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Abstract

This dissertation investigates advanced underactuated systems. The underactuated

systems have models that their control inputs are fewer than the states (configuration

variables). Although this characteristic might be seen as a drawback due to control

and application challenges, it has been observed that they are part of nature in the

dynamical model of animals and humans including their locomotion. A living ex-

ample in nature for an underactuated mechanism is the bird’s wing that the elastic

ligament connection between feathers and skeleton creates a direct control of wing

by using wrist and finger motion of the bird. In robotics, underactuated mechanisms

can save the actuator’s space and power. Also, they can result in optimal and com-

plex motions which is a well-known theoretical challenge in the field of control and

robotics. These models can be seen in large numbers of problems. The object manip-

ulation with fingertips (Dexterous manipulation), the rolling robots with rotational

mass actuators, certain motions of the legged robots, and even in simple car parking

problems are some of these examples.

In this dissertation, our studies are mainly focused on the underactuated rolling

systems, however, certain studies aim for broader applications in the field of robotics

and control. Part of this study is focused on a novel fluid-actuated rolling spherical

robot. The proposed rolling robot works by rotating spherical masses (cores) inside

the pipes. In order to push the core, the fluid-actuated mechanism circulates the fluid

inside the considered pipe models. After the analytical and performance studies for

the underactuated rolling robot, we propose a motion control strategy by using the

inverse dynamics of the system.

Next, the fluid-actuated mechanism requires to have a motion tracking of the ro-

tating spherical masses (cores) in pipes. Therefore, a general complementary filter is

designed to do the motion tracking of the core by inertial measurement unit under the

ferromagnetic effects. Experimental studies take place by comparing the performance

of the proposed filter to the well-known QUEST filter. This proposed tracking mech-

anism with the designed compensatory filter can be used to develop suitable feedback

xiii



control strategies for the rolling robot. More importantly, this work shows a new

and general observation that using onboard permanent magnets can shield different

magnetic disturbances with proper filter design in robots and actuators.

Our studies are continued with a focus on the control problems related to inertial-

coupling at underactuated robots. We present a general solution to prevent singu-

larities that exist in the inverse of inertial matrices. The method is applying small-

amplitude waves on the rotating mass trajectories. After deriving inverse nonlinear

dynamics with combined wave kinematics, we design conditions for the waves pa-

rameters to avoid these configuration singularities. Furthermore, the configuration

singularities in the mass-rotating rolling systems due to inertial-coupling are pre-

sented for the first time. The singular-free model is analyzed for the underactuated

rolling systems as well as underactuated planar manipulators.

Finally, a novel geometric-based motion planning is introduced for the spin-rolling

sphere with three rotational degrees-of-freedom on a plane. This particular problem

has an underactuated model. We use the Darboux Frame kinematics and develop an

arc-length-based control strategy. The aim is to create smooth and realizable trajec-

tories for converging the full-configuration of the overall system. Also, the motion of

the spin-rolling sphere is planned by following the shortest optimal trajectory on the

plane. We illustrate our motion planning strategy in certain simulation studies. This

planning approach is intended to be used for the proposed spherical robot but it can

be extended to Dexterous manipulation and other mechanics that spin-rolling mo-

tion can be realized. This newly proposed geometric planning based on the Darboux

Frame can be extended for 2D manifolds with arbitrary surfaces.
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Chapter 1

Introduction

1.1 Motivation

Robots are getting involved in many different tasks from the industry to exploration

and rescue activities. However, there is a great level of unsolved problems that are

based on mechanism design and theoretical limitations. As an exquisite example, a

disastrous heartbroken earthquake and tsunami in March 2011 at Fukushima, Japan,

not only showed despite all of the preparations from an advanced country like Japan,

humans are still under great threat coming from natural disasters, but also there are

challenges in the robotic field for the rescue and investigation. With this inspira-

tion, many researchers are developing different strategies to tackle the technical and

theoretical challenges of mobile robots.

A well-known challenge in the control and robotics field is related to cases when

the robot has fewer control inputs than the configuration variables of the overall sys-

tem. This type of system is called an ”underactuated system” [69]. The property of

this system becomes physically vivid in mechanisms that have passive bodies without

any direct control torques. The underactuation can be seen in a fully-actuated sys-

tem due to damage to the actuator or physical constraints to the robot, robots lose

their direct control on certain actuators. However, apart from this point, designing

underactuated mechanisms can have interesting advantages. For example, they can

save the actuator’s space and power besides producing highly complex locomotion.

A living example in nature for an underactuated mechanism is the bird’s wing [see

a-Fig. 1.1] [27]. The wing has an elastic ligament connection between feathers and

the skeleton creates a simple control of the complete wing. This happens by using

the wrist and finger motion of the bird. Thus, birds with actuating limited joints,

they are able to create different maneuvers by the given wing morphology. By focus-

ing on the robotic mechanisms, underactuated models can be seen in broad numbers

of problems such as the rolling robots with rotational mass actuators [5] [see b-Fig.
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a) b)

c) d)

Figure 1.1: Example underactuated systems: a) the bird wing [27], b) Pendulum-
actuated rolling robot [5,51,68], c) Manipulators with passive joints [89] d) Dexterous
manipulation with fingertips [32,35].

1.1], manipulators with passive joints [89,95] [see c-Fig. 1.1], the object manipulation

with fingertips (Dexterous manipulation) [32, 35, 41, 62, 82] [see d-Fig. 1.1] and even

in simple car parking problem.

By having the motivation to underactuated robots the literature review takes place

in three main topics. At first, the spherical rolling robots are studied in Section 1.2

that they have different propulsion mechanisms. We will talk about the limitations of

the rolling robots with different propulsion systems which include fully and partially

actuated mechanisms. Then, we will discuss the control challenges of the underac-

tuated systems (dynamic models of the rolling robots and planar manipulators) in

Section 1.3. One of the main issues in the control of underactuated systems is the sin-

gularities due to inertial-coupling in inverse dynamics. These singularities are coming

from inversed inertial matrices which results in serious limitation for the underac-

tuated robot’s controller design. Finally, the problem of motion control is studied

for path planning of the spin-rolling sphere. The nonholonomic constraint that is
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Figure 1.2: History of proposed different internal mechanisms for actuating spherical
bots with solid shell.

combined with the underactuated system has been explained in previous studies and

existing challenges in Section 1.4.

1.2 Spherical Mobile Robots

Currently, rolling robot’s are getting more attention in the field of robotics. In par-

ticular, there is an interest in spherical rolling robots. These types of robot can move

omni-directionally, and the inner gap of the outer shell provides a secure and safe

placement of the actuators [28]. The shell minimizes the risk of a failure due to un-

stable configurations and robot does not face with complex propulsion scenarios to

avoid the risk of damage. Therefore, they can operate in dangerous and chaotic envi-

ronments in a better and agile way [5]. These strengths make them strong alternative

for biologically inspired robots e.g., legged robots, or even wheel propelled robots.

Spherical robots can be divided into three main groups based on their actuation

principles [see Fig. 1.2]: torque-reaction, mass-imbalance, and conservation of angular
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momentum. Their actuation principles can be under- or fully-actuated mechanisms

depending on their structural design.

1.2.1 Torque-reaction

Torque-reaction as the former actuation principle has rolling wheels to create a reac-

tive torque at the inner shell. Haleme et al. [46] proposed a kinematic-based motion

control in which the robot had a single direction turning wheel [see Fig. 1.2]. Also,

a cart was placed inside the ball-shaped shell that was used as an alternative way to

actuate the body [21]. To deal with the unstable cart-based system, a rolling robot

can be equipped with omniwheel platforms [58,121]. For this principle of propulsion,

a nonlinear feedback controller inspired by the caterpillar-rolling gait model was ap-

plied to manipulate the cart in a spherical shell [31]. It is important to note that

actuators realizing the torque-reaction principle [2, 21, 31, 46, 121] take the majority

of the physical space inside the spherical carrier.

1.2.2 Mass-imbalance

The mass-imbalance principle was introduced by Javadi for moving the rolling robot

named Glory [54]. In this robot, the driving force is created by unbalancing the

center of mass (COM) by moving the masses along various axes. NASA researchers

developed a spherical rover for outer space explorations named Tumbleweed [15].

Tumbleweed rover can use external wind energy to move via the mass-imbalance.

Attaching a pendulum mechanism to change the center of mass was proposed by Liu

et al. [68] and Mahboubi et al. [71]. This research was followed by trajectory tracking

studies [8,116] and relevant model design and simulations [64,65]. These mechanisms

have been developed for propelling the masses directly with gearboxes, which limit

the spherical carrier velocity. Different control strategies for systems using the mass-

imbalance were proposed in [25,48,53,59]. Please note that the rolling robots can be

implemented as hybrid mechanisms that combine torque-reaction and mass-imbalance

driving principles [51].
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1.2.3 Conservation of Angular Momentum

Another actuation principle is based on the conserving the angular momentum. A

rolling robot with rotating internal gyroscope and two motor drivers for each direction

was proposed in [24]. Bhattacharya and Agrawal [20] proposed a perpendicular pair of

rotors to move the carrier body. A different design is reported in [22]. A hybrid robot

that utilizes both the conservation of angular momentum and the reaction forces is

designed by Schroll [91]. To control, Morinaga et al. [75] applied iterative steering

by nilpotent approximations [83] for motion planning. Reduced attitude control of

the sphere by three inertia discs was analyzed in [80]. These mechanisms use a

physical principle similar to a spinning ice skater; hence, the low produced torque

and sensitivity to the external forces are unavoidable.

The torque-reaction-based motion principle mostly requires direct contact with the

outer-shell which makes this type fully-actuated in the majority of models [2,21,31,46,

121]. However, the rolling robots actuating by the mass-imbalance and conversation

of angular momentum have underactuated models [20,24,51,54,68,71]. These mecha-

nisms mainly do not have any direct input/control on the spherical outer shell which

decreases the numbers of control inputs. Based on the aforementioned limitations

for each principle of actuation, we observe that there has not been any mechanism

that could encompass all the driving principles while it keeps the advantages of each

specific method, namely, an isolated driving mechanism, the conservation of power

and ability to accelerate/decelerate.

1.3 Inverse Dynamics in Underactuated Systems

Industrial machines and robots perform different tasks that require an accurate math-

ematical model of their system. In particular, underactuated mechanisms are getting

more attention in this field due to their advantages [69]. Physically, a system is

underactuated when the number of control inputs is less than the states related to

the configuration variables. These systems with a promise in saving actuator num-

bers, power, and producing complex locomotion have serious challenges. For example,

there are singularities in their inverse dynamics due to inertial coupling [97,113] which

makes it harder to have accurate and continuous control strategies. This general issue
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is predominant in underactuated rolling robots and manipulators.

In principle, the inverse dynamics can be described by inverting the inertia matrix

and its sub-matrices in differential equations to obtain the torque of active joints as

output. Also, the inverse of inertia matrices is required to solve the state equations [1]

or control the underactuated systems [97, 115]. Thus, we can generalize the primary

source of singularity to the inversed inertial matrix or its sub-matrices. These singu-

larities can be found in the middle of configuration or certain neighborhood regions.

In this neighborhood, the integration of a joint angle creates enormous changes. These

large errors directly transferred to active joint torques where they are not physically

able to be realized. [1] presented this problem in mass-point manipulators. The inte-

gration of differential equations in modeled manipulators was breaking if there were

singular configurations in the inverse dynamics.

Initial studies for underactuated mechanisms started by the proposed robots as

Pendubot [99] and Acrobat [98]. These two-link manipulators had one active and

one passive joint without the control input. The inverse dynamics are described

by inversing the inertial sub-matrices to obtain torque of active joints as output.

[4] also showed that the inverse dynamics model in a 2 degree-of-freedom (DoF)

underactuated manipulator contains the singular configurations that the constraint

equation imposes from the passive body. As explained before, when the robot reaches

the singular configuration control torque converge to infinity and this issue limits the

domain of the control. Next, [97] proposed a strong inertial coupling condition for

the underactuated mechanical system using the positive definiteness of the inertia

matrix. This condition grants a singular free inverse dynamics for certain geometric

properties at a 2-DoF Pendubot. This singularity problem was dominant in the non-

collocated linearization method to control the passive primary joint [98]. In general,

these mathematical singularities that originate from the inversed terms of the inertia

matrix limit the mechanism to certain geometric parameters. Then, a coupling index

was shown for different geometric parameters in underactuated manipulators [18].

This property was expressing the actuality of this system in different configurations.

It is important to note that inertial coupling becomes more challenging to deal with

when the number of passive joints increases to more than one. This issue is one of

the main reasons that manipulators with multiple passive joints are not covered in
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the literature. Additionally, the inertial-coupling problem was highlighted and control

strategies were developed relative to this limitation for underactuated spherical robots

[3,104]. Also, because the spherical carrier requires consecutive rotations without any

angular limitations, the singularities due to inertial coupling become more challenging

to deal with. However, a more insightful study is required to understand the root of

the problem of developing an effective solution.

It is clear from previous studies that limiting the geometric parameters or the

configuration of the robot due to inertial coupling ( Refs. [18, 97] showed inertial

coupling for 2-DoF linked systems) is not sufficient and practically acceptable. The

problem becomes much harder to deal with in n-DoFs underactuated mechanisms

with more than one constraint equations e.g., multi-DoFs manipulators with more

than one passive joints.

1.4 Non-holonomic Path Planning of a Spin-rolling Sphere

Sphere is a unique geometrical object that can be visualized as a fingertip [32,35,41,

62,82], a convex object [38,44,102] or a rolling robot [2,43,52,55,107]. Manipulation

of this sphere into the desired configurations is an open problem in the fields of control

and robotics. Interestingly, path planning for a spin-rolling sphere on a plane with

underactuated model is mostly untouched in the literature.

In the kinematics of the rolling contact, the pure-rolling motion has 2 degrees of

freedom that the instantaneous rotation axis is located at the contact point. This

axis is always parallel to the common tangent plane of two surfaces e.g., sphere and

plane. However, spin-rolling motion, also known as twist-rolling, has 3 degrees of

freedom with a similar instantaneous rotation axis that passes contact point. Also,

its axis can be in any arbitrary direction because the spinning motion is normal to

the rolling axis.

From a physical point of view, it is known that spin-rolling motions are possible

to be realized in the mechanical systems which the Gimbal mechanic is the classic

example. For example, if we imagine the fingertip of the hand like a hemisphere,

angular spinning can be achieved by wrist rotation [32]. Another example is rotating

the spherical object in multiple directions with control of the fingertips sometimes

called as dexterous manipulation [35,62,82]. Also, there are mechanical actuators with
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3 or more degrees of freedom in realizing spin-rolling motions which are developed

for spherical mobile robots [2, 52, 107] and Ballbots [43, 55]. In particular, spherical

robots can rotate multiple masses or use different cart-based actuators inside their

shell to create spin-rolling locomotion. Additionally, rotating spherical particles have

broad applications in the field of nano and micro manipulations [38,44,102].

In the conventional pure rolling, the sphere rotates with two degrees of freedom

considered a ball-plate problem [56, 72]. Because the ball is sandwiched between a

moving plane and the ground, the system binds with spinning constraint. Basically,

the ball-plate definition doesn’t fit the spin-rolling case when there is spinning around

the perpendicular axis of the surface plane. Thus, our study excludes mechanisms

that manipulate convex objects e.g., sphere, by planes [72,93] since rotating the plane

around its normal axis cannot spin the sphere physically. To deal with this issue, Kiss

et al. [62] proposed a kinematic model with three independent planes to manipulate

the sphere, and controlled the relative angles by ignoring the plane configuration.

Also, Date et al. used the advantage of spinning in an indirect way [37]. Their

designed algorithm was shifting the coordinate of the actuating plane in iterations

with respect to different base frames which was, in a sense, utilizing a third rotational

virtual center. However, time scaling with the included coordinate transformation of

the kinematic model can result in uncontrollable states [84]. Also, the practicality of

the approach was not discussed for realizing the proposed virtual center by different

propulsion mechanisms.

On the other hand, the Montana kinematic model [74] illustrated that spinning can

be included in the rolling sphere on the surface. It is also clear that having one more

input (spinning or twist) makes the kinematic model 5× 3 which increases the level

of accessibility in the given system. However, spinning of the rolling object creates a

certain complexity because the spin angle changes all the rotational states. This new

system leaves the conventional planning in geometric phase shifting [56, 66, 79, 106]

hard to be applied.

Apart from spin-rolling motion, finding an optimal solution has serious challenges

when reaching the sphere to its final states are desired. This issue becomes harder

to achieve as smooth trajectories are required for the realization of a considered

dynamical system. In literature of the pure rolling, different feed-forward [3, 36, 56]
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and feedback control [37,78,84] methods were utilized. For example, Arthurs et al. [7]

and Jurdjevic [56] proposed planning approaches based on the optimal control theories

which feasibility of them was not tested. As an alternative, to stabilize the ball-plate

system without a differentially flat model, iterative steering was formulated by Oriolo

and Vendittelli [84]. Nevertheless, the solutions had serious fluctuations as trajectories

converge to the desired states. Thus, their created trajectories were not easy to be

realized by dynamical systems [76] and there are singularities in different regions

of spherical manifold due to the locality. Beschastnyi [19] studied the optimality

problem of the rolling sphere with twisting (spinning) on the plane. Certain extremal

trajectories were parametrized, and their cut times were estimated for optimality.

It was proposed that Maxwell time can be determined while the sphere follows the

straight path for the optimal solution. Note that this research did not cover the

control problem for arbitrary desired states.

1.5 Contributions

The main contributions of this work is an insightful study of underactuated mech-

anisms design and finding solutions for some of the theoretical challenges in these

models. Indeed, previous studies took place for mechanism design, in particular

spherical rolling robot [5], and developed different control strategies for underactuated

robots [69], however, we take a look at certain problems from a different perspective

and introduce a new planning problem.

We can list contributions as follows:

•We present a novel fluid-actuated rolling robot with an insightful study of literature

in Section 1.2. After modeling the complete robot, its performance is studied ana-

lytically. This robot is propelled by rotating spherical masses (cores) inside designed

circular pipes. This robot is able to encompass mass-imbalance and conservation of

the angular momentum principles of actuation. Then, an inverse-dynamics based

method is developed to control this underactuated robot.

• A sensor fusion filter is developed for motion tracking of the inertial measurement

unit with onboard ferromagnetic materials. This was aimed to experimentally track

the rotating core inside pipe for our previously proposed rolling system. However, we

extend the study to verify this method for all the inertial measurement units under
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soft and hard ferromagnetic materials effects. This tracking sensor can be used in

developing a proper feedback control strategy to do motion tracking for the rolling

robot under perturbations. Additionally, we show an observation that proper filter

design with attached permanent magnetics, these magnets can work as a shield to-

ward magnetic disturbances for improving motion tracking in robots and mechanisms.

Also, the proposed filter was compared with the well-known QUEST filter [33,73] for

its performance.

• Next, we show a solution for avoiding inertial-coupling singularities in underac-

tuated rolling robots and planar manipulators. The inverse of the inertial matrix is

required to compute inverse dynamics or apply different control strategies [115]. How-

ever, underactuated mechanisms face geometric and configuration constraints due to

existing singular configurations. We propose small-amplitude wave kinematics on the

trajectory of mass-rotating bodies (active joints) to prevent inertial-coupling singular-

ities. We check our approach for both underactuated rolling systems and multi-DoFs

manipulators with more than one passive joints. In addition, we demonstrate that

this predominant in the rolling system.

• Finally, a new Darboux-Frame-Based path planning strategy is developed for a spin-

rolling sphere on the plane in kinematic level. This underactuated model is hardly

studied in literature due to the challenges in planning the spin angle of the sphere [19]

since it changes all the angular states. This makes the conventional path methods

impractical for this problem [56, 66, 79, 106]. In our proposed geometric method, the

sphere is able to follow the shortest path on the plane while the sphere has smooth

and realizable. Since our geometric method was coordinate- and time-invariant, we

were able to realize the obtained paths in different desired angular velocities. This

method can be applied for planning the rolling robots and spherical particles as well

as Dexterous manipulation problems e.g., box manipulation with fingers. By utiliz-

ing the Darboux-Frame-based model and solving it together with dynamics model a

trajectory tracking strategy can be developed to realize the path planning approach

for different mechanics.
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1.6 Dissertation Outline

The Chapter 2 of the dissertation starts with introducing a novel fluid actuated

rolling robot. After explaining the designed robot, rigid body dynamics are derived

through the D’Alembert principle, and we find the driving mechanism’s model. Then,

the driving mechanism and rolling robot are studied analytically. Next studies are

related to performance studies of this rolling robot. Finally, we propose a feedforward

control strategy using inverse dynamics.

We begin studies on the sensor design of our proposed rolling system in Chapter 3.

Because the proposed driving unit is novel, we propose a sensor tracking mechanism

to track the core that rotates in the pipe. This tracking sensor lets us know the

angular position of the rotating mass (core) in the pipe. This helps to develop proper

feedback control strategies to control the rolling robot toward desired configurations

under the perturbations. Next, a new motion tracking filter is developed based on

the Kalman filter under ferromagnetic material effects. With observations from our

experiments, we verify the performance of the new filter that does sensor fusion via an

inertial measurement unit. Also, we explain how proper filter design with on-board

ferromagnetic materials (magnets are for tracking the rotating core in the pipe) can

work as a magnetic shield toward external disturbances.

In our early studies in Chapter 2, we observed that singularities in the inverse

dynamics of underactuated rolling robots can create serious limitations for controlling.

In Chapter 4, we introduce a solution for inertial-coupling singularities as one of the

serious challenges in underactuated robots. We start by applying small-amplitude

waves on the rotating mass kinematics. Next, the nonlinear dynamics of a general

mass rotating rolling robot is derived. We demonstrate how a singular-free inverse

dynamics can be obtained after explaining the singular configurations of the rolling

systems. Also, we extend our solution for planar underactuated multi-degrees-of-

freedom manipulators and studied the solution analytically.

Chapter 5 introduces a new geometric path planning approach for a spin-rolling

sphere on a plane. The proposed spin-rolling sphere apart from its new deriving

mechanism, its 3-DoFs rotational degree limits the conventional methods to be applied

for planning. This nonholonomic path planning problem requires a different approach

to have smooth and realizable trajectories which we propose in this chapter. At first,
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the new Darboux Frame kinematics for the spin-rolling sphere on a plane is developed.

Before explaining the constraints of this planning, we describe the path planning

problem for the derived Darboux-Frame-based kinematic model and our objectives.

Next, a virtual surface as a geometric controller is designed to converge the system to

desired states. Additionally, we show our simulation results and capabilities of this

proposed approach.

Chapter 6 is our final chapter where we conclude our findings and explains re-

maining open-problems and future works.



Chapter 2

Design and Analytical Studies on Novel Fluid Actuated

Spherical Mobile Robot

2.1 Introduction

In this chapter, we analyze a novel underactuated spherical mobile robot. This rolling

robot has two spherical masses moving inside two perpendicular circular pipes. Masses

rotations create the required force to move the spherical robot based on the mass-

imbalance. The driving force of rotating masses is generated by the internal driving

unit (IDU) which circulates the incompressible fluid via a moving cylinder. The

cylinder is connected to a linear actuator for controlling the injected fluid volume.

Also, we propose a feed-forward control strategy for its planar locomotion through

the inverse dynamics.

Our main contribution in this chapter is to propose a first driving unit that uses

fluid actuation for rolling robots. We analyze the performance of the proposed driving

unit analytically. Also, a nonlinear feed-forward control strategy is applied to control

this system.

The novel rolling robot is proposed with the aim to overcome different limitations

that previously designed mechanisms have in rolling robots as described in Chapter 1.

The proposed robot is considered to encompass the majority of the driving principles

without overusing the rolling robot’s inner space. This issue was challenging in actu-

ation principles of the torque-reaction-based and mass-imbalance. Also, we wanted

to propose a driving mechanism that its DoF can easily be extended. As another

advantage, the fluid in the driving unit will work as a mediator which will result in

smooth and safe locomotion. Based on the literature, it is clear that every driving

principle has particular advantages where we want to achieve them in this particular

rolling robot. We believe this will increase the application ranges in rolling robots.

13
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Figure 2.1: Proposed fluid-actuated spherical robot.

The chapter is organized as follows. In Section 2.2, we describe the main compo-

nents of the proposed robot and derive its rigid body dynamics from the D’Alembert

principle. In Section 2.3, the IDU is introduced. In Section 2.4, the performance of

the IDU is assessed with respect to three critical parameters namely torque reliance,

cylinder tank volume, and fluid characteristics. Also, the performance of the whole

robot is then verified under simulations, which include its dynamic model and the

IDU model. Next, we do parametric evaluation by mass-ratio of core-sphere design

and robot’s cost-of-transport (COT) in Section 2.5. Final Sections 2.6-2.7, we propose

a feed-forward control based on inverse dynamics and study our simulated results.

2.2 Robot Feature and Rigid Body Model

2.2.1 Structure and Components of Rolling Robot

The outer cover of the rolling robot is a spherical plastic shell. We have two circu-

lar pipes, made from a solid material, e.g., acrylonitrile butadiene styrene, that are

attached to the inner surface of the sphere. In the initial configuration, pipe A is

placed vertically and pipe B is placed horizontally perpendicular to pipe A as shown

in Fig. 2.1. For preventing the intersection of two pipes, the radius of pipe B is cho-

sen smaller than that of pipe A. Two spherical masses (cores) are placed inside these
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Figure 2.2: The rolling robot with introduced basic vectors.

circular pipes to propel the robot. The internal driving unit (IDU) is located at the

center of the spherical shell. The IDU is producing the driving forces for moving the

rotational masses (cores). This IDU circulates an incompressible fluid in the pipes

through the input ports (injection line pipes). It works with cycles and it is connected

to different parts of the pipes.

2.2.2 Rigid Body Dynamics

To obtain the nonlinear dynamics of the robot’s rigid body, we use the geometric

description shown in Fig. 2.2. Here, ΣI represents the inertial frame. The moving

frame connected to the center of the sphere is denoted as ΣO. The contact coordinate

frame on the plane is denoted as ΣCO. Also, ΣOA and ΣOB are the rotating cores’ A

and B coordinate frames with respect to the sphere center ΣO. Table 2.1 shows all

the variables used in describing the kinematics of the rolling robot.

The position of contact point pc with respect to ΣO is given as

pc = Ry(uco)Rx(vco)


0

0

−R

 = R


− sinuco cos vco

sin vco

− cosuco cos vco

 , (2.1)

where R is the outer radius of the spherical shell and {uco, vco} are the angles that

describe the contact point on the sphere. By introducing the relative spinning angle
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Table 2.1: Nomenclature.

θ, β, ψ Orientation angles of the sphere with respect to X-, Y- and Z-axes
q1, q2 Rotation angles defining the position of the cores in A and B pipes
Ωx, Ωy, Ωz Angular velocities of sphere
r1, r2 Distances from the center of cores to the center of sphere
rA, rB Positions of the cores with respect to ΣI

ro Position of the center of sphere ΣO with respect to ΣI

rc Position of the contact point with respect to ΣI

p1, p2 Positions of cores A and B with respect to ΣO

pc Position of the contact with respect to ΣO

Vo, Ωo Linear and angular velocities of the sphere
VA, VB Linear velocities of the cores in pipes A and B with respect to ΣI

ΩA, ΩB Angular velocities of the cores in pipes A and B with respect to ΣI

δπA, δπB Infinitesimal rotations of cores with respect to ΣI

δπo Infinitesimal rotation of the sphere with respect to ΣI

δπ1, δπ2 Infinitesimal relative rotations of the cores with respect to ΣO

ψ, the orientation matrix of the sphere with respect to ΣI is constructed as Ro =

RT
z (ψ)RT

x (vco)R
T
y (uco). Now, the contact kinematic model of the sphere and plane

can be expressed by Montana’s equation as follows [103]

u̇cs

v̇cs

u̇co

v̇co

ψ̇


=



0 R 0

−R 0 0

− sinψ/ cos vco − cosψ/ cos vco 0

− cosψ sinψ 0

− sinψ tan vco − cosψ tan vco −1




Ωx

Ωy

Ωz

 , (2.2)

where ucs and vcs are the coordinates of the contact point in the contact plane, and

Ωx,Ωy,Ωz are the components of the angular velocity of the sphere in projections

onto the inertial frame.

The positions of the cores, p1 and p2, with respect to ΣO are defined as

p1 =


0

−r1 sin q1

−r1 cos q1

 , p2 =


r2 sin q2

r2 cos q2

0

 , (2.3)

where r1 and r2 are the distances from the center of the cores to the center of the

sphere, and q1 and q2 are the angles of the cores in pipe A and pipe B, respectively. It

is assumed that in the frame ΣO the cores rotate, respectively, along the unit vectors
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e1 = [1, 0, 0]T and e2 = [0, 0, 1]T . The kinematic equations that describe the motion

of the cores in pipes A and B with respect to inertial frame ΣI can now be presented

as follows:

δπA = δπo + δπ1, ΩA = Ωo + Ω1

Ω̇A = Ω̇o + Ω̇1 + Ωo ×Ω1,

V̇A = V̇o + Ω̇A × p1 + ΩA × (ΩA × p1) ,

(2.4)

δπB = δπo + δπ2, ΩB = Ωo + Ω2,

Ω̇B = Ω̇o + Ω̇2 + Ωo ×Ω2,

V̇B = V̇o + Ω̇B × p2 + ΩB × (ΩB × p2) ,

(2.5)

where the parameterizations of the virtual displacement are δπ1 = e1δq1, δπ2 = e2δq2,

Ω1 = e1δq̇1, Ω2 = e2δq̇2, Ω̇1 = e1δq̈1 and Ω̇2 = e2δq̈2.

In here, we model each of the cores as a mass point. It is also assumed that the

filling fluid is distributed uniformly inside the pipes i.e., cylinder, injection line and

the pipe with the core. By applying the D’Alembert principle for the multi-body

system, free from non-holonomic rolling constraints [122], one can obtain

δro · [Mo (r̈o − g)] + δπo ·
[
JoΩ̇o + Ωo × JoΩo

]
+

2∑
i=1

[
δri · (mcr̈i − Fi)

]
= 0, (2.6)

where δro and δri are the virtual displacements of the center of the sphere and the

cores, in the given order. Also, Mo stands for the total mass of the sphere, including

the mass of the fluid; Jo is the inertia tensor of the sphere, mc is the mass of the

core, g is the gravity vector, and Fi is external force acting on the i-th core. It is

important to note that the first two terms in (2.6) account for the sphere dynamics

and the last term is for the dynamics of the two rotating cores. Then, the external

forces in Fi are defined as

Fi = Fdi + FGi
+ Fvi , (2.7)

where Fdi , FGi
, Fvi are the driving forces, the body forces, and the viscous forces.

We will define functions of the forces specifically in Section 2.3.

By expressing the absolute virtual displacements of the cores δri = δro + δπi×pi

through the virtual displacement of the sphere and the relative virtual displacements
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of the cores as δrA = δro + δπA×p1 for pipe A and δrB = δro + δπB ×p2 for pipe B,

one transforms (2.6) to the following form

δro ·
[
Mo

(
V̇o − g

)
+
(
mcV̇A − F1

)
+
(
mcV̇B − F2

)]
+ δπo ·

[
JoΩ̇o + Ωo × JoΩo + p1 ×

(
mcV̇A − F1

)
+ p2 ×

(
mcV̇B − F2

) ]
+ δπ1 ·

[
p1 ×

(
mcV̇A − F1

) ]
+ δπ2 ·

[
p2 ×

(
mcV̇B − F2

) ]
= 0.

(2.8)

To take into account the rolling constraint, we first transform δro to the contact point

between the sphere and the plane δrc = δro + δπo × pc, where we have rc = ro + pc.

Because there is no-sliding constraint δrc = 0 [57], we have the virtual displacement

of the sphere as

δro = −δπo × pc. (2.9)

Then, we substitute (2.9) into (2.8), which results in

δπo ·
[
− pc ×

(
MoV̇o +mc

(
V̇A + V̇B

))
+ JoΩ̇o + Ωo × JoΩo + p1 ×

(
mcV̇A − F1

)
+ p2 ×

(
mcV̇B − F2

) ]
+ δπ1 ·

[
p1 ×

(
mcV̇A − F1

) ]
+ δπ2 ·

[
p2 ×

(
mcV̇B − F2

) ]
= 0,

(2.10)

Next, we take into account that V̇o = −Ω̇o × pc, which comes from differentiating

the rolling constraint Vo + Ωo × pc = 0. In addition, we replace V̇A and V̇B by

the expressions defined in (2.4) and (2.5). As a result, we transform (2.10) to the

following equation

δπo ·
(
M11Ω̇o + M12Ω̇1 + M13Ω̇2 + N11 + G11

)
+ δπ1 ·

(
M21Ω̇o + M22Ω̇1 + M23Ω̇2 + N21 + G21

)
+ δπ2 ·

(
M31Ω̇o + M32Ω̇1 + M33Ω̇2 + N31 + G31

)
= 0,

(2.11)
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where

M11 = Jo +Mop̂cp̂c + 2mcp̂cp̂c −mc (p̂1p̂c + p̂cp̂1)

− mc (p̂2p̂c + p̂cp̂2) , M12 = mcp̂1p̂1 −mcp̂cp̂1,

M13 = mcp̂2p̂2 −mcp̂cp̂2, M21 = mcp̂1p̂1 −mcp̂1p̂c,

M22 = mcp̂1p̂1, M23 = 0, M31 = mcp̂2p̂2 −mcp̂2p̂c,

M32 = 0, M33 = mcp̂2p̂2,

(2.12)

N1 = mcp1 ×
[

(Ωo + Ω1)× ((Ωo + Ω1)× p1) +
(
Ωo + Ω1

)
× p1

]
+ mcp2 ×

[
(Ωo + Ω2)× ((Ωo + Ω2)× p2) + (Ωo + Ω2)× p2

]
− mcpc ×

[
(Ωo + Ω1)×

((
Ωo + Ω1

)
× p1

)
+ (Ωo + Ω2)× ((Ωo + Ω2)× p2)

+ (Ωo + Ω1)× p1 + (Ωo + Ω2)× p2

]
+ Ωo × JoΩo,

N2 = mcp1 ×
[

(Ωo + Ω1)× ((Ωo + Ω1)× p1) + (Ωo + Ω1)× p1

]
,

N3 = mcp2 ×
[

(Ωo + Ω2)× ((Ωo + Ω2)× p2) + (Ωo + Ω2)× p2

]
, (2.13)

and

G1 = − (p1 × F1 + p2 × F2) , G2 = −p1 × F1, G3 = −p2 × F2. (2.14)

In our equations, hat symbol corresponds to the skew-symmetric operator a×b , âb.

The dynamic equations can now be developed by treating the virtual displace-

ments δπo, δπ1, δπ2 in (2.11) as independent variations. By rearranging the terms

with Fdi (the fluid pressure forces driving the cores within the pipes) to the right-hand

side, we will finally obtain


M11 M12 M13

M21 M22 M23

M31 M32 M33




Ω̇o

q̈1

q̈2

+


N1

N2

N3

+


G1

G2

G3

 =


0

τ1

τ2

 , (2.15)
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Figure 2.3: Schematic of the fluid actuated mechanism.

where

M11 = M11,M12 = M12e1,M13 = M13e2,N1 = N1,G1 = G1,

M21 = eT1 M21,M22 = eT1 M22e1,M23 = eT1 M23e2, N2 = eT1 N2,

G2 = −eT1 (p1 × (FG1 + Fv1)) ,M31 = eT2 M31,M32 = eT2 M32e1,

M33 = eT2 M32e2, N3 = eT2 N3, G3 = −eT2 (p2 × (FG2 + Fv2)) ,

and also the input torques are computed as τ1 = eT1 (p1 × Fd1) and τ2 = eT2 (p2 × Fd2).

With obtained derivations, equation (2.2) together with (2.15) define the total rigid

body model of the rolling robot with 12 state {ucs, vcs, uco, vco, ψ,ωox, ωoy, ωoz , q1, q̇1, q2, q̇2}
and two control inputs τ1 and τ2.

2.3 Internal Driving Unit

The internal driving unit (IDU) is the main part of our proposed propulsion mecha-

nism. The IDU is responsible for producing the required fluid pressure to move the

spherical masses (cores) in the pipes. We have divided the modeling two parts: 1.

The linear actuator part that creates fluid circulation 2. The motion generation part

where the exiting fluid is transferred to the main pipe with the core.

2.3.1 Linear Actuator

To push the moving core, a high-density flow is produced by a multi-functional linear

actuator connected to a cylinder (please see Fig. 2.3). The cylinder provides the
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(a)
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Motor location

Rotating body
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Fluid Port

(b)

Figure 2.4: The structure of the linear actuator and the connected cylinder. The
torque is carried through rotating body to move the joint that is connected to the
cylinder rod.

fluid flow in the pipe while the designed control valves manipulate the flow direction

within the sections of the pipe. Fig. 2.4 demonstrates the schematic for the designed

linear actuator with the cylinder connection. We begin with modeling of the linear

actuator connected to this cylinder, and then we define the size limitations of this

mechanism inside the IDU box.

The displacing cylinder rod in the interconnected motor can be related to the

axial force of the linear actuator by the following one-dimensional motion equation

Fin − FLA + Fs = 0, (2.16)

where Fin, FLA and Fs are the inertia of the cylinder’s rod, the transmitted torque

on the rod, and the total friction between the screw and rotating body forces, respec-

tively. The given forces are defined as [30,96]

Fin = mLAaLA, FLA = 2πTmη/`, Fs = µLAFin, (2.17)
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where mLA, aLA, Tm, η, ` and µLA are the total mass of the rod and the mov-

ing connected joints, the acceleration of the rod, the input torque of the motor,

the efficiency of the linear actuator, the size of the lead, and the friction coef-

ficient between rotating body and rod, respectively. The efficiency is defined as

η = (cosα − µs tanλ)/(cosα + µs cotλ) [30], where α, µs and λ are, respectively,

the thread angle, the coefficient of friction (typically 0.15) in the screw, and the lead

angle. The screw is considered to be a ball screw with minimal friction effect; hence

η is approximated with 96%.

With the given defined forces in (2.16)-(2.17), the state-space model of the rod of

the linear actuator can be described as follows,

ḊLA = VLA,

V̇LA =
2πη

mLA`(1 + µLA)
Tm,

(2.18)

where DLA and VLA are the displacement and the velocity of the moving rod, respec-

tively. Note that the velocity of the connected bar of the linear actuator, VLA, is the

same as the velocity of the cylinder, VCL. Also, we use a double-act cylinder in this

modeling problem. Therefore, the cylindrical volume is shifting in cycles in order to

provide continuous flow. As a result, the effective area of the cylinder that pushes

the liquid in each cycle is defined as follows,

ACL =

πD
2
L/4, DLA is increasing from 0 to LT

π
(
D2
L −D2

U

)
/4, DLA is decreasing from LT to 0

(2.19)

where DU , DL and LT are the diameter of the rod, the diameter of the pusher in the

cylinder, and the length of the rod, in the given order.

We have determine the size limitations on the actuation mechanism for fitting it in

the IDU box with symmetric mass distribution (see Fig. 2.4-2.5). The cylinder volume

is given as πD2
LLT . The cylinder length LT ≤ LCL is constrained by the connected

linear actuator length LLA as (LLA + LCL) < DIB, where DIB is the diagonal length

of the IDU box. Also, the diameter of cylinder tank DL has to be within dm ≤ DL ≤
[DIB−(LLA+LCL)]/2 range, where dm is the external diameter of the linear actuator

joint. The upper limitation on DL is the radius of the circle corresponding to the

distance left in diagonally placed total actuator at the edge of the box. Also, we have
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LPS = LRB − LJS for the linear actuator and the cylinder , where LPS = LT . These

size limitations can be used when placing even numbers of actuators inside the IDU

box. We use these relationships to determine the parameters of the IDU listed in

Table 2.2.

2.3.2 Motion Generation

The main part of this propulsion mechanism (from the cylinder to the circulating

core) operates in a liquid medium. In this operating system, a lightweight double-act

pneumatic cylinder [10] is considered. This cylinder works as a pump actuator to

create a continuous flow. The total IDU mechanism is placed inside the spherical

shell. The system integrated actuator is shown in Fig. 2.3. The driving unit is

completely closed; hence the fluid volume is constant in the whole structure. The

flow is circulated through the pipes, cylinders and neutralized tank. Note that the

liquid enters the neutralized tank for the proper control of the filling cycles of the

cylinder.

Since pipes A and B are similar, it suffices to consider one of them in describing

the motion of the core. The active input ports for the fluid and the effective forces

acting on the core are sketched in Fig. 2.5 where the pipe is shown in the vertical

configuration. It is assumed that the velocity of the liquid flow is the same as that

of the core, Vi = riq̇ini, where ri, q̇i and ni are the distance from the center of the

sphere to the core i, the angular velocities of the core i, and the unit vector tangent

to circular path of the pipe , respectively. Note that the relevant parameters have to

be substituted for each pipe corresponding to qi. For example, r1 and q̇1 are taken

for the core in pipe A, and r2 and q̇2 are taken for the core in pipe B.

Since the proposed mechanism works in the liquid-solid medium, we combine

the core forces (2.7) with the input fluid pressure via the momentum equation of

the flow [101, 124], d (mcVi) /dt = Fi. In polar coordinates, the core has angular

aqi(t) = d|Vi|/dtni = riq̈i(t)ni and radial ari(t) accelerations. The latter one can be

ignored because it is constant with no effect on the core and the fluid. Therefore, all

terms are defined with respect to aqi(t).

The first term in the right-hand side of (2.7) is the fluid pressure input along the
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Figure 2.5: The acting forces on the rotating core at pipe A. In here, FB, FD, FW ,
Ff and Fd are the buoyancy, drag, weight, surface friction, and the dynamic pressure
forces, respectively. Also, N and N + 1 are the connecting ports to provide the liquid
circulation with a single fluid actuator.

unit vector ni. This term can be represented as

Fdi =

‹

C.S.

PPnidAP = PPAPni, (2.20)

where PP , AP and C.S. stand for the fluid pressure in the pipe, the pipe’s surface

area, and the contour surface, in the given order. For this force (2.20), we assume

that the distance gap between the pipe and the core surface is negligibly small, and

thus AP = πD2
i /4, where Di is the diameter of the rotating core. Upon substituting

(2.20) into (2.7), the resultant cross-product of the core position vector pi and the

unit vector ni becomes pi × ni = riei (here ei is the core’s relative rotation vector)

since ni ⊥ pi.

Next, the body force FGi
in (2.7) can be decomposed to the gravity FW and

buoyancy FB forces. Since the volume of the core νc = 4πD3
i /3, and gravity vector g

is parallel to the vector of the contact position pc, we can define the body forces as

follows

FW = −mcgpc, FB = ρfνcgpc, (2.21)

where ρf is the density of the fluid, and g the gravitational acceleration.
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The viscous force Fvi in Eq. (2.7) is decomposed to the head loss of the flowing

fluid Ff and the drag force FD acting along the circular path of the core [101],

Ff = −sgn(q̇i)fP
L′PV

2
i

2gDi

ni, FD = −sgn(q̇i)
1

2
CDρfAPV

2
i ni, (2.22)

where V 2
i = r2

i q̇
2
i , and fP , L′P , Di and CD are the Darcy friction factor, the apparent

length of the pipe, the pipe diameter, and the drag coefficient. The Darcy friction

factor is defined as fP = 64/ReP respectively. The Reynold number for the main

pipe with the core in it is ReP = LPVPρf/µf , where VP is the fluid velocity in the

entrance to the main pipe, LP is the length of the pipe, and µf is the viscosity of the

fluid.

In this model, the head loss Ff in (2.22) is a resistant force coming from the

bending shape of the pipe and viscous friction [124]. In the bend of the pipe, a

secondary flow is created by the centripetal acceleration of the rotating fluid; Hence,

the apparent length through the main pipe is defined by [124]

L′P = LP + [(KbDi)/fP ], (2.23)

where Kb is the resistance coefficient for 180o in the return bend.

The motion equations of the driving mechanism can be formed under the as-

sumption that the flux of the linear momentum equilibrates with the external forces,

including the pressure, the gravity and the viscous friction forces. In the state space

form, we have

Vi = riq̇ini,

aqi = PPAPni − sgn(q̇i)
r2
i q̇

2
i

2

(
fP

L′P
Dig

+ CDρfAP

)
ni

+
[
g(−mc + ρfνc)ei · (pi × pc)

]
ni.

(2.24)

Finally, the two-stage Bernoulli equation with the head loss [101] is applied within

the streamline to derive the input pressure PP . In the first stage, the fluid goes

through the cylinder tank (PCL, VCL) to the injection line (PIL, VIL), where IL

stands for the slim fluid carrier pipe. Then, the pressure of the fluid in the injection

line PIL is given as

PIL = PCL +
ρf
2

[
V 2
CL − V 2

IL

]
− ρfghL, (2.25)
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where PCL, VCL, VIL and hL are the pressure and the velocity of the fluid in the

cylinder tank, the velocity of the fluid in the injection line pipe and the head loss,

respectively. The distance between the cylinder and injection line is neglected (hL =

0). To find out the pressure in the injection line PIL, it is assumed that VCL = VLA,

where VLA is taken from the first state equation in (2.18). Next, the velocity of

the fluid in the injection line pipe VIL is defined by the continuity equation VIL =

VCLACL/AIL, where AIL is the cross-section area of the injection line pipe. The

cylinder pressure PCL = FLA/ACL, where FLA is defined by (2.17), is substituted into

(2.25) in order to compute the injection line pressure PIL.

The injection line pipes are connected to the main pipes from the IDU (refer to

ports in Fig. 2.5), and the following Bernoulli equation gives the pressure of the fluid

in the main pipe

PP = PIL +
ρf
2

[
V 2
IL − V 2

P

]
+ ρfg [ZIL − ZP − hm − hf ] , (2.26)

where VP , ZIL, ZP , hm and hf are the fluid velocity in the entrance to the main

pipe, the constant height of the injection port, the height of the port, the head loss

of friction, and the sudden expansion loss, in the given order. Since the main pipe is

get rotating, the height of the port will not stay constant. With given acknowledge,

the height is defined as follows

ZP = ei ·
(
pγi × pc

)
, (2.27)

where

pγi = [0, (R−Di) sin γi, (R−Di) cos γi] (2.28)

is the position of the port in rotating pipe and the angle γi is defined in Fig. 2.5.

Note that the velocity in the entrance of the pipe VP in (2.26) is determined

from the continuity equation VP = VILAIL/AP . Also, the head loss of friction in the

injection line hf and the diameter change in the main pipe’s entrance hm are defined

as [101]

hf = fIL
LILV

2
IL

2gDIL

, hm = KSE
V 2
IL

2g
, (2.29)

where DIL, fIL and KSE are, respectively, the diameter of the injection line pipe, the

Darcy friction factor for the injection line pipe, and the loss coefficient through the

transition from the injection line pipe to the main pipe. Here, the friction factor is
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Table 2.2: Parameters of the designed IDU.

Variable Value Variable Value
KSE 0.9 DL 0.0097 m
Kb 0.2 dm 0.0097 m
` 0.007 m DIL 0.00635 m
µLA 0.75 Di 0.028 m
mLA 0.2 kg DU 0.0047 m
η 96% ρf 1000 kg/m3

LIL 0.145 m γ1 10o

LT 0.05 m Tm 0.27 mN ·m
LP 0.411 m µf 1.81× 10−3 kg/m · s
LJS 0.01 m DIB 0.10 m

defined as fIL = 0.316/Re0.25
IL , where ReIL = LILVILρf/µf , and LIL is the length of

the injection line pipe.

2.4 Simulation Studies

2.4.1 Performance of the Internal Driving Unit (IDU)

In this section, the performance of the IDU is tested under the simulation. The

control valves are ignored due to their minor contribution in the motion performance.

We investigate the mechanism for the three main factors: the direct motor input, the

cylinder volume changes, and the fluid properties. First, we examine the feasibility

and limitations of the proposed actuator and also we determine whether it can create

the required force to circulate the core in the pipe. Next, the tank size of the cylinder

is varied to find its boundary values. Finally, we evaluate the performance of the IDU

in different fluids properties.

In the simulation analysis, it is assumed that the pipe is fixed in the vertical

configuration, as shown in Fig. 2.5, and therefore ZP = (R−D1)[1− cos γ1] in (2.26)

with constant γ1, and ei ·(pi×pc) = 1−cos q1. Thus, the differential equations (2.24)

take the following form

q̇1 =
1

r1

V1, (2.30)

q̈1 =
1

r1mc

[
PPAP −

sgn (q̇1) r2
1 q̇

2
1

2

(
fP

L′P
D1g

+ CDρfAP

)]
+ [−mc + ρfνc](1− cos q1)g, (2.31)
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where the control input, the pressure of the transferred fluid in the pipe, is established

from solving the algebraic equations (2.25)- (2.26). Note that in this structure, the

gravity is involved in the driving equation, thus, we can evaluate the system with

including all effected forces.

In the simulations, we solve the system (2.18), (2.31) by using Matlab ODE45

[40, 94] function with the integration step 0.001s. The mass of the core is set at 0.25

kg and the other parameters are taken from Table 2.2. In incoming Section 2.5.1,

we evaluate what mass ratio between core and the rolling sphere is desirable with

analytical studies. It should be noted that the characteristics of the IDU correspond to

the commercially available 08GS61 DC motor [117] and A07020D pneumatic cylinder

[10]. This cylinder has 0.05 kg weight and can work in a liquid medium. Also, the

internal driving unit satisfies the derived size limitation defined in Section 2.3.1.

In all the simulations, the starting position of the core is at the bottom of the

sphere, and the other state variables are initialized from zero values. Note that we

evaluate the medium of the cylinder and main pipe with a low Reynolds number,

but the injection line is in the turbulent regime as we considered in Eq. (2.29). The

cycles of the cylinder tank change when the bore reaches the final point and reverse

in accordance with (2.19).

Torque Reliance

The torque input generated by the DC motor is the main factor in controlling the

complete robot. In this part, we analyze to what extent the motor can manipulate

the core when the pipe is filled with distilled water. The model of driving mecha-

nism is checked with respect to three torque example values Tm = 0.24, 0.27 and 0.3

mN·m. The simulation results are presented in Figs. 2.6 and 2.7. We clearly can see

that the DC motor input Tm can directly change the pressure and the flow velocity.

The pressure in all the pipes is changing with the constant shift in response to the

change of the torque. Note that for the relatively higher torque input values the core

displacement is nonlinear. Also, the slope of the fluid velocity in the injection line VIL

increases with the raise of the input torque. Also, the velocities of fluid have different

peaks due to use of double-acting cylinder which contain different cross-section area

in each cycle change as Eq. (2.19).
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With our obtained observations and modeling insight, the limits of the torque
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Figure 2.8: The IDU simulation results with different piston diameter DL.

input generated by the DC motor can be set as follows:{
Tnf > Tm > Tcr, satisfactory torque

Tm ≤ Tcr, critical torque,
(2.32)

where Tnf and Tcr are the maximum applicable and the critical motor torques. If the

torque Tm is less than the critical one, the actuation mechanism cannot deliver the

core to the zenith point of the sphere as the generated fluid flow cannot overcome

the gravity, drag and head loss forces. Based on the simulation results, one can

set Tcr = 0.26 mN·m. Overall, we observe from simulations that motor input can

successfully manipulate the spherical mass in the liquid medium under the given

property (2.32).

Note that the maximum applicable torque Tnf is constrained by the maximum
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of cylinder tank with bore area AUCL to the covered plunger area ALCL. The red graph
happens for the opposite process of the green one. Blackline refers to DL with the
reference value in Table 2.2.

natural frequency of the linear actuator. If the value of Tm exceeds Tnf , vibration

will cause damage to the gears. This upper constraint can be established as follows.

The constant torque generated by the DC motor is Tm = 60EaIa/2πωr [49], where

the parameters Ia, Ea and ωr are the input armature current, the armature voltage

and the angular velocity of the motor. Thus, we can formulate as

Tnf = 60dmEaIa/4πnc, (2.33)

where dm and nc are the diameter of the connecting joint and the natural fre-

quency, respectively. The maximum natural frequency of the ball screw is nc =

4.76×106dmCs/L
2
RB [96], where Cs is the end-fixity factor for critical speed, and LRB

is the length between bearing supports. Because both sides of the rotating body are

fixed completely [see Fig. 2.4], the value of Cs is set as 2.2 [96] while LRB is 0.07 m.

With the full-load current Ia = 0.1 A and the voltage input Ea = 5 V , the maximum

applicable torque Tnf is found as 1.1 mN·m for the current actuator.

Cylinder Volume Diversity

Now, the IDU is examined with respect to the changes of the diameter of the cylinder

tank DL while its length LT is kept constant. The IDU model is simulated for three

distinct diameter values: DL = 0.0092 m, DL = 0.0097 m (reference value defined
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in Table 2.2), and DL = 0.01 m. The simulation results are presented in Fig. 2.8.

As can be seen, for the higher volume of the cylinder (DL = 0.01 m) the actuator

cannot push the core to the zenith with the reference torque Tm defined in Table 2.2).

On the other hand, for the lower volume of the cylinder (DL = 0.0092 m), the peak

velocity of the fluid in all the pipes is decreased. However, the fluid pressure in the

pipes is raised, which have a great influence on moving the core into further distance

compared to the reference value DL = 0.0097 m.

Note that the volume of the cylinder cannot be set to arbitrarily small values due

to the design limitations on the size of the cylinder tank. As the cylinder volume

shifts in every cycle between AUCL and ALCL (refer to Eq. (2.19)), there appears a

pressure difference ∆PP between each cycle changes of the cylinder tank.

Fig. 2.9 shows the pressure difference while there is a transition from both cycles

for different diameter values. It is understood that most severe drops happen while

fluid circulation changes from the cylinder with bore included area (AUCL) to fully

covered plunger area (ALCL). Also, the system faces an incremental pressure difference

|4PP | when DL has a smaller size. Therefore, we have to limit the diameter of the

cylinder tank as

Dmin < DL < Dmax,

with the specific values of Dmin = 0.0094 m and Dmax = 0.011 m found from the

obtained simulation runs in Fig. 2.8 and Fig. 2.9.

Liquid Characteristics

The liquid characteristics are significant in determining the performance of the IDU.

In this connection, we simulate the IDU for following three different liquids varying

in their viscosity and density: distilled water (ρf = 1000 kg/m3, µf = 1.81×10−3

kg/m·s), ethylene glycol (ρf = 1113.2 kg/m3, µf = 1.61×10−2 kg/m·s), and silicone

oil (ρf = 971 kg/m3, µf = 9.71×10−3 kg/m·s).
Fig. 2.10 illustrates that the viscosity and the density of the liquid have a direct

effect on the core motion. This is obvious after passing the transient response of the

core motion (t > 1 s). If a larger displacement of the core is required, ethylene glycol

outperforms the distilled water and silicone oil as it has higher density and viscosity.
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Figure 2.10: The input port pressure of the main pipe, the rotating core position and
velocity for various fluids.

Although ethylene glycol results in bigger displacement of the core, the core velocity

and the pipe pressure tend to be more nonlinear, featuring large slopes. Thus, if

having a lesser slope of the pipe pressure is more important in evaluating the system

performance, then the distilled water, which has high density and minimal viscosity,

can be the better choice for the propulsion mechanism.

2.4.2 Motion Patterns in Forward Locomotion

Reduced Dynamic Model

In this section, we consider forward locomotion of the robot along Y axis, which

corresponds to planar rolling along a line. This motion requires only one pipe and

the motion equations established in Section 2.2 are simplified as follows. First, note

that the core and the pipe rotate around the unit vector i of the coordinate frame ΣO

(X axis). The kinematic equations (2.4) are transformed to Ωo = θ̇i and Ω̇o = θ̈i.

The virtual displacement of the core and the sphere become δπ1 = δq1i and δπo = δθi.

Then, the dynamic equations (2.15) are reduced to the following form:

[
M11 M12

M21 M22

][
θ̈

q̈1

]
+

[
N1

N2

]
+

[
G1

G2

]
=

[
0

τ1

]
, (2.34)
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Table 2.3: Setup variables of the robot dynamics.

Variable Value Variable Value

g 9.8 m/s2 r1 0.131 m

Mo 1 kg R 0.145 m

mc 0.25 kg Jo 0.0140 kg·m2

where τ1 = r1Fd1 , and

M11 = M12 +MoR
2 + Jo +mcR

2 −mcRr1 cos(q1 + θ)

= MoR
2 + Jo +mcR

2 − 2mcRr1 cos(q1 + θ) +mcr
2
1,

M21 = M22 −mcRr1 cos(q1 + θ) = mcr
2
1 −mcRr1 cos(q1 + θ),

N1 = mcRr1(q̇1 + θ̇)2 sin(q1 + θ),

N2 = −sgn (q̇1) 0.5r2
1 q̇

2
1 ((fPL

′
P/D1g) + CDρfAP ) ,

G1 = G2 = [mc − ρfvc]gr1 sin(q1 + θ). (2.35)

Note that the gravity and buoyancy forces (2.21) and the viscous forces (2.22) are

substituted into (2.14). The driving force Fd1 is defined as a scalar component in

(2.20), i.e., as the product of the fluid pressure and the cross-sectional area. The

reduced dynamic model (2.34)- (2.35) is coupled with the linear actuator dynamics

(2.18), and the fluid pressure in the pipe is computed by solving algebraic Bernoulli

equations (2.25)-(2.26).

Motion Pattern Analysis

In this section, the behavior of the robot controlled by the IDU is studied under

simulations. The parameters of the robot are listed in Table 2.3, and the simulation

time is set as 4 s. In solving the differential equations (2.18), (2.34) and (2.35), we

use ODE45 Matlab solver [40,94] running with integration step 0.001 s.

The simulation analysis is conducted for two cases. In the first case, the initial

state conditions are set as
[
θ, θ̇, q1, q̇1

]
= [0, 0, 0, 0], and the motor input torque is

set constant: Tm = 0.2 mN·m, Tm = 0.24 mN·m, Tm = 0.27 mN·m, Tm = 0.3

mN·m. The results are illustrated in Fig. 2.11. We observe that the rolling sphere

moves in the main direction (clockwise rotation) with the counterclockwise actuation

of the core. The location of the core with respect to the base frame ΣI , defined as
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Figure 2.11: The position and velocity of the sphere and the core in the first simulation
case.

|q1| − |θ| ∈ [−π, π], is demonstrated in Fig. 2.12. Note that the fast fluctuations in

the core velocity as observed in Fig. 2.11 may affect the physical system because the

cylinder rod stops for switching cycles. This issue can be resolved by using multiple

cylinders that fill the gap between cycle changes in the cylinder tank.

If the control goal is to bring the core to the north pole, one can define a critical

torque Tm similar to what has been done in Section 2.4.1. Based on the obtained

results, we can set Tcr = 0.24 mN·m. This property creates two different motion

patterns. For Tm ≤ Tcr the core remains in the lower hemisphere, and for Tm > Tcr

the core circulates in the whole pipe.

Interestingly, the higher values of the constant input torque Tm do not necessarily

lead to larger displacements of the sphere (see Fig. 2.11). This happens while the core

velocity presents large impulse with the given high DC motor torque (Tm ∈ [0.3, 0.4]

mN·m). It can be interpreted that the core rotation in q1 ∈ [−π, 0] for Tm > Tcr

affects the clockwise rotation of the sphere aligned with main direction. This issue

causes minor backward locomotion of the sphere (see Fig. 2.11). For example, when

the core passes the north pole at around 0.6 s with Tm = 0.4 mN·m (see Fig. 2.12),

the backward locomotion is clearly seen at around 1.5 s (the core arrives at bottom

of the sphere) in Fig. 2.11.

In the second simulation case, the initial conditions are
[
0, θ̇(0), 0, 0

]
, where the
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Figure 2.12: The location of the core on sphere with respect to the base frame ΣI in
first simulation case.

Figure 2.13: The position and velocity of the sphere and the core in the second
simulation case.

initial velocity of the sphere θ̇(0) ∈ [−π, π] is not necessarily zero. The control torque

is exponentially decaying as Tm = 0.3e−t/T mN·m, where T = 4 s. The simulation

results are presented in Fig. 2.13. The sphere reaches shorter distances as the initial

velocity θ̇(0) changes from π to −π. Also, the positive initial velocities of the rolling

sphere keep the core in lower-hemisphere as observed from Fig. 2.14. This causes

the sphere to reach maximal distances. However, negative velocities of the sphere

boost the actuated core to the north pole of the sphere (see Fig. 2.14). This feature

can have a negative effect on the final displacement of the sphere similar as it was

observed in our first simulation case.
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Figure 2.14: The location of the core on sphere with respect to the base frame ΣI in
second simulation case.

Overall, the core works as an effective actuator to locomote the sphere. The

sphere can easily accelerate, but the feedback control of the core at higher velocities

is indispensable for realizing accurate locomotion. Also, note that the core in the pipe

can be imagined as a fish in water [118]. Then, the drag power in the moving core at

high velocities becomes proportional to the power of three of the fluid velocity. This

issue that may limit the performance of this type of actuation needs to be studied

separately.

2.5 Parametric Evaluations on Developed System

2.5.1 Mass Ratio Evaluation

The rotating core in the sphere should have enough mass and momentum to produce

the required force to rotate the spherical carrier. To see how this association works in

our proposed actuation mechanism, we analyze this property analytically. To obtain

an applicable domain of mass ratio for sphere and core

m∗ =
mc

Mo

,

we study the simulated dynamics via two approaches. First approach evaluates the

sphere maximum traversed distance for different m∗ values in fixed time interval. In

the latter, we change core mass to find a minimum force which brings the core to

north state of sphere under the defined conditions.
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Figure 2.15: Maximum sphere displacement and velocity for different mass ratio
within constant input torque range.

In the first approach, the main statement is to find a range with the maximum

displacement under the desired physical properties of the mechanism. We check

acceptable mass ratio m∗ with including step torque input, τ1 = r1Fd1u(t) where

u(t) = 1 for t ≥ 0. Our main objective in this section is to study the rotating mass

(core) effect on sphere motion including their inertia so Fd1 is constant for simplifying

the problem to basic motion analysis. From Eq. (2.7), we know physical forces on

the core. In here, we approximate control input as fluid pressure,

Fd1 '
F∆P (ALCL) + F∆P (AUCL)

2
, (2.36)

where Fd1(A
L
CL) and Fd1(A

U
CL) are the pressure forces when lower and upper cylinder

tank are used, respectively.

Given fluid pressure force Fd1 and Mo = 1 Kg when mass ratio is m∗ ∈ [0, 1],

designed IDU is dependent on our control input in the nonlinear dynamics. Fur-

thermore, the non-dimensionality of m∗ helps us to generalize the mass design for

heavier Mo (the required core input force by IDU has to be recomputed) since both

Mo and mc = m∗Mo are linearly dependent to state equations (2.34). Upper limit

of injected fluid force to core is the maximum DC motor rotational torque and Tnf

(2.33). Also, because the motor [49] is constrained with size and 0 < mc ≤ Mo, 3Ia
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Figure 2.16: Minimum force for rising core to zenith point of sphere with different
mass ratio.

becomes the maximum physical current of motor when other parameters are perma-

nently constant i.e., ωr and Ea. Nevertheless, to extent our study and also show that

high motor power is not critical in determining mass ratio range, we check simulation

till 10Tm. To prepare the simulation, we run the dynamics in 2 s. The core starts

from south pole of sphere with zero initial velocity, [θ θ̇ q1 q̇1] = [0 0 0 0].

While m∗ < 0.5, the maximum displacement have greatest range of movement

distance [see Fig. 2.15 ]. Interestingly, increase in the mass of core despite the raise

for torque input, does not result in the maximum displacement directly. We knew

that with commercially available motors, it is not easy to satisfy the size and mass

constraint, even if we ignore performance disadvantages. This means, ideal core mass

with given 3Ia motor boost is 0.1 ≤ m∗1 ≤ 0.5, for this novel rolling robot.

Next approach deals with acceptable range of mass ratio that let core reach north

pole with minimum fluid force Fd1 . This is important since the robot is designed to

circulate the core in pipes. This also means given force to core has to push it to

north pole and maybe rotate it consecutive times. The model is simulated with same

initial states. Additionally, the physical limit of DC motor is considered with same

property of the previous approach. Within 2 s simulation time, we collect Fd1 from

every iteration, to determine minimum value, if given force fluid let core reaches to

north pole, max{|q1| − |θ|} w π.

The obtained results from simulation are shown in Fig. 2.16. Note that with given
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10Tm pure motor torque, the produced fluid force is not able to bring the core to north

pole when m∗ ≥ 0.5. In other words, there is no force (Fd1 = 0 ) that can carry core

to zenith point with given torque constraint. This is true even for simulation times

that exceeds 2 s duration. Also, we see less mass ratio let us actuate the robot with

minimum Fd1 . More importantly, this core circulation happens while there is q̇1 > θ̇

velocity relation. This modifies our mass range as

0.1 ≤ m∗ ≤ 0.4. (2.37)

This shows our reasoning of why we choose mass of the core mc and mass ratio

m∗ as 0.25 kg and 0.25 from (2.37), given in Table 2.3. By displacement of designed

cores inside tubes, the required robot motion is expected as a semi-linear movement.

2.5.2 Cost of Transport

We discuss the efficiency of robot by utilizing the cost of transport (COT) and power

consumption. To know the efficiency of designed robot with novel propulsion mecha-

nism, the cost of transport (COT) [118] is introduced as COT = CP/ [(Mo +mc)gVo] ,

where CP stands for total consumed power by robot. For our robot, the total con-

sumed power is defined as

CP , Motor power + Fluid losses + Ground friction,

which

Motor power = Tmωr + I2
aRa,

Fluid losses =

(
fP

L′P
2gDP

+
1

2
CDρfAP

)
· |r1q̇1|3 +

(
fIL

LIL
DIL

+KS.E.

)
· V

3
IL

2g
,

Rolling resistance = ζθθ̇
3.

(2.38)

Here, motor power consists of motor mechanical power and Joule heating. First term

in fluid losses is calculated from drag and head loss forces in circular pipe (2.22).

Furthermore, second term is head loss in injection line that comes from (2.29). Rolling

resistance is obtained from ground-sphere dissipation function. Note that we calculate

DC motor current Ia by (Ea −Kbωr)/Ra where Kb and Ra are back-EMF constant

and terminal resistance. For chosen DC motor 08GS61, Ra and Kb are 52 ohm and

0.53 [117].
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Figure 2.17: Cost of transport (COT) verses sphere linear velocity, Vo.

Fig. 2.17 is showing the achieved cost of transport for different sphere linear

velocities by 1.5 sec simulation time. Please note that the input motor torque was

Tm ∈ [0, 0.17] mN·m where core is osculating in lower-hemisphere. It is interesting

that robot has energy efficient model, mean COT of 0.3, in displacement along a

straight path by comparison to other robot actuators [86, 118]. For example, legged

robots such as Bigdog, ASIMO and MIT Cheetah robots have COT of 15 and 2,

0.5, respectively. Note that efficiency of these propellers are not good enough in low

velocities like MIT Cheetah robot (COT ≈ 1) [92].

On the other hand, sphere can not conserve its angular momentum for higher

velocities (Vo > 0.3 m/s). This issue comes from the lack of energy-based controller

while accelerated core is circulating. Power consumption of robot for two actuation

patterns shows this issue more clear as Fig. 2.18. For the case that core passes upper-

hemisphere (Tm = 0.23 mN·m), the power consumption is twofold. Also, efficiency of

robot drops as COT becomes 0.89. This is the consequence of sphere velocity drop in

upper-hemisphere which confirms our interpretations in robot motion evaluations [see

Fig. 2.11]. Also, we see that most of power consumption is about fluid circulation in

injection line.

Overall, core works as an effective actuator to manipulate the sphere in given

frame but to determine pros and cons of two motion patterns, system requires advance

control study to improve displacement. This issue would improve the total efficiency

by reaching higher velocities.
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Figure 2.18: Power consumption of motor and circulating fluid for two patterns of
sphere motion.

2.6 Inverse Dynamics-Based Motion Control

In this section, we consider an inverse-dynamics based motion planning for a rest-to-

rest planar displacement of the robot. The planning problem can be formulated for

two cases. In the first case, the motion of the core (q1(t), q̇1(t), q̈1(t)) is given, and in

the second case, the motion of the sphere (θ(t), θ̇(t), θ̈(t)) is prescribed by our given

time functions.

In the first case, the constraint equation in (2.34) is re-arranged as

θ̈ = − 1

M11

(M12q̈1 +N1 +G1) , (2.39)

and the second equation in (2.34) is utilized for establishing the driving torque. The

singularity (similar to the one established for pendulum driven rolling robots in [14,

61]) may appear in (2.39) when M11 becomes zero. It can be displaced that

M11 = (MoR
2 + Iw + Is) +mc

(
R2 − 2Rr cos(q1 + θ) + r2

1

)
,

and the condition M11 > 0 always holds true since

MoR
2 + Iw + Is > 0,

and then,

R2 − 2Rr1 cos(q1 + θ) + r2
1 ≥ (R− r1)2 ≥ 0.



43

max

-

q1,

maxq1,

q
1

(

(

(

(

Figure 2.19: Two-phased motion of the rotating core with using the defined Beta
function.

Similar to what has been developed in [104], we presume that the core follows

a two-phased motion profile shown in Fig. 2.19. In the first phase of this scenario,

the core moves counterclockwise to −q1,max, and in the second step, it returns to

zero states moving clockwise. This motion profile can be captured by the 2nd order

derivative of the 4th order Beta function, that is

q1(t) = a

(
−840

T 7
t5 +

2100

T 6
t4 − 1680

T 5
t3 +

420

T 4
t2
)
, (2.40)

where T is the given movement duration, and the amplitude a is defined for the

condition that θ(T ) = θdes, where θdes is the desired displacement of the sphere. Then,

we can show that with the selection of this motion pattern the condition θ̇(T ) = 0 is

always satisfied.

In the second case, when the motion of the rolling sphere is specified by a time

function, first constraint in (2.34) is rearranged as

q̈1 = − 1

M12

(
M11θ̈ +N1 +G1

)
, (2.41)

and the second equation in (2.34) is used for establishing the driving torque.

We can shown that the singular free condition M12 > 0, that is

Iw +mcr
2
1 −mcRr1 cos(q1 + θ) = mwr

2
1 +

3

16
mwD

2
c +mcr

2 −mcRr1 cos(q1 + θ) > 0.

(2.42)

It is important to note that this condition is harder to be satisfied since we have

varying cosine which requires more strict condition for having singular free model.
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Then, this condition is satisfied (Strong Inertial Coupling condition [97]) for any q1

and θ if
mw

mc

(
1 +

3D2
c

16r2
1

)
+ 1 >

R

r1

. (2.43)

Note that neglecting the mass of fluid (mw = 0) leads to R/r1 < 1, which does not

hold true and thus implies the existence of singular configurations when M12 becomes

zero. However, the proper selection of the mass of the fluid so that condition (2.43)

is satisfied, removes the singularity from consideration.

Next, the motion of the sphere in the second case can be specified with the use of

the Beta function of the 4-th order, that is

θ(t) = a

(
− 20

T 7
t7 +

70

T 6
t6 − 84

T 5
t5 +

35

T 4
t4
)
, (2.44)

where a = θ(T ). Having established motion of the robot, θ(t) and q1(t) (by integrating

(2.39) or (2.41), depending on the chosen case) and having computed the driving

torque τ1(t), we define the the fluid pressure Pp in the circular pipe. Note that the

driving torque τ1 is related to Pp as [2]

τ1 = r1PpAc. (2.45)

Thus, by substituting the second equation in (2.34) with the terms from (2.35) (ap-

parent length L′p and Darcy friction fp) into (2.45), one obtains

Pp =
1

r1Ac

(
M21θ̈ +M22q̈1 +N2 +G2

)
=

1

r1Ac

[ (
mcr

2
1 −mcRr cos(q1 + θ)

)
θ̈

+ mcr
2
1 q̈1 − 0.5r2

1sgn(q̇1) ((n1/Vl) + n2) q̇2
1 + (mc − ρfνc) gr1 sin(q1 + θ)

]
, (2.46)

where the constant terms n1 and n2 are defined as follows,

n1 =
64µfAc
DcgρfAcl

, n2 = Kb/g + CDρfAc.

Note that the fluid pressure Pp in entering port depends on not only θ and q1 and

their derivatives, but also the velocity of the linear actuator Vl.

Having the fluid pressure Pp, we can then obtain the DC motor torque input Tm

with the using the Bernoulli equation (2.26). Note that the pressure in the cylinder

tank, Pcl, is related to the motor torque Tm as [2] Pcl = Fcl/Acl = (2πη/Acl)Tm. Thus,
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Table 2.4: Parameters of the robot.

Variable Value Variable Value Variable Value
Kse 0.9 Kb 0.2 l 0.007 m
µl 0.75 kg ml 0.2 kg η 96%
Ms 1 kg r1 0.131 m LT 0.05 m
µf 1.81× 10−3 kg/m · s γil 10o Is 0.0140 kg·m2

Dc 0.028 m Dil 0.00635 m D1 0.0047 m
CD 0.8 mc 0.25 kg ρf 1000 kg/m3

g 9.8 m/s2 R 0.145 m D2 0.0097 m
Lp 0.411 m Lil 0.145 m Iw 0.0086 kg·m2

upon rearranging equation (2.26) with inclusion of the head-loss (2.29), it becomes

as follow

Tm =
1

m1

[Pp −m2V
2
l +m3V

7
4
l − ρfg(Zil − Zp(1− cos γil))], (2.47)

where

m1 =
2πη

lAcl
, m2 =

ρf
2

[
1− (Acl/Ac)

2 − (A2
clKse/A

2
il)
]
,

m3 =
[
0.158

(
L3
ilρ

3
fµfA

7
cl

) 1
4

] /(
A

7
4
ilDil

)
.

When the expression of the motor torque is established, the states of the linear actu-

ator, Xl and Vl, can be defined by integrating system (2.18).

2.7 Simulation Results of Feed-Forward Control

In this section, the two control strategies outlined in Section 2.6 are tested under

simulation. In the simulations, the time duration is set as T = 6 s. The initial values

for q1(0), q̇1(0), θ(0), θ̇(0), Xl(0), and Vl(0) are zero. The desired position of the

sphere are set as θ(T ) = 3 rad and θ̇(T ) = 0 rad/s. The desired position of the core

are set as q1(T ) = 0 rad and q̇1(T ) = 0 rad/s. We use the parameters of the rolling

robot which are listed in Table 2.4. The integration of motion equations is done with

the use of Matlab ODE45 function. The integration step in this simulation is set as

0.006 s and the relative accuracy is set as 0.001. In the simulations, the velocity of the

linear actuator, VL, is reset to zero every-time the rod reaches the end of the cylinder.

The sign changes of VL presents the flow direction inside the pipes as it comes from
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Figure 2.20: Results of inverse dynamics in simulation of the first case.
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Figure 2.21: The core location and velocity respect to base frame in first case.

solving (2.47) with Pp and Vl as variables. When the fluid is sucked from the input

port (it is connected to the circular pipe) by the cylinder, the states {Xl, Vl} have

negative values. However, when the circulating fluid is pushed from the cylinder to

the circular pipe, they have positive values. In physical systems, the flow direction is

controlled by control valves (see [2,107] for the control valves integrations as Fig. 2.3).

In the first case, the motion of the core is specified by (2.40) while one can find

a = −15.92 rad from the condition θ(T ) = 3 rad. The simulation results are presented

in Fig. 2.20-2.21. We can observe that the given motion of the core results in a desired
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Figure 2.22: Results of the inverse dynamics in simulation of the second case.
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Figure 2.23: Core location and velocity respect to base frame in second case.

rest-rest displacement of the sphere. As the core moves to the upper-hemisphere, the

core’s circulation begins to dissipate the positive velocity of the sphere. In particular,

after 2.5 s, where the core passes the highest point of the sphere (see Fig. 2.21), the

rest of its rotation creates a negative sphere velocity as opposed to the positive one

(see Fig. 2.20 for θ̇). The dynamics of the linear actuator states are illustrated in

Fig. 2.20. The desired actuation of the sphere is successfully created by the driving

mechanism. However, note that the dynamics of the linear actuator are not at rest

at the final moment of simulation time.

In the second case, the motion of the sphere is specified by (2.44) where the
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Figure 2.24: Example simulation to compute maximum amplitude change ∆θ̇ for the
case that the core states are specified.

parameter a is set to 3 rad. The motion of the core is obtained by integrating (2.41).

The simulation results are obtained in Fig. 2.22 and Fig. 2.23. The absolute position

of the core (q1+θ) follows, the two-phased motion pattern as in the first case but

with minor oscillations. Nevertheless, the core (q1) stays at the lower-hemisphere

(see Fig. 2.23). One can notice that the dynamics of the linear actuator are not at

rest at the final moment of time. It is more important to note that the velocity of

the core is not exactly zero (although very close to it). In contrast to the first case

where the rest-to-rest motion is ensured (the formal proof can be constructed for the

pendulum-actuated robot), the convergences of q̇1 to zero cannot be guaranteed.

To evaluate the performance of the feed-forward control strategies, we now sim-

ulate the motion of the robot for different time constants T ∈ [1.5, 3] and desired

sphere position θdes ∈ [0, 10]. The purpose of these simulations is to evaluate the

level of oscillations in the velocity profiles of the core or the sphere depending on the

selected control strategy. To generalize this study into a single scheme, we define x to

be the variable which is the numerical integration (the variable that is not specified

directly by a given function of time). Hence, x stands for either θ (calculated from

solving Eq. (2.39) in the 1st control strategy) or q1 (found from solving Eq. (2.41) in

the 2nd control strategy).

Next, we define the maximum amplitude change ∆ẋ of the velocity signal via
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(a)

(b)

q 1

Figure 2.25: a) Velocity fluctuation of carrier state when core states are given, b)
Velocity fluctuation of the core when carrier states are given.

comparing the value ẋ(t) with the filtered curve (refers to Fig. 2.24 as an example of

x = θ) as

∆ẋ =

∣∣∣∣max
t∈[0,T ]

{ẋ(t)− ẋm(t)}+ min
t∈[0,T ]

{ẋ(t)− ẋm(t)}
∣∣∣∣ /2, (2.48)

where ẋm is the filtered curve of ẋ found as the backward-looking moving average by

ẋm(t) =
1

w

ˆ t

t−w
ẋ(τ)dτ

where w is moving average window size set as 0.1 s in our simulations.

The simulation results are shown in Fig. 2.25. For the case when the motion

of the core is given (see Fig. 2.25-a), the rolling sphere velocity does not have seri-

ous oscillations. However, as the movement duration T decreases, and the traveling

distance θdes increases, the sphere velocity has larger fluctuations. This feature also

holds true for the case when the locomotion of the sphere is given (see Fig. 2.25-b),
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however, the motion profile is more oscillating compared to the first movement strat-

egy. As an exception, note that the peak value of the given core case ∆θ̇ is very high

in contrast to the given sphere case ∆q̇1 at T ≤ 2 s and θdes > 8 rad. Thus, if the

motion of the core is assigned directly ( T > 2 s), the amplitude of the oscillations of

the speed is lesser compared to the case when the motion of the sphere is assigned.

Finally, we can interpret that the control based on the Beta function (or any other

continuous function used in specifying the desired motion) would not be suitable for

a proportionally short movement duration and a relatively long traveling distance.



Chapter 3

Sensor Design for Tracking the Rolling Robot’s Rotating

Core in the Pipe by Inertial Measurement Unit

3.1 Introduction

This chapter a motion tracking system for the proposed rolling system is designed to

track the rotating core inside the pipes. Also, we propose a generic compensatory filter

to do the motion tracking by inertial measurement under the magnetic disturbances.

In this mechanism, not only there are hard ferromagnetic materials as permanent

magnets to properly track the core but also there are soft ferromagnetic effects due

to magnetized stainless steel core. Thus, the sensor fusion is developed relatively to

increase the accuracy of estimation.

Certain filters in the sensors fusion topic are designed with accelerometers and

magnetometers for low-frequency gyroscopes to measure faster changes in the ori-

entations [12, 33]. However, there have been important challenges due to magnetic

disturbances which can come from the outside environment or obligatory ferromag-

netic materials in the mechanisms and robots [13]. Roetenbergt et al. proposed a

complementary filter to minimize the magnetic disturbances [87]. However, these

works still face great deviations and errors when ferromagnetic items get involved as

it was discussed in Refs. [13,87]. This makes great challenges for robotic applications

when actuators or ferromagnetic mechanisms are placed in the near proximity of IMU

sensors.

As the contribution of this chapter, an experimental setup to track rotating spher-

ical mass (core) inside the pipe is designed. A generic filter to compensate the effects

of magnetic disturbances based on the Kalman filter is designed. Another important

contribution of this chapter is to raise a question in angular motion tracking by fused

inertial sensors that consist of accelerometer, gyroscope, and magnetometer. We

question whether having the on-board permanent magnets with proper filter design

51
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work as a magnetic shield to increase the accuracy of estimation? We observe that

our strategy can extend the application of inertial measurement units in the actuators

and robots that magnetic disturbances are predominant. Because the core position

in pipe can be determined by the following proposed tracking sensor, we can develop

different feedback strategies to control the rotating mass (core) in the pipe to propel

the rolling robot in a better way.

We have organized this chapter as follows. The experimental setup for verifying

our findings is explained in Section 3.2. In Section 3.3, the models of the signals for

each sensor are established. Next, the filter structure is described and the structure

of fused sensor models is shown. The results of the proposed filter is compared with

the QUEST filter about its performance with a developed experiment in Section 3.4.

3.2 Experimental Setup

In order to verify a motion tracking filter that tracks the rotating core in the pipes,

we use a setup consisting of two identical IMU sensors [see Fig. 3.1]. This provides a

better comparison regarding the performance of the proposed filter.

The setup contains a spherical rotating mass (core) with stainless-steel material

(soft ferromagnetic material) inside a circular smooth plastic pipe. The goal is to track

this rotating mass inside the pipe by an externally attached carrier St. This setup

primary purpose is to study a fluid-actuated mechanism for rolling robots [2,107,109]

which explicitly discussed in Chapter 2. This model of tracking sensor not only it

has usage in the aforementioned propulsion mechanisms, but also it can have useful

applications on the pipe crack detection systems [47] and inspection robots in the

closed areas like pipes [11, 42, 81, 123]. Because placing a tracking sensor inside the

spherical metallic core is not practically possible, the carrier should be placed outside

of the pipe. This carrier contains two couple of Neodymium magnets. The purpose

of the central magnets (each with 17.9 N magnetic force) is to produce the required

force to follow the rotating core, and off-centered magnets with 7.6 N magnetic force

each is to keep the tracking sensor always aligned with the core. Note that off-

centered magnets can not minimize all the distortions that come from the vibrations

of the magnetized core (varying magnetic flux density). Because this type of tracking

mechanism requires a fast-tracking of the core location, the IMU sensor is placed
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Figure 3.1: Experimental setup and frame transformations.

on the carrier sensor. Also, to verify our findings and compare the results with the

second IMU sensor connected to the rotating core Sc, to know the true location of the

core. Note that the core’s IMU is free from any magnetic effects of the ferromagnetic

materials since it always has an approximately 0.262 m distance from the core and

magnets [13]. IMU consists of the gyroscope device with the model of L3GD20. Also,

the LSM303D model is for the accelerometer and magnetometers.

Fig. 3.2 illustrates the simulation of the magnetic flux of the tracking carrier.

The magnetic flux is simulated by using the EMS toolbox of the SolidWorks after
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Figure 3.2: Schematic and magnetic flux map for the considered tracking carrier
sensor.

designing the solid models of the bodies. It is clear that IMU is getting affected by the

permanent magnets, in particular along the Z axis. Also, there is soft ferromagnetic

material magnetization which creates the secondary flux. This means if the core

deviates from its centralized location between the magnets, there will be magnetic

disturbances depending on the distance of deviation from the central magnets.

3.3 Sensor Fusion

The angular position of a sensor carrier that has the mounted ferromagnetic materi-

als require combing data of the different sensors. This problem also demands a new
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approach in the model design of the complementary filter that not only the estima-

tion uses the magnetic sensor feed, but also it should not be deviated due to strong

disturbances and biases on the certain axes of the magnetometer. Thus, the filter

is designed relatively by using a Kalman filter. In this section, we first explain the

sensors in the IMU and their models before deriving the filter’s model.

3.3.1 Models of the Sensor Signals

In order to track the orientation of the carrier, the inertial measurement unit (IMU)

is utilized. Note that here we use two identical IMU sensors for verifying the proposed

filter [see Fig. 3.1]. The IMU sensor consists of accelerometer ya, gyroscope yg and

magnetometer ym. The sensor data is captured with respect to the sensor frame S.

The sensor that is under the magnetic disturbance as the core’s tracking sensor has

a coordinate frame of St. The second sensor has a coordinate frame of Sc that is for

verifying our findings (in contrast to St) without permanent magnets’ effects while it

has the accurate location of the core. The IMU sensors are rotating with respect to

global coordinate frame G as follows

GSR =
[
SX SY SZ

]
. (3.1)

The measured signals from magnetometer ym, gyroscope yg and accelerometer ya in

k-th sample at sensor frame S are defined with following equations [87]

ym = hk + dk + vm, (3.2)

yg = ωk + bk + vg, (3.3)

ya = ak − g + va, (3.4)

where hk, ωk, ak and v, g are the sum of magnetic fields including the earth, the

angular velocity and acceleration terms of carrier sensor, the white noise in each signal

and the gravity vector, respectively. Also, the bias of gyro bk, acceleration signal ak

with designed first-order low-pass filter and magnetic disturbance dk designed with

Markov scheme are

dk = cd · dk−1 + wd, (3.5)

bk = bk−1 + wb, (3.6)

ak = ca · ak−1 + wa, (3.7)
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Figure 3.3: Structure of the filter in estimating the state vector x and covariance
matrix P.

where ca, cd and w are the cutoff frequencies for the acceleration and the magnetic

field, and the Gaussian noise vector in each signal.

3.3.2 Filter Structure

It is aimed to have a filter that can accurately track the motion while there are

deviations and biases on the magnetometer. The model is inspired by different studies

[12,87,90]. However, these studies did not deal with magnetic deviations when there

are ferromagnetic materials in the near vicinity of the IMU sensor.

General Model

We utilize the Kalman filter where it has error models in the state-space presentations

for the estimations. Then, the model is presented as follows

xε,k = Axε,k−1 + wk, (3.8)

zε,k = Hxε,k + vk, (3.9)
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where A and H are the state transition and measurement models, and state vector

xε,k = [θε,k bε,k dε,k]
T are defined by the orientation error θε,k, the error of the gy-

roscope bias bε,k and the error of the magnetic disturbance dε,k. The measurement

states are the acceleration error za, the inclination error zi and the magnetic error

inputs zm as zε,k = [za zi zm]T . Also, wk and vk variables are the process and mea-

surement noises, respectively. The flowchart in Fig. 3.3 demonstrates the designed

complementary Kalman filter for estimating the orientation.

Prediction

This step in the proposed filter [see Fig. 3.3] predicts the considered states xε,k and

uncertainty matrix P−k . To construct the state transition matrix A, at first, the priori

bias error of gyroscope is determine by

b̂
−
ε,k = b̂k − bk, (3.10)

where b̂k = b̂k−1 is the prediction of the gyroscope bias. Then, after substituting

(3.6) and the relation of the prediction of the gyroscope bias b̂k into (3.10), one gets

b̂
−
ε,k = b̂

+

ε,k−1 −wb, (3.11)

where b+
ε,k−1 is a posteriori error estimate of the bias which is presented with +

superscript. Also, the same calculations take place for predicting the error of the

magnetic disturbances as follows

d̂
−
ε,k = d̂

+

ε,k−1 −wd, (3.12)

where d+
ε,k−1 is a posteriori error estimate of the magnetic disturbances.

The estimated rotation of the carrier GSR̂ with the sensor is assumed with min-

imum orientation error. Then, the priori estimated rotation GSR̂
−

is defined by a

linear model [23]

GSR̂
−
k =GS R̂

+

k−1

(
I3 + [θ+

ε,k−1×]
)
, (3.13)

where [θε,k−1×] is the skew-symmetric matrix that the skew presentation is as bellow,

for an example

[θ×] =


0 −θz θy

θz 0 −θx
−θy θx 0

 .
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Next, the priori prediction of the orientation error θ̂−ε,k in k-th step is found by

creating a relation between the previous and current state values. We apply the

similar kinematic formulation in Ref. [90] as follows

θ̂−ε,k =

(
I3 + T [ω̂−k ×] +

T 2

2
[ω̂−k ×]

)
θ+
ε,k−1 +

(
−T I3 −

T 2

2
[ω̂−k ×]

)
b+
ε,k−1, (3.14)

where Eq. (3.14) is derived by discretization of θ̇ε = [ω̂−k ×]θε−bε equation and T is

the sampling time.

We can write the prediction equations as

x̂−ε,k = Ax̂+
ε,k−1 + wk, (3.15)

P−k = APk−1A
T + Q, (3.16)

where Q is the covariance matrix of process noise. Based on our definitions, the state

transition model A and process noise wk are found by using (3.11), (3.12) and (3.14)

A =


I3 + T [ω̂−k ×] + T 2

2
[ω̂−k ×] −T I3 − T 2

2
[ω̂−k ×] 03×3

03×3 I3 03×3

03×3 03×3 I3

 ,
wk = [01×3 wb wd]

T .

Finally, we define the covariance matrix of process noise Q by using trapezoidal

integration as [77,85]

Q =
T

2

[
AGQnG

T + GQnG
TAT

]
, (3.17)

where G and Qn are the noise-input mapping matrix and our state noise constants.

Measurement Correction

In this step, the Kalman filter corrects the predictions. The measurement model is

partially inspired by work in Ref. [87] where different model relations are utilized

based on inclination and magnetic field errors. However, we extend this formula

with one more term based on acceleration to minimize the effects of the magnetic

disturbances. Also, note that the work in [87] did not consider the state transition A

in its model.
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The posteriori error estimates x̂+
ε,k in k-th step are updated based on the mea-

surement information zε,k as follows

x̂+
ε,k = x̂−ε,k + Kk

(
zε,k −Hx̂−ε,k

)
, (3.18)

where the Kalman gain matrix Kk is determined by

Kk = P−k HT
(
HP−k HT + R

)−1
, (3.19)

where R is the measurement noise covariance. Next, the error covariance is updated

for the next step by

Pk = (I9 −KkH)P−k (I9 −KkH)T + KkRKT
k . (3.20)

In our observer model, the measurement inputs zε,k are defined with three different

models as follows

zε,k =


za,k

zi,k

zm,k

 =


Ẑa,k − SZk

Ẑa,k − Ẑg,k

M̂m,k − M̂g,k

 , (3.21)

where SZk is the correct inclination vector, Ẑa,k and Ẑg,k terms are the estimated

inclination of the accelerometer and the gyro, and M̂m,k and M̂g,k are the measured

magnetic vector subtracted by the estimated magnetic disturbance and estimated

magnetic vector based on the gyroscope, which are obtained as follows [12,87]

Ẑa,k =
ya − Sâk
|ya − Sâk|

= SZk +
1

g

(
−S â−k × θ−ε,k − ca ·

Sâ
+

ε,k−1 + wa + va
)
,(3.22)

Ẑg,k = SẐ
+

k−1 − T · Sω̂−k ×
SẐ

+

k−1

≈ SZk +S Ẑk−1 × θ̂−ε,k − T ·
S Ẑk−1 × b̂

−
ε,k +S Ẑk−1 × T · vG, (3.23)

M̂m,k = ym −S d̂k =S Mk −S d̂
−
k × θ̂−ε,k − cd ·

S d̂
+

ε,k−1 + wd + vm, (3.24)

M̂g,k = SM̂
+

k−1 − T · Sω̂−k ×
SM̂

+

k−1

≈ SMk +S M̂k−1 × θ̂−ε,k − T ·
S M̂k−1 × b̂

−
ε,k +S M̂k−1 × T · vG. (3.25)

where SMk is the correct normalized magnetic field vector at k-th step, Sâ
+
ε,k−1 =

Sâ
−
k − Sak is the posteriori acceleration error where Sâ

−
k and Sak are the acceleration

estimate which is updated with true orientation (3.13) and reference acceleration

vector in S coordinate transformed from the global coordinate G. The equations
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(3.23) and (3.25) related to inclination estimate and gyroscope-based estimation of

the magnetic vector are found with substitution of the first-order approximation of

the strapdown integration step as follows

GSR̂
−
k =GS R̂

+

k−1

(
I3 +

[
T · ω̂−k ×

])
=GS R̂

+

k−1

(
I3 +

[(
θ̂−ε,k − T · b̂

−
ε,k + T · vg

)
×
])
. (3.26)

Finally, H and vk matrices can be constructed by using (3.22)-(3.25)

H =


−1
g
[Sâ−k×] 03×3 03×3

[ (−SẐk − 1
g

S
â−k ) ×] T · [Ẑk×] 03×3

[ (−SM̂k −S d̂
−
k ) ×] T · [M̂k×] cd · I3

 ,

v =


1
g

(
−ca ·S â+

ε,k−1 + va + wa

)
1
g

(
−ca ·S â+

ε,k−1 + va + wa

)
−S Ẑk × T · vg

vm + wd −S M̂k × T · vg

 .
(3.27)

In the last stage of the filter, the orientation, the gyro bias and the magnetic

distortion are updated for the next step by

GSR̂
+

k = GSR̂
−
k

(
I3 −

[
θ̂+
ε,k×

])
, (3.28)

b̂
+

k = b̂
−
k + b̂

+

ε,k, (3.29)

d̂
+

k = d̂
−
k + d̂

+

ε,k. (3.30)

3.4 Results and Discussion

In this section, we experiment with the proposed filter. Apart from verifying the

proposed model, we will show that if the sensor fusion filter is designed properly,

the attaching permanent magnets can work as a magnetic shield to minimize the

disturbances. This solution can create a new approach in more accurate motion

tracking of robots and mechanical actuators.

The setup explained in Section 3.2 is used. We use the Matlab program as the

solver interface in our experimental study. In this study, we choose the QUEST filter

based on the Wahba’s problem to compare our findings [33,73]. The acceleration and

magnetometer weights of this filter are both set as 1 for the core sensor Sc, and 1
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Figure 3.4: Experimental results of the proposed filter. a) Obtained results of the
IMU for the moving core Sc, b) Obtained results of the IMU for the tracking carrier
St with the on-board permanent magnet.

and 0.5 (smaller for less effect from the magnetic distortions) for the tracking sensor

St, respectively. In the proposed filter, the cutoff frequencies of the acceleration and

magnetic field signals in the Eqs. (3.5)-(3.7) are chosen 0.8 and 0.9 through calibrating

our IMU devices. Next, the process noises standard deviations wd, wb and wa are

considered 10−3, 10−3 and 10−4. Also, the measurement noises vg, vm and va are

chosen 10−3, 10−4 and 10−3 based on static measurements and calibration process.

The state noise constant Qn = diag [10−5, 10−25, 10−5] and the measurement noise
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Figure 3.5: Evaluation of the system with external disturbances for the case C and
D.

covariance R = diag [10−5, 10−3, 10−3] are calculated with given values. Note that

Qn and R values are diagonal with values for each of the axes, and the noise input

mapping matrix G is the identity matrix.

We do our experimental studies in two parts. At first, the performance of the filter

is analyzed for our problem. Then, we do a case study to know that whether including

the permanent magnets to the IMU sensor can be a solution for a well-known problem

of the IMU sensors’ high sensitivity toward the magnetic disturbances.

Fig. 3.4 demonstrates the results of our experiment. The core’s IMU sensor is

[see Fig. 3.4-a] showing that the performance of our filter is working similar to the

QUEST filter with minimum disturbance in the orientation. However, when we check

the behavior of filters for the tracking carrier St under the effect of ferromagnetic

materials, the QUEST filter captures a great level of orientation errors (20-40o devi-

ations) including disturbance and biases in all the rotational axes. In contrast, our

filter performs well with only 2-3o error in X and Y axes. Also, note that there are

minor physical vibrations that make 1-2o angular errors in X and Y axes. In this

setup, the complementary filter not only should remove the hard ferromagnetic biases

due to permanent magnetic but also there are disturbances due to effects of the soft
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Figure 3.6: Orientation estimation means errors with different case studies. Case A is
the motion tracking with normal angular speeds. Case B is the fast angular speed of
the sensors. Case C has an external disturbance from an equally located DC motor.
Case D has an external disturbance from a heater gun with the same position as Case
C.

ferromagnetic materials. The rotating core as soft ferromagnetic material can create

deviations in the magnetic field [see example points around 25 s in magnetometer Sc

at Fig. 3.4-b] because it does not get aligned with the tracking sensor as well.

The second part of the experimental study is about checking the mean error of

the orientation for our filter and the QUEST filter. Also, we show an important

observation that permanent magnets with the proper design of the filter can work to

be a magnetic shield toward other external magnetic disturbances. Here, we choose

to evaluate our case studies in four different scenarios. In the first, case A, the error

orientation is checked for normal motion tracking (average angular velocity is 10
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Figure 3.7: Example comparison between the core and tracking carrier IMU sensors
when external disturbances are included. Note that the dashed and solid stand for
the magnetic fields when there are no external disturbances and there are external
disturbances. Also, this is recorded by the DC motor case (case C).

degree per seconds). In case B, the sensor tracking takes place for faster motions,

around 25 degree per second speed. In the next two cases, we have included two

external disturbances. To equally apply the disturbance to both of the IMU sensors,

we place the external disturbance sources at the center of our experimental setup at

G coordinate frame as Fig. 3.1 and Fig. 3.5. In these studies, a noisy motor with

gearboxes working at 12 v input (5 W) is used for Case C. In these experiments, we

have also tried to increase the effect of magnetic disturbance directions by rotating

the motor continuously in different axes, while it is approximately centered in the G

coordinate. A heater gun is also placed as the last case, case D, in our disturbance

studies.



65

Fig. 3.6 illustrates the averaged orientation errors of all the axes in the described

cases. It is clear that our filter outperforms the QUEST filter with a mean angular

error of 2o at case A. However, the QUEST filter despite our try to decrease the

sensitivity of the filter toward the magnetic signal (0.5 weight), the mean angular

error is over 22o at tracking sensor St. Also, a similar pattern is true for case B that

we have fast orientations. Case C shows that external disturbances do have a small

deviation effect on our filter (2-3o mean angular error increase). However, the QUEST

filter presents that if we do not have proper filter design, adding permanent magnets

does not always mean it will work as a magnetic shield to decrease disturbances.

Because our filter uses a magnetic field disturbances to improve biases while not fully

relying on it as Eq. (3.27), the filter uses permanent magnets at St like a shield to

minimize the orientation errors with even 5o smaller error length in contrast to Sc. Fig.

3.7 shows an example recorded magnetic field with/without external disturbances.

This demonstrates that placing passive permanent magnets actually minimizes the

disturbance amplitude. In the last experiment, we choose a much challenging noise

producing object as a heater gun which creates disturbances including larger biases,

the effect is great on the core sensor Sc when the applied filter is the QUEST filter.

Finally, we think our filter is an example solution for a well-known problem that

previous studies highlighted regarding sensitivity to magnetic disturbances, such as

putting IMUs 1 m away from different mechanical systems, which were making these

sensors impractical [13, 87]. In the future, we will address more complex and faster

motions with using alternative nonlinear filters rather than Kalman filter while the

3-dimensional magnetic disturbances exist to fully utilize the on-board permanent

magnets. It is important to note that there is a limitation for the permanent magnets

as well as the proposed filter to deal with magnetic distortions; Hence, if more than

one axis of the magnetometer is saturated, the filter will fail to track.



Chapter 4

Singularity in the Inverse Dynamics of the Underactuated

Robots

4.1 Introduction

In this chapter, we study the singularity problems in underactuated rolling systems

and planar manipulators with inspiration from the previous chapter’s studies [108].

Physically, the underactuated systems [see Fig. 4.2 for example] consist of two main

parts: First, a rotating mass that moves by an actuator. Second, a passive body

that displaces depending on the rotational mass. The control of these underactuated

systems with passive bodies have inertial-coupling singularities that originate from

the derived model [69,97,108].

As the contributions of this chapter, the singular configurations of the mass-

rotating rolling robots due to inertial-coupling are described. This study encompasses

the proposed fluid actuated spherical robot that is proposed in Chapter 2. Next, we

propose a solution for avoiding inertial-coupling singularities in rolling systems. The

solution is proposed by applying a sinusoidal wave along the rotational mass trajec-

tory which is designed with singular-free conditions and positive definiteness of the

inertial matrix. Next, the approach is studied for more generalized and important

cases as an underactuated multi-degrees-of-freedom (DoFs) manipulator.

This chapter is organized as follows. We illustrate the kinematics of the wavy tra-

jectory for the rotating mass system and then derive the modified non-linear dynamics

of the general rolling system in Section 4.2. In Section 4.3, the singularity-free con-

ditions for the rolling model are derived through the inverse dynamics. Also, the sin-

gularity configurations are studied for the rolling system with rotating mass. Section

4.4 shows example simulations for a mass rotating system with obtained singularity-

free conditions and compares the modified model with the conventional one. Finally,

we do analytical studies regarding the proposed approach for a 4-DoF underactuated

66



67

manipulator (2 passive and 2 active joints) in Section 4.5. Note that all the derivation

and modeling studies for underactuated manipulators is presented in Appendix A.

4.2 Modified Dynamic Model of the Rolling System

In this section, we introduce a sinusoidal trajectory that is combined around a cir-

cle for the rotating mass. Next, the developed kinematics is substituted into the

Lagrangian function of a rolling system. Finally, the Lagrangian method is utilized

to find the nonlinear dynamics of this underactuated model. We will propose cer-

tain conditions that the singularities due to inertial coupling can be avoided through

designing the included wave.

4.2.1 Rotating Mass Kinematics with a Combined Wave

Lets assume that a rotating mass-point has an orientation angle of γ with respect to

the center of the spherical carrier with a radius of R [see Fig. 4.1]. Also, the spherical

carrier is rolling with an angle of θ. Then, the position vector of the mass that rotates

around a small-amplitude sinusoidal curve on the circle with a radius of r is defined

as

Dc = − [(r + a sin (n(γ + θ) + ε)) cos(γ + θ)] k

− [(r + a sin (n(γ + θ) + ε)) sin(γ + θ)] j,
(4.1)

where a, n and ε are the amplitude of sinusoidal wave, the frequency of created

periodic wave on the circle of radius r and the constant phase shift of the curve,

respectively. In the conventional mass-rotating models with circular trajectory, this

trajectory becomes

Dw = −r(cos(γ + θ)k + sin(γ + θ)j) (4.2)

where a, n and ε are zero in (4.1) that results a circular rotation with radius r

[111, 112]. We aim to design n, a and ε depending on the obtained relations from

the inertial matrix to removes the inertial coupling singularity 1 while rotating mass

follows around wavy circle. Also, the deviation of trajectory Dc with respect to

1Please check Theorem 4.3.1 for details.
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Figure 4.1: a) A rotating mass with the trajectory of a sine wave (blue color) on a
circle with radius r (black dashed line). b) Rolling carrier motion along y axis and
frame transformations.

circular radius r can be found as

∆Dc = r− ‖ Dc ‖= a sin(n(γ + θ) + ε), (4.3)

where ‖ · ‖ operator is the module of the variable. The maximum value for this

deviation ∆Dc is the amplitude of wave a, which we assume always a� r and a� R.

If the property (a� r, R) is satisfied, the effect of the included wave can be ignored

in dynamic models. However, the larger wave amplitudes a can be also realized in

driving mechanisms. For instance, a prismatic joint can move the mass periodically

on the lead of the pendulum-actuated systems (similar to Fig. A.2) [45,100] or fluid-

actuated systems can have a pipe in the corresponding waveform.

In order to obtain the rolling kinematics, the coordinate frames are sketched as Fig.

4.1-b. Here, x0y0z0 represents the reference frame. The moving frame connected to

the center of the spherical carrier is x1y1z1, which translates with respect to reference

frame x0y0z0. Finally, x2y2z2 is a rotating frame for the rotating mass-point attached

to the center of spherical carrier and it is rotating with respect to x1y1z1. The rolling

system kinematics with the rotational mass is

ωo = θ̇i,Vo = Rθ̇j, ωc =
(
γ̇ + θ̇

)
i, Vc = Vo + Ḋc (4.4)

where ωo, Vo, ωc and Vc are the angular and linear velocities of the carrier and the

angular and linear velocities of the rotating mass.
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Figure 4.2: Different mass-rotating systems with passive body/carrier that their in-
ertial matrices M(q) are primarily similar.

4.2.2 Nonlinear Dynamics

The non-linear dynamics of the rolling spherical carrier with a planar motion is derived

from the proposed trajectory equation. To find the corresponding motion equations,

the Lagrangian equations are utilized.

4.2.3 Dynamic Model of Underactuated Rolling System

The general motion equations of a passive and an active rotating bodies with rota-

tional angles of q = [θ, γ]T can be presented as

M(q)q̈ + h(q, q̇) = u, (4.5)

where inertial matrix M(q), velocity dependencies Ni and gravity terms Gi in h(q, q̇)

and control inputs u are defined by

M(q) =

[
M11 M12

M21 M22

]
,h(q, q̇) =

[
N1 +G1

N2 +G2

]
,u =

[
0

τγ

]
.

The underactuated systems (4.5) with two degrees of freedom [69] have a great

common, similar inertial matrix M(q), with certain underactuated spherical robots

[3, 60, 104, 111]. This inertial similarity help us to generalize our studying prob-

lem. The rolling spherical robots propel their passive carrier with a rotating mass-

point [3, 50, 111] or pendulum [60, 104] as Fig. 4.2. Note that although we study a

2-DoFs rolling system, adding extra rotating masses (our previous study in Section

2.2.2 had spherical robot with two rotating masses as the cores) does not change our

findings since each rotating mass-point has similar dynamic model as Eq. (2.15).
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We consider a sphere as a passive carrier (passive joint) where it is propelled

with the rotation of a spherical mass as Fig. 4.1. The carrier has a mass of Mo

excluding the rotating mass. Also, the rotating mass with the mass mc is assumed as

a mass-point. The Lagrangian function of the rolling carrier with the rotating mass,

including kinetic and potential energies, along y axis is described [112] as follows

EL =
1

2
Mo ‖ Vo ‖2 +

1

2
Io ‖ ωo ‖2 +

1

2
mc ‖ Vc ‖2 +

1

2
Ic ‖ ωc ‖2 −mcgdc, (4.6)

where Io = 2MoR
2/3, Ic, g and dc are the inertia tensor of rolling passive carrier, an

arbitrary inertia tensor Ic connected to the mass-point, the acceleration of gravity

and the distance of the mass-point respect to the ground, respectively. We include

the inertia tensor Ic for the sake of generality that its rotation is with the respect

to carrier central frame x1y1z1. This arbitrary inertia tensor Ic can be considered

as either the lead of rotating pendulum [60, 104] (yellow pendulum in Fig. 4.1) or

interacting fluid/gas inside pipes for the rotating spherical mass [3] (blue fluid/gas in

Fig. 4.1). After the substitution of Eq. (2.4) into (4.6), one obtains

EL =
1

2
R2θ̇2Mo +

1

2
Ioθ̇

2 +
1

2
Ic(γ̇ + θ̇)2

+
1

2
mc

[[
Rθ̇ −

(
γ̇ + θ̇

)
(an cos (n(γ + θ) + ε)) sin(γ + θ)

+ (r + a sin(n(γ + θ) + ε)) cos(γ + θ)
]2

+
(
γ̇ + θ̇

)2 [
an cos(n(γ + θ) + ε) cos(γ + θ)− (r + a sin (n(γ + θ) + ε)) sin(γ + θ)

]2]
−mcg[r + a sin(n(γ + θ) + ε)](1− cos(γ + θ))

(4.7)

Finally, we apply the Lagrangian equations for planar translation of the rolling

system along y axis as following

d

dt

(
∂EL
∂γ̇

)
− ∂EL

∂γ
= τγ,

d

dt

(
∂EL

∂θ̇

)
− ∂EL

∂θ
= τθ, (4.8)

where τγ and τθ are the external torques for the rotating mass and the sphere, respec-

tively. The acting external torque between the surfaces of the spherical mass (core)

and carrier body is assumed zero, τθ = 0, because the mass-point does not have any

spinning around itself and it only rotates with the respect to the carrier center x1y1z1.

After doing the necessary substitutions from Eqs. (4.7)-(4.8), the terms of the motion
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equations (A.1) for this underactuated system becomes

M11 = Ic +MoR
2 + Io +mcR

2 − 2mcRµ1 +mcµ2,

M12 = M21 = Ic −mcRµ1 +mcµ2,M22 = Ic +mcµ2,

N1 = −mcR(γ̇ + θ̇)2µ3 +mc(γ̇ + θ̇)2µ4, N2 = mc(γ̇ + θ̇)2µ4, G1 = G2 = mcgµ5.

(4.9)

while,

µ1 = (an cos (n(γ + θ) + ε)) sin(γ + θ) + (r + a sin(n(γ + θ) + ε)) cos(γ + θ),

µ2 = a2n2 cos2 (n(γ + θ) + ε) + (r + a sin(n(γ + θ) + ε))2,

µ3 = −an2 sin (n(γ + θ) + ε) sin(γ + θ) + 2an cos(n(γ + θ) + ε) cos(γ + θ)

− (r + a sin(n(γ + θ) + ε)) sin(γ + θ),

µ4 = −a2n3 sin (n(γ + θ) + ε) cos(n(γ + θ) + ε)

+ an cos(n(γ + θ) + ε)(r + a sin(n(γ + θ) + ε))

µ5 = an cos(n(γ + θ) + ε)(1− cos(γ + θ)) + (r + a sin(n(γ + θ) + ε)) sin(γ + θ).

4.3 Inverse Dynamics and Singularity Regions of the Rolling System

In this section, the non-linear dynamics are illustrated in the inverse form. A general

condition for removing the singularities is derived and the singularity regions are

studied for the conventional rolling systems. Next, we propose our condition for

determining the parameters of the combined wave to avoid the singularity regions

that originate inertial-coupling. Finally, a time function as feed-forward control for

specifying the spherical carrier rotation is defined.

The non-linear dynamics (A.1) with Eq. (4.9) are re-ordered with the goal to find

the input torque τγ from the prescribed rolling carrier states (θ, θ̇, θ̈); Hence, the

rolling constraint of the carrier and the rotating mass differential equations in Eq.

(A.1) becomes

γ̈ = − 1

M12

(
M11θ̈ +N1 +G1

)
,

τγ = M21θ̈ +M22γ̈ +N2 +G2.

(4.10)
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Now, we already know from Eq. (A.1) that inertial matrix M(q) is always a positive

definite and symmetric matrix [1] where upper-left determinants grant this condition

by M11 > 0 and M11M22 −M12M21 > 0. To extend these conditions to the derived

inverse dynamics, the rolling constraint (first differential equation) in Eq. (4.10) is

substituted into the second differential equation as follows

τ γ = Mθ̈ +N +G, (4.11)

where

τ γ = −τγ, M = M−1
12 · (M11M22 −M12M21) ,

N = M22M
−1
12 N1 −N2, G = M22M

−1
12 G1 −G2.

(4.12)

Because the mass-point and the spherical carrier rotation are opposite of each other

in our motion and for the sake of the simplicity, we assume τ γ = −τγ. By relying on

the Ref. [97], the coupled inertia matrix M > 0 should be positive definite as well.

However, the denominator in M > 0 requires another extra condition that M−1
12 > 0.

Under the condition of M11M22−M12M21 > 0, there exist singularities in the solution

of Eq. (4.11) for the cases when M12 ≤ 0 (τγ →∞) [1]. Thus, following proposition

as the condition of the singular-free inverse dynamics is expressed.

Proposition 4.3.1 Let the inverse non-linear dynamics (4.11)-(4.12) are for the

rolling system with the trajectory Dc in (4.1). Given M12 > 0, the underactuated

system does not hit any singularity, if following condition is satisfied

µ2
1a + µ2

1b +
Ic
mc

> R [µ1a sin(γ + θ) + µ1b cos(γ + θ)] , (4.13)

where µ1a and µ1b are the first and second terms of µ1.

Proof Consider the inertia term M12 in (4.12) always positive to have no singular

configuration as

M12 = Ic −mcRµ1 +mcµ2 > 0. (4.14)

Then, µ1a and µ1b terms are defined from µ1 in (4.10) as

µ1a = an cos (n(γ + θ) + ε) , µ1b = r + a sin(n(γ + θ) + ε).
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Figure 4.3: Singularity regions in gray color increases as mass-point distance r de-
creases while the carrier is steady (θ = 0).

where there are µ2 = µ2
1a + µ2

1b and µ1 = µ1a sin(γ + θ) + µ1b cos(γ + θ). Thus, µ1a

and µ1b are substituted to inequality (4.14) as follows

mc(µ
2
1a + µ2

1b)−mcR(µ1a sin(γ + θ) + µ1b cos(γ + θ)) + Ic > 0 (4.15)

Finally, the condition (4.13) is found by reordering inequality (4.15).

Before designing our combined wave model under the Proposition 4.3.1, we check

the singularity regions for the different conventional underactuated rolling systems.

Note that in these cases the trajectory is assumed as an ideal circle (4.2) without any

consideration of our combined sinusoidal curve.

Example 4.3.1 The singularity regions of a conventional rotating mass-point system

[111,112], where Ic = 0, are analyzed using condition (4.13) in Proposition 4.3.1. Let

the trajectory Dc be a perfect circle with radius r, which makes µ1a = 0 and µ1b = r

as (4.2) when a = n = ε = 0. From the given condition (4.13), the inequality is

transformed to

r2 > Rr cos(γ + θ) (4.16)

By examining the maximum possible value for cos(γ+θ) ≈ 1, one obtains a limitation

on the geometric parametrization as

r

R
> 1. (4.17)

This means in designing this mass-point system, the inverse dynamics model (4.10)

will hit singularity if the radius of rotating mass be less than the rolling carrier as
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condition (4.17). Thus, this singularity disobeys the physical mechanics completely

and makes the rolling system impossible to control. Fig. 4.3 shows how changes in the

geometric parameters (r, R) in (4.16) affect singular configurations of the mass-point

(4.2) on the steady spherical carrier (θ = 0). This graphic clarifies that the rolling

system without any angular constraint on γ and θ will hit the singularity. Otherwise,

the solution of (4.10) will break many times while this singular region continuously

changes by spherical carrier rotation, γ + θ.

Example 4.3.2 A rotating mass system with arbitrary inertial tensor is chosen in

this example. This inertia tensor Ic can be related to a rod that connects the mass to

the center of the rolling body [60,104] or an interacted water with the rotating mass

in pipes [3, 111]. Thus, with a circular trajectory as the previous example, condition

(4.17) is transformed to

mcr
2 + Ic > mcRr cos(γ + θ), (4.18)

By sorting this condition based on the Ic with considering cos(γ + θ) ≈ 1 (Strong

Inertial Coupling [97]), we see that singularity can be avoided only when

Ic > mcr(R− r). (4.19)

Similar to the previous example, this singularity related condition limits the inverse

dynamics for only certain mechanic configuration that can satisfy the following geo-

metric condition.

To illustrate that our proposed approach removes the demonstrated singularity

regions in Eq. (4.16) and Eq. (4.18), and how parameters of the included wave

should be designed analytically a singular-free condition is developed.

Theorem 4.3.1 The inverse dynamics (4.11) with a combined sinusoidal wave (4.1)

never hit singularity and positive definiteness of M > 0 is granted when variables a,

n and ε of the small-amplitude wave (a � r, R and n > 2) are satisfying following

inequalities

r2 +
a2

2

[
n2 + (n2 − 1) cos 2ε+ 1

]
+

Ic
mc

> ∆µ1

r2 +
a2

2

[
n2 + (n2 − 1) cos 2ε+ 1

]
+

Ic
mc

>

√
2

2
Rr + ∆µ2

r2 +
a2

2

[
n2 + (n2 − 1) cos 2ε+ 1

]
+

Ic
mc

> Rr + ∆µ3

(4.20)
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where

∆µ1 = a ·

∣∣∣∣∣2r sin

(
tan−1

(
−2r

Rn

))
−Rn cos

(
tan−1

(
−2r

Rn

)) ∣∣∣∣∣,
∆µ2 =

√
2a

2

∣∣∣∣(2√2r −R) sin
(

tan−1
((
R− 2

√
2r
)
/Rn

))
−Rn cos

(
tan−1

((
R− 2

√
2r
)
/Rn

)) ∣∣∣∣,
∆µ3 = a · |2r −R|.

Proof Let the singularity condition (4.13) from Proposition 4.3.1 be

µ2
1a + µ2

1b + (Ic/mc) > R(µ1a sin(γ + θ) + µ1b cos(γ + θ)).

To have the left-hand side of the inequality always larger than the right-side, the

absolute value of right-side in the three angular cases are found

1) µ2
1a + µ2

1b +
Ic
mc

> R · |µ1a|, ζ1 =
(2k + 1)π

2

2) µ2
1a + µ2

1b +
Ic
mc

>

√
2R

2
· (|µ1a|+ |µ1b|) , ζ2 =

(2k + 1)π

4

3) µ2
1a + µ2

1b +
Ic
mc

> R · |µ1b|, ζ3 = (k + 1)π

(4.21)

where ζi = γ + θ. Next, we utilize the Fourier Transform equations [119] in following

forms

H(w) =
1√
2π

ˆ ∞
−∞

µ(ζi)e
−jwζidζi,

µ(ζi) =
1√
2π

ˆ ∞
−∞

H(w)ejwζidw,

(4.22)

where H(w) and w are the transformed term of µ and the frequency of corresponding

µ. With applying the Fourier Transform (4.22) to each side of our inequalities in

(4.21), under linearity property in the equations [119], one obtains

1) H2
1a +H2

1b + (I ′c(w)/mc) > R · |H1a|,

2) H2
1a +H2

1b + (I ′c(w)/mc) >
√

2R · (|H1a|+ |H1b|) /2,

3) H2
1a +H2

1b + (I ′c(w)/mc) > R · |H1b|,

(4.23)
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where I ′c(w) is the Fourier Transform of the inertia tensor of Ic. Then, the terms in

(4.23) become

H2
1a +H2

1b = π(a2n2 + a2 + 2r2)δ(w)

+ (πa2(n2 − 1)/2) ·
[
e−2jεδ(2n+ w) + e2jεδ(2n− w)

]
+ 2πar

[
e−jεδ(n+ w)− ejεδ(n− w)

]
j,

|H1a| = πan
[
e−jεδ(n+ w) + ejεδ(n− w)

]
,

|H1b| = 2πrδ(w) + πa
[
e−jεδ(n+ w)− ejεδ(n− w)

]
j.

(4.24)

By using transformed equations (4.24), the corresponding terms are simplified to two

base waves for comparison: the first term is the constant shift by δ(w) and the second

is the sinusoidal waves, δ(n+w)+δ(n−w). Because the angular rotation ζ(γ, θ) of the

waves in both sides of inequality is always same, each side of (4.23) can be compared

relative to its multiplier δ with the same frequency w. By the known insight in the

expressed property, all three inequality conditions in (4.23) are collected for each

sinusoidal impulses δ in the given frequency w.

1) 2rj(e−jεδ(n+ w)− ejεδ(n− w)) > Rn
[
e−jεδ(n+ w) + ejεδ(n− w)

]
2) 4rj(e−jεδ(n+ w)− ejεδ(n− w)) >

√
2R
[
e−jεδ(n+ w)(n+ j) + ejεδ(n− w)(n− j)

]
3) 2rj(e−jεδ(n+ w)− ejεδ(n− w)) > Rj

[
e−jεδ(n+ w)− ejεδ(n− w)

]
(4.25)

Next, the minimum shift ∆µ for having the left-hand side larger than the right-hand

has to be computed by taking the Inverse Fourier Transform from (4.25). Therefore,

the Inverse Fourier Transform of (4.25) is calculated by (4.22) for each inequality

1) 2ra sin(nζ1 + ε) > Ran cos(nζ1 + ε)

2) 4ra sin(nζ2 + ε) >
√

2R
[
a sin(nζ2 + ε) + an cos(nζ2 + ε)

]
3) 2ra sin(nζ3 + ε) > Ra sin(ζ3 + ε)

(4.26)

By analyzing (4.26), we can see that there are π/2 and π/4 phase differences between

each side of sinusoidal curves in the conditions 1 and 2, respectively. To calculate

the required shift for the first two conditions, the derivative of time-domain forms in
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(4.26) are derived

1)
d

dζ1

[
Rn cos(nζ1 + ε)

2r sin(nζ1 + ε)

]
=
−Rn sin(nζ1 + ε)

2r cos(nζ1 + ε)
= 1,

2)
d

dζ2

[√
2R[n cos(nζ2 + ε) + sin(nζ2 + ε)]

4r sin(nζ2 + ε)

]

=

√
2R[−n sin(nζ2 + ε) + cos(nζ2 + ε)]

4r cos(nζ2 + ε)
= 1.

Then, we solve it for γ1 = nζ1 + ε and γ2 = nζ2 + ε, and find the tangential point of

two waves when their slopes are the same

γ1 = tan−1(−2r/Rn), γ2 = tan−1
((
R− 2

√
2r
)
/Rn

)
. (4.27)

We define ∆µ1 and ∆µ2 as the minimum required shifts for the right-hand side of

inequalities to be always larger than left in conditions 1 and 2 by equaling both sides

of (4.26) as

∆µ1 +Ran cos(γ1) = 2ra sin(γ1),

∆µ2 +

√
2a

2
R [sin(γ2) + an cos(γ2)] = 2ra sin(γ2).

(4.28)

The third inequality condition in (4.26) is easier to compute because the waves of both

sides are in the same phase, hence, we obtain ∆µ3 by using the maximum amplitude

difference

∆µ3 = a · |2r −R|. (4.29)

At the end, substituting (4.27) into (4.28) and reordering them with the respect to

the minimum shifts ∆µi results in

1)∆µ1 = a ·

∣∣∣∣∣2r sin

(
tan−1

(
−2r

Rn

))
−Rn cos

(
tan−1

(
−2r

Rn

)) ∣∣∣∣∣
2)∆µ2 =

√
2a

2

∣∣∣∣(2√2r −R) sin
(

tan−1
((
R− 2

√
2r
)
/Rn

))
−Rn cos

(
tan−1

((
R− 2

√
2r
)
/Rni

)) ∣∣∣∣
3)∆µ3 = a · |2r −R|

(4.30)
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By putting Eq. (4.30) back into inequalities (4.23) and taking the Inverse Fourier for

single wave with 2n frequency and constant shift for δ(w), we have

1)
a2(n2 + 1)

2
+
a2(n2 − 1)

2
cos(2(nζ1 + ε)) + r2 +

Ic
mc

> ∆µ1(a, n),

2)
a2(n2 + 1)

2
+
a2(n2 − 1)

2
cos(2(nζ2 + ε)) + r2 +

Ic
mc

>

√
2

2
Rr + ∆µ2(a, n),

3)
a2(n2 + 1)

2
+
a2(n2 − 1)

2
cos(2(nζ3 + ε)) + r2 +

Ic
mc

> Rr + ∆µ3(a, n),

(4.31)

In order to simplify the second term at right-hand side of inequalities (4.31), we choose

n > 2 which transfer cos(2(nζ + ε)) to cos 2ε in all conditions {ζ1, ζ2, ζ3}. Under the

given assumption (n > 2), condition (4.20) can be derived from (4.31).

Remark 4.3.1 Because the inertia tensor Ic of the rotating mass is normally related

to geometric objects (connecting cylindrical bar of the pendulum) with a constant

radius, it has been included as the constant value to the inequalities.

Remark 4.3.2 This Theory 4.3.1 can easily be extended for any underactuated sys-

tem with two-link manipulators (for example the Acrobat) since M12 term is in com-

mon with all models and does not have the inertia tensor of carrier Io.

In this rolling system, we choose a 4th order time function [3, 104] to reach the

carrier θ(t) toward its desired final configurations θdes by

θ(t) = k

(
− 20

T 7
t7 +

70

T 6
t6 − 84

T 5
t5 +

35

T 4
t4
)
, (4.32)

where T and k are the time constant of designed motion and the value for the final

arrived distance θ(T ) = k = θdes. We expect from this feed-forward control to actuate

the rotating mass like γ(t) = d2θ(t)/dt2 from (4.32) as a two-step motion. This two-

step motion of rotating mass [see γ + θ at Fig. 4.5-b as an example of this motion

pattern] is followed by a counterclockwise rotation till certain angle γmax and a similar

clockwise rotation for returning to the rest position. Note that similar to what has

been developed in [3,104], one can show that with the selection of this motion scenario

the condition θ̇(T ) = 0 is always satisfied.
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Table 4.1: Value of parameters for the simulation studies.

Variable Value Variable Value
mc 0.4 kg r 0.131 m
Mo 1 kg R 0.145 m
g 9.8 m/s2 Io 0.0140 kg·m2
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Figure 4.4: Example simulation for passive carrier {θ, θ̇} and rotating mass-point
{γ, γ̇} states by the modified model.

4.4 Simulation Analysis of the Rolling System

In this section, the proposed condition for avoiding singularities is analyzed in the

simulation space. At first, to evaluate our model in the worst-case scenario, a mass-

point system with Ic = 0 is chosen. We find the singular-free model with satisfying

the conditions of the proposed theorem. Next, to compare the modified model with

the classic model, we compare both cases when there is an inertia tensor Ic as a

pendulum system.

The geometric parameters of the considered physical system are like Table 4.1.

Note that this system fails the singular-free coupling condition (4.17) by having r < R,

as shown in Example 4.3.1, which makes the system to be in a singular region. To

prescribe the angular orientation of the spherical carrier the introduced time functions

in (4.32) is applied where k = θdes is π/2 rad. The simulation is run for 6 s with

T = 6. The robot begins from rest condition and it is expected to reach rest position

at end of simulation time by the prescribed time function.
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Figure 4.5: a) Inertia term and output torque results for modified inverse dynamics,
b) the true location and velocity of the rotating mass respect to reference frame.

To solve the singularity, we use the proposed Theory 4.3.1 where a, n and ε are

designed under the conditions of (4.20). By substituting the values of the geometric

parameters from Table into the conditions (4.20), we choose our wave parameters with

first maximum value as a = 0.0055, n = 10 and ε = 0 which satisfy all three inequal-

ities. Note, if we have an inertia tensor Ic, depending on the designed mechanism,

wave amplitude a can be chosen smaller as indicated in inequalities (4.20).

By running the simulation with obtained parameters, we see that the inverse

dynamics are integrated without hitting any singularity [See Fig. 4.4-b and 4.5].

As expected, the rotating mass follows a smooth two-phase motion with the applied

feed-forward control by our time function [see Fig. 4.5-b]. Also, the control torque τγ

as the output is produced responsively with solving the modified nonlinear dynamics

which displaces the spherical carrier to the desired angle with the rest-to-rest motion.

Finally, we illustrate a comparison between a conventional rotating pendulum
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Figure 4.6: Compared results for a classic (conventional) and modified motion equa-
tions in a pendulum system with the inertia tensor Ic.

system with our modified singular-free model. We do this comparison for the sake of

clarification that model with small-amplitude combined wave does not hurt/diverge

the motion equations while it is removing the singularities due to coupling. All

the simulation parameters are similar to the previous case-study except when we

include an inertia tensor of cylindrical pendulum Ic = mlr
2/3 = 0.0057 kg·m2 that is

connected to the mass-point as Fig. 4.1. Also, we simulate the classic (conventional)

model of a pendulum system for the rolling sphere from Refs. [60, 104] which same

model can be derived by prescribing a = n = ε = 0 at Eq. (4.10). Fig. 4.6

shows that our modified model does not have any dissimilarity with the classic model

with included wave on the circular trajectory, a � r, R. In this case, note that the

inclusion of Ic variable satisfies the singular-free coupling condition in Eq. (4.19).

Our designed condition can easily work for the geometries that singular-free coupling

conditions were limited by (4.16) and (4.19) (worst-case as a mass-point) conditions

in previous studies.

4.5 Analytical and Simulation Studies for the Planar Manipulator

In this section, we first study our proposed singular-free condition for 4-Dof under-

actuated manipulator analytically that given in Proposition A.4.1. Next, we make a

comparison of our modified inverse dynamics with the conventional systems without

the combined wave kinematics.
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Table 4.2: Chosen parameters for the analytical studies of a 4-DoFs underactuated
manipulator that fails the Strong Inertial Coupling condition.

Variable Value Variable Value
mk 0.7 kg lk 0.11 m

I2 = I4 0.09 kg·m2 g 9.8 m/s2

I1 = I3 0.1 kg·m2
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10-3

4 6

1

54
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2 3210 0

Figure 4.7: The minimum inertia verses manipulator configuration for singular-free
regions.

4.5.1 Analytical Study of Minimum Inertial Condition

Here, We check how combined-wave kinematics changes the inertial-coupling con-

dition and singularity regions. This will demonstrate the behavior of the proposed

modeling method and the implications that it could have.

The geometric parameters of the chosen example model are presented in Table

4.2. With simple numerical analysis, we can see that the following system can not

satisfy the inertial coupling conditions in Table A.1 for the 3rd one. The problem

can be seen more vivid by using the proposed minimum inertial condition Imin in

Proposition A.4.1. We choose our combined-wave parameters with some analytical

studies as: a2 = −0.011, n2 = 1.6, ε2 = 1 rad, a4 = −0.01, n4 = −2, ε4 = −0.41 rad.

Note that our derived minimum inertial condition is independent of q1 and q3 angles.
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Figure 4.8: The minimum inertia verses manipulator configuration for singular free-
regions (a2 = 0.011 case).

Fig. 4.7 illustrates the minimum inertial coupling Imin with the respect to q2 and

q4 angles of active joints. The blue plane shows the minimum value of the classic

circular trajectory. It is clear that the minimum inertia value is near zero which is

the main source of singularity. However, if there is combined wave kinematics, the

minimum inertial condition rises. This is an interesting point that shows the property

of our proposed modified inverse dynamics. It can be interpreted that depending on

the desired region of action for the joint angles (actuability), the inertial coupling sin-

gularities can be avoided numerically. Nevertheless, there are singular regions in the

configurations {q2, q4} of manipulator, in here for the example case is q2 ∈ (π/2, π)

and q4 ∈ (π/2, π), in the minimum inertial value Imin. This can be resolved easily

by varying the sign of either a2 or a4 combined-waves amplitude which invert the

minimum inertial value. Fig. 4.8 shows for a2 = 0.011 at the current case. It is im-

portant to note that our chosen amplitudes of the combined waves are %10 of the link

length. This value can be smaller or larger depending on our geometric parameters

(mk, lk, Ik). Also, these parameters determine the singular-free configuration region

for controlling if we limit our problem to ak < lk.
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Figure 4.9: Angular displacements of joints for an example simulation.

4.5.2 Simulation of the Feed-Forward Control

The modified nonlinear dynamic model is checked using feed-forward control in Sec-

tion A.4.2. Our aim is to show an example case that the singular configuration is

prevented by applying our proposed approach. It is expected to converge the passive

joints to their desired values while active joints angles are arbitrarily moving to reach

the desired states.

Here, the accuracy of the Matlab solver for relative and absolute errors are 0.001

and 0.001, respectively. The geometric parameters of our physical system are similar

to the previous part as Table 4.2. Also, we chose the same combined-wave kinematics

values that we found in the previous section. To control the angular velocity and

orientation of the active joints qa, the given Beta functions (A.24)-(A.26) are applied.

Note that the derivative of (A.24) gives the angular acceleration for these active joints.

We choose our desired angular configuration as qf,p = [q1,f , q3,f ] = [6, 1.1] rad. We

consider this desired configuration to make joints cover the most of workspace. The

simulation duration is set 6 s which means T = 6 in the Beta functions (A.24)-(A.26).

Also, the order of functions for each of the actives are as follows: α1 = 17 and α3 = 9.

The robot’s passive joints begin from rest condition and it is expected to reach rest

position at end of simulation time by the prescribed Beta functions. Also, initial

angular positions and velocities are all zero in joints.
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Figure 4.10: Angular velocities of joints for an example simulation.
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Figure 4.11: Active joints’ torque outputs for a desired configuration.

The angular displacements of joints for the conventional manipulator with circu-

lar trajectory and our modified model (A.28)-(A.32) are shown in Fig. 4.9. Please

note that singularity points can be hard to simulate and demonstrate in simula-

tion/experiment since the integration solution converges to infinity. However, we

choose a case that we just pass the local region of the singular point to have a more

clear comparison based on Table A.1. This comparison becomes understandable when

we have a look at angular velocity results in Fig. 4.10. It is clear that there are two

singular points around 3 s which make huge spikes in the angular velocities of active
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joints q̇a. However, our designed combined-waves kinematics avoid the singular re-

gions in inertial matrices and spikes do not appear anymore where the overall trend

of motion is alike. Also, the inverse dynamics for the output torque of active joints

(τa) similarly converge to large values in conventional models as Fig. 4.11. Thus, our

proposed modeling method can resolve this issue and can be beneficial in continuous

control strategies e.g., feedback control.

If the planning problem is aimed at the path planning of end-effector and condition

ak � lk is not satisfied, this could be an important issue to take care of in our proposed

method. In that case, the wave has to be designed in a way that it converges to

zero when it is reaching to the desired configuration. This can be done by making

the amplitude ak(t) varying parameter. Alternatively, someone can find a suitable

frequency nk and phase εk to arrive the end-effector toward the exact desired position

when ak is constant.



Chapter 5

A Darboux-Frame-Based Approach for Path Planning of

Spin-Rolling Sphere on Plane

5.1 Introduction

This chapter proposes a new geometric-based path planning method for a spin-rolling

sphere on a plane. In the Chapter 2, we proposed a underactuated novel spherical

robot. This robot had three rotational degrees known as a spin-rolling sphere which

demonstrated a great challenge in doing the nonholonomic path planning with con-

ventional methods. Because the spin angle diverge other local angular coordinates,

the classic approaches face challenges like having a non-smooth trajectories.

Our planning problem is developed with two main contributions: considering a

spin-rolling sphere on the plane and developing optimal smooth trajectories for the

desired states. By our proposed geometric approach, the sphere with a nontrivial

trajectory follows a straight path on the plane where the optimal solution for the

desired states is achieved. Also, we propose a geometric model (the Darboux frame)

where the control inputs are time- and coordinate-invariant with arc-length properties.

Next, a virtual surface is introduced to manipulate the inputs of the kinematic model

to the desired states. To the best of our knowledge, this is the first geometric arc-

length-based control strategy that is proposed. Note that this geometric control

separates the time scale from the kinematics, which gives the system freedom to

converge with different convergence rates in the given time. Note that because we

do planning at the kinematic level, the planning approach can be easily extended for

other mechanisms like manipulation of the box with a fingertip (the sphere) that is

famous for Dexterous manipulation. Thus, this method can be applied for particle

manipulation apart from being used in spin-rolling spherical robots. It is important

to note that we have not included the dynamics (such as our rolling robot dynamics)

in the problem statement; Hence, we can keep the generality of the solution which is

87
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realizable in different mechanisms.

This chapter is organized as follows. In Section 5.2, the Darboux-based kinematic

model of a moving frame is derived with considering the curvature properties of

surfaces. Next, the problem statement of our path planning approach is described in

Section 5.3. Additionally, this section includes the design of the proved virtual surface

as the geometric controller. In Section 5.4, the iterative algorithm with included

tuning variables is explained. Simulations of this approach are demonstrated and

discussed in Section 5.5.

5.2 Kinematic Model of a Moving Darboux Frame

The model of new Darboux frame at contact point of the spin-rolling sphere and plane

is developed. Next, this Darboux kinematics are substituted to the Montana Kine-

matics [74]. As we derive the new geometric model, the kinematics readily suits both

contact trajectories and arbitrary parameters of the surfaces [34]. Also, this trans-

formation provides two significant benefits through our planning approach. First,

the spin-rolling angular rotations explicitly appear on the relative curvature and tor-

sion [34] that makes it easier for manipulation. Second, the Darboux frame separates

the time variable from the planning due to its time- and coordinate-invariance.

Fig. 5.1 is depicted for rotating object and surface coordinates in the ball-plate

system. Σo and Σs are the fixed coordinate frames on the rolling object (red sphere)

and the plane. There are coordinates of the contact points for a sphere Σco and

fixed traveled surface Σcs. Also, Σs coordinate is fixed relative to other coordinate

frames. It is assumed that the sphere is rotating with no sliding constraint. The local

coordinate systems for the sphere and plane are considered

fo : UC → R3 : c(uo, vo) 7→ (−Ro sinuo cos vo, Ro sin vo,−Ro cosuo cos vo),

fs : US → R3 : c(us, vs) 7→ (us, vs, 0),
(5.1)

where c(uo, vo) ∈ [−π, π] and c(us, vs) are contact parameters of the sphere and plane.

Additionally, the sphere is the rotating object UC with curvature properties [66] as

follows:

konu = konv = 1/Ro, τ
o
gu = τ ogv = 0, kogu = tan(vo)/Ro, k

o
gv = 0, (5.2)
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Figure 5.1: Kinematic model of rotating sphere. Note: ψ is the spin angle between
sphere and plane surfaces.

where konu, k
o
nv, τ

o
gu, τ

o
gv, k

o
gu, k

o
gv are the normal curvature, geodesic torsion and

geodesic curvature of the rotating body respect to uo and vo principles. Also, the

curvature terms of the plane surface US are

ksnu = ksnv = τ sgu = τ sgv = ksgu = ksgv = 0, (5.3)

where ksnu, k
s
nv, τ

s
gu, τ

s
gv, k

s
gu, k

s
gv are the normal curvature, geodesic torsion and the

geodesic curvature of the fixed surface (plane) respect to us and vs principles.

At first, we introduce a Darboux frame Σf , for deriving the kinematics in arc-

length domain, that is on the contact coordinate of the plane Σcs. Let a traced curve

Ls in Euclidean space be on the surface plane US [see Fig. 5.2]. Every contacted

point P ∈ US has a unit-based Darboux frame (es1, e
s
2, e

s
3) [26] where es1 is a tangent

vector to the path Ls, e
s
3 is a normal vector to the US surface and es2 is perpendicular

to the plane es3× es1 [see Appendix B.1 for the preliminary equations of the Darboux

frame]. Apart from the Darboux frame attached to the plane trajectory Ls, the

angular velocities of the Darboux frame ω∗ is determined with including two more

Darboux frames attached to the sphere trajectory Lo as (eo1, e
o
2, e

o
3) and trajectory of

our defined virtual surface Lv as (ev1, e
v
2, e

v
3) on the contact point P [see Fig. 5.2].

Note that all these Darboux frames coincide with each other [34] due to no-sliding
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Figure 5.2: Frame transformations of the spin-rolling sphere on a moving frame Σf .
Note that n superscript in {en1 , en2 , en3} frame stands for the sphere (n = o), the plane
(n = s) and the virtual surface (n = v).

constraint. The detailed explanations and derivation are covered in Appendix B.2.

Also, we have introduced this new virtual surface UV with manipulative curvatures

(αs, βs, γs) in purpose of controlling the sphere coordinates (uo, vo) in the arc-length

domain (s-domain)1. This virtual surface can be imagined as a sandwiched surface

that its curvatures variations (geometric controller) are projected onto both sphere

and plane trajectories. This can be looked as bending the sheet of paper to rotate a

ball on the plane. Thus, the angular velocities of the Darboux frame along Ls [the

proof is in Appendix B.2] on P is shown

ω∗ = δ(−τ ∗g es1 + k∗ne
s
2 − k∗ges3). (5.4)

where

δ = ds/dt, k∗g = kog − ksg − αs, k∗n = kon − ksn − γs, τ ∗g = τ og − τ sg − βs. (5.5)

where δ is the derivation of the arc-length relative to time called the rolling rate, and

k∗g , k
∗
n and τ ∗g are the induced geodesic curvature, normal curvature and geodesic tor-

sion between two surfaces (sphere and plane) including a sandwiched virtual surface’s

1The Eq. (5.24) will be our designed geometric control with using the introduced virtual surface
that will be explained in Section 5.3.2
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curvatures (αs, βs, γs). Also, {kon, kog, τ og } and {ksn, ksg, τ sg} are the induced curvatures

of the sphere and plane with respect to the Darboux frame of the plane (es1). In

Refs. [34, 63], the angular velocities of the Darboux frame (5.4)-(5.5) was used in

terms of δαs only that it was defined as the compensatory spin rate. However, we

have derived a general formulation with the defined virtual surface to control the

pure-rolling velocity of the sphere by {δγs, δβs} and its spin velocity by δαs.

Next, there are the unit-based orthonormal frames of (eou, e
o
v, e

o
3) and (esu, e

s
v, e

s
3)

induced by contact coordinates of the rotating object (sphere) Σco and fixed surface

(plane) Σcs, respectively. These vectors can be found by taking derivative of local

coordinates in (5.1). Here, always the unit normals of the surfaces (eo3 and es3) and the

Darboux frame of the plane are aligned with each other. Then, let the rotating sphere

u-vector eou makes an angle ϕ with the Darboux frame es1 vector [see Fig. 5.2] that is

tangent to path Ls. Also, θ is the angle between sphere esu and plane eou coordinates.

Note that the general equations of the Darboux frame (trihedrons) with angle respect

to induced coordinates of a surface is summarized as the preliminaries in Appendix

B.1, which were also shown explicitly in Refs. [26,34,35]. Then, the induced curvature

between the Darboux frame Σf and each of the contact coordinates of the sphere Σco

and the plane Σcs can be developed [see Appendix B.3 for the details of calculation].

By using the general derived Darboux relation (B.22), the normal curvature kon, the

geodesic curvature kog and geodesic torsion of τ og of the contact coordinate of the

sphere eou in the direction of es1 becomes

kon = konu cos2 ϕ+ 2τ ogu cosϕ sinϕ+ konv sin2 ϕ = 1/Ro,

τ og = τ ogu cos 2ϕ+
1

2
(konv − konu) sin 2ϕ = 0,

kog = kogu cosϕ+ kogv sinϕ = tan vo cosϕ/Ro. (5.6)

The normal curvature ksn, the geodesic curvature ksg and the geodesic torsion of τ sg of

the contact coordinate of the plane esu in the direction of es1 (esu − es1 make the angle

of ϕ+ θ as Fig. 5.2) is

ksn = ksnu cos2(θ + ϕ) + 2τ sgu cos(θ + ϕ) sin(θ + ϕ) + ksnv sin2(θ + ϕ) = 0,

τ sg = τ sgu cos 2(θ + ϕ) +
1

2
(ksnv − ksnu) sin 2(θ + ϕ) = 0,

ksg = ksgu cos(θ + ϕ) + ksgv sin(θ + ϕ) = 0. (5.7)
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Also, the induced curvatures in (5.5) become independent of each other for θ + γ =

(k + 1)π/2 or kπ where k ∈ N .

Eq. (5.4) is the angular velocities of the Darboux frame. Transformation that

expresses the Darboux frame (es1, e
s
2, e

s
3) on the frame (eou, e

o
v, e

o
3) of the sphere is

es1 = cos(ϕ+ θ)eou + sin(ϕ+ θ)eov,

es2 = − sin(ϕ+ θ)eou + cos(ϕ+ θ)eov,

es3 = eo3

(5.8)

The angular velocity of the Darboux frame ω∗ is equal to the angular velocity of the

sphere. Thus, one gets the angular velocity of the sphere ωo by substituting (5.8)

into (5.4), [see Fig. 5.2] as follows

ωo = ωoxe
o
u + ωoye

o
v + ωoze

o
3, (5.9)

where

ωox = δ(− cos (ϕ+ θ)τ ∗g − sin (ϕ+ θ)k∗n),

ωoy = δ(− sin (ϕ+ θ)τ ∗g + sin (ϕ+ θ)k∗n),

ωoz = δ(−k∗g).

(5.10)

The following angular velocities (5.10) are in terms of δ, θ and ϕ including the virtual

surface where δ is rolling rate of the sphere and θ and ϕ angles are for assigning the

direction of the sphere on plane. Because we use kinematics that gives the angular

velocities (ωox, ω
o
y, ω

o
z), all these input variables directly change the motion of the

sphere on the plane.

The angular velocities of the Darboux frame in Eq. (5.10) have to be transferred

to the states of the sphere and plane for motion planning. We utilize the Montana

equation [74] with the inclusion of no-sliding constraints for this transformation. By

knowing (5.2)-(5.3) properties, we can have the kinematic equations as follows

u̇s(t)

v̇s(t)

u̇o(t)

v̇o(t)

ψ̇(t)


=



0 Ro 0

−Ro 0 0

− sinψ/ cos vo − cosψ/ cos vo 0

− cosψ sinψ 0

− sinψ tan vo − cosψ tan vo −1




ωox

ωoy

ωoz

 (5.11)
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where ψ is the spin angle between the sphere and plane as Fig. 5.1. We use equation

(5.11) as the spin-rolling sphere-plane kinematics. Next, we substitute the derived

Darboux frame equations (5.10) into (ωox, ω
o
y, ω

o
z) inputs at (5.11) with known curva-

ture properties 

u′s(s)

v′s(s)

u′o(s)

v′o(s)

ψ′(s)


=



sin(θ + ϕ)

sin(θ + ϕ)
sin(θ+ϕ)[sinψ−cosψ]

Ro cos vo
sin(θ+ϕ)[cosψ+sinψ]

Ro

tan vo[sin(θ+ϕ)(sinψ−cosψ)+cosϕ]
Ro



+



−Ro sin(θ + ϕ)

−Ro sin(θ + ϕ)
sin(θ+ϕ)[cosψ−sinψ]

cos vo

− sin(θ + ϕ)[sinψ + cosψ]

tan vo[sin(θ + ϕ)(cosψ − sinψ)]


γs

+



Ro sin(θ + ϕ)

−Ro cos(θ + ϕ)
− sin (ψ+θ+ϕ)

cos vo

− cos (ψ + θ + ϕ)

− tan vo sin (ψ + θ + ϕ)


βs +



0

0

0

0

−1


αs.

(5.12)

The new kinematics in s-domain becomes a model with a drift term in which the

sphere can be manipulated toward its desired rotations on the plane. This new

model (5.12) apart from arc-length-based control inputs (αs, βs, γs), have angles

{θ(uo, vo, ψ), ϕ(ψ)} in function of states, coming from (5.10), that we design them in

our planning problem. Geometrically, if we have our virtual surface inputs (αs, βs, γs)

zero, the drift term varies (change in {θ, ϕ} angles) the sphere velocity on plane with

constant angular direction on plane (45o). However, assigning larger {θ, ϕ} results in

the sphere states (uo, vo, ψ) orientate faster to converge the required angular difference

of {θ, ϕ}. Note that the drift term appears due to the substituted sphere’s normal

and geodesic curvatures (5.2) which are dependent on {θ, ϕ} by our the Darboux

frame (5.10). Also, this drift term vanishes in time-domain because rolling rate δ that

provides rest-to-rest locomotion converges to zero. We have checked the controllability
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of this system in Appendix B.4. Note that θ and ϕ angles from the derived Darboux

frame will be assigned as the aforementioned rotation direction of the sphere on the

plane. This means our planning will be easier with this parameterization. The three

arc-length inputs (virtual surface) will be designed to converge the sphere desired

rotational angles while assigned θ and ϕ angles keep the sphere in the desired direction

on the plane as Fig. 5.2.

5.3 Path Planning

We first explain the outline of our planning problem for the sphere that moves along

a straight path on the plane as Fig 5.3. This approach plans the path of the sphere to

its final configuration while the rotating sphere follows the shortest path on the plane

toward its desired position. Because the no-sliding constraint urges that the length

of the curve on the sphere Lo has to be equal to the plane Ls, curve may not be long

enough to reach certain configurations on the sphere. This limitation is mainly due

to our considered approach with a restricted path on the plane. To deal with this

issue, we find a minimum distance constraint that determines the minimum length of

the curve for reaching the sphere to its desired states. In other words, the length of

the desired plane position respect to its initial value should always be chosen larger

than the minimum distance constraint that we find on the sphere depending on the

given desired states of the sphere. Note that this limitation only appears when the

length between the initial and final states of the plane is less than the circumference

of the sphere. We calculate this distance constraint for the plane via applying the

Gauss-Bonnet theorem [39] to the created circular path on the desired angular states

of the sphere. By finding the sphere’s curve length as the distance constraint, the

length between the initial and desired position of the plane is chosen larger than this

value, without the limitation on the direction of the desired plane position. Thus,

any full-configuration can be achieved under the given constraint.

Since we want to use the obtained kinematic model with arc-length-based inputs

(5.12) in our planning approach, a virtual surface responsible for controlling these

inputs is introduced in Section 5.3.2. The reason for introducing the virtual surface

is to converge the curve toward the desired states of the sphere. This curvature-

based variation simplifies the planning as manipulating a flexible rope (curve Lo)
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Figure 5.3: Statement of planning problem while the sphere with contact path of Lo

follows a straight path Ls on plane.

with the constant length on the sphere. With reliance on the kinematic relation (5.5)

in the s-domain (arc-length domain), we design a controller with the desired curvature

relations of the obtained virtual surface. This geometric-based controller converges

the rotating object (sphere) trajectory to the desired angular states of the sphere.

Also, an algorithm will be proposed to tune this controller− to reach the desired

full-configuration of the sphere− in the incoming section.

5.3.1 Problem Statement

Configuration of a sphere on a plane (see Fig. 5.3) is described with the sphere

position on plane P = (us, vs) and its local orientation Ψ = (uo, vo) which ψ is the

spin angle between the sphere and plane. We consider our initial and final states

with following notations {P0,Ψ0, ψ0} = {us,0, vs,0, uo,0, vo,0, ψ0} and {Pf ,Ψf , ψf} =

{us,f , vs,f , uo,f , vo,f , ψf}, respectively. In this planning, the state equation (5.12) is

solved in k iterations till finding admissible paths, where the traveled paths on the

sphere and plane are noted as Lo and Ls. We plan the sphere to reach its final

configuration C0 → C1 with a straight trajectory on Ls in the given tf time. This

planning problem can be looked as the optimal solution since the shortest trajectory

on the plane Ls is always straight [19].

It is assumed that the initial states {P0,Ψ0, ψ0} and the final desired states of

the sphere {Ψf , ψf} are given. However, final desired position on the plane Pf has to
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Figure 5.4: Limit of minimum distance d that is required to reach desired ψf . Note
that Gf shows the desired goal angle on plane.

be specified under the consideration that the length between initial and final position

||Pf − P0||2 = [(us,f − us,0)2 + (vs,f − vs,0)2]
1
2 is greater than the minimum distance

constraint d where this constraint is calculated by the rest of desired and initial states.

This length limitation appears because the total curve length of Lo on the sphere is

always the same (no-sliding constraint) as Ls that goes in a straight trajectory. Also,

the sphere has to arrive at desired local coordinate Ψf with different approaching

angles, as the desired spin ψf , while it follows a straight optimal line rather than

maneuvering freely through the plane US. Hence, by knowing the sphere desired

states {Ψf , ψf}, the Pf is chosen in any desired direction {us,f , vs,f} with the length

||Ls|| = ||Pf −P0||2 larger than minimum distance constraint as

d < ||Pf −P0||2, (5.13)

where ||− ||2 stands for the norm of the local coordinate points on R2. Note that this

constraint d is not important and the sphere can reach all possible configurations, if

the length of the desired position ||Pf −P0||2 is set larger than sphere circumference

2πRo. To find the minimum distance d, a path is constructed as a circular segment on

the sphere that passes Ψf , and then the cap area is changed toward true desired ψf by

Gauss-Bonnet theorem [39]. Then, by the trigonometric relations in the new under-

cap area, we find the length of Lo as the minimum distance, where ||Ls|| = ||Lo||.

Let the minimum distance d = 2πacα be the circumference of the orange cap-area

that sphere travels, red line Lo on the right sphere at Fig. 5.4, where ac and α are
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the base diameter of this circumference and the angle of sector from Ψ0 to Ψf on

the sphere UC , respectively. First, we find the base diameter ac of the cap with the

following formulation

ac = 2
√

(St/π)− h2
c , hc = St/(2πRo), (5.14)

where St and hc are the total area of the cap-shaped region [orange and blue regions

in Fig. 5.4] and height of the cap area. Notice that the rotation of the sphere along

the red path Lo doesn’t cover the whole cap-shaped region. Thus, we find the total

area as St = 2S ′c +4S where S ′c is the constructed cap area of the circular path by

Ψf [see the blue cap-shaped region in Fig. 5.4] and 4S is the area change [see the

orange region in Fig. 5.4] for reaching from the spin angle ψ′ with cap area of S ′c

to desired spin angle ψf . Here, St has two parts which combining them gives the

full segment of the circular cap (dashed and solid red line Lo). First, the area of the

cap-shaped region of S ′c is determined from the closed simple circle that passes Ψf

S ′c = (α′/2π) ·
[
(a′c/2)2 + h′

2
c

]
(5.15)

where a′c, h
′
c and α′ are the diameter of cap’s base, height of the cap and the sector

angle from sphere initial to final configuration Ψf on the cap’s base, α′ equals to

π. Following parameters in (5.15) are calculated with the help of Eq. (5.1) and

trigonometric relations, shown in Fig. 5.4,

h = Ro [1− cosuo,f cos vo,f ] ,

a′c =
[
h2 +R2

o

(
sin2 vo,f + sin2 uo,f cos2 vo,f

)]1/2
,

h′c =

 Ro [1− cos (Qo,f/2)] , a′c ≤ 2Ro

Ro [1− a′c cos (Qo,f/2) /2Ro] , a′c > 2Ro

where Qo,f is the angle from initial contact point Ψ0 = {0, 0} to desired local coordi-

nates Ψf as

Qo,f =

 π − 2 cos−1 (h/a′c) , h ≤ Ro

π
2
− sin−1 ((h−Ro)/Ro) , h > Ro

Also, by knowing the ac and a′c, the new sector angle from Ψ0 to {Ψf , ψf} (red Lo
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Figure 5.5: Normalized minimum distance d/Ro for different desired angles where
uo,f ∈ [0, π] and vo,f = 0.01.

line in Fig. 5.4) becomes

α =
1

2π
·

 1− 2 sin−1(a′c/ac), ∆S ≥ 0

2 sin−1(a′c/ac), ∆S < 0
(5.16)

To find the achieved spin angle ψ′ by the contacted S ′c cap-area, we use the Gauss-

Bonnet theorem [39] while the sphere touches the circular closed blue path

4ψ = ψ′ − ψ0 =

¨
S′
c

κo dS = S ′c/R
2
o, (5.17)

where κo = 1/R2
o is the Gaussian curvature and the initial spin angle is assumed

ψ0 = 0. Finding the spin angle ψ′ also let us calculate ∆S in St. The required

area-change ∆S for achieving ψf is calculated by the same Gauss-Bonnet theorem as

follows

4S = (ψf − ψ′)/κo = R2
o(ψf − ψ′). (5.18)

After obtaining the total area St for reaching ψf , ac in (5.14) and α in (5.16) give us

the value of minimum distance d. Fig. 5.5 depicts the normalized minimum distance

for different desired angles which shows how small ||Pf−P0||2 can be for the example

final configurations. It is clear that as the desired local coordinate Ψf moves to upper-

hemisphere, Pf has to set for the longer length from P0. Also. the same property is
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true for rising the spin angle ψf . Moreover, the largest distance requirement happens

at lower points of Ψf (Qo,f ≤ π/2) with larger desired spin angles ψf . Note that this

constraint d, with the assumption of a simple circular curve (5.13), is looked as the

shortest length under the isoperimetric inequality, 4πSt ≤ d2.

5.3.2 Geometric Control by Virtual Surface

The Darboux-frame-based kinematics (5.12) that is developed with inputs in arc-

length domain requires a geometric control for converging spin-rolling sphere to de-

sired angular configuration Ψf . We introduce a virtual surface UV to produce these

arc-length-based inputs {αs, βs, γs}. As the key idea, the virtual surface is a sur-

face sandwiched between sphere and plane by the kinematics (5.5) at the moving

frame
∑

f . From a physical point of view, deformation (curvature changes) of this

virtual surface is projected onto both sphere and plane trajectories [see Fig. B.2 ].

These changes in the curvature give us the ability to manipulate curve on the sphere

Lo like a flexible rope. Note that to bend this rope-like curve toward the desired

full-configuration, we will propose a tuning algorithm to update the variables of this

virtual surface in the incoming section.

The curvature manipulation by virtual surface is directly giving the arc-length

deviations at the three independent inputs {αs, βs, γs} [already proved in Appendix

B.2]. In our case, the proposed virtual surface has normal and geodesic curvature of

the sphere (sphere has zero geodesic torsion) and the geodesic torsion is in the shape

of the helicoid. Note that the independence of the arc-length inputs (5.5), let us

substitute curvature properties from different surfaces for each corresponding input.

To geometrically control the sphere trajectory, we alter the radius and projection

angles of the virtual surface through the developed desired curvature properties.

We here design the virtual surface for controlling the curve Lo on sphere manifold

UC when Ls is specified as a straight path. Before defining our geometric control based

on the virtual surface, the following proposition is expressed for the controllability of

the Darboux-based kinematic (5.12).

Proposition 5.3.1 All three arc-length-based control inputs, in particular γs and βs,

always do exists in (5.12). Otherwise, rank of Lie bracket n for drift system becomes

n < 5. This makes the kinematic model uncontrollable [see Appendix B.4].
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Figure 5.7: Design of the arc-length-based inputs by using desired virtual surface.
Note that schematic is drawn for uo = 0.

Definition 5.3.1 The curvature properties are designed with similarity to rotating

object (sphere) manifold UC for proper planning by virtual surface. However, the

moving object is a sphere with τ og = 0. This contradicts with Proposition 5.3.1

because βs = 0. As a solution, geodesic torsion of a helicoid shape is applied where

the geometric shape is like Fig. 5.6 (see Appendix B.5 for details of derivation)

τ vg =
1

R2
v

|R2
v cos2 vv(t)−R2

t |
1
2 , (5.19)

where Rv, Rt and vv(t) are defined by main spherical radius, sum of spherical and
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torsion radii and v-curve of helicoid surface, respectively. As a keynote, following

surface as Fig. 5.6 is able to transform from the sphere to the helicoid surface by

changing Rt. Next, we utilize Eq. (5.5) to construct the desired virtual surface [see

Fig. 5.7] with the normal and geodesic curvature of the spherical surface {kdn(s), kdg(s)}
in (5.2)-(5.3) and the geodesic torsion of the helicoid surface τ dg (s) (5.19) as follows

kdn(s) = 1/Rn = 1/Ro − γs,

kdg(s) = tan ζ/Rt = tan vo,f/Ro − αs,

τ dg (s) =
1

R2
o

∣∣R2
o cos2 v′o −R2

t

∣∣ 12 = βs. (5.20)

where Rt = Rn + Rg and v′o = vo,f − vo(t) are the total radius and the angle feed of

v-curve in which Rn and Rg are the desired normal curvature and geodesic torsion

radii. Also, we assume ζ is the desired stereographic projection angle for the spherical

object along kdge3 vector. By considering that the diameter of projected curve is same

[red and blue curves in Fig. 5.7], Rt tan ζ = Ro tan vo, ζ is determined

ζ = tan−1 [Ro tan (vo,f + ζ ′) /Rt] , (5.21)

where ζ ′ is the constant angle shift that will be used during planning updates. Also,

Rn and Rg are defined as

Rn(t) = Rg(t) = [Ri(t) +Ra] /2, (5.22)

where Ri and Ra are the built-in incircle radius of u-curve and tuning constants that

happens by algorithm, respectively. By using Fig. 5.8, built-in radius Ri is computed

with the change of the designed incircle radius as follows

Ri(t) =


[

(Si − ri)2(Si − li)
Si

] 1
2

, 0 ≤ u′o <
π

2

Ro

µr
+

[
(Si − ri)2(Si − li)

Si

] 1
2

,
π

2
≤ u′o ≤ π

(5.23)

where Si = (2ri + li)/2 is the area of encompassed triangle of the incricle, u′o =

uo,f −uo(t) is the convergence of u-curve, µr is the scaler to limit the maximum built-

in radius Ri, and also ri = Ro/ cosu′o and li = 2Ro tanu′o are adjacent and hypotenuse

sides of isosceles triangle [see Fig. 5.8].
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Figure 5.8: Ri determination by incircle of u′o.

Remark 5.3.1 The sphere curvature in Eq. (5.20) is included to cancel out the

existing sphere UC properties that drift terms is presenting in the kinematic model

(5.12). Thus, this design gives a direct manipulation of virtual surface curvatures

(s-domain) on Lo trajectory for Ψf .

Now, we can find the geometric control inputs from (5.20) in Definition 5.3.1 as

γs =
Rn −Ro

RnRo

,

βs =
1

R2
o

|R2
o cos2 v′o −R2

t |
1
2 ,

αs = tan vo,f/Ro − tan ζ/Rt. (5.24)

By substituting the desired final values, the curves of Lo are constrained on the

virtual surface with the projection on the rotating object, as the example of Fig.

5.7. This constrained curve is created from a conservative vector field in (5.24) where

independent inputs act as force fields F = ∇Ein(uo(t), vo(t), uo,f , vo,f ) = {αs, γs, βs}
to manipulate the moving frame Σf on UC manifold [114]. By using kinematic (5.5),

it is interpreted that the desired virtual surface bends this vector field towards the

desired local coordinate Ψf
2 . Note that our curve manipulation on the sphere

manifold UC can be imagined as a flexible rope with length of ||Pf − P0||2 that

2See the example result of the kinematic model with the designed geometric controller in Fig.
5.10.
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{Rn, Rg} and ζ terms change the curvature radius and angle of v-curve for the Lo on

the spherical surface UC .

We have to clarify, the proposed virtual surface is designed in a way that eases

our planning problem with spherical curvature properties kvn and kvg . However, more

complicated virtual surfaces with existing geodesic torsion τ vg can be applied to this

planning approach for creating different contact paths but it can complicate planning

problem, e.g., algorithm tuning, which requires a separate study.

5.4 Motion Planning Algorithm

5.4.1 Iterative Tuning Algorithm

We plan the rotating sphere with a straight curve Ls at the plane while the sphere

reaches to its given configuration. The flowchart in Fig. 5.9 shows our proposed search

algorithm that uses the control inputs (5.24) to do path planning. Geometrically, it

is looked as manipulating curvature radii {Rn, Rg} and angular location ζ ′ to bend

the created rope-like curve Lo from (5.24) on the sphere. For example, constant raise

in {Rn, Rg} expand the curve Lo like enlarging the loops of the rope while its length

is constant [see Fig. 5.10]. Also, constant changes on ζ ′ moves the Lo on the cutting

plane of uo,f . To do the convergence of this rope-like model, the proposed algorithm

is solving (5.12) and (5.24) in iterations with the re-tuned constants in {Rn, Rg} and

ζ ′.

To shift the curve of the sphere Lo by ζ ′(k) = ζq(k)+ζu(k) on the cutting plane uo,f ,

updates happen in Phase I and II by ζq and ζu, respectively. Also, constant change in

the desired radiusRa is defined by the inclusion of all phases asRa(k) = Rq(k)+Ru(k),

where Rq and Ru are tuning constants of radii in the steps of the Phase II. Our tuning

algorithm consists of three primary steps:

The first step as the Phase I is the main part of the algorithm where the kinematic

model (5.10)-(5.11) with designed arc-length-based inputs (5.24) is numerically solved

in time domain. After obtaining Lo and Ls curves, the Phase I checks whether there

is a point on Lo that passes the desired local coordinates on the sphere Ψf . If Lo

fails to reach Ψf , ζq is re-tuned and kinematic model is resolved numerically. After

succeeding the Phase I, the curve is checked whether the final point of local coordinate
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Figure 5.9: The flowchart of planning algorithm.

Ψl is at desired values of Ψf as Fig. 5.11. If the curve Lo fails from Ψl = Ψf , the

radius of virtual desired surface Rq is increased by obtained error. Also, Phase II

has a second extra step to reach the sphere final distance Pl to exact desired plane

configuration Pl = Pf by tuning Ru and ζu parameters. In the final step, the final

state as the desired spin angle ψf is checked. Note that this algorithm requires to

numerically solve differential equations in infinite k iterations till full convergence of
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Figure 5.10: Manipulation of the rope-like Lo curve with the designed virtual sur-
face.Note that following curves are obtained by using formulas in Phase I for ψq and
δ in Eq. (5.28) and (5.29).

the chosen configuration.

Phase I

This phase solves the kinematic model first. Then, it finds the curve Lo on the

rotating sphere that passes Ψf while the sphere moves toward the Pf .

At first, the kinematic model (5.10)-(5.11) has to be solved with θ, ϕ and δ terms

of the Darboux kinematics where we define their functions here. In the kinematic

model (5.10)-(5.11), rotational angles θ and ϕ are the main factors for rotating the

sphere in the desired direction Pf on plane via the designed Darboux frame. To

move in the direction of Pf with the straight trajectory on Ls, we find the θ from

Eq. (5.12). Derivation happens by the definition of the goal angle on plane Gf in

a small-time step dt from the Darboux-based kinematic model of the plane’s local

coordinate c(us, vs) as

Gf
∆
= tan−1

(
dvs
dus

)
= tan−1

(
sin(θ + ϕ)−Ro sin(θ + ϕ)γs −Ro cos(θ + ϕ)βs
sin(θ + ϕ)−Ro sin(θ + ϕ)γs +Ro sin(θ + ϕ)βs

)
,

after factoring the numerator and denominator by sin(θ+ϕ) and finding equation for

θ + ϕ, we have

θ + ϕ = cot−1
[ 1

βs

( 1

Ro

(1− tanGf ) + γs(−1 + tanGf )− βs tanGf

)]
. (5.25)



106

X

Z
Y

vouo

x

Yf

Yu
Yv

Yn

LO

Yl

 Cutting Plane

 of  vo, f

 Cutting Plane

 of  uo, f

Figure 5.11: Parametrization of the curve Lo by cutting planes of uo,f and vo,f .

Because θ is the angle between two surfaces eou−esu, we use (5.25) for this parameter

only. Thus, θ and ϕ angles becomes

θ(uo, vo, ψ) = cot−1
[ 1

βs

( 1

Ro

(1− tanGf ) + γs(−1 + tanGf )− βs tanGf

)]
− ψq,

(5.26)

ϕ(ψ) = η + ψq, (5.27)

where ψq is defined as the spinning angle deviation and η is

η =

 π, −3π
4
< Gf < 0 & 0 ≤ Gf <

π
4

0, −π < Gf < −3π
4

& − π ≤ Gf <
π
4

From now on, we define the goal angle by Gf = tan−1 [(vs,f − vs,0)/(us,f − us,0)];

hence, θ and ϕ will change relative to any values of arc-length inputs, for keeping

the sphere always along Gf angle to reach Pf . Therefore, the sphere stays in the

prescribed straight direction by substituting constant value to Gf from the desired

position on the plane Pf .

Developing a converging state for the spin angle is not a straightforward way.

It can make tracking unstable as the sphere may pass the same desired spin angle

many times during its rotation. Thus, we develop an indirect convergence by using

spinning angle deviation ψq to converge the desired spin angle ψf . During calculations
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of minimum distance d at (5.13), we assumed that under-cap area St of traversed

distance Lo is constant while C0 → C1. Thus, the desired under-cap area is defined

by St = S ′c +R2
o(ψf + ψu(k)− ψ′) (only orange and blue cap areas excluding dashed-

line part as Fig. 5.4), where ψu(k) is the constant re-tuning spin angle for Phase III.

Next, we extend the Gauss-Bonnet theorem between two points of {uo(t), vo(t), ψ(t)}
and {uo,f , vo,f , ψf} in time t, as

ψq(t) =
1

R2
o

[St − Si(t)] =
1

R2
o

[
St −R2

o (ψ(t)− ψ0)
]
, (5.28)

where Si(t) and ψ(t) are the changing cap area from the initial state till current time

t and the current spin angle.

As the last parameter in the kinematic model, the rolling rate (arc-length deriva-

tion relative to the time δ(t)) is the parameter that is multiplied to all three inputs

and drift term. This variable is related to the time (ds/dt) and it varies the arc-

length step of curve Lo and Ls in the given time t. Therefore, δ is defined to have a

rest-to-rest motion by

δ(t, uo, us, vs) = ||Pf −P(t)||2 ·
∣∣∣vo,f · u′o

T

∣∣∣
=
[
(us,f − us(t))2 + (vs,f − vs(t))2

] 1
2 ·
∣∣∣vo,f · u′o

T

∣∣∣, (5.29)

where T is the time scaling constant.

Algorithm 1 shows the computations of Phase I. By solving the Darboux-based

kinematic model, the geometric parameters [see Fig. 5.11] are determined from ob-

tained Lo and Ls. Ψl and Pl are the final arrived configuration by the numerical

solution. Also, Ψn, Ψu and Ψv are the nearest point on Lo to Ψf and existing near-

est points on Lo that are obtained by cutting planes of uo,f and vo,f on the sphere.

Note that all points are collected as the final existing values since there is possibility

that curve passes the nearest point or cutting planes more than once.

In the algorithm 1, εn is a small value for breaking while loop, when required

accuracy is achieved for Phase I. Additionally, error en is the euclidean distance of

nearest Ψn and desired Ψf points in R3

en = ||Ψn −Ψf ||3 = Ro

[
(sin vo,f − sin vo,n)2 + (cosuo,f cos vo,f − cosuo,n cos vo,n)2

+ (sinuo,f cos vo,f − sinuo,n cos vo,n)2
] 1

2 .

(5.30)
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Algorithm 1 Phase I

1: procedure ConfigSolve(Ψf ,Pf , ψf ,Ψ0,P0, ψ0)

2: while en ≥ εn do

3: Solve the kinematic model (5.12) numerically

4: Collect Ψn, Ψl, Ψv and Ψu

5: Compute en and e′n by (5.30) . Error of nearest point to Ψf

6: if en(k) > εn then

7: Apply the directional comparison by Ψn, Ψv and Ψu . Details in

Appendix B.6

8: Calculate ζq(k) by (5.31)

9: end if

10: end while

11: end procedure

Next, the absolute angle difference between Ψf and Ψn are utilized to update the

ζq(k) angle in k-th iteration of Phase I as follows

ζq(k) = ζq(k − 1)±

 e′n · |Qzx
f −Qzx

n |, Qzx
f = Qzx

n

e′n · |Q
zy
f −Qzy

n |, Qzx
f 6= Qzx

n

(5.31)

where e′n = min{en} is smallest error of en till iteration k and the angle differences

with respect to Z − X plane Qzx and Z − Y plane Qzy for either Ψf or Ψn are

obtained by Eq. (5.1) as

Qzx =

∣∣∣∣tan−1

(
sinuo cos vo
cosuo cos vo

)∣∣∣∣ = |uo|,

Qzy =

∣∣∣∣tan−1

(
sinuo cos vo

sin vo

)∣∣∣∣ . (5.32)

The sign of each update in (5.31) is chosen from the directional updates in Appendix

B.6. The goal of the directional update is to always move the curve Lo toward Ψf on

the spherical surface UC .

Phase II and III

After finding the suitable curve Lo from Phase I that passes Ψf , Phase II tunes

variable for converging Lo and Ls final arrived points (Ψl and Pl) to the desired
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Algorithm 2 Complete Computation

1: procedure ConfigCom(Ψf ,Pf , ψf ,Ψ0,P0, ψ0)

2: while es ≥ εs do . Phase III

3: while (en ≥ εn) & (er ≥ εr) & Pl 6= Pf do . Phase II

4: while er ≥ εr do . Phase II

5: CONFIGSOLVE(.) . Phase I

6: Compute er, e
′
r, ns and ds

7: if Ψl 6= Ψn then . update Rq

8: Rq(k)← +Rq(k − 1) according to (5.34)

9: else

10: Rq(k)← −Rq(k − 1) by ns ≤ 1 case according to (5.34)

11: end if

12: end while

13: if ||Pf −Pl||2 > εp then . Phase II

14: Update Ru and ζu

15: end if

16: end while

17: if ψl 6= ψf then . Phase III

18: Update ψu

19: end if

20: Reset en, e′n, er and e′r

21: end while

22: return Lo and Ls

23: end procedure

configurations on Ψf and Pf . Algorithm 2 depicts the overall computations, including

all the phases using the flowchart of Fig. 5.9.

In Phase II, the error er of final arrival point Ψl with respect to desire values of

Ψf is first determined by

er = ||Ψl −Ψf ||3 = Ro

[
(sin vo,f − sin vo,l)

2 + (cosuo,f cos vo,f − cosuo,l cos vo,l)
2

+ (sinuo,f cos vo,f − sinuo,l cos vo,l)
2
] 1

2 .

(5.33)
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Next, the update of Rq is to enlarge the loops of Lo for shorting the distance between

nearest Ψn and final arrived Ψl points; hence, the algorithm computes the Rq update

for k-th iteration by using the error er as

Rq(k) = Rq(k − 1) +Ro ·


ds · e′r, ns ≤ 1

ns · ds · e′r, 1 < ns ≤ 2

(ds · e′r) /ns, ns > 2

(5.34)

where e′r = min{er}, ds and ns are the smallest error of er till iteration k, distance

ratio of Ls for the loop on the curve Lo and the numbers of created full loops by

spinning ψ, respectively. The distance ratio ds and the number of created loops

ns ∈ R are calculated as follows

ds =
||Pn −Pf ||2
||P0 −Pf ||2

=

[
(us,n − us,f )2 + (vs,n − vs,f )2

(us,0 − us,f )2 + (vs,0 − vs,f )2

] 1
2

,

ns = |ψl/ψn|.
(5.35)

Note that ns is computed with the assumption that ψ value can be greater than 2π

which every 2π orientation represents a loop on spin angle [114].

As the final step of Phase II, because our arc-length-based inputs create curve

Lo with multiple loops (specially for d � ||Pf − P0||2), we use Ru and ζu variable

for shifting Lo away from Ψ0 on the surface of the sphere UC (can be looked as

decreasing the size of the enlarged Rq) with same expressed flexible rope model. This

computation step with updating ζu and Ru tries to reach Ψl → Pf as previous loops

try to keep Ψl = Ψf condition true,

Ru(k) = Ru(k − 1)−Rq(k) · ||Pl −Pf ||2
||Pl −P0||2

,

ζu(k) = ζu(k − 1) +

 − tan−1
(
Ru(k) tan ζq(k−1)

Ro

)
, for vo,f ≥ 0

tan−1
(
Ru(k) tan ζq(k−1)

Ro

)
, for vo,f < 0

(5.36)

Final phase is to update the tuning variable of the spinning angle ψu in Eq. (5.28)

with

ψu(k) = ψu(k − 1)− e′ssgn[ψf − ψl], (5.37)

where e′s = min{ψf − ψl} is the smallest error till iteration k. Also, εs, εr and εp are

the accuracies of each designated step in Algorithm 2.
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5.4.2 Global Convergence of Algorithm

To prove the convergence of proposed iterative Algorithm 2, the Zangwill’s conver-

gence theorem is utilized as [126]

Theorem 5.4.1 Let the iterative algorithm A : R5 → R3, showed in the flowchart

at Fig. 5.9, be on X = XI ◦ XII ◦ XIII compact set where XI , XII and XIII are

sets of phase I, II and phase III computation steps, respectively. Given x0 ∈ X, the

created sequence {xk}∞k=1 satisfies xk+1 ∈ A(xk). Then, A is globally convergent to a

solution Γ ⊂ X with following conditions

• ∃ a descent function z for Γ and A,

• The squence {xk}∞k=0 ⊂ S for S ⊂ X is a compact set,

• The mapping A is closed at all points of X/Γ.

Regarding the first condition in Theorem 5.4.1, the designed line search algorithm

A have descent function z = {Rq, ζq, Ru, ζu, ψu} which roughly can be presented as

z(x) = xk + hkdk (5.38)

where dk and hk = diag{h(1), h(2), h(3), h(4), h(5)} are the direction of iteration and

step size of iterations. Note that ζu is updated in the same way with others, only

because Ru changes the curve Lo, the new angular location shift happens by ζu. Next,

the given descent function z(x) has following properties: If x /∈ Γ and y ∈ X, z(y) < z(x),

If x ∈ Γ and y ∈ X, z(y) ≤ z(x),

hence, the first condition of Theorem 5.4.1 is satisfied. Next, A is on the compact

manifold of the sphere UC and the plane US so hk norms as the error e.g., er, Rn → R
become a compact set as well. This can be clearly extended for the second condition

about all produced sequences {xk}∞k=0 on X. Now, we provide a proposition to satisfy

final condition as

Proposition 5.4.1 Let f be a real continues function on X. Then, Algorithm A

with solution set Γ of

Γ(x,d) = {y ∈ Rn | y = x + hd, h > 0, and f(y) = min f(x + hd)}
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Figure 5.12: Simulation results of proposed approach for a case study with
{us,f , vs,f , uo,f , vo,f , ψf} = {3, 3.2,−π

2
− 0.8, 0.8, 0.8} final configuration.

is closed at any point (x,d) at which always d 6= 0.

Check Appendix B.7 for the proof of given proposition. By satisfying all the three

conditions in Theorem 5.4.1, the proposed line search algorithm is always convergent

to a solution for the desired configuration.

5.5 Results and Discussion

The operation and performance of the proposed planning approach are tested under

different simulations. At first, we check how algorithmic phases work to achieve a

successful convergence. Next, we study the simulation results for different desired

spin angles while the rest of the configuration is the same.

The planning method in Fig. 5.9 is analyzed for an example configuration. The
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Figure 5.13: Collected iterations of the given final configuration: 1. The first solution
of system (k = 0), 2. The first successful results of Phase I, 3. Converging Phase II,
4. The first results before applying Phase III.
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Matlab is used to run this algorithm by utilizing ODE45. The kinematic model

(5.10)-(5.11) is solved together with (5.24), (5.27) and (5.29). The numerical solutions

happen with 0.0001 and 0.001 relative and absolute errors. The specifications of the

calculating computer are 2.8 GHz Intel(R) Core i7 with maximum possible memory

of 7.2 GB. We set the initial and final configurations as {us,0, vs,0, uo,0, vo,0, ψ0} =

{0, 0, 0, 0, 0} and {us,f , vs,f , uo,f , vo,f , ψf} = {3, 3.2,−π
2
− 0.8, 0.8, 0.8}. Note that our

plane’s final configuration satisfies the minimum distance constraint (5.13) where d

for our case is 2.15 ≤ ||Pf − P0||2, and to see curve with multiple loops, we have

||Pf −P0||2 = 4.38 m. For this case, the simulation time is set to tf = 15 s and time

constant T in (5.29) is 1. The accuracy of phases in Algorithm 2 are εn = εr = 0.07,

εp = 0.12 and εs = 0.05. As expressed in the controllability analysis at Appendix

B.4, there is a uncontrollable point at π/4. For this case, we chose it away from point

with Gf = 0.754 rad to see our approach abilities. The initial value of Rq is 0.005 to

prevent any computation singularities. Also, we set the sphere radius and maximum

divider as Ro = 0.5 m and µr = 4.

After running the simulation, the final results are shown as Fig. 5.12. The calcu-

lation steps k for this case is achieved with 48 iterations. The computation process

takes about 7.2 s. By the achieved successful final iteration, we can interpret that

while the sphere is rolling along the given desired final position Pf , it spins with

smooth trajectories toward its final configuration for {Ψf , ψf}.

To understand better how the algorithm works by utilizing the derived virtual

surface, we plot four collected iteration steps [see Fig. 5.13]. From the initial iteration

(k = 0), it is clear that Lo moves by virtual surface toward desired Ψf but because

Pf is far, Lo curve moves along the uo,f cutting plane. A rope on a sphere explains

the way that the achieved curve Lo on UC can be imagined. So, algorithm tunes the

virtual surface and this bends the obtained curve Lo in loops, like a rope, toward

the desired Ψf . Here, Phase I rises the Lo to move Ψn near to Ψf as the result of

succeeded iteration k = 11. To move Ψl on Ψf , Phase II enlarges the radius of the

rope-like curve Lo, as the example iteration k = 14 shows. The iteration k = 41

in Fig. 5.13 satisfies Ψl = Ψf condition while the next step is tuning the plain

configuration to achieve Pl = Pf using Eq. (5.36). Finally, the Phase III condition

is satisfied by the desired ψf value; the algorithm gives the results of Fig. 5.12.
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Figure 5.14: Angular velocities of the sphere with the designed arc-length-based based
controller.

The angular velocities of the sphere collected by search algorithm are presented in

Fig. 5.14 but there are certain fast accelerations in the angular velocities. Note that

the problem is considered in kinematics level without any slipping; Hence, arriving

longer distances in a short amount of time results in faster velocities. However, we

can use the aforementioned advantage in the derived kinematic model (5.12) where

the time domain is separated from the kinematics by the rolling rate δ. Thus, We

alter the sphere angular velocities in two cases:

In the initial case, to decrease the overall velocity, the time span can be enlarged

without affecting the achieved paths Lo and Ls. For the considered example, we

increase the time scaling constant T (it is at δ in Eq. (5.29) ) and simulation time tf to

160 s while the kinematic model is solved with the succeeded parameters in ζ ′ and Rq+

Ru from the algorithm. Clearly, the overall velocities decreased by expanding them

in time as Fig. 5.15-b (dashed line velocities). However, there are fast accelerations

(around 3 s and 21 s ) that makes it harder to be applied practically. To solve this

issue, we keep the simulation time tf same as 160 s but a smooth function is chosen

for T as the second case study. With the known relation of ωoz = δk∗g
∆
= δαs from

(5.10) and (5.29), we define T as

T
∆
= (c · ωs)/αs, (5.39)

where c = |vo,f · u′o| · ||Pf −P(t)||2 and ωs is the desired smooth angular velocity. The
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Figure 5.15: a) The designed function ωs in time, b) Smoothed angular velocities of
the sphere in two different cases of time scaling T .

desired smooth velocity ωs is created with a symmetric time function as

ωs = a

(
−140

T 7
s

t7 +
420

T 6
s

t6 − 420

T 5
s

t5 +
140

T 4
s

t4
)
, (5.40)

where a = 12.91 and Ts = 160 are the time constant and the amplitude. Fig.

5.15-a shows the rest-to-rest function behavior of Eq. (5.40). After running the same

simulation with our defined T , we get the results in Fig. 5.15-b (solid lines velocities).

It is clear that the second case has smooth angular velocities which are practical

without large accelerations at the same time span of tf . The angular displacement

in Fig. 5.16 also demonstrate how the desired angles of the sphere get expanded

with the same convergence trend (Lo trajectory is the same as Fig. 5.12 ). Note

that more complex functions can be defined for T to have different angular velocities

convergences without effecting the trajectories of Lo and Ls.

Next, we analyze the patterns of the created curves Lo for different desired spin

angles with the same final configuration. In here, the final configuration is considered

{us,f , vs,f , uo,f , vo,f} = {3, 3.2, 0.6, 0.7} besides ψf = {−1.7, 1.3, 2.3}. To have these
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Figure 5.16: Comparing angular convergence of Ψf at two cases.

different curves approximately on same configuration, the εn and εr accuracies are

chosen {0.045, 0.05}, {0.048, 0.034} and {0.048, 0.05} for ψf = {−1.7, 1.3, 2.3} cases,

in the given order. Also, simulation time is set for tf = 20 s with T = 1. Note that

the rest of the initial conditions are the same as the previous case study.

Our planning approach gives the following results in Fig. 5.17 with the chosen final

configuration. The algorithm converges successfully to desired states with different

trajectories. The average process time for these simulations was about 40 s. Note that

the rise in the average process time is due to exceptional computation for ψf = −1.7

rad. This happens depending on the accuracy and how near the desired Ψf angles

are to Ψ0 which causes larger iterations (110 s process time).

Also, for the case of ψf = −1.7 rad, the curve creates multiple loops to reach

the desired goal. As mentioned before, the reason is that some spin angles are not

easy to be converged by the designed approach. To achieve it, we had to change the

region of attraction for the desired configuration. This happens by adding +π
2

to v-

curve for the αs(vo,f + π
2
) arc-length-based input for this configuration. On the other

hand, this becomes a power of our algorithm. Because we have already guarantied the

convergence of the desired goal by the Theorem 5.4.1, we can have regional shifts in the

vo,f and uo,f . Note that this can be the interesting property of proposed algorithm
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Figure 5.17: The simulation results for having different final spin angles ψf =
{−1.7, 1.3, 2.3}.

since multiple solutions would be achievable for the same configuration that with

changing the time constant T and region of attraction on u- and v-curves happen;

Hence, configuring the same states with different trajectories would be achievable

which itself requires a separate study. Also, choosing the accuracy of the algorithm

as well as the final local configuration on the sphere Ψf mainly decides how minimum

k iterations can be.



Chapter 6

Conclusion

6.1 Summary of Dissertation

The summary of this study is as follows:

In Chapter 1, an introduction was provided about the underactuated systems. We

began by explaining different under- and fully-actuation principles in spherical robots.

Next, the literature of different control methods for the underactuated systems was

covered with a main focus on the inertial-coupling problem. Finally, the path planning

problem for a spin-rolling sphere on a plane was discussed in previous studies and we

compared it to the pure-rolling ball-plate system.

In Chapter 2, we proposed a novel actuation mechanism for rolling robots. The

robot motion is produced through rotating spherical masses (cores) inside circular

pipes. To provide the push force for the rotating cores, a fluid-actuated mechanism

is utilized. The overall dynamical model of the underactuated rolling robot was

developed. Then, analytical studies took place for understanding the performance

and motion behavior of this robot. Also, there were detailed studies on proper mass-

ratio (core-sphere) design and the cost-of-transport (COT) for this system. Finally,

we developed a feed-forward control strategy based on inverse dynamics. It was

presented that the planar motion of the robot can be controlled to desired states.

The reason for proposing the fluid-actuated rolling robot is to overcome certain

disadvantages that exist in previously proposed actuation principles. The main ad-

vantage of the proposed actuation scheme is that the driving unit does not occupy

the whole space within the spherical shell in contrary to, for example, the pendu-

lum actuated robots [68, 71] or wheel-actuated robots (torque-reaction-based princi-

ple) [2, 21, 31, 46, 121]. Therefore, extra tools and sensors can be placed within the

shell. In addition, the proposed actuator can accelerate/decelerate with nearly zero-

backlash and minimal load inertia of the connected motor because the fluid works as

a mediator between the driver (linear actuator) and the core in our mechanism. This

119
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Figure 6.1: The limitations of the some well-known driving mechanisms for the rolling
robots [5].

is challenging for mechanisms that the motors are directly connected to the payload.

Additionally, the robot features a smooth and safe motion due to the circulation of

the fluid.

Fig. 6.1 depicts a graphical presentation for the related limitation in different

driving mechanisms that is preventable in our proposed robot. Based on the structure

of the proposed robot, the number of pipes (they include the core) can be increased

without affecting the internal workspace. This would increase the DoF of the rolling

robot based the requirement. This property was one of the challenges in torque-

reaction-based mechanisms [2,5,21,31,121]. Also, the proposed robot is able to bring

its center of mass to upper-hemisphere which is not applicable for previous pendulum-

based models [68,71]. Moreover, recent researches by NASA/JPL [9] on rolling robots

with a mass-imbalance mechanism showed that they can use the actuation mechanism

to restore the power in batteries while the sphere freely moves by the wind where the

mounted masses generate electricity. This can be applicable to our mechanism with

the proper design since it has spherical masses (cores) which can rotate and push

the fluid back to the cylinder to generate the electricity for re-storing the batteries.

However, as depicted in Cost-of-Transport studies, the fluid-actuated robot would not

be power efficient in very high velocities because of existing drag (energy loss is the

power of three of the fluid velocity) between spherical masses (cores) and circulating

fluid.
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In Chapter 3, we designed a Kalman-based compensatory filter for motion track-

ing of the rotating core of our proposed spherical robot. This problem requires a

proper sensor fusion of the inertial measurement unit (accelerometer, gyroscope and

magnetometer sensors) to do motion tracking with a minimum angular error. Not

only the located permanent magnets had serious biases on a certain axis of the mag-

netometer but also there was a magnetic distortion due to the soft ferromagnetic

material i.e., steel. After defining each measured signal of the inertial/magnetic sen-

sors, the process and measurement models were described for the Kalman filter. Next,

the proposed filter experimented on a setup about its performance in comparison to

the well-known QUEST filter. This proposed filter application can be extended to

different motion tracking applications in actuators of the robots with magnetic parts

and the environment under magnetic distortions. Finally, we raised a question about

whether attaching permanent magnets to inertial measurement sensors as a magnetic

shield improves the motion tracking of the mechanisms and robots.

The tracking sensor that is developed for rolling robot apart from its general new

findings can help in developing better motion control strategies for our rolling robot.

For example, because we now can know the location of the rotating mass (core) and

can determine the amount of fluid volume that is injected to the pipe, we can propose

a feedback control strategies e.g., Hybrid control to manipulate robot properly. Also,

the disturbances on the spherical robot can be minimized with a feedback controller

which was not considered in our previous study in Chapter 2.

In Chapter 4, the inertial-coupling problem of underactuated systems was taken

into consideration. This coupling creates configuration and geometric parameter lim-

itations with the following ”Strong Inertial Coupling” condition [97] which makes it

harder to apply control strategies that require the inverse of the inertial matrices. At

first, the singular-free model was derived by the applied small-amplitude sine wave

on the trajectory of rotational mass. The nonlinear dynamics of the mass-rotating

rolling sphere was derived. Before obtaining a singular-free model from the positive

definiteness of inertial matrices, the singular configurations were presented in classical

systems i.e., mass-point and pendulum-actuated rolling robots. Then, the modified

model was clarified in simulation and we compared our proposed model to the clas-

sical pendulum-actuated rolling system about differences. We extended the method
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to multi-DoF underactuated manipulators with more than one passive joints. We

illustrated how conventional models faced with serious inertial-coupling singularities

which prevented proper controller design by using the inverse of inertial matrices.

Finally, we presented the singular-free model for the 4-DoF underactuated manipu-

lators (two passive and two active joints). Also, analytically the simulation behavior

of the singular-free condition and model at singular configuration were discussed and

evaluated.

In Chapter 5, we presented a new approach for path planning of the spin-rolling

sphere on a straight plane trajectory. The planning was mainly constructed by the

introduced geometric control. In the beginning, the kinematic model of the moving

frame was derived from the contact point of the sphere and plane. Next, a virtual

surface was designed to produce arc-length-based control inputs. The problem is

imagined as manipulating a flexible rope-like curve on the sphere with a constant

length. Thus, we proposed an iterative algorithm to tune the traversed curve toward

desired configurations. The achieved simulations clarified the performance of the

proposed planning approach.

The proposed path planning method was at a kinematic level for a generalized

problem statement. In order to implement the path planning for a particular mecha-

nism such as our proposed rolling robot different strategies, including the mechanisms

that can realize spin-rolling motion, can be followed. As the first way, the desirable

paths for both sphere and plane can be obtained off-line and because we know the

angular velocities as well, a trajectory tracking controller can be used with integrated

nonlinear dynamics of the fluid-actuated rolling robot. Another alternative solution

can be a semi on-line path planning. Our off-line search algorithm only tunes the

geometric controller’s constants, this means after obtaining the suitable constants for

the geometric controller, the geometric controller together with the Darboux-frame-

based kinematics can be solved on-line. Thus, a feedback controller can be developed

that based on the rotating object’s current states (here is our spherical robot) and

effecting external perturbations, the controller re-tune the geometric controller from

new state values with existing planned paths. Note that the angular velocities can

be changed without affecting the desired paths as shown in our studies.
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6.2 Future Works

In this dissertation, we shed light on some of the well-known problems in underactu-

ated systems. The existing challenges and possible future works are depicted for each

topic as follows

6.2.1 Fluid-Actuated Spherical Robot

In this dissertation, we proposed a novel fluid-actuated mechanism for rolling systems

in Chapter 2. We were able to show that this rolling robot has interesting advantages

in contrast to other propulsion mechanisms. We also solved sensory problem to track

the rotating core inside pipes in Chapter 3.

While the simulations demonstrate the feasibility of the proposed actuation sys-

tem, several issues need to be addressed and tested under experiments in future

research. These include the unmodeled gap between the cores and the pipes (the

diameter of the cores and the pipes were assumed equal in our model) and the ef-

fect of possible leakage that would cause deviation of the fluid and cores’ velocities.

The relative rotation of the cores with respect to their centers of masses may also

contribute to the unmodeled dynamics which corresponds to torque-reaction-based

actuation principle.

In future, we plan to develop a proper nonlinear controller with sensor feed from

the core position for the driving mechanisms of the robot. We think we will be able

to verify our driving mechanism performance experimentally.

6.2.2 Underactuated Systems without Inertial-Coupling Singularities

Our proposed solution for avoiding singularities covered in Chapter 4 that did not

contain a complex algorithm and multiple space transformations. This solution re-

solved the limitations of the physical mechanism design and reachable configuration

due to the inertial coupling in the underactuated systems. One challenging problem

related to this method was the dependency of wave parameters, in particular the am-

plitude, to the geometric parameters and considered the region of the workspace by

links in planar manipulators. Thus, there are possible cases that wave motion must

be realized by mechanisms when the amplitude of a wave is not extremely smaller
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than the link length. A similar issue is relevant to the rolling robots. This realization

can be done with the example mechanisms mentioned in the dissertation or other

alternative propulsion mechanisms. Also, this model can facilitate various advanced

feedback control strategies.

Future researches can take place to find out how we can make the wave combina-

tions virtually in a way that there wouldn’t be any necessity for realizing mechanisms

physically in certain geometric values. Moreover, the constrained waves on the rota-

tional trajectory of active joints (mass-points with direct control) can be researched

in the different phase-shifted combinations where the final model did not have any

physical implications for the real system. This will require an in-depth study on the

Lagrangian functions to minimize the deviation in the energy formula before deriving

the motion equations with combined waves.

6.2.3 Darboux-frame-based Parametrization and Planning Challenges

The developed path planning method for spin-rolling sphere on plane in Chapter 5

with the achieved smooth nontrivial trajectories looks promising in practical appli-

cations. Also, this method can open a new topic in control studies due to the newly

introduced geometric-based controller. For instance, changing the topology of the

virtual surface can create different trajectories in converging desired states. Also,

the planning problem becomes easier to be solved because this time- and coordinate-

invariant method is utilizing the curvature of surfaces. Furthermore, the derived

general Darboux frame is possible to be applied for more complex manifolds rather

than a plane surface. While the algorithm process time is fast enough for practical im-

plementations, there is a way to change the achieved angular velocities of the rotating

body in any desired convergence rate. The reason is that the algorithm tunes param-

eters of designed geometric inputs with constant values. However, on-line algorithms

applied in Refs. [37,93,106] have an advantage since they their real-time computation

is fast. Furthermore, some control strategies can deal with perturbations [37, 78, 84]

which is not applicable for our method due to the existing off-line search algorithm

that tunes the geometric controller.

After a detailed study of an on-line control method for this new kinematic sys-

tem, the applications can be extended to advance studies in dexterous manipulations.
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Figure 6.2: Manipulation with agile fingertips.

Recently, agile grasping with the aim for more advanced manipulation through finger-

tips is starting to get more attention [125]. Because the Darboux-frame-based model

gives a transformation that lets us arbitrarily change the spin-rolling sphere in an

arbitrary direction on a fixed surface (can be the manipulated objects), we can create

a feedback loop to track spin-rolling fingertip in real-time. We plan to study a 3 Dofs

fingertips where it is attached to a flexible finger as Fig. 6.2. Because we are able to

extend the Darboux-frame-based kinematics with this new mechanism to arbitrary

surfaces, the manipulation of smooth non-uniform objects can be the next objective

of future researches.
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Appendix A

Singularity-Free Model Derivations

A.1 Planar n-DoF Underactuated Manipulators

This and incoming sections study the underactuated manipulators regarding singu-

larities in their inverse dynamics and we apply our approach for it. Note that for

the sake of simplicity the notation of this section is different from the previous study,

rolling systems.

The general motion equations for an underactuated manipulator with n number

of links that has an equal n/2 numbers of passive and active rotating joints with their

rotational angles of q = [qp,qa]
T is

M(q)q̈ + h(q, q̇) = u, (A.1)

where the inertia matrix M(q), the velocity dependencies and gravity terms h(q, q̇)

and the control inputs u are defined by

M(q) =

[
Mpp Mpa

Map Maa

]
,h(q, q̇) =

[
hp ha

]T
,u =

[
0n×1 τa

]T
.

Definition A.1.1 The inverse dynamics can be presented from the constraint equa-

tions in (A.1) by

q̈a = −M−1
pa

[
Mppq̈p + hp

]
. (A.2)

In this motion planning problem, the specified states of n/2 number of the passive

joints {qp(t),q̇p(t),q̈p(t)} are the inputs to converge the system toward its desired

states {qf,p,q̇f,p,q̈f,p}. The output torques τa(t,qp, q̇p, q̈p) on n/2 number of the

active joints are coming from (A.1) that is as follows

τa = Mapq̈p + Maaq̈a + ha. (A.3)
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Also, the first and second integrations of differential constraint equations (A.2) give

the states of the active joints {q̇a(t),qa(t)}.

We can understand that the inertia matrix M−1
pa Mpp of the constraint equation

(A.2) should be non-singular plus satisfying the positive definiteness of M. Neverthe-

less, the previous studies proved that this may not be true for all the geometric pa-

rameters and configurations due to the inertial coupling of the passive joints [97,113].

By a simple operation, the sub-matrix of inertia becomes (M∗
paMpp)/|Mpa| > 0 where

M∗
pa and |Mpa| present the adjoint matrix and determinant of the matrix Mpa. Thus,

we can conclude that if |Mpa| > 0, the singularity-free condition of inverse dynamics

(A.2)-(A.3) are satisfied. Please note that because q̈a also appears in (A.3), failing

the |Mpa| > 0 condition due to singularities will result the torque of active joints

(τa →∞) to converge infinity as well as active joint states {q̈a, q̇a, qa}. The inertial

coupling is the main reason that makes inverse of inertia matrices practically limited

and hard to be applied.

A.2 Wave on the Trajectory of the Rotational Joints

A.2.1 Kinematics of Small-Amplitude Wave

The kinematics and properties of a proposed combined small-amplitude wave on the

active joints are introduced here. The main objective of this combined-wave is to

design its parameters to avoid the singularities due to inertial coupling as studied for

rolling systems.

First, we assume a single sine wave trajectory on the rotational mass [see Fig A.1

as example]. Here, x0y0z0 shows the reference frame. The k-th link has the frame

connected to the center of joint as xkykzk, which rotates with the respect to reference

frame x0y0z0. The position vector of the link that rotates with angle q around a

small-amplitude sinusoidal curve on the circle with a link radius of l is defined similar

to Eq. (4.1) [113]

D = − (l + a sin (nq + ε)) [cos qk + sin qj] , (A.4)

where a, n and ε are the amplitude of sinusoidal wave, the frequency of created

periodic wave on the circle of the link radius l and constant phase shift of the curve,
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Figure A.1: General model of the underactuated manipulator. Note that the orange
trajectory presents the combined wave trajectory.

respectively. In the conventional manipulators with circular trajectory, Eq. (A.4)

transforms to Eq. (4.2) where a, n and ε are zero in (A.4) that gives a circular

rotation with radius l for the rotational links. Next, we can extend equation (A.4)

for the position vector of k-th link in multi-joint manipulators as follows

Dk =
k∑
i=1

− (li + ai sin (niqi + εi)) [cos qik + sin qij] . (A.5)

Similarly, it is aimed to design ni, ai and εi depending on the obtained relations

from the inertia matrix to removes the inertial coupling singularity1 while rotating

link follows around wavy circle. Also, the deviation of trajectory Dk with respect to

constant link length lk can be found for each link k with the combined wave as

∆Dk =‖ Dk ‖ − ‖ Dk−1 ‖ −lk = ak sin(nkqk + εk), (A.6)

where ‖ · ‖ stands for the module of the variable.

The maximum value for this deviation ∆Dk will be the amplitude of wave ak,

which we assume in our study that ak � lk. If the property (ak � lk) is satisfied,

the effect of the included sine wave can be ignored in dynamic models and there is

1Please check the Proposition A.4.1 for the details of parameter design.
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Figure A.2: Example mechanism realizations for the wavy displacements of the joints
in the cases that ak ≤ lk, a) The trajectory realization with passive mechanical slot.
b) The trajectory realization by linear actuator.

no need to realize it mechanically. For the cases that geometric parameters especially

ak be ak ≤ lk, then, the wave motion can be realized in driving mechanisms of

manipulators as the given examples in Fig. A.2. We will show how robot geometry

choice and inertial coupling changes the ak be ak ≤ lk choices. In order to realize

this wave, a passive flywheel slot as Fig. A.2-a can be placed to follow the derived

sine wave trajectory. Also, the flywheel slot and wave path can be replaced with

eccentric interacting gears to realize the motion. As a second alternative, a prismatic

(telescope) joint can move the rest of the body periodically [see Fig. A.2-b] at the

end of the lead in the manipulator. This method of actuation is also studied for time-

varying inertia pendulum mechanisms [16,29,45,100]. Please note that we chose the

proposed first passive slot mechanism in this study [see Fig. A.2-a], if a � l is not

satisfied. However, for the case of linear actuator mechanism, the actuator model can

be solved together with our rigid body model where variables will become {ak, ȧk}.
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Note that the rigid-body model will be the same since the mass of the linear actuator

will be on the previous link and there is no need for extra mass definition as Fig.

A.2-b.

The linear and angular velocities of k-th link with using (A.5) become

Vk =
k∑
i=1

q̇i
[
− aini cos

(
niqi + εi

)
cos qi + (li + ai sin (niqi + εi)) sin qi

]
k

− q̇i
[
aini cos (niqi + εi) sin qi + (li + ai sin (niqi + εi)) cos qi

]
j,

ωk =
k∑
i=1

q̇ii. (A.7)

A.2.2 Lagrangian Dynamics of the Manipulator

This section is dedicated to derive the general motion equation of n number of links

with the included combined-wave kinematics in every joint. The model is found by

using the Lagrangian equations.

We consider each link has its center of mass located at end of the k-th link with

mass of mk as Fig. A.1. Also, each link has its own inertia tensor Ik with respect to

its coordinate frame. Note that these links are free to have full rotations as rotating-

mass system, e.g., pendulums. Then, the Lagrangian function of this manipulator,

including kinetic and potential energies, is described as follows

L =
1

2

n∑
k=1

mk ‖ Vk ‖2 +
1

2

n∑
k=1

Ik ‖ ωk ‖2 −
n∑
k=1

mkgyk, (A.8)

where Dk = xkj+ykk and g is the acceleration of gravity. After substituting Eq. (A.5)

and Eq. (A.7) from defined kinematics, the Lagrangian function (A.8) is simplified
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to following form

L =
1

2

n∑
k=1

mk

[ k∑
i=1

q̇2
i

[
a2
in

2
i cos2(niqi + εi) + (li + ai sin(niqi + εi))

2
]

+ 2
k−1∑
i=1

q̇iq̇k
[
(li + +ai sin(niqi + εi))(lk + ak sin(nkqk + εk)) cos(qi − qk)

+ ainiaknk cos(niqi + εi) cos(nkqk + εk) cos(qi − qk)

+ aini(lk + ak sin(nkqk + εk)) cos(niqi + εi) sin(qi − qk)

+ aknk(li + ai sin(niqi + εi)) cos(nkqk + εk) sin(qk − qi)
]]

+
1

2

n∑
k=1

Ik

(
k∑
i=1

q̇k

)2

+
n∑
k=1

k∑
i=1

mkg (li + ai sin (niqi + εi)) cos qi.

(A.9)

Note that a0, n0 and q0 are set zero. Next, we utilize following Lagrangian equation

for every k-th joint

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= τk, (A.10)

The derived motion equation has its general inertia matrix M∗ and velocity depen-

dency and gravity matrix h∗ in the following form

M∗ =


M11 M12 · · · M1n

M21 M22 · · · M2n

...
. . .

...

Mn1 Mn2 · · · Mnn

 ,h∗ =
[
h1 h2 . . . hn

]T
,

u =
[
τ1 τ2 . . . τn

]T
. (A.11)

where terms of the matrices are as follows

M11 = (m1 + · · ·+mn)µa,1 + I1 + · · ·+ In,

M12 = (m2 + · · ·+mn)µb,12 + I2 + · · ·+ In,M1n = mnµb,1n + In,

Mn1 = mnµb,n1 + In,Mn2 = mnµb,n2 + In, Mnn = mnµa,n + In,

h1 = (m1 + · · ·+mn)µc,1q̇
2
1 + (m2 + · · ·+mn)µd,12q̇

2
2 + · · ·+mnµd,1nq̇

2
n,

h2 = (m2 + · · ·+mn)µd,12q̇
2
1 + (m2 + · · ·+mn)µc,2q̇

2
2 · · ·+ (m2 + · · ·+mn)µd,n2q̇

2
n,

hn = mnµd,1nq̇
2
1 +mnµd,2nq̇

2
2 + ...+mnµc,nq̇

2
n,

(A.12)
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while,

µa,s =
[
a2
sn

2
s cos2(nsqs + εs) + (ls + as sin(nsqs + εs))

2
]
,

µb,ss′ = [(ls + as sin(nsqs + εs))(ls′ + as′ sin(ns′qs′ + εs′)) cos(qs − qs′)

+ asns(ls′ + as′ sin(ns′qs′ + εs′)) cos(nsqs + εs) sin(qs − qs′)

+ as′ns′(ls + as sin(nsqs + εs)) cos(ns′qs′ + εs′) sin(qs′ − qs)

+ asnsas′ns′ cos(nsqs + εs) cos(ns′qs′ + εs′) cos(qs − qs′)],

µc,s = asns cos(nsqs + εs)(ls + as sin(nsqs + εs))− a2
sn

3
s sin(nsqs + εs) cos(nsqs + εs),

µd,ss′ = 2as′ns′ cos(ns′qs′ + εs′)(ls + as sin(nsqs + εs)) cos(qs − qs′)

+ 2asnsas′ns′ cos(nsqs + εs) cos(ns′qs′ + εs′) sin(qs − qs′)

+ (ls + as sin(nsqs + εs))(ls′ + as′ sin(ns′qs′ + εs′)) sin(qs − qs′)

− asnsas′n
2
s′ sin(ns′qs′ + εs′) cos(nsqs + εs) cos(qs − qs′)

− asns(ls′ + as′ sin(ns′qs′ + εs′)) cos(nsqs + εs) cos(qs − qs′)

− as′n
2
s′(ls + as sin(nsqs + εs)) sin(ns′qs′ + εs′) sin(qs′ − qs).

The following general motion equation is derived with including every joint with

combined wave kinematics. One can find the motion equation for different passive

and active joints with their combined waves. Also, by equaling the {ak, nk, εk} to

zero results in the joint k to be the conventional circular trajectory.

A.3 The Dynamic Model of 4-DoFs Underactuated Manipulator

We study the singularity problems due to the inertial-coupling in a conventional

underactuated manipulator. A 4-DOFs manipulator with two passive and two active

joints is considered as Fig. A.3. To our best knowledge, there has not been any study

on double passive joints because the coupling problem becomes more challenging to

tackle with [4,18]. This 4-DoFs underactuated model can be looked, for an example,

as the model of the human body [17] where the head, body, leg and feet are the

consisting bodies of each links.

We choose our combined wave kinematics to be on the active joints, the second

and fourth joints k = {2, 4}. The variables of first and third joints as the passive
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Figure A.3: 4-DoFs underactuated manipulator.

joints are set a1 = a3 = 0, n1 = n3 = 0 and ε1 = ε3 = 0 with circular trajectory

in motion equation. In Appendix A.5, we have summarized the terms of the motion

equation for this 4-DoF manipulator. Now, the derived matrices in (A.29) should be

re-ordered based on the passive and active joints as (A.1) to obtain the inverse of

motion equations, which are

Mpp =

[
M11 M13

M31 M33

]
,Mpa =

[
M12 M14

M32 M34

]
,Map =

[
M21 M23

M41 M43

]
,

Maa =

[
M22 M24

M42 M44

]
,u =

[
0 0 τ2 τ4

]T
.

(A.13)

We first demonstrate the inertial coupling in the conventional model without the

combined wave trajectory (A.5) (a1, · · · , ak = 0, n1, · · · , nk = 0). The configuration

singularities with relation to geometric parameters (lk, mk, Ik) based on |Mpa|>0

inertial coupling condition from (A.13) and (A.31) is

|Mpa| = M12M34 −M14M32 = I2I4 + (I2 + I3 + I4)m4l3l4 cos(q4 − q3)

+ I4l2
[
(m2 +m3 +m4)l1 cos(q2 − q1)− (m3 +m4)l3 cos(q2 − q3)

]
− (I3 + I4)m4l1l4 cos(q4 − q1) +m4l1l2l3l4

[
(m2 +m3 +m4) cos(q2 − q1) cos(q4 − q3)

− (m3 +m4) cos(q4 − q1) cos(q2 − q3)
]
> 0 (A.14)

In order to find the constraint that comes from inertial coupling, we can ana-

lytically check the inequalities (A.14) as Table A.1 for different minimum values of
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Table A.1: Singular configurations that have be satisfied due to the inertial coupling
[97].

q2 − q1 q4 − q3 q4 − q1 q2 − q3 |Mpa|
(2k + 1)π (2k+1)

2 π − (2k+1)
2 π 2kπ I2I4 − I4l2

[
(m3 +m4)l3

+(m2 +m3 +m4)l1
]

(2k+1)
2 π − (2k+1)

2 π 2kπ 2kπ I2I4 − I4l2l3(m3 +m4)
−(I3 + I4)m4l1l4 −m4l1l2l3l4(m3 +m4)

(2k + 1)π (2k + 1)π 2kπ 2kπ I2I4 − (I2 + I3 + I4)m4l3l4
−(I3 + I4)m4l1l4

−I4l2
[
(m2 +m3 +m4)l1 + (m3 +m4)l3

]
+m2m4l1l2l3l4

(2k + 1)π 2kπ (2k + 1)π 2kπ I2I4 + (I2 + I3 + I4)m4l3l4
+(I3 + I4)m4l1l4

−I4l2
[
(m2 +m3 +m4)l1 + (m3 +m4)l3

]
−m2m4l1l2l3l4

2kπ (2k + 1)π 2kπ (2k + 1)π I2I4 − (I2 + I3 + I4)m4l3l4
−(I3 + I4)m4l1l4

+I4l2
[
(m2 +m3 +m4)l1 + (m3 +m4)l3

]
−m2m4l1l2l3l4

inertial term |Mpa| on the joint angles qk. To have a singular-free model, the following

conditions as the strong inertial coupling [97] should be satisfied with always values

greater than zero. These conditions create a great level of limitations in the con-

figuration and geometric parameters. For instance, simpler conditions were studied

for the 2-DoF linked manipulators by [97] and for the rolling spherical systems in

Examples 4.3.1-4.17 [113].

In Table A.1, the angle q2− q3 is dependent on the chosen values of q2− q1, q4− q3

and q4− q1 angles. It is clear that example conditions should be satisfied with chosen

particular geometric parameters for lk, mk, and Ik to avoid singularities. However,

these strongly singular configurations are not possible to be satisfied while we are

changing the geometric parameters because the complete singular model requires the

model to have a very large I2I4 in comparison to other terms. Otherwise, conditions

will always fail non-singular condition (A.14) for (A.2)-(A.3) during the solving pro-

cedure of the inverse dynamics. We have to emphasize that we have chosen only 5

configurations with the most negative values in here. Many more conditions should

be checked that we left them for the reader to have full configuration without singu-

larity. Also, as the DoFs increases with multiple joints, the inertial coupling limits the
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system configuration and geometric parameters with highly integrated singularities.

This is one of the reasons why high DoFs underactuated manipulators with more

than one passive joints are hardly covered in literature.

A.4 Design of Small-Amplitude Waves on Rotational Joints

A.4.1 Singular-Free Model of the underactuated manipulator

In this section, we develop our inertia-based condition for singular-free inverse dynam-

ics. We will use this condition to design our combined wave parameters for avoiding

inertial coupling singularities.

By applying the combined waves (A.5) on the active joints q2 and q4, we have a

different interpretation to the inertial coupling condition as follows

|Mpa| = M12M34 −M14M32 = +I2I4 +m4

[
c1

(
l3(I2 + I3 + I4) cos(q4 − q3)

− l1(I3 + I4) cos(q4 − q1)
)

+ c2

(
l3(I2 + I3 + I4) sin(q4 − q3)− l1(I3 + I4) sin(q4 − q1)

)]
+ I4

[
c3

(
l1(m2 +m3 +m4) cos(q2 − q1)− l3(m3 +m4) cos(q2 − q3)

)

+ c4

(
l1(m2 +m3 +m4) sin(q2 − q1)− l3(m3 +m4) sin(q2 − q3)

)
+

1

2
m4l1l3

[
m2

[
(c1c3 − c2c4) cos(q2 + q4 − q1 − q3) + (c2c3 + c1c4) sin(q2 + q4 − q1 − q3)

]
+ (c1c3 + c2c4)[(m2 +m3 +m4) cos(q2 + q3 − q1 − q4)

− (m3 +m4) cos(q4 + q3 − q1 − q2)]

+ (c1c4 − c2c3)[(m2 +m3 +m4) sin(q2 + q3 − q1 − q4)

+ (m3 +m4) sin(q4 + q3 − q1 − q2)]
]
> 0

(A.15)

where

c1 = l4 + a4n4 cos(n4q4 + ε4), c2 = a4n4 cos(n4q4 + ε4),

c3 = l2 + a2 sin(n2q2 + ε2), c4 = a2n2 cos(n2q2 + ε2).
(A.16)

Because the inequality (A.15) is complex due to the included combined-waves, we

have to check the minimum possible values to determine combined-wave parameters

(ak, nk, εk) properly. Thus, we define the following proposition.
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Proposition A.4.1 Let the inverse dynamics model be (A.2)-(A.3) with combined

sinusoidal wave trajectories (A.4). This system does not hit singularity and |Mpa| > 0

condition is satisfied while the small-amplitude waves parameters ak, nk and εk for

k = {2, 4} are designed with satisfying the minimum inertial condition

Imin = I2I4 −m4l1(I2 + I3 + I4)

[
c1 cos

(
tan−1

(
c2

c1

))
+ c2 sin

(
tan−1

(
c2

c1

))]

− I4l3(m3 +m4)

[
c3 cos

(
tan−1

(
c4

c3

))
+ c4 sin

(
tan−1

(
c4

c3

))]

+ f1 + f2 +
1

2
m2m4l1l3

[
(c1c3 − c2c4) cos

(
tan−1

(
c2c3 + c1c4

c1c3 − c2c4

))

+ (c2c3 + c1c4) sin

(
tan−1

(
c2c3 + c1c4

c1c3 − c2c4

))
+ f3

]
> 0,

(A.17)

where

f1 = −m4l3(I2 + I3 + I4) ·max

{
|c1|, |c2|,

√
2

2
(|c1|+ |c2|)

}
,

f2 = −(m2 +m3 +m4)l1I4 ·max

{
|c3|, |c4|,

√
2

2
(|c3|+ |c4|)

}
,

f3 = −m2 +m3 +m4

m2

·max

{
|c1c3 − c2c4|, |c2c3 + c1c4|

,

√
2

2
(|c1c3 − c2c4|+ |c2c3 + c1c4|)

}

− m3 +m4

m2

·max

{
|c1c3 − c2c4|, |c2c3 + c1c4|,

√
2

2
(|c1c3 − c2c4| − |c2c3 + c1c4|)

,

√
2

2
(−|c1c3 − c2c4|+ |c2c3 + c1c4|)

}
. (A.18)

Proof Considering the condition |Mpa| > 0 in (A.15), we have to determine the

minimum value in the multivariable (qk) function. Inequality (A.15) is re-ordered in
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following way

|Mpa| = I2I4 +m4

[
l3(I2 + I3 + I4)

(
c1 cos(q4 − q3) + c2 sin(q4 − q3)

)
− l1(I3 + I4)

(
c1 cos(q4 − q1) + c2 sin(q4 − q1)

)]
+ I4

[
l1(m2 +m3 +m4)

(
c3 cos(q2 − q1) + c4 sin(q2 − q1)

)
− l3(m3 +m4)

(
c3 cos(q2 − q3) + c4 sin(q2 − q3)

)]
+

1

2
m4l1l3

[
m2

[
(c1c3 − c2c4) cos(q2 + q4 − q1 − q3) + (c2c3 + c1c4) sin(q2 + q4 − q1 − q3)

]
+ (m2 +m3 +m4)

[
(c1c3 + c2c4) cos(q2 + q3 − q1 − q4) + (c1c4 − c2c3) sin(q2 + q3 − q1 − q4)

]
+ (m3 +m4)

[
− (c1c3 + c2c4) cos(q4 + q3 − q1 − q2)

+ (c1c4 − c2c3) sin(q4 + q3 − q1 − q2)
]
> 0

(A.19)

The third, fifth and sixth terms are chosen to make them independent of (qk) angles.

Note that these angles (q4 − q1), (q2 − q3) and (q2 + q4 − q1 − q3) are chosen to be

independent. Then, the derivatives of these terms are taken respect to their angles

d

d(q4 − q1)

[
− l1(I3 + I4)

(
c1 cos(q4 − q1) + c2 sin(q4 − q1)

)]
= −c1 sin(q4 − q1) + c2 cos(q4 − q1) = 0,

d

d(q2 − q3)

[
− l3(m3 +m4)

(
c3 cos(q2 − q3) + c4 sin(q2 − q3)

)]
= −c3 sin(q2 − q3) + c4 cos(q2 − q3) = 0,

d

d(q2 + q4 − q1 − q3)

[
m2

[
(c1c3 − c2c4) cos(q2 + q4 − q1 − q3)

+ (c2c3 + c1c4) sin(q2 + q4 − q1 − q3)
]

= −(c1c3 − c2c4) sin(q2 + q4 − q1 − q3) + (c2c3 + c1c4) cos(q2 + q4 − q1 − q3) = 0.

(A.20)

Next, we solve each term for its angle in (A.20) as

q4 − q1 = tan−1

(
c2

c1

)
, q2 − q3 = tan−1

(
c4

c3

)
q2 + q4 − q1 − q3 = tan−1

(
c2c3 + c1c4

c1c3 − c2c4

)
,

(A.21)

These angles in (A.21) are substituted back to the inequality condition (A.19). The

remaining terms are calculated for their smallest possible values. In order to find
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the smallest values in the second and fourth terms, we choose three largest possible

points with negative signs as follows

f1 = −l3(I2 + I3 + I4)


|c1|, (q4 − q3) = (k + 1)π

|c2|, (q4 − q3) = (2k+1)π
2

√
2

2
(|c1|+ |c2|), (q4 − q3) = (2k+1)π

4

f2 = −l1(m2 +m3 +m4)


|c3|, (q2 − q1) = (k + 1)π

|c4|, (q2 − q1) = (2k+1)π
2

√
2

2
(|c3|+ |c4|), (q2 − q1) = (2k+1)π

4

(A.22)

Next, the remaining final term is also calculated for its smallest value as follows:

f3 = −(m2 +m3 +m4)



|c1c3 + c2c4|, (q2 + q3 − q1 − q4) = (k + 1)π

|c1c4 − c2c3|, (q2 + q3 − q1 − q4) = (2k+1)π
2

√
2

2
(|c1c3 + c2c4|

+|c1c4 − c2c3|), (q2 + q3 − q1 − q4) = (2k+1)π
4

− (m3 +m4)



|c1c3 + c2c4|, (q4 + q3 − q1 − q2) = (k + 1)π

|c1c4 − c2c3|, (q4 + q3 − q1 − q2) = (2k+1)π
2

√
2

2
(−|c1c3 + c2c4|+ |c1c4 − c2c3|),

(q2 + q3 − q1 − q4) = (2k+1)π
4

√
2

2
(|c1c3 + c2c4| − |c1c4 − c2c3|),

(A.23)

Now, because the ck terms are the combined waves with continues sign changes,

we find the maximum value of functions (A.22)-(A.23) which result in our derived

condition in (A.17).

Remark A.4.1 The combined wave variables should be designed with condition (A.17)

under the assumption of aknk < lk, based on equation (A.16), because maximum val-

ues of terms in (A.18) are derived with respect to this property.

Remark A.4.2 The following way of derivation for obtaining a singular-free con-

dition (A.17) can be extended to other n-DoFs manipulators where the determinant
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T T T

qk,f

Figure A.4: The designed Beta function for the specified passive joints.

of |Mpa| matrix is utilized. Note that this property mainly comes from non-singular

condition [97,113] under the positive definiteness of inertia matrix. Additionally, the

problem dimension is n/2 when we have n number of joints, which is 2-dimensional

problem (q2 and q4) here.

A.4.2 Feed-Forward Control for Active Joints

A feed-forward control method is selected to converge the specified passive joints to

desired states while the active joints follow the required motions. The Beta functions

are utilized for giving the motion of the passive joints.

The passive joints are prescribed by using a general equation of the symmetric

Beta functions [3, 105, 113] which considered as a sub-optimal solution in motion

planning. For k-th passive joint (they are k = {1, 3} here), the angular velocity of

the passive joint is assigned as follows

q̇k(ζ) =
ζαk−1(1− ζ)αk−1

B
, (A.24)

where ζ = t/T , B is the Beta function and αk is the order of k-th joint function,

which t is the time variable and T is the time constant for the desired state arrival.

The Beta function B is expressed in following form [105]

B =
(αk − 1)!(αk − 1)!

(2αk − 1)!
. (A.25)

By taking integration of equation (A.24), the convergence function qk(ζ) is defined
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toward its desired state qk,f as follows

qk(ζ) =
qk,f
T

ˆ ζ

0

q̇k(ζ) dt. (A.26)

Fig. A.4 shows the behavior of considered function for the passive joints.

Note that similar to what has been developed in [3], one can show that with the

selection of this motion scenario for the passive joints, the condition q̇k(T ) = 0 is

always satisfied. However, we do not consider any particular characteristic of active

joints in these control strategies. Therefore, this feed-forward control is proposed for

the sake of study on the singularity problem in the inertial matrix and see can our

designed inverse dynamics avoid singularities due to inertial coupling.
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A.5 Dynamics of the 4-DoF Manipulator

We show the 4-DoF nonlinear dynamics of manipulator by the derived general for-

mulation.

In our study, we consider our system with two passive and two active joints. The

active joints on second and forth links have the wavy trajectory with variables of

{a2, n2, ε2} and {a4, n4, ε4}. The passive joints in first and third link do not have the

wave functions a1 = n1 = ε1 = 0 and a3 = n3 = ε3 = 0. By the considered system,

the Lagrangian function in (A.9) becomes

L =
1

2
(m1 +m2 +m3 +m4)l21q̇

2
1 +

1

2
(m3 +m4)l23q̇

2
3

+
1

2
(m2 +m3 +m4)q̇2

2

[
a2

2n
2
2 cos2(n2q2 + ε2) + (l2 + a2 sin(n2q2 + ε2))2

]
+

1

2
m4q̇

2
4

[
a2

4n
2
4 cos2(n4q4 + ε4) + (l4 + a4 sin(n4q4 + ε4))2

]
+ (m2 +m3 +m4)q̇1q̇2

[
l1(l2

+ a2 sin(n2q2 + ε2)) cos(q1 − q2) + a2n2l1 cos(n2q2 + ε2) sin(q2 − q1)
]

+ (m3 +m4)q̇1q̇3l1l3 cos(q1 − q3)

+ (m3 +m4)q̇2q̇3

[
l3(l2 + a2 sin(n2q2 + ε2)) cos(q2 − q3)

+ a2n2l3 cos(n2q2 + ε2) sin(q2 − q3)
]

+ m4q̇1q̇4

[
l1(l4 + a4 sin(n4q4 + ε4)) cos(q1 − q4)

+ a4n4l1 cos(n4q4 + ε4) sin(q4 − q1)
]

+m4q̇2q̇4

[
(l2

+ a2 sin(n2q2 + ε2)) · (l4 + a4 sin(n4q4 + ε4)) cos(q2 − q4)

+ a2n2a4n4 cos(n2q2 + ε2) · cos(n4q4 + ε4) cos(q2 − q4)

+ a2n2(l4 + a4 sin(n4q4 + ε4)) · cos(n2q2 + ε2) sin(q2 − q4)

+ a4n4(l2 + a2 sin(n2q2 + ε2)) · cos(n4q4 + ε4) sin(q4 − q2)
]

(A.27)

+ m4q̇3q̇4

[
l3(l4 + a4 sin(n4q4 + ε4)) cos(q3 − q4)

+ a4n4l3 cos(n4q4 + ε4) sin(q4 − q3)
]

+
1

2

4∑
k=1

Ik

(
k∑
i=1

q̇k

)2

+
4∑

k=1

k∑
i=1

mkg (li + ai sin (niqi + εi)) cos qi. (A.28)
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Furthermore, by using the equation (A.28) and the Lagrangian equations (4.8), the

motion equation terms of (A.11) become

M∗ =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 ,h∗ =
[
h1 h2 h3 h4

]T
,

u∗ =
[

0 τ2 0 τ4

]T
. (A.29)

where

M11 = I1 + I2 + I3 + I4 + (m1 +m2 +m3 +m4)l21,

M22 = I2 + I3 + I4 + (m2 +m3 +m4)
[
a2

2n
2
2 cos2(n2q2 + ε2) + (l2 + a2 sin(n2q2 + ε2))2

]
M33 = I3 + I4 + (m3 +m4)l23,

M44 = I4 +m4

[
a2

4n
2
4 cos2(n4q4 + ε4 + (l4 + a4 sin(n4q4 + ε4))2

]
,

M12 = M21 = I2 + I3 + I4 + (m2 +m3 +m4) ·
[
l1(l2 + a2 sin(n1q1 + ε1)) cos(q1 − q2)

+ a2n2l1 cos(n2q2 + ε2) sin(q2 − q1)
]
,

M13 = M31 = I3 + I4 + (m3 +m4)l1l3 cos(q1 − q3),

M23 = M32 = I3 + I4 + (m3 +m4) ·
[
l3(l2 + a2 sin(n2q2 + ε2)) cos(q2 − q3)

+ a2n2l3 cos(n2q2 + ε2) sin(q2 − q3)
]
,

M34 = M43 = I4 +m4 ·
[
l3(l4 + a4 sin(n4q4 + ε4)) cos(q3 − q4)

+ a4n4l3 cos(n4q4 + ε4) sin(q4 − q3)
]
,

M14 = M41 = I4 +m4 ·
[
l1(l4 + a4 sin(n4q4 + ε4)) cos(q1 − q4)

+ a4n4l1 cos(n4q4 + ε4) sin(q4 − q1)
]
,

(A.30)

M24 = M42 = I4 +m4

[
(l2 + a2 sin(n2q2 + ε2))(l4 + a4 sin(n4q4 + ε4)) cos(q2 − q4)

+ a2n2a4n4 cos(n2q2 + ε2) cos(n4q4 + ε4) cos(q2 − q4)

+ a2n2(l4 + a4 sin(n4q4 + ε4)) cos(n2q2 + ε2) sin(q2 − q4)

+ a4n4(l2 + a2 sin(n2q2 + ε2)) cos(n4q4 + ε4) sin(q4 − q2)
]

(A.31)
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Additionally, the velocity dependencies and gravitational terms hk in each link are

obtained by using (A.12)

h1 = (m2 +m3 +m4)q̇2
2

[
2a2n2l1 cos(n2q2 + ε2) cos(q1 − q2)

+ l1(l2 + a2 sin(n2q2 + ε2)) sin(q1 − q2)− a2n
2
2l1 sin(n2q2 + ε2) sin(q2 − q1)

]
+ (m3 +m4)q̇2

3

[
l1l3 sin(q1 − q3)

]
+ m4q̇

2
4

[
2a4n4l1 cos(n4q4 + ε4) cos(q1 − q4) + l1(l4 + a4 sin(n4q4 + ε4)) sin(q1 − q4)

− a4n
2
4l1 sin(n4q4 + ε4) sin(q4 − q1)

]
+ (m1 +m2 +m3 +m4)g

[
(l1 + a1 sin(n1q1 + ε1)) sin q1

− a1n1 cos(n1q1 + ε1) cos q1

]
,

h2 = (m2 +m3 +m4)q̇2
1

[
2a2n2l1 cos(n2q2 + ε2) cos(q1 − q2) + l1(l2 + a2 sin(n2q2 + ε2))

· sin(q1 − q2)− a2n
2
2l1 sin(n2q2 + ε2) sin(q2 − q1)

]
+ (m2 +m3 +m4)q̇2

2

[
a2n2 cos(n2q2 + ε2)(l2 + a2 sin(n2q2 + ε2))

− a2n3
2 sin(n2q2 + ε2) cos(n2q2 + ε2)

]
+ (m3 +m4)q̇2

3

[
l3(l2 + a2 sin(n2q2 + ε2))

· sin(q2 − q3)− a2n2l3 cos(n2q2 + ε2) cos(q2 − q3)
]

+ m4q̇
2
4

[
2a4n4 cos(n4q4 + ε4)(l2 + a2 sin(n2q2 + ε2))

· cos(q2 − q4) + 2a2n2a4n4 cos(n2q2 + ε2) cos(n4q4 + ε4) sin(q2 − q4)

+ (l2 + a2 sin(n2q2 + ε2))(l4 + a4 sin(n4q4 + ε4)) sin(q2 − q4)

− a2n2a4n
2
4 sin(n4q4 + ε4) cos(n2q2 + ε2) cos(q2 − q4)

− a2n2(l4 + a4 sin(n4q4 + ε4)) cos(n2q2 + ε2) cos(q2 − q4)

− a4n
2
4(l2 + a2 sin(n2q2 + ε2)) sin(n4q4 + ε4) sin(q4 − q2)

]
+ (m2 +m3 +m4)g

[
(l2 + a2 sin(n2q2 + ε2)) sin q2 − a2n2 cos(n2q2 + ε2) cos q2

]
,
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And,

h3 = (m3 +m4)q̇2
1

[
l1l3 sin(q1 − q3)

]
+ (m3 +m4)q̇2

2

[
l3(l2 + a2 sin(n2q2 + ε2)) sin(q2 − q3)

− a2n2l3 cos(n2q2 + ε2) cos(q2 − q3)
]

+ m4q̇
2
4

[
2a4n4l3 cos(n4q4 + ε4) cos(q3 − q4) + l3(l4 + a4 sin(n4q4 + ε4)) sin(q3 − q4)

− a4n
2
4l3 sin(n4q4 + ε4) sin(q4 − q3)

]
+ (m3 +m4)g

[
(l3 + a3 sin(n3q3 + ε3)) sin q3 − a3n3 cos(n3q3 + ε3) cos q3

]
,

h4 = m4q̇
2
1

[
2a4n4l1 cos(n4q4 + ε4) cos(q1 − q4) + l1(l4 + a4 sin(n4q4 + ε4)) sin(q1 − q4)

− a4n
2
4l1 sin(n4q4 + ε4) sin(q4 − q1)

]
+ m4q̇

2
2

[
2a4n4 cos(n4q4 + ε4)(l2 + a2 sin(n2q2 + ε2)) cos(q2 − q4)

+ 2a2n2a4n4 cos(n2q2 + ε2) cos(n4q4 + ε4) sin(q2 − q4)

+ (l2 + a2 sin(n2q2 + ε2))(l4 + a4 sin(n4q4 + ε4)) sin(q2 − q4)

− a2n2a4n
2
4 sin(n4q4 + ε4) cos(n2q2 + ε2) cos(q2 − q4)

− a2n2(l4 + a4 sin(n4q4 + ε4)) cos(n2q2 + ε2) cos(q2 − q4)

− a4n
2
4(l2 + a2 sin(n2q2 + ε2)) sin(n4q4 + ε4) sin(q4 − q2)

]
+ m4q̇

2
3

[
2a4n4l3 cos(n4q4 + ε4) cos(q3 − q4)

+ l3(l4 + a4 sin(n4q4 + ε4)) sin(q3 − q4)

− a4n
2
4l3 sin(n4q4 + ε4) sin(q4 − q3)

]
+ m4q̇

2
4[a4n4 cos(n4q4 + ε4)(l4 + a4 sin(n4q4 + ε4))

− a2
4n

3
4 sin(n4q4 + ε4) cos(n4q4 + ε4)]

+ m4g
[
(l4 + a4 sin(n4q4 + ε4)) sin(q4)

− a4n4 cos(n4q4 + ε4) cos(q4)
]
, (A.32)



U

e1

e3

e2

L

kgτg
P
kn

φ

eu

ev

Figure B.1: Two coordinate frames related by ϕ rotational angle about e3.

Appendix B

Geometric Path Planning

B.1 Moving Darboux Frame Preliminaries

The structural equations of a Darboux frame, which is known for the trihedron, are

explained on an arbitrary surface U as Fig. B.1. Let every contacted point P ∈ U is

defined by a unit-based Darboux frame (e1, e2, e3) [26] where e1 is a tangent vector to

the path L, e3 is a normal vector to the U surface and e2 is perpendicular to the plane

e3 × e1. The Darboux frame motion along the curve L on surface U becomes [26]

dP = ωf1e1,

d


e1

e2

e3

 =


0 ωf12 ωf13

−ωf12 0 ωf23

−ωf13 −ω
f
23 0



e1

e2

e3

 . (B.1)

where ωf1 , ωf12, ωf23 and ωf13 are the one-forms of the Darboux frame (e1, e2, e3). Based

on Cartan [26], if the curve L is parametrized by arc-length s, ωf1 is the component of

translation of the Darboux frame (trihedron) in arc-length domain. Also, ωf12, ωf23 and

ωf13 are the components of rotation of the Darboux frame (trihedron) in arc-length

domain. The curvature dependencies along the curve L are defined for the Darboux

frame by (B.1) by using these one-form differential relations as [63]

kg = ωf12/ω
f
1 , kn = ωf13/ω

f
1 , τg = ωf23/ω

f
1 , (B.2)
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where kg, kn and τg are the geodesic curvature, normal curvature and geodesic torsion

of the Darboux frame, respectively.

Now, consider an angle ϕ between the Darboux frame e1 and the induced contact

coordinate of the arbitrary surface (eu, ev, e3) about aligned e3, then the structural

equations are parameterized by

e1 = cosϕ eu + sinϕ ev,

e2 = − sinϕ eu + cosϕ ev,

e3 = e3, (B.3)

which differentiating both sides of given transformation, results
ωf12

ωf13

ωf23

 =


1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ



ω12

ω13

ω23

 , (B.4)

where ω12, ω13 and ω23 are the one-forms for an induced coordinates of an arbitrary

surface. Note that we apply this to the arbitrary rotating object with the angle ϕ with

respect to the Darboux frame. These properties are also applied to derive the fixed

surface (plane) and rotating sphere equation with the inclusion of angle θ. We will

use these kinematics relations to develop curvature equations between the Darboux

frame and the induced contact coordinates of an arbitrary surface in Appendix B.3.

B.2 Proof of Darboux Frame Kinematics with Sandwiched Virtual

Surface

The induced curvatures between the rotating object (sphere) and fixed surface (plane)

including a sandwiched virtual surface (5.5) is proved here. We show the proof by

using the preliminary study on the induced curvature for two surfaces [34]. Here,

we develop a new virtual surface that is sandwiched between two surfaces (sphere

and plane in our case). This virtual surface relates our arc-length-based inputs with

derived curvatures in (B.22) to manipulate the spin-rolling sphere angular coordinates.

We propose a spin-rolling object UC on the surface US where a virtual moving

surface UV is sandwiched as Fig. B.2. It is assumed that always three objects keep
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US
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e3
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n
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n
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Figure B.2: Rotating object UC on the fixed surface US with sandwiched virtual
surface UV . Note that n in {en1 , en2 , en3} frame stands for fixed surface (plane) s,
virtual surface v and rotating object (sphere) o at each of these compact surfaces.

having the same contact point P. The moving Darboux frame at the contact point

P contains a general motion equation as:

dP

ds
= e1,

d


e1

e2

e3

 =


0 kg kn

−kg 0 τg

−kn −τg 0



e1

e2

e3

 , (B.5)

where, regardless of coordinate dependency, s is the arc-length of path Ls, and also

kg, kn and τg are geodesic curvature, the normal curvature and geodesic torsion of

the Darboux frame. Also, the right-handed orthonormal unit vectors are aligned in

same direction for all objects with respective subscripts, for example, the object UC

has (eo1, e
o
2, e

o
3) [see Fig. B.2]. Initially, the position of an arbitrary fixed point Mo

on body UC is

Mo = P + σo1e
o
1 + σo2e

o
2 + σo3e

o
3, (B.6)

where σ is a scaler coordinate for the considered object, here is {σo1, σo2, σo3} for the

rotating sphere. Differentiating this position matrix (B.6) with respect to s besides

using Eq. (B.5) gives

dMo

ds
=


1 + dσo1/ds− σo2kog − σo3kon
dσo2/ds+ σo1k

o
g − σo3τ on

dσo3/ds+ σo1k
o
n + σo2τ

o
n


T 

eo1

eo2

eo3

 . (B.7)
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Because the Mo is a fixed point, the derivative with respect to the arc-length is

dMo/ds = 0. This fact is true for all three surfaces. Then, we can conclude followings

for the rotating surface UC

dσo1/ds = σo2k
o
g + σo3k

o
n − 1, dσo2/ds = −σo1kog + σo3τ

o
n, dσ

o
3/ds = −σo1kon − σo2τ on. (B.8)

By using the same steps of derivation, a differentiated model at (B.7) can be found

for a fixed point Mv at surface UV with arc-length of s′,

dMv

ds
=


1 + dσv1/ds

′ − σv2kvg − σv3kvn
dσv2/ds

′ + σv1k
v
g − σv3τ vn

dσv3/ds
′ + σv1k

v
n + σv2τ

v
n


T 

ev1

ev2

ev3

 , (B.9)

which helps us to have same conclusion for Mv point as

dσv1/ds
′ = σv2k

v
g+σv3k

v
n−1, dσv2/ds

′ = −σv1kvg+σv3τ
v
n , dσ

v
3/ds

′ = −σv1kvn−σv2τ vn . (B.10)

Lo and Lv are traversed with the same velocity and always the Darboux frame units

coincide because of the rolling constraint with no-slippage. Then, the following con-

ditions should exist σoq = σvq and σoq/ds = σvq/ds
′ for q ∈ [1, 3] that arc-length of

two curves with the same time period is the same. With given assumptions and

substitution of Eq. (B.8) into Eq. (B.9), the differentiated point Mv becomes

dMv

ds
=


σv2k

ov
g + σv3k

ov
n

−σv1kovg + σv3τ
ov
g

−σv1kovn − σv3τ ovg


T 

ev1

ev2

ev3

 , (B.11)

where kovg = kog − kvg , kovn = kon − kvn and τ ovg = τ og − τ vg . Next, the same derivation

is repeated to virtual surface UV with respect to fixed surface US with Lv and Ls

trajectories that ultimately results in

dMs

ds
=


σs2k

vs
g + σs3k

vs
n

−σs1kvsg + σs3τ
vs
g

−σs1kvsn − σs3τ vsg


T 

es1

es2

es3

 , (B.12)

where kvsg = kvg − ksg, kvsn = kvn− ksn and τ vsg = τ vg − τ sg . From (B.12), we can rearrange

the curvature properties as:

kvg = kvsg + ksg, k
v
n = kvsn + ksn, τ

v
g = τ vsg + τ sg , (B.13)
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Substituting back (B.13) to Eq. (B.11), while we assume kvsg = αs, k
vs
n = γs and

τ vsg = βs, results in the Darboux frame angular velocity in point P as

ω∗ = δ(−τ ∗g e1 + k∗ne2 − k∗ge3), (B.14)

where

k∗g = kog − ksg − αs, k∗n = kon − ksn − γs, τ ∗g = τ og − τ sg − βs. (B.15)

Eq. (B.15) shows the parametrized kinematics with a virtual surface that is related

to induced curvatures of the moving object and fixed surface. For our case, the

sphere curvature properties are subtracted from the virtual surface to create the

corresponding angular velocities (B.14). Note that changes in the virtual surface’s

curvatures are projected on both sphere and plane traveling paths, Lo and Ls. Also,

this formula describes the physical meaning of arc-length-based inputs {γs, αs, βs}
in Eq. (5.7).

B.3 The Curvatures Variation in a Given Direction

We derive a relation between angular rotation of the Darboux frame along e3 [see

Fig. B.1] and the normal curvature, geodesic torsion and geodesic curvature on an

arbitrary surface. Let a differentiable manifold fl(u, v) in S ⊂ R3 exists where ev

and eu present the unit vector along v and u curves on a moving point P ⊂ S. The

differentiated map of the point P is [26]

dP = rudu+ rvdv = ω1eu + ω2ev,

hence, by defining ω1 =
√
Edu, ω2 =

√
Gdu, we have

ru

rv

Λ

 =


√
E 0 0

0
√
G 0

0 0 1



eu

ev

e3

 = A


eu

ev

e3

 , (B.16)

where E = ru ·ru, G = rv ·rv and Λ are the coefficients for the first fundamental form

and normal vector of the surface S, respectively. Differentiating the left side of Eq.
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(B.16) results in

d


ru

rv

Λ

 = du


ruu

ruv

Λu

+ dv


ruv

rvv

Λv

 =

(
du


Γ 1

11 Γ 2
11 L

Γ 1
12 Γ 2

12 M

W 1
1 W 2

1 0

+ dv


Γ 1

12 Γ 2
12 M

Γ 1
22 Γ 2

22 N

W 1
2 W 2

1 0

)


ru

rv

Λ


(B.17)

where Γ k
ij, W

j
i , L, M and N are coefficients of Gauss and Weingarten equations, and

rest of the three coefficients are the second fundamental form of surface, in which

are [39]

Γ 1
11 =

GEu − 2FFu + FEv
2(EG− F 2)

, Γ 2
11 =

2EFu − EEv + FEu
2(EG− F 2)

Γ 1
12 =

GEv − FGu

2(EG− F 2)
, Γ 2

12 =
EGu − FEv
2(EG− F 2)

,

Γ 1
22 =

2GFv − 2GGu − FGv

2(EG− F 2)
, Γ 2

22 =
EGv − 2FFv + FGu

2(EG− F 2)
,

W 1
1 =

MF − LG
EG− F 2

,W 2
1 =

LF −ME

EG− F 2
,

W 1
2 =

NF −MG

EG− F 2
,W 2

2 =
MF −NE
EG− F 2

.

Next, differentiating Eq. (B.16)’s right side gives

d

(
B


eu

ev

e3


)

=

(
dB


eu

ev

e3

+ Bd

(
eu

ev

e3


))

=

(
dB + B


0 ω12 ω13

−ω12 0 ω23

−ω13 −ω23 0


)

eu

ev

e3

 .
(B.18)

where ω12, ω13 and ω23 are the one-forms for (eu, ev, e3) here. Also, Eqs. (B.17)-

(B.18) yield the angular velocities of rotating body (eu, ev, e3) for isometric surfaces

(F = 0 assumption)

ω12 =
−Evdu+Gudv

2
√
EG

, ω13 =
Ldu+Mdv√

E
, ω23 =

Mdu+Ndv√
G

, (B.19)
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where obtained ones are used besides the defined ω1 and ω2. By the derived formu-

lation, for each u and v principle curves the curvature properties in Eq. (B.2) are

calculated. For each principle, the derivative of perpendicular curve becomes zero,

therefore, u-curve has

kgu =
ω12

ω1

=
−Evdu
2
√
EG
· 1√

Edu
= − Ev

2E
√
G
,

knu =
ω13

ω1

=
Ldu√
E
· 1√

Edu
=
L

E
,

τgu =
ω23

ω1

=
Mdu√
G
· 1√

Edu
=

M√
EG

.

(B.20)

Also, the same operation for the v-curve gives

kgv =
Gu

2G
√
E
, knv =

N

G
, τgv = − M√

EG
, (B.21)

while the v-curve vector is (ev,−eu, e3) and ϕ in Eq. (B.4) equals π/2. Lastly, the

curvature in a given direction of trajectory Ls on a surface of object, is obtained using

Eq. (B.1) and Eq. (B.4) where curvature properties are derived dependent on the

arc-length s [39]

kn =
ωf13

ds
=
ω13 cosϕ+ ω23 sinϕ

ds
= knu cos2 ϕ+ 2τgu cosϕ sinϕ+ knv sin2 ϕ,

τg =
ωf23

ds
=
−ω13 sinϕ+ ω23 cosϕ

ds
= τgu cos 2ϕ+

1

2
(knv − knu) sin 2ϕ,

kg =
ωf12

ds
=
ω12

ds
= kgu cosϕ+ kgv sinϕ,

(B.22)

As a keynote, this formula is designed for the induced curvature of a general surface

where its curvature coefficients are changing depending on the rotating arbitrary angle

ϕ with respect to the Darboux frame as Fig B.1.

B.4 Controllability of the Darboux Frame-Based Kinematic Model

We check the controllability of the derived kinematic model in Eq. (5.12). This model

can be represented as

ẋ = f(x) +
3∑
i=1

gi(x)ui, (B.23)

where f(x) and gi(x) are our drift term and the control input coefficients. Also, we

know x = {us, vs, uo, vo, ψ} and ui = {γs, βs, αs}.
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Theorem B.4.1 System (B.23) is controllable in time-domain if f(x) be weakly pos-

itively Poisson stable (WPPS) and Lie algebra rank condition (LARC) is satisfied for

local accessibility [67, 120].

To proof the former (WPPS) in given Theorem B.4.1, we find whether the volume

of phase space inside the given vector field for the drift term f(x) is preserved by

Liouville’s theorem [6]

∇ · f(x) =
5∑
i=1

∂f i

∂xi
= δ sin(θ + ϕ)(sinψ + cosψ)

tan vo
Ro

= 0. (B.24)

Because we will assign δ ≥ 0 as (5.29) in time-domain that always

lim
P→Pf

δ(us, vs, uo) = 0,

the property (B.24) is always true. Thus, our considered drift system becomes WPPS.

δ term is similar to the time-scaling control method that was used for the ball-plate

system in Ref. [37].

Remark B.4.1 The Liouville’s theorem is a sufficient condition to grant the WPPS

property of our drift term. Moreover, Lobry proved that compact orientable manifold

i.e., sphere, is Poisson stable [70] since every point on R2 of topological space is reach-

able. Then, Ref. [67] already proved that Poisson stable dense manifold is equivalent

to WPPS.

To find the Lie brackets of (B.23), we have four vector fields in total. In our

planning, spin orientation of the sphere is an important control input which roughly
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corespondents to g3 matrix. Thus, we find the Lie brackets as follows

f =



sin(θ + ϕ)

sin(θ + ϕ)
sin(θ+ϕ)[sinψ−cosψ]

Ro cos vo
sin(θ+ϕ)[cosψ+sinψ]

Ro

tan vo[sin(θ+ϕ)(sinψ−cosψ)+cosϕ]
Ro


,g1 =



−Ro sin(θ + ϕ)

−Ro sin(θ + ϕ)
sin(θ+ϕ)[cosψ−sinψ]

cos vo

− sin(θ + ϕ)[sinψ + cosψ]

tan vo[sin(θ + ϕ)(cosψ − sinψ)]


,

g2 =



Ro sin(θ + ϕ)

−Ro cos(θ + ϕ)
− sin (ψ+θ+ϕ)

cos vo

− cos (ψ + θ + ϕ)

− tan vo sin (ψ + θ + ϕ)


,g3 =



0

0

0

0

−1


,

[f ,g3] =



0

0

− sin(θ+ϕ)[cosψ+sinψ]
Ro cos vo

− sin(θ+ϕ)[cosψ−sinψ]
Ro

− tan vo sin(θ+ϕ)[cosψ+sinψ]
Ro


, [f , [f ,g3]] =



0

0
sin(θ+ϕ)[− sinψ+cosψ]

Ro cos vo

− sin(θ+ϕ)[cosψ+sinψ]
Ro

tan vo sin(θ+ϕ)[− sinψ+cosψ]
Ro


,

(B.25)

It is clear that the necessary condition for controllability in Theorem B.4.1 is satisfied

since dim(L3) = dim {g1,g2,g3, [f ,g3], [f , [f ,g3]]} = 5, which its determinant is

det (L3) = −2
sin vo
cos2 vo

cosϕ sin3(θ + ϕ) [sin(θ + ϕ) + cos(θ + ϕ)] . (B.26)

Note that the determinant (B.26) has singular points at θ + ϕ = kπ, π(2k + 1)/2

and ϕ = π(2k + 1)/2 which have to be avoided when we are choosing our desired

configuration on the plane. Also, the third singularity is at the local coordinate

of the sphere manifold at vo = π(2k + 1)/2 angles that cause the determinant to

converge infinity and controllability is lost. This can be solved with avoiding the

physical desired angles vo,f near to ±π/2 (two points located at two sides of the

sphere’s equator when uo is an arbitrary angle).

In this kinematic model all three inputs always exists. In particular, if one of the
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inputs is removed e.g., βs = 0, the the kinematic model becomes uncontrollable

dim(L) = dim
{
g1,g3, [g1,g3], [f ,g3], [f ,g1], [f , [g1,g3]]

[f , [f ,g3]], [f , [f ,g1]], [g1, [g1,g3]], [g1, [f ,g3]], [g1, [f ,g1]],

[g3, [g1,g3]], [g3, [f ,g3]], [g3, [f ,g1]], [f , [f , [g1,g3]]],

[f , [f , [f ,g3]]], [f , [f , [f ,g1]]], [f , [g1, [g1,g3]]], [f , [g1, [f ,g3]]],

[f , [g1, [f ,g1]]], [f , [g3, [g1,g3]]], [f , [g3, [f ,g3]]],

[f , [g3, [f ,g1]]], [f , [g3, [f ,g1]]]
}

= 4 6= 5,

(B.27)

where proves the Proposition 5.3.1. To save the space, we leave the computation of

the remaining Lie groups in (B.27) to the reader.

B.5 Geodesic Torsion Design of the Virtual Surface

The rotating object and plane do not have geodesic torsion, τ ∗g = −βs. It makes the

kinematic model (5.12) uncontrollable. Thus, a helicoid virtual surface with similar

curvature properties with rotating object [see Fig. 5.6] is proposed as

fv : UV → R3 : c(uv, vv) 7→ (−Rv sinuv cos vv, Rv sin vv +Rtuv,−Rv cosuv cos vv),

(B.28)

where Rv and Rt are defined by main spherical and sum of spherical and torsion radii,

respectively. The curvature properties can be obtained as

kvn =
1

Rv

, kvg =
Rv cos vv sin vv
R2
v cos2 vv +R2

t

, τ vg =
1

R2
v

(R2
v cos2 vv +R2

t )
1
2 (B.29)

where kvn, k
v
g , τ

v
g are normal curvature, geodesic curvature and geodesic torsion. We

here mainly care about τ vg (Rv, Rt, vv) and kvn(Rv) to understand relation of geodesic

torsion design. Thats why we related them with separate corresponding radii. To

proof that this surface let us manipulate τg by using Rt, we consider Rt = nRv where

n > 1, which results

τ vg =
1

Rv

(cos2 vv + n2)
1
2 . (B.30)

Theorem B.5.1 At an arbitrary point P on a surface, geodesic torsion relation with

normal curvature is defined as [26]

τg =
1

2
(knu − knv) sin 2Ω (B.31)
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ϱ , ϱ2 3

ϱ , ϱ1 3

ϱ , ϱ1 4

ϱ , ϱ2 4

X
Y

π
4
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Y : ϱ , ϱ1 2v

Yu

Y : ϱ , ϱ3 4u

-Gf
‘

Figure B.3: Sectioned sphere based on the Ψv and Ψu cutting planes for directional
updates of ζq. Note that Ψv and Ψu are on %2 and %3 as an example.

where knu and knv are the principle curvatures. Also, Ω is the counterclockwise angle

from the direction of minimum curvature knu on the tangent plane.

By relying on the Theorem 1, it is clear that sphere tangent plane angle Ω is π/4.

Now, we can do some algebraic operations on (B.31) with considering knu = 1/Rv

and Eq. (B.30),

knv = 1/Rv

[
1 + (cos2 vv + n2)

1
2

]
(B.32)

where knv is second principle curvature of virtual surface. This support our assump-

tion that designed geodesic torsion is inverse of sphere radius with similar unity of

normal curvature Rt = nRv. We do this for sake of separating radius of geodesic

torsion and normal curvature in Eq. (5.20) as we use two separate surfaces (sphere

and helicoid) in arc-length-based inputs.

B.6 Phase I Directional Update

We can separate the sphere regions to four by c(uo,f , vo,f ) cutting planes [see example

in Fig. B.3] for the desired configuration where ζq is calculated for its directional

updates. Because we need to find directional updates in different Gf angles on plane,

we apply a sphere rotational transformation to ease our regional computation. To

find corresponding local points’ right location for the directional update from plane

angle Gf respect to vs, we use an arbitrary local coordinate c(uo, vo) rotation respect
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to −π/4 base angle, G′f = Gf − π/4, where gives new coordinate c(uro, v
r
o) as

vro = sin−1
[
− sinG′f sinuo cos vo + cosG′f sin vo

]
uro = sin−1

[
(cosG′f sinuo cos vo + sinG′f sin vo)/ cos vro]

(B.33)

Next, to avoid the numerical solution of following Eqs. (B.33), we present it in

algebraic operation depending on c(uo, vo) location by

 uro ← −uro,

vro ← π − vro,
for
[ (

0 ≤ |vo| ≤ π
2

& π
2
≤ |uo| ≤ π

)
||
(
π
2
< |vo| ≤ π & 0 ≤ |uo| < π

2

) ] uro ← uro,

vro ← vro,
for
[ (

0 < |vo| < π
2

& 0 < |uo| < π
2

)
||
(
π
2
< |vo| < π & π

2
< |uo| < π

) ]
(B.34)

The operation by Eqs. (B.33)-(B.34) are applied to rotate the Ψf , Ψu, Ψv and Ψn

relative to angle Gf to find them always in one G′f direction. Now, the sectioned

sphere as Fig. B.3 is obtained by cutting planes Ψv and Ψu where they create

{%1, %2} and {%3, %4} regions, respectively. Note that for nearest point Ψn on Lo, the

corresponding % are shown as %n1, %n2, %n3, %n4. We design our directional updates

by comparing Ψn with Ψu, Ψv as following computation

Calculate G′f depending on the {us,f , vs,f}
Calculate rotated coordinates of Ψf , Ψu, Ψv and Ψn by (B.34)

Calculate Qzy
f , Qzx

f , Qzy
n and Qzx

n according to (5.32)

if %2 = 1 & %4 = 1 then . Exceptional regional updates

if only %n2 = 1 then

ζq(k)← +ζq(k − 1)

else if (%n2 = 1 & %n4 = 1) || (only %n4 = 1) then

if vro,f ≥ 0 then

if uro,f ≥ 0 then

ζq(k)← +ζq(k − 1)

else

ζq(k)← −ζq(k − 1)
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end if

else

ζq(k)← −ζq(k − 1)

end if

end if

else if (%n2 = 1 & %n3 = 1) || (%3 = 1 & %n2 = 1 & %n4 = 1) then

if uro,f ≥ 0 then

ζq(k)← +ζq(k − 1)

else

ζq(k)← −ζq(k − 1)

end if

else if %1 = %2 = %3 = %4 = 0 then

if vro,f ≥ 0 then

ζq(k)← −ζq(k − 1)

else

ζq(k)← +ζq(k − 1)

end if

else . Normal regional updates

if only (%n1 = 1) || (%n4 = 1) then

if vro,f ≥ 0 then

ζq(k)← +ζq(k − 1)

else

ζq(k)← −ζq(k − 1)

end if

else if only (%n2 = 1) || (%n3 = 1) then

if vro,f ≥ 0 then

ζq(k)← −ζq(k − 1)

else

ζq(k)← +ζq(k − 1)

end if

end if

end if
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where condition with equality of 1 means the following points are in the given region.

For example, %1n = 1 means Ψn existing in region 1 respect to Ψf . We have to say

that complexity of regional comparison is mainly due to non-holonomic characteris-

tics of this system (sphere symmetry) that cause each region behave differently due

to location of extracted points. Normal updates mainly find the curve’s Ψn and com-

pares it to the location of desired goal Ψf to find true direction of update. However,

exceptional updates are designed to run away from loop traps of Ψn and brings the

Lo curve always downward direction to Ψ0.

B.7 Proof of Closed Set

Let xk → x0 and dk → d0 be the convergence to desired values as k → ∞ via

sequences of {xk}∞k=1 and {dk}∞k=1. Also, suppose {yk}∞k=1 is a sequence where y ∈
Γ(xk,dk) for all k while it has convergence of yk → y0 as k → ∞. We want to

illustrate that y0 ∈ Γ(x0,d0) for having a closed set.

In each iteration k, yk = xk + hkdk for hk > 0. Thus, by knowing fact that

||dk|| = [1 .. 1]T , there is

hk = ||yk − xk|| =

 ||yk(1)− xk(1)|| ...

... ||yk(n)− xk(n)||

→ h∗ = ||y0 − x0||,

hence it implies that y0 = x0 + h∗d0.

Now, to show y0 minimizes the f along the x0 + hd0, we know for each k and h,

0 < h <∞, there is

f(yk) ≤ f(xk + hdk).

Therefore, by continuity of f , k →∞ leads to f(y0) ≤ f(x0 + hd0) for all h in which

shows

f(yk) ≤ min f(xk + hdk).

This proves the definition of y0 ∈ Γ(x0,d0) for having a closed set.
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