 2,254.6 1,761.8 787.8 494.3
commoncrawl - - - 2,526.7 1,645.4 868.5 573.1
vital - - - 3,727.4 1,780.8 1,042.0 1,302.7

(b) Sorted - Sorted

K CT PCTbit PCThash ZFT c-trie++ DA HAT-T
proteins - - - 2,457.1 875.4 476.1 568.3
urls - - - 2,471.2 526.4 211.6 293.1
dblp.xml - - - 2,059.1 520.6 153.3 236.3
geographic - - - 1,161.2 608.1 77.6 143.4
commoncrawl - - - 1,465.1 575.0 129.5 207.6
vital - - - 2,704.5 813.3 437.0 733.8

(c) Sorted - Order R

K CT PCTbit PCThash ZFT c-trie++ DA HAT-T
proteins - - - 2,455.5 874.1 476.0 567.4
urls - - - 2,476.7 525.6 211.5 292.6
dblp.xml - - - 2,065.0 522.4 153.4 237.1
geographic - - - 1,158.1 608.3 77.6 144.1
commoncrawl - - - 1,561.8 574.5 129.5 207.5
vital - - - 2,692.4 814.1 435.7 764.0

(d) Order R - Sorted

K CT PCTbit PCThash ZFT c-trie++ DA HAT-T
proteins - - - 3,651.9 2,012.4 1,603.5 1,187.7
urls - - - 4,257.0 3,976.2 3,051.1 883.9
dblp.xml - - - 3,493.1 2,141.1 1,221.0 671.1
geographic - - - 2,296.8 1,750.3 782.9 494.6
commoncrawl - - - 2,513.5 1,632.9 875.8 568.9
vital - - - 3,701.9 1,781.7 1,026.0 1,305.5

(e) Order R - Order R

K CT PCTbit PCThash ZFT c-trie++ DA HAT-T
proteins - - - 3,959.9 2,006.1 1,607.1 1,194.2
urls - - - 4,340.2 3,986.6 3,061.0 885.7
dblp.xml - - - 3,438.7 2,147.2 1,227.4 668.4
geographic - - - 2,236.0 1,765.64 783.1 493.7
commoncrawl - - - 2,516.1 1,629.7 878.6 570.9
vital - - - 3,696.0 1,779.0 1,041.6 1,297.9
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Table 4.10: Inserting of all keywords in the z-fast trie Java-implementation.

(a) Time in Nanoseconds

K Random Sorted
proteins 3,896.6 2,764.8
urls 3,056.7 2,038.7
dblp.xml 2,727.1 1,693.6
geographic 2,802.9 1,831.0
commoncrawl 2,883.3 1,714.9
vital N/A N/A

(b) Memory in Megabytes

K Random Sorted
proteins 1,629.60 1,630.81
urls 2,764.73 2,341.69
dblp.xml 989.38 1,026.62
geographic 1,043.65 1,075.91
commoncrawl 244.94 245.73
vital N/A N/A

Table 4.11: Average time for answering lookup(K) with the z-fast trie Java-implementation.
Times are in nanoseconds. The table covers the settings of Tables 4.3 (Order R - Order R′),
4.8a (Sorted - Sorted), 4.8c (Order R - Sorted), 4.8b (Sorted - Order R), and 4.8d (Order R -
Order R), where R and R′ are two different random orderings.

K R-R’ S-S S-R R-S R-R
proteins 5,093.5 4,798.0 5,403.4 5,136.4 5,052.2
urls 2,384.2 1,655.2 2,615.3 1,730.9 2,438.1
dblp.xml 1,778.6 1,322.2 1,848.7 1,265.9 2,165.1
geographic 1,254.7 749.2 1,416.0 1,154.6 1,233.8
commoncrawl 2,032.3 1,351.9 1,870.8 1,404.8 1,648.0
vital N/A N/A N/A N/A N/A

Table 4.12: Average time for answering delete(K) with the z-fast trie Java-implementation.
The meaning of the column captions is the same as in Table 4.11.

K R-R’ S-S S-R R-S R-R
proteins 5358.4 4173.3 4899.6 4205.4 4421.9
urls 4412.0 2904.0 3997.9 2848.4 4253.2
dblp.xml N/A N/A N/A N/A N/A
geographic 2476.4 1223.1 1525.9 2690.6 2344.4
commoncrawl N/A N/A N/A N/A N/A
vital N/A N/A N/A N/A N/A
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4.6 Conclusion

We have presented the trie data structure c-trie++ to cope with the demands for fast prefix

searches like auto-completion [18]. In case that prefix queries dominate dynamic operations

like insertions with respect to their quantity, the keyword dictionary c-trie++ offers one of the

best trade-offs among all tested candidates.

4.6.1 Future Work

We can speed up the insertions of keywords that share long prefixes with other keywords by

vectorization. That is because the word packing approach for comparing two strings interpreted

as two packed strings can be vectorized. Recent instruction sets like AVX feature instructions

for this task.

Table 4.6a reveals that some instances of DicHandle grow extremely large while most of

the other instances maintain only few entries. For the large ones, we can use a compact hash

tablethat stores quotients instead of the values, where a quotient has bit length v − lg |H| if the

values can be represented in v bits (we set v to 32 bits in Section 4.2.3).

Considering different hash table layouts, we conducted an experiment with the linear prob-

ing hash table of Rigtorp18 storing nodes along with the (redundant) keys. While using much

more space, this hash table performed only slightly better than the cuckoo hash table, even with

a load factor of 0.5. Dropping the keys as we did in Section 4.2.3, a hash table with linear prob-

ing will likely be outperformed by our cuckoo hash table as cache effects become negligible.

Table 4.6 reveals that none of our data sets is prefix-free. In a more enhanced evaluation,

we would like to conduct our experiments after a preprocessing step in which we discard every

keyword that is a prefix of another keyword.

18https://github.com/rigtorp/HashMap
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Chapter 5

Shortest Unique Substrings Queries in
Optimal Time

The shortest unique substring problem was proposed by Pei et al. [86]. Given a string S and

position p, the problem is to find a shortest unique substring (SUS) of S that contains position

p, that is, a substring that only occurs once in S, and whose occurrence contains position p.

They also consider a version of the problem where S may be preprocessed, and SUS queries

for arbitrary positions may be answered efficiently.

For the first version of the problem, Pei et al. [86] presented an algorithm that computes the

SUS for any given position p in O(n) time and space, where n is the length of string S. For

the second version, they present an O(hn) time and O(n) space preprocessing algorithm which

allows queries to be answered in constant time, where h is a value depending on S. However, h

is only bounded by O(n), and in the worst case, this results in O(n2) time pre-processing.

The contributions of this chapter is as follows: First, we give optimal time solutions for

both problems and show that S can be preprocessed in O(n) time so that a SUS for any query

position can be answered in O(1) time. This considerably improves the theoretical worst case

running time compared to Pei et al. [86], allowing us to output a SUS for all positions in the

string in O(n) total time. Second, we consider the general problem of computing all SUSs

that contain a given position. Although there can be multiple shortest substrings that contain

a given query position, Pei et al. [86] only considered the problem of answering a single SUS

that contains a position. We show that the same linear time pre-processing above also allows us

to return all SUSs that contain a given query position in O(k) time, where k is the size of the

output. Finally, we implement our algorithm and show through computational experiments that

our algorithm is much more practical and scalable compared to an the algorithm by Pei et al.
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SUS(9) SUS(10)

MUS

SUS(4)

  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
  a  a  b  a  a  b  c  a  b   a   b   b    a   a    b   d   b   a   bS

meaningless MUS

Figure 5.1: Example of a string and its SUSs (see Definition 4) and MUSs (see Definition 5).
Although all 6 MUSs are depicted, SUS (p) is depicted only for positions 4, 9 and 10. MUSS =
{[1..4], [2..5], [7..7], [8..11], [11..12], [16..16]}. SUSS(4) = {[1..4], [2..5], [4..7]}, SUSS(9) =
{[7..9]}, SUSS(10) = {[10..12]}. The MUS [8..11] is meaningless since no SUS contains it,
while the others are meaningful (see Definition 10).

This result primarily appeared in [100].

5.1 Preliminaries

5.1.1 Unique Substrings

We say that a substring x of S is unique, if there is exactly one occurence of x in S. When x

is unique, the interval [i..i + |x| − 1] such that S[i..i + |x| − 1] = x is called a unique interval

of S. We say that a unique substring x of S contains position p, if x = S[i..i + |x| − 1] and

p ∈ [i..i + |x| − 1]. It is easy to see that any string that contains a substring that is unique, is

also unique, and any interval that contains a sub-interval that is unique, is also unique.

Definition 4 (Shortest Unique Substring). A substring x is a shortest unique substring (SUS)

of S that contains position p, if x = S[i..j] is unique in S, i ≤ p ≤ j, and no other substring

x′ = S[i′..j′] such that i′ ≤ p ≤ j′ and j′ − i′ < j − i is unique in S.

Note that there can be more than one SUS that contains position p as shown in the following

example. Let SUSS(p) denote the set of intervals corresponding to SUSs of S that contains

position p. Note that SUSS(p) 6= ∅ for any position 1 ≤ p ≤ |S|.

Example 2 (SUS). Let S = aabaabcababbaabdbab. Then, SUSS(2) = {[1..4], [2..5]},
SUSS(4) = {[1..4], [2..5], [4..7]}, SUSS(9) = {[7..9]}, SUSS(10) = {[10.. 12] }. (See Fig-

ure 5.1)

In this chapter, we focus on the following problems.

Problem 1 (SUS query). Given string S of length n, compute for all positions p (1 ≤ p ≤ n),

a shortest unique substring that contains position p.
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Problem 2 (All SUS query). Given string S of length n, compute for all positions p (1 ≤ p ≤
n), all shortest unique substrings that contain position p.

Problem 1 was first considered by Pei et al. [86]. They first gave a simple O(n) time al-

gorithm for computing an SUS for a single p. However, this would result in O(n2) time for

computing a SUS for each p. Thus, they further showed an improved algorithm which pre-

process S in O(hn) time, and allows queries for any p in O(1) time, where h is a parameter that

depends on S. This results in an O(hn) time solution for computing the SUS for all positions

1 ≤ p ≤ n. Although Pei et al. [86] gave empirical evidence that h is not very large in practice,

they were not able to give a good theoretical bound on h, mentioning that h can be as large as

O(n), resulting in O(n2) time worst case pre-processing time.

In this chapter, we give optimal time solutions for both problems, and show that S can be

preprocessed in O(n) time so that the queries can be answered in O(k) time, for any query

position p, where k is the size of the output. Noting that k is O(1) for Problem 1, this results in

an O(n), i.e. a truly linear time solution for computing the SUS for all positions 1 ≤ p ≤ n.

Like the algorithm by Pei et al. [86], our algorithm finds SUSs, based on the concept of

Minimal Unique Substrings defined below.

Definition 5 (Minimal Unique Substring). A substring x of S is a minimal unique substring

(MUS) if x is unique in S, and no proper substring of x is unique in S.

Let MUSS denote the set of intervals corresponding to MUSs of string S. Notice that by

definition, MUSs of S can overlap with each other, but cannot be nested. This implies that there

can exist at most one MUS starting at a given position in S. Also, since there must exist at least

one MUS, we have 0 < |MUSS| ≤ |S|.

Example 3 (MUS). Let S = aabaabcababbaabdbab, the same string as in Example 2.

MUSS = {[1..4], [2..5], [7..7], [8..11], [11..12], [16..16]}. (See Figure 5.1)

5.1.2 Data Structures

We utilize the following data structures and algorithms. While the main data structure used

by Pei et al. [86] was the suffix tree [104], we use the suffix array [71], which is theoretically

almost equivalent to the suffix tree, but more time and space efficient in practice.
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Definition 6 (Suffix Array [71]). The suffix array SA of a string S of length n is a permutation

of integers {1, . . . , n}, such that SA[i] = j represents the ith lexicographically smallest suffix

S[j..n] of S.

Theorem 4 ([54]). Assuming an integer alphabet, the suffix array of a string S of length n can

be constructed in O(n) time.

Definition 7 (Rank array). The rank array SA−1 of a string S of length n, is a permutation of

integers {1, . . . , n}, such that SA−1 [SA[i]] = i.

Given SA, SA−1 can be computed in O(n) time by a simple loop over SA.

Definition 8 (LCP array). The longest common prefix (lcp) array LCP of a string S of length

n, is an array of integers where LCP [1] = 0 and LCP [i] for 1 < i ≤ n holds the length of the

longest common prefix between suffix S[SA[i − 1]..n] and S[SA[i]..n], where SA is the suffix

array of S.

Theorem 5 ([58]). Given string S of length n and its suffix array SA, the lcp array LCP of S

can be computed in O(n) time.

5.2 Algorithm

5.2.1 Finding all MUSs

Here, we describe how to find all MUSs of a string S in linear time, using the suffix and lcp

arrays of S.

Lemma 18. All MUSs of a string S of length n can be found in O(n) time and space.

Proof. Let SA and LCP respectively be the suffix array and lcp array of S. For any suffix

S[j..n] where SA[i] = j (or SA−1 [j] = i), the shortest prefix of S[j..n] that is unique is given

by S[j..j + `j] where

`j =

max{LCP [i],LCP [i+ 1]} 1 ≤ i < n

LCP [i] i = n.

The definition of `j implies that S[j..j + `j − 1] is not unique. Thus, S[j..j + `j] is the only

candidate for a MUS starting at position j, and is a MUS if and only if S[j + 1..j + `j] is not
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unique. Since the definition of `j+1 implies that S[j + 1..j + `j+1] is not unique, S[j..j + `j]

is a MUS if and only if j + `j ≤ j + `j+1. Once SA, SA−1 , and LCP are computed in O(n)

time, this can be checked in O(1) time for each j. Therefore, the lemma follows since `j for all

1 ≤ j ≤ n can be computed in a total of O(n) time.

5.2.2 SUSs from MUSs

Next, we consider the relation between MUSs and SUSs.

Definition 9. For an interval [i..j] and position p, let cover([i..j], p) denote the smallest in-

terval that contains [i..j] and p, i.e. cover([i..j], p) = [min(i, p)..max(j, p)]. We say that

cover([i..j], p) is derived from interval [i..j] and position p.

We first show that any SUSS(p) is derived from an element in MUSS . The following

Lemma is essentially the same as Theorem 2 in [86], but the statement has been reworded

for our purposes.

Lemma 19. For any position p and interval [i..j] ∈ SUSS(p), there exists exactly one sub-

interval [i′..j′] ∈ MUSS of [i..j] such that [i..j] = cover([i′..j′], p).

Proof. Since [i..j] is unique, it must contain at least one minimal unique sub-interval. Let

[i′..j′] be any MUS contained in the SUS [i..j]. Since i ≤ p ≤ j, cover([i′..j′], p) is unique,

contains position p, and is a sub-interval of [i..j]. Thus, [i..j] = cover([i′..j′], p) must hold,

since otherwise, cover([i′..j′], p) would be an interval shorter than [i..j] containing position p,

contradicting the assumption that [i..j] is an SUS.

Next we show that there is exactly one MUS contained in a SUS. Suppose there are two

distinct minimal unique sub-intervals [i1..j1] and [i2..j2] of [i..j]. From the above arguments,

[i..j] = cover([i1..j1], p) = cover([i2..j2], p) must hold. Since MUSs cannot be nested, both

must be proper sub-intervals of [i..j], and we assume without loss of generality that i ≤ i1 < i2

and j1 < j2 ≤ j. However, if i ≤ p < j, then cover([i1..j1], p) 6= [i..j] since max{p, j1} < j,

and if i < p ≤ j, then cover([i2..j2], p) 6= [i..j] since min{p, i2} > i. Thus, there can only be

one MUS that is contained in a given SUS.

For the purpose of describing our algorithm, we define a generalization of SUSs with respect

to a subset of MUSs, namely, MUSs that begin at or before a certain position. Let MUS kS =

{[i..j] ∈ MUSS | i ≤ k}. We define SUS kS(p) to be the subset of intervals which are shortest, of
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the intervals that can be derived from intervals in MUS kS and position p, i.e., [i..j] ∈ SUS kS(p)

if [i..j] = cover([i′..j′], p) for some [i′..j′] ∈ MUS kS , and |[i..j]| ≤ |cover([i′′..j′′], p)| for any

[i′′..j′′] ∈ MUS k. Let lmSUS kS(p) denote the leftmost interval of SUS kS(p), and lmMUS kS(p)

the interval in MUS k that derives lmSUS kS(p).

Note that MUSS = MUSnS , and SUSS(p) = SUSnS(p). Also note that although for any

k < k′, MUS kS ⊆ MUS k
′

S , it is not necessarily the case that SUS kS(p) ⊆ SUS k
′

S (p).

Next, we define the concept of meaningful and meaningless MUSs, which is the main dif-

ference of our algorithm with [86].

Definition 10 (Meaningful Minimal Unique Substring). We say that an interval [i..j] ∈ MUS kS

is meaningful with respect to MUS kS , if, for some position p, cover([i..j], p) ∈ SUS kS(p). Oth-

erwise, we say that a minimal unique substring is meaningless with respect to MUS kS .

Example 4 (Meaningful MUS). Let S = aabaabcababbaabdbab, the same string as in Ex-

ample 2. Then, the set of MUSs {[1..4], [2..5], [7..7], [11..12], [16..16]} are meaningful, since

they respectively derive SUSs corresponding to positions 4, 9 and 10. However, MUS [8..11] is

meaningless, it does not derive any SUS. (See Figure 5.1)

Observation 1. For any k < k′, if an interval [i..j] ∈ MUS kS is meaningless with respect to

MUS kS , then it is meaningless with respect to MUS k
′

S .

Let MMUS kS denote the set of all meaningful MUSs with respect to MUS kS . We first

show that if we have an array MMUSS = MMUSnS of meaningful MUSs with respect to

MUSS , in order of their occurrence, and for each position p we hold an index L[p] such that

MMUSS[L[p]] = lmMUSnS(p), we can answer SUSS(p) in O(|SUSS(p)|) time.

To prove this, we give a more specific characterization of which MUSs can derive elements

of SUSS(p). Let MUSS(p) denote the set of MUSs that contain position p, i.e.,

MUSS(p) = {S[i..j] ∈ MUSS | i ≤ p ≤ j}.

MUSS(p) can be empty. For any position p, let predS(p) = [i..j] represent the rightmost MUS

that occurs before position p if one exists, that is, [i..j] ∈ MUSS , j < p, and there exists no

[i′..j′] ∈ MUSS such that j < j′ < p. Similarly, let succS(p) = [i..j] represent the leftmost

MUS that occurs after position p if one exists, that is, [i..j] ∈ MUSS , i > p, and there exists no

[i′..j′] ∈ MUSS such that p < i′ < i. We say that the set {predS(p), succS(p)} ∪MUSS(p) is

the MUSs in the neighborhood of position p.
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The following lemma shows that |cover([i..j], p)| for MUSs [i..j] in the neighborhood of

position p which are meaningful with respect to MUS kS and are to the right of lmMUS kS(p)

(including lmMUS kS(p)), form a monotonically increasing sequence.

Lemma 20. Consider any position p and integer k, and let [i..j] = lmMUS kS(p). Any two

distinct intervals [i1..j1], [i2..j2] ∈ {{predS(p), succS(p)} ∪ MUSS(p)} ∩ MMUS kS such that

i ≤ i1 < i2, satisfy |cover([i1..j1], p)| ≤ |cover([i2..j2], p)|.

Proof. Suppose to the contrary that |cover([i1..j1], p)| > |cover([i2..j2], p)|. Since

cover([i..j], p) ∈ SUS kS(p), it holds that

|cover([i..j], p)| ≤ |cover([i2..j2], p)| < |cover([i1..j1], p)|. For all positions i ≤ p′ < p, it

holds that |cover([i..j], p′)| ≤ |cover([i..j], p)| < |cover([i1..j1], p)|. Since

[i..j] = lmMUSks (p) and i < i1, it holds that [i1..j1] 6= preds(p) and p′ < p ≤ j1. Since

p′ < p ≤ j1, it holds that |cover([i1..j1], p)| ≤ |cover([i1..j1], p
′)|. Similarly, for all positions

p < p′ < j2, it holds that |cover([i2..j2], p
′)| = |cover([i2..j2], p)| < |cover([i1..j1], p)|. Since

|cover([i1..j1], p)| > |cover([i2..j2], p)|, it holds that [i1..j1] 6= succs(p) and i1 ≤ p < p′. It

holds that |cover([i1..j1], p)| ≤ |cover([i1..j1], p
′)|.

Also, for any position p′ < i, |cover([i..j], p)| < |cover([i1..j1], p)|, and for any position

p′ > j2, |cover([i2..j2], p)| < |cover([i1..j1], p)|. This implies that [i1..j1] cannot be mean-

ingful for all positions 1 ≤ p′ ≤ n, and must be meaningless with respect to MUS kS , con-

tradicting the assumption that [i1..j1] ∈ MMUS kS . Thus, it must be that |cover([i1..j1], p)| ≤
|cover([i2..j2], p)|.

The next lemma shows that intervals in SUS kS(p) are the shortest ones derived from MUSs

in the neighborhood of position p which are meaningful with respect to MUS kS .

Lemma 21. Consider position p, integer k, interval [i..j] ∈ MUS kS , and let

Y = {{predS(p), succS(p)} ∪ MUSS(p)} ∩ MMUS kS . If cover([i..j], p) ∈ SUS kS(p), then

[i..j] ∈ Y and |cover([i..j], p)| ≤ |cover([i′..j′], p)| for all intervals [i′..j′] ∈ Y .

Proof. Assume cover([i..j], p) ∈ SUS kS(p) holds. Since Y ⊆ MUS kS and by the defintion of

SUS kS(p), |cover([i..j], p)| ≤ |cover([i′..j′], p)| holds for all [i′..j′] ∈ Y .

It is easy to see that [i..j] cannot be to the left of predS(p), since then, |cover([i..j], p)| >
|cover(predS(p), p)| and [i..j] could not be in SUS kS(p). Similarly, [i..j] cannot be to the right

of succS(p), since then, |cover([i..j], p)| > |cover(succS(p), p)| and again, [i..j] could not be

in SUS kS(p).

64



CHAPTER 5. SHORTEST UNIQUE SUBSTRINGS QUERIES IN OPTIMAL TIME

Finally, by the definition of meaningful, [i..j] ∈ MMUS kS .

Algorithm 1: SUSS(p) from L and MMUSS .
Input: position p, MMUSS , L
Output: SUSS(p)

1 t← L[p];
2 l← |cover(MMUSS[t], p)| ; // length of SUS
3 while |cover(MMUSS[t], p)| = l do
4 output cover(MMUSS[t], p);
5 t← t+ 1;
6 end

Theorem 6. Given an array MMUSS of all meaningful MUSs with respect to MUSS in order

of occurrence, and an array L of size n, where, for each position 1 ≤ p ≤ n, MMUSS[L[p]] =

lmMUSnS(p), we can compute SUSS(p) in O(|SUSS(p)|) time.

Proof. The pseudo code of the algorithm is shown in Algorithm 1. By definition of MMUSS

and L, it is clear that the first output is lmSUSnS(p), i.e., the leftmost SUS that contains position

p. From Lemma 19 and by the definition of a meaningful interval, it is easy to see that all MUSs

that derive elements in SUSS(p) must be in MMUSS .

It remains to prove that each element in SUSS(p) is derived from MUSs in a contiguous

range in MMUSS . This can be seen from Lemmas 20 and 21, which claim that all MUSs in

SUSS(p) are in the neighborhood of position p that are meaningful with respect to MUSS ,

and for all such meaningful MUSs [i..j] to the right of lmMUSnS(p) (including lmMUSnS(p)),

cover([i..j], p) forms a monotonically increasing sequence.

Next we show that MMUSS andL can be constructed in linear time, by incrementally updat-

ing MMUS kS and L. Let Lk denote an array of indices where MMUS kS[Lk[p]] = lmMUS kS(p).

Lemma 22. Lp−1[p] is either the MUS [i..j] pointed to by Lp−1[p− 1], or the next MUS [i′..j′]

in MMUS p−1S , i.e., the one pointed to by Lp−1[p− 1] + 1.

Proof. By definition, [i..j] = lmMUS p−1S (p−1). Let [i′′..j′′] be an arbitary interval in MMUS p−1S

to the right of [i..j]. Then, [i′′..j′′] ∈ MUS p−1S (p − 1) ∩ MUS p−1S (p), since we have that

i < i′′ ≤ p − 1, and if j < j′′ < p, then |cover([i..j], p − 1)| = |[i..p − 1]| > |[i′′..p − 1]| =

|cover([i′′..j′′], p−1)| contradicting the definition of [i..j]. Thus, we have that |cover([i′′..j′′], p−
1)| = |cover([i′′..j′′], p)|, and from Lemma 20, these values are monotonically increasing.
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Therefore, the first one, which is [i′..j′] = MMUS p−1S [Lp−1[p − 1] + 1], gives the smallest

value. Note that [ip..jp] = lmMUS p−1S (p) cannot be to the left of [i..j]; If p ≤ jp, then since

ip < i < p ≤ jp < j and from the definition of [ip..jp], we have |cover([ip..jp], p − 1)| =

|cover([ip..jp], p)| ≤ |cover([i..j], p)| = |cover([i..j], p − 1)| which contradicts the definition

of [i..j] If jp ≤ p − 1, then cover([ip..jp], p − 1) + 1 = cover([ip..jp], p) ≤ cover([i..j], p) ≤
cover([i..j], p − 1) + 1, again contradicting the definition of [i..j]. Thus, lmMUS p−1S (p) must

be either [i..j] or [i′..j′].

Theorem 7. MMUSS and L can be constructed in linear time.

Proof. The pseudo code of the algorithm is shown in Algorithm 2. The algorithm computes

MMUSS and L for increasing positions. For each value of p, we assume that MMUS p−1S and

Lp−1[1..p − 1] are correctly computed, and we update them to correct values of MMUS pS and

Lp[1..p].

Lines 3-8 in Algorithm 2 compute Lp−1[p] from Lp−1[p − 1], and MMUS p−1S . The correct-

ness can be seen from Lemma 22. The calculation for updating L can be done in constant time

for each position.

Next, we show how to compute MMUS pS and Lp[1..p] given MMUS p−1S and Lp−1[1..p]. The

existence of an MUS starting at position p can be checked in constant time with Lemma 18.

If there exists no such MUS, then, since MUS p−1S = MUS pS , MMUS pS = MMUS p−1S and

Lp[p] = Lp−1[p], and no update is required. If there does exist [p..e] ∈ MUSS for some e ≥ p,

we check previous positions i ≤ p to see if Lp−1[i] needs to be updated to Lp[i]. Such positions

i satisfy |cover(MMUS p−1S [Lp−1[i]], i)| > |cover([p..e], i)|, and if for some position j this does

not hold, then it is easy to see that it does not hold for all j′ ≤ j. Let j be the rightmost position

such that the condition does not hold, i.e., Lp−1[1..j] does not need to be updated.

If j = p, this means that no values in Lp−1[1..p] need to be updated, and Lp[p] = Lp−1[p].

Concerning updating MMUS p−1S , we can easily see that cover([p..e], n) ∈ SUS pS(n), and thus

[p..e] will be the last element in MMUS pS . However, MUSs in MMUS p−1S may become mean-

ingless with respect to MUS pS , because of the addition of [p..e]. These are the ones to the right

of [i′..j′] = MMUS p−1S [Lp[p]]. They can be found and removed in line 13, whose correctness

can be seen from Lemma 20.

If j < p, MUSs in MMUS p−1S [L[j] + 1..`] such that

|cover(MMUSS[k′], j)| > |cover(MMUSS[j], j)|, i.e., those that do not derive an interval in
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SUS pS(j) become meaningless with respect to MUS pS , so are removed in line 15. The correct-

ness can also be seen from Lemma 20.

Although there may be more than a constant number of positions and MUSs that need to be

updated with the addition of [p..e], the cost can be amortized. Such operations correspond to

lines 11, 13, 15, and 16 of Algorithm 2.

The time required for lines 11 and 16 is linear in the number of updates required for L. We

show that L[p] for each p is updated only a constant number of times. Lp−1[p] is first determined

at lines 3-8, with respect to MUS p−1S , pointing to predS(p) or the leftmost shortest element in

MUSS(p) ∩MUS p−1S . It can be seen from Lemma 21 that for all p′ ≥ p, Lp′ [p] can only point

to predS(p), the leftmost shortest element in MUSS(p) (= MUSS(p) ∩MUS p
′

S ), or succS(p).

There are only two possibly remaining MUSs that will be added to MUSS(p) ∩MUS p−1S and

update L[p]; an MUS in MUSS(p) beginning at position p, or succS(p). Thus, the total time for

this is linear in the number of positions.

The time required for lines 13 and 15, is linear in the number of intervals added or deleted

from MMUS . Since each interval in MMUS is added or removed at most once, the total time

for this update is linear in the total number of MUSs in S, which is O(n). Thus, the total time

of the algorithm is O(n).

From Theorems 6 and 7, we obtain the following main theorem.

Theorem 8. A string S of length n can be preprocessed in O(n) time and space so that shortest

unique substring queries can be answered in O(k) time, where k is the number of shortest

substrings returned. Notably, outputting a single SUS can be done in O(1) time.

5.3 Computational Experiments

We implemented our algorithm using the C++ language. All computational experiments were

conducted on a MacPro (Early 2008) with two 3.2GHz Quad Core Xeon processors and 18GB

Memory (DDR2 FB-DIMM 800MHz). We use libdivsufsort 19 for construction of the suffix

array.

We used data taken from the Pizza & Chile corpus 20, namely, english texts, DNA sequences,

XML, and protein sequences. We compared our algorithm with the implementation RSUS

19http://code.google.com/p/libdivsufsort/
20http://pizzachili.dcc.uchile.cl/texts.html
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of [86] available at 21. RSUS is actually a combination of an interface for the R language 22 and

core routines written in C++. For comparison in our experiments, we modified the RSUS C++

routines to be called from a C++ program so that all programs utilize only the C++ language.

The results of experiments for the 4 data are shown in Table 5.1. We take a prefix of length

n for each data, and measure the running times of RSUS [86], and TSUS (the implementation

of the algorithm in this thesis). The entries marked N/A for RSUS was when the time exceeded

1 hour, at which time the execution of the program was stopped. The cause for the sudden

increase in running times for RSUS was due to the fact that RSUS consumed all of the available

physical memory. The results show that our algorithm is much faster (as fast as 20 times) in

preprocessing time compared to RSUS.

21https://bitbucket.org/wush_iis/rsus
22http://www.r-project.org
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Algorithm 2: Create array MMUSS of meaningful MUSs and an array of pointers L
to lmMUS for each position of string S

Input: LCP and RANK array for string S.
Output: MMUS [1..|MMUS .size()|]: array of meaningful MUSs; L[1..n]: index in

MMUS of leftmost SUS for each position.
1 for p← 1 to n do
2 `← MMUS .size();

// lmMUS for position p wrt MUS p−1S is either the same
as p− 1, or the next one.

3 if p = 1 then
4 L[1]← 1; // Core MUS of position 1 is leftmost MUS.

5 else if L[p− 1] < ` and
|cover(MMUS [L[p− 1] + 1], p)| < |cover(MMUS [L[p− 1]], p)| then

6 L[p]← L[p− 1] + 1;

7 else
8 L[p]← L[p− 1];

// update MMUS and L to values wrt MUS pS
9 if exists MUS: newMUS = [p, e] for some e ≥ p. then // O(1) time using

LCP and RANK array
10 if ` > 0 then

// j: rightmost position that doesn’t need update
11 j ← max{i ≤ p | |cover(MMUS [L[i]], i)| ≤ |cover(newMUS , i)|};
12 if j = p then // No updates for L. Remove meaningless

MUSs from MMUS
13 MMUS ← MMUS [1..k] where

k = max{k′ ≤ ` | |cover(MMUS [k′], p)| ≤ |cover(newMUS , p)|};
14 else // remove meaningless MUSs after the one

pointed by j and newMUS
15 MMUS ← MMUS [1..k] where k = max{k′ ≤ ` |

|cover(MMUS [k′], j)| ≤ |cover(MMUS [L[j]], j)|};
16 for j + 1 ≤ i ≤ p do L[i]← k + 1; // update L to new MUS
17 ;

18 MMUS .push back(newMUS);
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Table 5.1: Comparison of Computation Time in seconds.
english

(|Σ| =239)
dna

(|Σ| =16)
dblp.xml
(|Σ| =97)

protein
(|Σ| =27)

n (MB) TSUS RSUS TSUS RSUS TSUS RSUS TSUS RSUS
10 4.21 122.31 4.79 18.63 3.42 14.34 4.01 28.28
20 9.16 324.58 10.54 40.46 7.44 29.98 9.04 66.74
30 14.13 445.84 16.45 61.80 11.43 46.51 14.57 108.00
40 20.14 500.19 23.06 84.75 16.17 62.76 21.68 151.85
50 25.62 580.00 29.31 107.34 20.35 78.73 28.90 197.99
60 31.20 667.16 36.08 131.38 24.62 95.55 35.61 242.55
70 38.26 N/A 43.90 N/A 30.14 728.71 43.96 N/A
80 44.00 N/A 50.83 N/A 34.67 N/A 51.01 N/A
90 50.37 N/A 57.88 N/A 39.03 N/A 58.13 N/A

100 56.71 N/A 65.17 N/A 43.30 N/A 64.22 N/A

70



Chapter 6

Conclusion

In this thesis, we addressed (1) the substring search problem; (2) the prefix search problem; and

(3) the shortest unique substring (SUS) problem and tried to develop compact data structures

for them.

In Chapter 3, we introduced a new grammar-based compression scheme named Lyndon

grammar compression, and compared its compression performance with several other grammar

compression methods by computational experiments. Based on this compression scheme, we

developed a new self-index structure ofO(g) words of space, which can be built from a string T

inO(n lg n) expected time, where n is the length of T and g is the size of the Lyndon SLP for T .

It takes only O(m+ lgm lg n+ occ lg g) time to find all occurrences of pattern P of length m,

where occ is the number of occurrences of P in T .

In Chapter 4, we developed a compact dynamic index structure of O(n) words of space for

the prefix search problem, which can be built from multiple keywords with total length n. It

supports all keyword dictionary operations (prefix-search, insertion and deletion) in O(m/α +

lgα) expected time with α = w/ lg σ on input string of length m.

In Chapter 5, we showed an optimal solution to the SUS problems. We showed that S can

be preprocessed in O(n) time so that a SUS for any query position can be answered in O(ans)

time, where ans is the number of outputs.
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[81] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comput. Surv.,

39(1):2:1–2:61, 2007.

[82] G. Navarro and N. Prezza. Universal compressed text indexing. Theor. Comput. Sci.,

762:41–50, 2019.

[83] C. G. Nevill-Manning, I. H. Witten, and D. L. Maulsby. Compression by induction of

hierarchical grammars. In Proc. DCC, pages 244–253, 1994.

[84] T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda. Dynamic index and lz factor-

ization in compressed space. Discret. Appl. Math., 274, 2019.

[85] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004.

78



BIBLIOGRAPHY

[86] J. Pei, W. C.-H. Wu, and M.-Y. Yeh. On shortest unique substring queries. In Proc.

ICDE, pages 937–948, 2013.

[87] G. E. Pibiri and R. Venturini. Efficient data structures for massive n-gram datasets. In

Proc. SIGIR, pages 615–624, 2017.

[88] A. Poyias and R. Raman. Improved practical compact dynamic tries. In Proc. SPIRE,

volume 9309 of LNCS, pages 324–336, 2015.

[89] W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-

based compression. Theoretical Comput. Sci., 302(1–3):211–222, 2003.

[90] S. C. Sahinalp and U. Vishkin. Data compression using locally consistent parsing. Tech-

nical report, University of Maryland Department of Computer Science, 1995.

[91] H. Sakamoto. A fully linear-time approximation algorithm for grammar-based compres-

sion. J. Discrete Algorithms, 3(2–4):416–430, 2005.

[92] H. Sakamoto, T. Kida, and S. Shimozono. A space-saving linear-time algorithm for

grammar-based compression. In Proc. SPIRE, volume 3246 of LNCS, pages 218–229,

2004.

[93] H. Sakamoto, S. Maruyama, T. Kida, and S. Shimozono. A space-saving approxima-

tion algorithm for arammar-based compression. IEICE Transactions, 92-D(2):158–165,

2009.

[94] R. Sedgewick and K. Wayne. Algorithms. Pearson Education, 2014.

[95] J. Sheldon, W. Lee, B. Greenwald, and S. P. Amarasinghe. Strength reduction of integer

division and modulo operations. In Proc. LCPC, volume 2624 of LNCS, pages 254–273,

2001.

[96] J. A. Storer. NP-completeness results concerning data compression. Technical Report

234, Dept. of Electrical Engineering and Computer Science, Princeton University, 1977.

[97] Y. Takabatake, K. Nakashima, T. Kuboyama, Y. Tabei, and H. Sakamoto. siEDM: an

efficient string index and search algorithm for edit distance with moves. Algorithms,

9(2):26:1–26:18, 2016.

79



BIBLIOGRAPHY

[98] Y. Takabatake, Y. Tabei, and H. Sakamoto. Improved ESP-index: A practical self-index

for highly repetitive texts. In Proc. SEA, volume 8504 of LNCS, pages 338–350, 2014.

[99] T. Takagi, S. Inenaga, K. Sadakane, and H. Arimura. Packed compact tries: A fast and

efficient data structure for online string processing. IEICE Transactions on Fundamentals

of Electronics, Communications and Computer Sciences, 100-A(9):1785–1793, 2017.

[100] K. Tsuruta, S. Inenaga, H. Bannai, and M. Takeda. Shortest unique substrings queries in

optimal time. In Proc. SOFSEM, volume 8327 of Lecture Notes in Computer Science,

pages 503–513, 2014.
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