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Preface 

 

 

I here consider mainly mathematical analysis for a multiscale model of hepatitis C virus, 

which express both inter- and intra- dynamics. Such models describing multiple scales of dynamics 

called as multiscale model. Multiscale model is a useful tool for more detailed data analysis and makes 

sense in biology, virology, medical science and life science. Note that the results I show here are not 

limited only the dynamics model for hepatitis C virus, because it does not demand essentially that the 

dynamics is for only hepatitis C. I summarize the contents of two chapters as follows. 

 
 

Chapter 1: A PDE multiscale model of hepatitis C virus infection can be transformed to a system 

of ODEs. 

The popular antiviral treatment for hepatitis C virus (HCV) is called Direct-acting antivirals 

(DAAs). DAA realizes high effective and high clinical performance by targeting HCV’s intracellular 

viral replication. Now the HCV treatments generally adopt combination of two or three DAAs with 

different action mechanisms, but optimal treatment regimen has not established. To accurately quantify 

the antiviral effect of these DAA treatments and optimize multi-drug combinations, it is necessary to 

install multiscale mathematical model describes the intracellular viral replication processes 

corresponding to some of the different action mechanisms. Previous multiscale models of HCV 

treatment have been formulated by partial differential equations (PDEs). However, parameters 

estimation of clinical datasets requires comprehensive numerical PDE computations that are time 

consuming and often converge poorly. Here I show transformation the standard PDE multiscale model 

of HCV infection to mathematically identical ordinary differential equations (ODEs) without any 

assumptions. This derived ODE model brings us higher performance for analysis clinical data to 

estimate parameters. I also give confirmation of consistency between the transformed ODE model and 

the original PDE model about numerical solutions. This relationship called “model aggregation 
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problem” is a fundamental important topic in theoretical biology. In particular, as the parameter 

estimation of ODEs is already established, the derived ODE model avoid the time-consuming 

computations and is available for further data analysis. 

 
 

Chapter 2: Mathematical Analysis of a Transformed ODE from a PDE Multiscale Model of 

Hepatitis C Virus Infection. 

In Chapter 1, I derived a mathematically identical ODE model from original PDE model, which 

helps to get over the hardships of the PDE model for clinical data analysis. In mathematical model analysis, 

researching about the equilibriums is the most basically and important. In this chapter I show additional 

mathematical analysis for the ODEs. Here, I formulate the basic reproduction number and give conditions 

for global stability of all possible steady states of the ODE model by constructing Lyapunov function. 
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Introduction 

 

In several landmark papers, the turnover of human immunodeficiency virus type I (HIV-1) 

infection was determined in vivo from the declining viral load in patients after the start of antiviral 

therapy. Since then, mathematical modeling has evolved into an important tool in modern virology [1-

5]. For example, mathematical models of viral infection such as HIV-1, hepatitis B virus, hepatitis C 

virus (HCV) and cytomegalovirus have provided insights that cannot be directly obtained through 

experimental and clinical studies [6], especially when quantifying the antiviral effects of drugs. Multiple 

drugs with different mode of actions enhance the antiviral activity and reduce the probability of 

emergent drug resistance. For this reason, the administration of multiple drugs is the standard strategy 

for antiviral treatments, provided that different classes of antiviral agents are available [5, 7-10]. 

The quite great treatment for HCV, direct-acting antivirals (DAAs) with different antiviral 

mechanisms, have dramatically improved the sustained virological response (SVR) rate of the infected 

host. Targeting intracellular viral replication, the DAAs and current standard multi-drug treatments, 

based on DAAs (e.g., sofosbuvir and ledipasvir), succeeded to enhance the SVR from approximately 

50% in classical HCV treatment (combined interferon-α and ribavirin) [11] to 95% or higher [12]. 

Multi-drug treatments dramatically improve the clinical outcome of HCV, and their antiviral effects can 

be accurately quantified by mathematical models, enabling further optimization. Conventionally, 

mathematical models of antiviral activity for quantitative data analysis are formulated by ordinary 

differential equations (ODEs) [1, 2, 4, 5, 13]. However, ODE can describe only the intercellular 

dynamics of viral infection or a single-scaled dynamics, and cannot reveal how the antiviral effects of 

drug(s) depend on the action mechanism(s) of the drug(s) when fitted to clinical (or experimental) data, 

unless each effect is reflected in a different model parameter. Instead, ODE methods estimate the 

inseparably compressed antiviral effect as a composite parameter. 

To more precisely describe and quantify the different antiviral effects of anti-HCV drug(s), 

multiscale model has been introduced by several researchers [14-17]. By describing the intracellular 
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viral replication processes with various parameters in mathematical models, they capture the different 

antiviral effectiveness corresponding to the action mechanisms of drugs. Viral replication dynamics 

starts and works only in virus-infected cells; that is, they depend on the time since the cell has been 

infected (here called the infection age). To describe both of these intracellular and intercellular 

dynamics of virus infection, partial differential equations (PDEs) are required, which are time intensive 

and often poorly convergent in numerical procedures [14, 16, 17]. The original PDE model of the 

multi-drug HCV treatment, with its mathematically strong but biologically reasonable assumptions 

[14, 16], provides approximate solutions to the clinical data fitting. However, I propose a different 

approach with another way avoids the costly numerical computations. This approach I adopted is called 

“model aggregation” which has been well established in theoretical biology [18-20]. I also discuss 

how my approach can improve data analysis with mathematical model in virology. 

 

Results 

 

The well-parameterized basic model of viral dynamics including the antiviral effect is described 

by the following ODEs [2, 3]: 

𝑑𝑇(𝑡)

𝑑𝑡
= 𝑠 − 𝑑𝑇(𝑡) − 𝛽𝑇(𝑡)𝑉(𝑡),

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽𝑇(𝑡)𝑉(𝑡) − 𝛿𝐼(𝑡),

𝑑𝑉(𝑡)

𝑑𝑡
= (1 − 휀)𝑝𝐼(𝑡) − 𝑐𝑉(𝑡).

 

The variables 𝑇(𝑡)  and 𝐼(𝑡)  are the numbers of (uninfected) target cells and infected cells, respectively, 

and 𝑉(𝑡) denotes the amount of viruses. The target cells are assumed to be supplied at rate 𝑠, infected 

by viruses at rate 𝛽, and naturally die at rate 𝑑. The infected cells die at rate 𝛿 and produce viruses at 

rate 𝑝, and the progeny viruses are cleared at rate 𝑐. In quantitative data analyses of viral infection, the 

above model is often recast as simple ODEs [2, 4, 13, 21]. However, these models don’t look the 

intracellular viral replication process (i.e., omit the multiscale properties between intracellular and 

intercellular viral infection). In particular, to separately quantify the antiviral effects of drug(s) on 
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different viral replication processes, one needs explicit formulation the intracellular viral lifecycle. 

Otherwise, all antiviral effects of drug(s) on processes such as translation, processing, replication, 

assembly, transportation and release of viruses are embodied in a single parameter 휀 , defining the effect 

to which drugs inhibit viral production. This composite parameter 휀 cannot be divided into individual 

antiviral effects by conventional data fittings. 

 

A multiscale model for HCV infection formulated by PDEs 

To describe more precisely the different antiviral effects on various part of viral lifecycle, 

multiscale model should be introduced. Several such models have been proposed and investigated for 

data analysis [14-17]. I here introduce a multiscale model formulated by PDEs for analyzing clinical data 

under multi-drug HCV treatment [14]: 

𝑑𝑇(𝑡)

𝑑𝑡
= 𝑠 − 𝑑𝑇(𝑡) − 𝛽𝑇(𝑡)𝑉(𝑡),                           (1)    

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑎
) 𝑖(𝑡, 𝑎) = −𝛿𝑖(𝑡, 𝑎),                             (2)    

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑎
) 𝑅(𝑡, 𝑎) = 𝛼 − (𝜇 + 𝜌)𝑅(𝑡, 𝑎),                    (3)    

𝑑𝑉(𝑡)

𝑑𝑡
= 𝜌 ∫ 𝑅(𝑡, 𝑎)𝑖(𝑡, 𝑎)𝑑𝑎

∞

0

− 𝑐𝑉(𝑡),                     (4)    

with the following initial and boundary conditions: 

𝑖(𝑡, 0) = 𝛽𝑇(𝑡)𝑉(𝑡), 𝑖(0, 𝑎) = 𝑖0(𝑎), 𝑅(𝑡, 0) = 휁, 𝑅(0, 𝑎) = 𝑅0(𝑎). 

Here, the variable 𝑖(𝑡, 𝑎) represents the age distribution of the infected cells (i.e., the density of cells 

with infection age 𝑎) at time 𝑡. Similarly 𝑅(𝑡, 𝑎) is the age and time distribution of intracellular viral 

RNA in a cell with infection age 𝑎. The definition of age- structured population model is referred to [22]. 

The initial value 𝑇0  and 𝑉0  are nonnegative. The parameters 𝛼  and 𝜇  denote the production and 

degradation rates of the intracellular viral RNA, respectively. Viral RNA is assumed to assemble along 

with viral proteins and to secrete from an infected cell as virus particles at rate 𝜌 (i.e. the exportation 
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rate). Note that viral RNA starts to replicate from 휁 copies in a newly infected cell. In [14], 휁 was fixed 

to 1. 

 

Multiscale model of HCV infection transformed by ODE 

The total number of infected cells, denoted by 𝐼(𝑡) , is calculated by integrating the age 

distribution over the infection age 𝑎; that is, 𝐼(𝑡) = ∫ 𝑖(𝑡, 𝑎)𝑑𝑎
∞

0
.  

Similarly, the total amount of intracellular viral RNA pooled in all infected cells is given by 

𝑃(𝑡) = ∫ 𝑅(𝑡, 𝑎)𝑖(𝑡, 𝑎)𝑑𝑎
∞

0

. 

The initial values can be calculated by integrating the initial distributions, 𝐼(0) = ∫ 𝑖0(𝑎)𝑑𝑎
∞

0
 and 

𝑃(0) = ∫ 𝑅0(𝑎)𝑖0(𝑎)𝑑𝑎
∞

0
. Differentiating 𝐼(𝑡)  and 𝑃(𝑡)  with respect to time 𝑡 , we obtain the 

following differential equations: 

𝑑𝐼(𝑡)

𝑑𝑡
= ∫

𝜕

𝜕𝑡
𝑖(𝑡, 𝑎)𝑑𝑎,

∞

0

                                (5)    

𝑑𝑃(𝑡)

𝑑𝑡
= ∫

𝜕

𝜕𝑡
(𝑅(𝑡, 𝑎)𝑖(𝑡, 𝑎))𝑑𝑎.

∞

0

                        (6)    

From Eqs. (2)–(3), we have 

𝜕𝑖(𝑡, 𝑎)

𝜕𝑡
= −

𝜕𝑖(𝑡, 𝑎)

𝜕𝑎
− 𝛿𝑖(𝑡, 𝑎), 

𝜕𝑅(𝑡, 𝑎)

𝜕𝑡
= −

𝜕𝑅(𝑡, 𝑎)

𝜕𝑎
+ 𝛼 − (𝜇 + 𝜌)𝑅(𝑡, 𝑎), 

Eq. (5) is evaluated as follows: 

𝑑𝐼(𝑡)

𝑑𝑡
= ∫

𝜕𝑖(𝑡, 𝑎)

𝜕𝑡
𝑑𝑎

∞

0

= ∫ {−
𝜕𝑖(𝑡, 𝑎)

𝜕𝑎
− 𝛿𝑖(𝑡, 𝑎)} 𝑑𝑎

∞

0

= −[𝑖(𝑡, 𝑎)]0
∞ − 𝛿𝐼(𝑡). 

The density of cells converges to 0  as 𝑎 → ∞ , that is, lim
𝑎→∞

𝑖(𝑡, 𝑎) = 0  . Moreover, as 𝑖(𝑡, 0) =

𝛽𝑇(𝑡)𝑉(𝑡), we obtain the following differential equation for 𝐼(𝑡): 
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𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽𝑇(𝑡)𝑉(𝑡) − 𝛿𝐼(𝑡). 

Similarly, Eq. (6) is calculated as follows: 

𝑑𝑃(𝑡)

𝑑𝑡
= ∫

𝜕(𝑅(𝑡, 𝑎)𝑖(𝑡, 𝑎))

𝜕𝑡
𝑑𝑎

∞

0

= ∫ {
𝜕𝑅(𝑡, 𝑎)

𝜕𝑡
∙ 𝑖(𝑡, 𝑎) + 𝑅(𝑡, 𝑎) ∙

𝜕𝑖(𝑡, 𝑎)

𝜕𝑡
} 𝑑𝑎

∞

0

= ∫ {(−
𝜕𝑅(𝑡, 𝑎)

𝜕𝑎
+ 𝛼 − (𝜇 + 𝜌)𝑅(𝑡, 𝑎)) 𝑖(𝑡, 𝑎) + 𝑅(𝑡, 𝑎) (−

𝜕𝑖(𝑡, 𝑎)

𝜕𝑎
− 𝛿𝑖(𝑡, 𝑎))} 𝑑𝑎

∞

0

= ∫ {− (
𝜕𝑅(𝑡, 𝑎)

𝜕𝑎
∙ 𝑖(𝑡, 𝑎) + 𝑅(𝑡, 𝑎) ∙

𝜕𝑖(𝑡, 𝑎)

𝜕𝑎
) + 𝛼𝑖(𝑡, 𝑎) − (𝜇 + 𝜌 + 𝛿)𝑅(𝑡, 𝑎)𝑖(𝑡, 𝑎)}

∞

0

𝑑𝑎

= − ∫
𝜕𝑅(𝑡, 𝑎)𝑖(𝑡, 𝑎)

𝜕𝑎
𝑑𝑎

∞

0

+ 𝛼 ∫ 𝑖(𝑡, 𝑎)𝑑𝑎
∞

0

− (𝜇 + 𝜌 + 𝛿) ∫ 𝑅(𝑡, 𝑎)𝑖(𝑡, 𝑎)𝑑𝑎
∞

0

= −[𝑅(𝑡, 𝑎)𝑖(𝑡, 𝑎)]0
∞ + 𝛼𝐼(𝑡) − (𝜇 + 𝜌 + 𝛿)𝑃(𝑡).

 

As lim
𝑎→∞

𝑖(𝑡, 𝑎) = 0  and lim
𝑎→∞

𝑅(𝑡, 𝑎) = 𝛼 (𝜇 + 𝜌)⁄ , we have lim
𝑎→∞

𝑅(𝑡, 𝑎)𝑖(𝑡, 𝑎) = 0  and 

𝑅(𝑡, 0)𝑖(𝑡, 0) = 휁𝛽𝑇(𝑡)𝑉(𝑡). Therefore, the following differential equation is obtained: 

𝑑𝑃(𝑡)

𝑑𝑡
= 휁𝛽𝑇(𝑡)𝑉(𝑡) + 𝛼𝐼(𝑡) − (𝜇 + 𝜌 + 𝛿)𝑃(𝑡). 

Note that Eq. (4) can be rewritten as a simple linear equation: 

𝑑𝑉(𝑡)

𝑑𝑡
= 𝜌𝑃(𝑡) − 𝑐𝑉(𝑡). 

Taken together, the multiscale PDE model is transformed into the equivalent system of ODEs: 

𝑑𝑇(𝑡)

𝑑𝑡
= 𝑠 − 𝑑𝑇(𝑡) − 𝛽𝑇(𝑡)𝑉(𝑡),                               (7)    

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽𝑇(𝑡)𝑉(𝑡) − 𝛿𝐼(𝑡),                                   (8)    

𝑑𝑃(𝑡)

𝑑𝑡
= 휁𝛽𝑇(𝑡)𝑉(𝑡) + 𝛼𝐼(𝑡) − (𝜇 + 𝜌 + 𝛿)𝑃(𝑡),                 (9)    

𝑑𝑉(𝑡)

𝑑𝑡
= 𝜌𝑃(𝑡) − 𝑐𝑉(𝑡).                                     (10)    

Note that the original PDE model and the transformed ODE model (i.e., Eqs. (7)–(10)) are mathematically 

identical because no specific assumptions are imposed on my formulations (see Fig. 1-1 for numerical 
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comparisons). 

 

Numerical simulations under multi-drug HCV treatments 

The multiscale model distinguishes the different antiviral effects of multi-drug HCV treatments. 

I thus defined the reduced viral RNA production rate (i.e., �̃� = (1 − 휀𝛼)𝛼) and exportation rate (i.e., 

�̃� = (1 − 휀𝜌)𝜌), and the enhanced viral degradation rate (i.e., 𝜇 = 𝜅𝜇), where 0 < 휀𝛼 , 휀𝜌 < 1 and 1 <

𝜅 are the corresponding antiviral effects in the HCV lifecycle [14, 16]. Under multi-drug HCV treatments, 

I replaced the parameters 𝛼, 𝜌 and 𝜅 with �̃�, �̃� and 𝜇 in both the original PDE model (Eqs. (1)–(4)) 

and my transformed ODE model (Eqs. (7)–(10)). I also assumed that treatment is initiated at time 𝑡 = 0, 

and defined 𝑖0(𝑎) and 𝑅0(𝑎) as the baseline values of the infected cell number and intracellular viral 

RNA (i.e., steady state distributions), respectively [16]. For simplicity, I fixed the parameters in this 

numerical simulations. The parameter values, which were estimated from clinical datasets in [14], are 

summarized in Table 1-1. 

[14] and [16] assumed that no de novo infection occurs after the treatment initiation, that is, 

𝑖(𝑡, 𝑎) = 0 for 𝑎 < 𝑡. They considered that current multi-drug HCV treatments are quite potent and 

generally achieve high antiviral effects [9, 14, 23, 24]. This assumption removes the nonlinear term 

𝛽𝑇(𝑡)𝑉(𝑡) from the boundary conditions of the PDE model. 𝑉(𝑡) then simplifies to the following 

approximation for robust parameter estimation from the viral load data: 

𝑉(𝑡) = 𝑉0 {𝑒−𝑐𝑡 +
�̃�𝑐𝛿(𝜌 + 𝜇 + 𝛿)

𝜌(𝛼 + 𝛿)
[

�̃�

𝛿(𝛿 − 𝑐)(�̃� + 𝜇)
(𝑒−𝑐𝑡 − 𝑒−𝛿𝑡)

               +
1

�̃� + 𝜇 + 𝛿 − 𝑐
(

𝜌(𝛼 + 𝛿)

𝛿𝜌(𝜌 + 𝜇 + 𝛿)
−

�̃�

𝛿(�̃� + 𝜇)
) (𝑒−𝑐𝑡 − 𝑒−(�̃�+�̃�+𝛿)𝑡)]}.     (11)

 

 

Discussion 

 

One of major problem in modeling study is how we make a simple model. Mathematical models including 

many variables and parameters with different time scales seem to be required to explain complex biological 

phenomena [18-20]. Without an essential loss of information demanded on data analysis, reduction of a detailed 
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structured model to a simple model is a fundamental important in modern biology, which is called model 

aggregation. This is because the aggregated model is simpler and easier to handle both analytically and numerically 

than the original one. Hence my model aggregation introduced here helps us to analyze clinical and experimental 

data as discussed below: 

I transformed the multiscale PDE model of HCV infection (Eqs. (1)–(4)) into an ODE model (Eqs. (7)–

(10)). Without any assumptions, the ODE model and the original PDE model are mathematically identical. Such 

ODE models are quite useful, especially for estimating parameters from clinical datasets by comprehensive 

numerical computations, because numerical simulations of PDEs often converge poorly and are generally time 

consuming. These problems are especially severe on small age grids Δ𝑎  (see Appendix). For example, when 

𝑎𝑚𝑎𝑥 = 100  and Δa = 0.1 , the 𝑖  and 𝑅  distributions are divided into 1001 compartments, so the fully 

discretized system becomes a 2004-dimensional system of ODEs. This means that 2004 ODEs must be evaluated 

at each time step, requiring 4380.0 seconds per simulation up to 5 days post-treatment initiation by an implicit Euler 

scheme with step size 0.1. My approach evaluates just four ODEs (Eqs. (7)–(10)) in 725.6 seconds (all simulations 

were run in R version 3.2.1 on a Windows 10 OS with an Intel(R) Core(TM) i5 CPU, 1.70 GHz, 4.0 GB RAM). 

Therefore, my transformed ODE model considerably reduces the numerical costs. Note that when the intracellular 

viral-replication dynamics are formulated by linear differential equation(s), any multiscale PDE model can be 

similarly transformed into an ODE system. In this chapter, I transformed the multiscale model of [14] as an 

illustrative example, but the approach is quite general. 

Several numerical methods for parameter estimation in ODEs are now well developed. PDEs can be 

simulated by software such as FREEFEM++, which is rather user-unfriendly [25], but ODEs can be solved by a 

variety of numerical computation tools that support diverse types of analyses. For example, Stan is a popular and 

versatile language for Bayesian modeling and computation, which currently supports parameter estimation of 

ODEs. Stan can be implemented through a dedicated package [26] in the statistical software R [27]. Nonlinear 

mixed-effect modeling of ODEs is also widely implemented in the R package nlmeODE [28]. Hence, my simple 

transformation approach from PDEs to ODE systems will become broadly available for further data analysis. 
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As described in Fig.1, my transformed ODE model numerically agrees with that of the original PDE model, 

which is independent of antiviral effects, but the approximate solution diverges from the complete solutions under 

a low antiviral effect. This implies that the antiviral effects in difficult-to-treat HCV patients are underestimated. 

Although current DAAs effectively treat HCV infections, the treatment failure rates of DAAs are increased in 

HCVs carrying resistant-associated substitutions, especially substitutions in the NS5A region of the HCV genome 

[29]. My transformed ODE models are advantageous, as they accurately quantify the antiviral effect from clinical 

datasets, although all parameters in Eqs. (7)–(10) must be estimated. This approach is particularly useful for 

analyzing the data of in vitro cell-culture experiments, because we can now obtain frequent samples of several 

kinetic variables in a simpler environment than in vivo infection [30]. Indeed, these mathematical models can be 

fully parameterized on modern in vitro data, and the virus infection kinetics can be robustly quantified [30-37]. 

In conclusion, the parameters in ODEs can be estimated by several well-developed numerical methods. 

Therefore, my transformed ODE model and its modified version avoid time-consuming computations and are 

appropriate and suitable for data analysis 

 
 

Abbreviations 

 

HCV: Hepatitis C Virus; ODE: Ordinary Differential Equation; PDE: Partial Differential Equation 
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Figure and Table 
 

 
 

Figure 1-1 | Comparison of numerical simulations. Results of three models. the original PDE 

model (Eqs. (1)–(4), black lines) my transformed ODE model (Eqs. (7)–(10), orange lines) and the 

approximate solution (Eq. (11), blue lines) under anti-HCV drug therapy with (a) a high antiviral effect 

and (b) a low antiviral effect. The model parameters are listed in Table 1-1. 
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Table 1-1. Fixed parameter values in the numerical simulations 

 

 

 

 

 

 

 

 

 

 

 

Parameter name Parameters Unit  values 

Supply of target cells 𝑠 cells/ml ∙ day−1 1.30 × 105 

Infection rate 𝛽 day−1 ∙ virion/ml−1 5.00 × 10−8 

Death rate of target cells 𝑑 day−1 0.01 

Death rate of infected cells 𝛿 day−1 0.14 

Viral clearance rate 𝑐 day−1 22.3 

Production rate of viral RNA 𝛼 day−1 40.0 

Degradation rate of viral RNA 𝜇 day−1 1.00 

Exportation rate of viral RNA 𝜌 day−1 8.18 

Antiviral effect on viral RNA production 휀𝛼 day−1 0.99 and 0.50 in Fig.1(a) and (b) 

Antiviral effect on viral RNA degradation 𝜅 day−1 1.00 

Antiviral effect on viral RNA exportation 휀𝜌 day−1 0.56 
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Appendix 

 
The original PDE model (Eqs. (1)–(4)), proposed by Guedj J et al. and published in Proc. Natl. Acad. Sci. USA 

2013;110(10): 3991–6, is a coupled system of PDEs and ODEs. Here we derived a system of ODEs by discretizing 

the 𝑖 and 𝑅 compartments with respect to age as follows. 

I first prepared the equidistant age interval 0 = 𝑎0 < 𝑎1 < ⋯ < 𝑎𝑁 = 𝑎𝑚𝑎𝑥 , where the age grid Δ𝑎 

satisfies Δ𝑎 = 𝑎𝑗 − 𝑎𝑗−1 for 𝑗 = 1, … , 𝑁, and 𝑎𝑚𝑎𝑥 is the maximum infection age of the infected cells 𝑖(𝑡, 𝑎), 

i.e. 𝑖(𝑡, 𝑎 > 𝑎𝑚𝑎𝑥) = 0. The Taylor expansion of 𝑖(𝑡, 𝑎) about 𝑎 is given by 

𝑖(𝑡, 𝑎 + Δ𝑎) = 𝑖(𝑡, 𝑎) + Δ𝑎

𝜕

𝜕𝑎
𝑖(𝑡, 𝑎) + 𝛰(Δ𝑎

2), 

where 𝛰(Δ𝑎
2) is the Δ𝑎

2-order remainder term. Thus we get 

𝜕

𝜕𝑎
𝑖(𝑡, 𝑎) =

1

Δ𝑎
(𝑖(𝑡, 𝑎 + Δ𝑎) − 𝑖(𝑡, 𝑎)) − 𝛰(Δ𝑎).  

Now, let 𝐼𝑗(𝑡) = 𝑖(𝑡, 𝑎 = 𝑎𝑗), i.e., let the number of cells at age 𝑎 = 𝑎𝑗. By discarding the remainder term 

𝛰(Δ𝑎) and substituting 𝑖(𝑡, 𝑎𝑗) with 𝐼𝑗(𝑡), we obtain the following discretized ODE: 

𝑑𝐼𝑗

𝑑𝑡
= −𝛿𝐼𝑗(𝑡) −

1

Δ𝑎
(𝐼𝑗(𝑡) − 𝐼𝑗−1(𝑡)), 

where 𝑗 = 1, … , 𝑁. The boundary condition is given by 𝑖(0, 𝑡) = 𝛽𝑇(𝑡)𝑉(𝑡) and the corresponding boundary 

term becomes 𝐼0(𝑡) = 𝛽𝑇(𝑡)𝑉(𝑡). 

Similarly, Eq. (2) is discretized as follows: 

𝑑𝑅𝑗

𝑑𝑡
= 𝛼 − (𝜇 + 𝜌)𝑅𝑗(𝑡) −

1

Δ𝑎
(𝑅𝑗(𝑡) − 𝑅𝑗−1(𝑡)), 

where 𝑅𝑗(𝑡) = 𝑅(𝑡, 𝑎 = 𝑎𝑗) for 𝑗 = 1, … , 𝑁. Before the treatment, 𝑅 is time-independent, i.e., 
𝜕

𝜕𝑡
𝑅(𝑡, 𝑎) = 0. 

This time-independent 𝑅, denoted by 𝑅∗, is given by the following ODE: 

𝑑𝑅∗

𝑑𝑎
(𝑎) = 𝛼 − (𝜇 + 𝜌)𝑅∗(𝑎). 

The analytical solution to this expression can be used as the initial distribution of 𝑅𝑗(0) for  𝑗 = 1, … , 𝑁 with 

𝑅0(0) = 휁. 

On the other hand, 𝑖(𝑡, 𝑎) and 𝑅(𝑡, 𝑎) in Eq. (4) can be substituted by 𝐼𝑗(𝑡) and 𝑅𝑗(𝑡) respectively as 

follows. Dividing the integration in Eq. (4) into intervals, we obtain 
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𝑑𝑉

𝑑𝑡
 = 𝜌 ∑ ∫ 𝑅(𝑡, 𝑎)𝑖(𝑡, 𝑎)𝑑𝑎

(𝑗+1)Δ𝑎

𝑗Δ𝑎

∞

𝑗=0

− 𝑐𝑉(𝑡)

= 𝜌 lim
|Δ𝑎|→0

∑ 𝑅(𝑡, 𝑎𝑗)𝑖(𝑡, 𝑎𝑗)Δ𝑎

∞

𝑗=0

− 𝑐𝑉(𝑡)

= 𝜌 lim
|Δ𝑎|→0

∑ 𝑅𝑗(𝑡)𝐼𝑗(𝑡)Δ𝑎

∞

𝑗=0

− 𝑐𝑉(𝑡).

 

Thus, the coupled ODE and PDE system (Eqs. (1)–(4)) is transformed into the following system of discretized 

ODEs: 

𝑑𝑇

𝑑𝑡
 =  𝑠 − 𝛽𝑇(𝑡)𝑉(𝑡) − 𝑑𝑇(𝑡),

𝑑𝐼𝑗

𝑑𝑡
 =  −𝛿𝐼𝑗(𝑡) −

1

Δ𝑎
(𝐼𝑗(𝑡) − 𝐼𝑗−1(𝑡)) ,

𝑑𝑅𝑗

𝑑𝑡
 =  𝛼 − (𝜇 + 𝜌)𝑅𝑗(𝑡) −

1

Δ𝑎
(𝑅𝑗(𝑡) − 𝑅𝑗−1(𝑡)) ,

𝑑𝑉

𝑑𝑡
 =  𝜌 lim

|Δ𝑎|→0
∑ 𝑅(𝑎𝑗)𝐼𝑗(𝑡)Δ𝑎

∞

𝑗=0

− 𝑐𝑉(𝑡),

 

for 𝑗 = 1, … , 𝑁. The boundary terms 𝐼0(𝑡) and 𝑅0(𝑡) are given by 𝛽𝑇(𝑡)𝑉(𝑡) and 휁, respectively, and the initial 

conditions 𝐼𝑗(𝑡)  and 𝑅𝑗(𝑡)  by 𝑖0(𝑎𝑗, 0)  and 𝑅∗(𝑎𝑗) , respectively. In the numerical simulation (Fig. 1-1), I 

assumed that the 𝑖  and 𝑅  compartments reach steady states with respect to time before the treatment starts, 

meaning that only age-dependent derivatives remain in the system. The corresponding ODEs of the 𝑖 and 𝑅 

compartments can be analytically solved, and the initial distributions of 𝐼𝑗 and 𝑅𝑗 for 𝑗 = 1, … , 𝑁 in the original 

PDE model are given by 𝐼𝑗(0) = 𝛽𝑉0𝑇0exp (−𝛿𝑎𝑗)  and 𝑅𝑗(0) = exp(−(𝜇 + 𝜌)𝑎𝑗) (휁 −
𝛼

𝜇+𝜌
) +

𝛼

𝜇+𝜌
, 

respectively. Depending on the action mechanism of the drugs, the antiviral effect changes the corresponding 

parameters (e.g., (1 − 휀𝛼)𝛼) from those of the model that do not take account to the antiviral effect.
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Chapter 2 

 

Mathematical Analysis of a Transformed ODE from a PDE Multiscale Model of Hepatitis C 

Virus Infection 
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Introduction 

 

Stability analysis is one of the most fundamental and important approaches for understanding the 

dynamic behavior of mathematical models and has been performed for every type of mathematical model 

in all areas[38-45]. Age-structured models referred to as “multiscale model” have been widely used to 

study the within-host dynamics of infections by several viruses [15, 46-48], especially for analyzing 

hepatitis C virus (HCV) clinical datasets under multidrug treatments [14, 16, 48]. Age-structured models 

are generally formulated by partial differential equations (PDEs), so they are considerably more difficult 

to analyze mathematically and numerically. However, since the multiscale models can describe both 

intercellular and intracellular viral infection dynamics including the intracellular viral replication 

processes corresponding to the action mechanisms, it is necessary to accurately quantify antiviral effects 

(i.e., estimating parameters) from clinical datasets under multidrug treatments [49, 50], . 

For example, Guedj et al. developed an age-structured multiscale model of HCV infection 

considering the intracellular HCV replication/degradation by PDEs. The original PDE model of a potent 

multidrug HCV treatment, with its mathematically strong but biologically reasonable assumptions, 

provided approximate solutions to the clinical data fitting, and their approximation successfully estimated 

several important parameters in a previous study [14]. On the other hand, when multidrug treatments are 

relatively impotent, it has been reported that their approximation could not accurately trace numerical 

PDE solutions, and therefore might underestimate the antiviral effects [50]. Thus, in addition to the 

derivation of approximate solutions [14, 16], to robustly perform parameter estimation based on direct 

numerical solutions of PDEs, several advanced numerical methods that overcome the property of stiffness 

of the differential equation have been developed [48, 49, 51, 52]. Furthermore, in my recent report [50], 

to improve achievement of the numerical solution of the multiscale model, I proposed “model aggregation” 

[19, 20],  and derived mathematically identical ordinary differential equations (ODEs) from the original 

PDE model [14, 16]. Since the parameters of ODEs could be estimated by already established methods 



18  

  

 

including “R,” “Mathematica,” and “Matlab,” my transformed ODE model and its modified version avoid 

the time-consuming computations and are broadly available for data analysis. 

Thanks to the identical ODE derivation from the original PDE model, mathematical analysis for 

the multiscale model might be markedly accelerated. In fact, compared with numerical analysis of 

multiscale models, mathematical analysis of multiscale models described by PDEs has not been well 

achieved. This is because comprehensive stability analysis for PDE is mathematically difficult and often 

limited to local asymptotically stable (LAS) [17]. Here, taking advantage of standard approaches for 

mathematical analysis of ODE, I analyzed the transformed ODE model and determined the 

mathematical structure of the original PDE model. The goal of this paper is to improve a mathematical 

analysis reported previously [17]. I derived the basic reproduction numbers of the transformed ODE, 

and discussed their biological meanings. Furthermore, I provided the global stability of all possible 

steady states of the transformed ODE. 

 

Results 

 

The following multiscale model formulated by PDEs describing the intracellular HCV lifecycle 

has been proposed and applied for analyzing clinical data under multidrug HCV treatment [14, 16]: 

𝑑𝑇(𝑡)

𝑑𝑡
= 𝑠 − 𝑑𝑇(𝑡) − 𝛽𝑇(𝑡)𝑉(𝑡),                           (1)    

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑎
) 𝑖(𝑡, 𝑎) = −𝛿𝑖(𝑡, 𝑎),                             (2)    

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑎
) 𝑅(𝑡, 𝑎) = 𝛼 − (𝜇 + 𝜌)𝑅(𝑡, 𝑎),                    (3)    

𝑑𝑉(𝑡)

𝑑𝑡
= 𝜌 ∫ 𝑅(𝑡, 𝑎)𝑖(𝑡, 𝑎)𝑑𝑎

∞

0

− 𝑐𝑉(𝑡),                     (4)    

with the following initial and boundary conditions: 

𝑇(0) = 𝑇0, 𝑉(0) = 𝑉0, 𝑖(0, 𝑎) = 𝑖0(𝑎), 𝑅(0, 𝑎) = 𝑅0(𝑎), 

and 
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  𝑖(𝑡, 0) = 𝛽𝑇(𝑡)𝑉(𝑡), 𝑅(𝑡, 0) = 휁. 

Here, the variable 𝑇(𝑡) is the number of (uninfected) target cells, while 𝑉(𝑡) denotes the number of 

viruses. In addition, the variable 𝑖(𝑡, 𝑎) represents the age distribution of infected cells (i.e., the density 

of cells with infection age 𝑎) at time 𝑡. Similarly, 𝑅(𝑡, 𝑎) is the age and time distribution of intracellular 

viral RNA in a cell with infection age 𝑎. The target cells are assumed to be supplied at rate 𝑠, infected by 

viruses at rate 𝛽, and naturally die at rate 𝑑. The infected cells die at rate 𝛿 and the progeny viruses are 

cleared at rate 𝑐 . The parameters 𝛼  and 𝜇  denote the production and degradation rates of the 

intracellular viral RNA, respectively. Viral RNA is assumed to assemble along with viral proteins and to 

be secreted from an infected cell as viral particles at rate 𝜌. Note that the entry virus-derived RNA starts 

to replicate from 휁 copies in a newly infected cell. In this model, all parameters are defined as non-

negative values. 

In my recent report [50], I proposed “model aggregation” [19, 20] which transforms the above 

PDE multiscale model of HCV infection [i.e., Eqs. (1–4)] into the following mathematically identical 

ODEs: 

𝑑𝑇(𝑡)

𝑑𝑡
= 𝑠 − 𝑑𝑇(𝑡) − 𝛽𝑇(𝑡)𝑉(𝑡),                               (7)    

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽𝑇(𝑡)𝑉(𝑡) − 𝛿𝐼(𝑡),                                   (8)    

𝑑𝑃(𝑡)

𝑑𝑡
= 휁𝛽𝑇(𝑡)𝑉(𝑡) + 𝛼𝐼(𝑡) − (𝜇 + 𝜌 + 𝛿)𝑃(𝑡),                 (9)    

𝑑𝑉(𝑡)

𝑑𝑡
= 𝜌𝑃(𝑡) − 𝑐𝑉(𝑡).                                     (10)    

Here, the total number of infected cells and the total amount of intracellular viral RNA pooled in 

all infected cells are defined as 𝐼(𝑡) = ∫ 𝑖(𝑡, 𝑎)𝑑𝑎
∞

0
 and 𝑃(𝑡) = ∫ 𝑅(𝑡, 𝑎)𝑖(𝑡, 𝑎)𝑑𝑎

∞

0
, respectively, with 

the initial distributions 𝐼(0) = ∫ 𝑖0(𝑎)𝑑𝑎
∞

0
 and 𝑃(0) = ∫ 𝑅0(𝑎)𝑖0(𝑎)𝑑𝑎

∞

0
. The derivation from the 

original PDE [i.e., Eqs. (1–4)] to the transformed ODE model [i.e., Eqs. (7–10)] is detailed elsewhere 

[50]. 
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Basic reproduction number of transformed ODE 

I first derived an important index to quantify “potential for viral infection,” that is, the basic 

reproduction number [3, 30], 𝑅0. Since the basic reproduction number is defined as the expected total 

number of cells newly infected from one typical infected cell during its lifetime at the beginning of 

infection, I assumed 𝑇(0) = 𝑇0 = 𝑠 𝑑⁄ . Therefore, the ODE model [i.e., Eqs. (7–10)] is written as the 

following linearized version: 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽𝑇0𝑉(𝑡) − 𝛿𝐼(𝑡),

𝑑𝑃(𝑡)

𝑑𝑡
= 휁𝛽𝑇0𝑉(𝑡) + 𝛼𝐼(𝑡) − (𝜇 + 𝜌 + 𝛿)𝑃(𝑡),

𝑑𝑉(𝑡)

𝑑𝑡
= 𝜌𝑃(𝑡) − 𝑐𝑉(𝑡).

 

Let 𝑏(𝑡) be the number of infected cells newly produced in the linear phase: 

𝑏(𝑡) ∶= 𝛽𝑇0𝑉(𝑡). 

Applying the variation of constants formula, we have: 

𝐼(𝑡) = 𝐼(0) exp(−𝛿𝑡) + ∫ exp(−𝛿(𝑡 − 𝑠)) 𝑏(𝑠)𝑑𝑠
𝑡

0

,

𝑃(𝑡) = 𝑃(0) exp(−(𝜌 + 𝜇 + 𝛿)𝑡) + ∫ exp(−(𝜌 + 𝜇 + 𝛿)(𝑡 − 𝑠))(휁𝑏(𝑠) + 𝛼𝐼(𝑠)) 𝑑𝑠
𝑡

0

,

𝑉(𝑡) = 𝑉(0) exp(−𝑐𝑡) + ∫ exp(−𝑐(𝑡 − 𝑠)) 𝜌𝑃(𝑠)𝑑𝑠
𝑡

0

.

 

with initial values of 𝐼(0) = 1, 𝑃(0) = 휁, and 𝑉(0) = 0. This leads to 

𝐼(𝑡) = exp(−𝛿𝑡) + ∫ exp(−𝛿(𝑡 − 𝑠)) 𝑏(𝑠)𝑑𝑠
𝑡

0

,

𝑃(𝑡) = 휁 exp(−(𝜌 + 𝜇 + 𝛿)𝑡) + ∫ exp(−(𝜌 + 𝜇 + 𝛿)(𝑡 − 𝑠))(휁𝑏(𝑠) + 𝛼𝐼(𝑠)) 𝑑𝑠
𝑡

0

,

𝑉(𝑡) = ∫ exp(−𝑐(𝑡 − 𝑠)) 𝜌𝑃(𝑠)𝑑𝑠.
𝑡

0

 

Inserting 𝑃(𝑡) and 𝐼(𝑡) into 𝑉(𝑡), we have: 
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𝑉(𝑡) = ∫ exp(−𝑐(𝑡 − 𝑠)) 𝜌 {휁 exp(−(𝜌 + 𝜇 + 𝛿)𝑠)
𝑡

0

+ ∫ exp(−(𝜌 + 𝜇 + 𝛿)(𝑠 − 𝑟)) (휁𝑏(𝑟) + 𝛼 exp(−𝛿𝑟)
𝑠

0

+ 𝛼 ∫ exp(−𝛿(𝑟 − 𝑢)) 𝑏(𝑢)𝑑𝑢
𝑟

0

) 𝑑𝑟} 𝑑𝑠. 

Exchanging the order of integrals, we can arrive at the following renewal equation: 

𝑏(𝑡) = 𝛹(𝑡) + ∫ 𝛹(𝑠)𝑏(𝑡 − 𝑠)𝑑𝑠
𝑡

0

, 

where 𝛹(𝑡) is given by:  

𝛹(𝑡) ∶= 𝜓1(𝑡) + 𝜓2(𝑡). 

Here, 𝜓1(𝑡) and 𝜓2(𝑡) are given by: 

𝜓1(𝑡) = ∫ 휁𝜌𝛽𝑇0 exp(−𝑐𝑟) exp(−(𝜇 + 𝜌 + 𝛿)(𝑡 − 𝑟)) 𝑑𝑟
𝑡

0

,

𝜓2(𝑡) = ∫ ∫ 𝛼𝜌 𝛽𝑇0exp(−𝑐𝑢) exp(−(𝜇 + 𝜌 + 𝛿)(𝑟 − 𝑢)) exp(−𝛿(𝑡 − 𝑟)) 𝑑𝑢
𝑟

0

𝑑𝑟
𝑡

0

.

 

From the general theory of the basic reproduction number [53], 𝑅0 for the reproduction of infected cells 

is given by:  

𝑅0 = ∫ 𝛹(𝑡)𝑑𝑡
∞

0

= ∫ (𝜓1(𝑡) + 𝜓2(𝑡))𝑑𝑡
∞

0

=
𝛽𝜌𝑇0휁

𝑐(𝜇 + 𝜌 + 𝛿)
+

𝛽𝜌𝛼𝑇0

𝑐𝛿(𝜇 + 𝜌 + 𝛿)
 

= 𝑅𝑣 + 𝑅𝑟

 

Interestingly, 𝑅0  is divided by the two renewal processes, 𝑅𝑣  and 𝑅𝑟 , denoting the reproduction 

number for infected cells mediated by the viral RNA brought by the entered virion (entry virus-derived 

RNA, 휁) and the newly replicated intracellular viral RNA (replicated viral RNA), respectively (Fig. 2-

1). Here the basic reproduction number explains the average number of newly infected cells based on the 

dynamics of the total amount of intracellular viral RNA, which corresponds to 𝑃(𝑡) [i.e., Eq. (9)] in the 

transformed ODE model, instead of the dynamics of the individual amount of intracellular viral RNA in 
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the original PDE model [50]. Note that the lifecycles of both extracellular viral and total intracellular viral 

RNA are explicitly considered in my ODE model, and the viruses are formulated from the viral RNAs. 

 

Existence of steady states of transformed ODE 

As has been well investigated for many ODE models, the basic reproduction number might 

determine the threshold phenomena behind mathematical models, especially for the existence of steady 

states and their stability. Here, I calculated the steady states of the transformed ODE model [i.e., Eqs. (7–

10)]. There are two steady states, that is, 𝐸0 = (𝑇0, 0, 0, 0) , the virus-free equilibrium, and 𝐸+ =

(𝑇+, 𝐼+, 𝑃+, 𝑉+), the virus-infection equilibrium, which are satisfied with the following equations: 

0 = 𝑠 − 𝑑𝑇+ − 𝛽𝑇+𝑉+, 0 = 𝛽𝑇+𝑉+ − 𝛿𝐼+, 0 = 휁𝛽𝑇+𝑉+ + 𝛼𝐼+ − (𝜇 + 𝜌 + 𝛿)𝑃+, 

 0 = 𝜌𝑃+ − 𝑐𝑉+, 

where  

𝑇+ =
𝑐𝛿(𝜇 + 𝜌 + 𝛿)

𝛽𝜌(𝛼 + 휁𝛿)
, 𝐼+ =

𝑠

𝛿
(1 −

1

𝑅0
) , 𝑃+ =

𝑐𝑑

𝛽𝜌
(𝑅0 − 1), 𝑉+ =

𝑑

𝛽
(𝑅0 − 1). 

Note that 𝐸0 always exists in ℝ+
4  (i.e., 𝐸0 ∈ ℝ+

4 ) where ℝ+
4 = {(𝑇, 𝐼, 𝑃, 𝑉)⊺ ∈ ℝ4: 𝑇 ≥ 0, 𝐼 ≥ 0, 𝑃 ≥

0, 𝑉 ≥ 0} . On the other hand, 𝐸+  exists in ℝ+
4  (i.e., 𝐸+ ∈ intℝ+

4 ) if and only if 𝑅0 ≥ 1 , where 

intℝ+
4 = {(𝑇, 𝐼, 𝑃, 𝑉)⊺ ∈ ℝ4: 𝑇 > 0, 𝐼 > 0, 𝑃 > 0, 𝑉 > 0}. 

 

Stability of steady states of transformed ODE 

Although comprehensive stability analysis for PDE is usually mathematically difficult and often 

limited to local asymptotically stable (LAS) [17], exploiting standard approaches for mathematical 

analysis on the ODE model, I next showed the global stability of the steady states of transformed ODE 

[i.e., Eqs. (7-10)]. 

Let us consider the following Lyapunov function: 

𝐿0(𝑇(𝑡), 𝐼(𝑡), 𝑃(𝑡), 𝑉(𝑡)) ≔ (휁 +
𝛼

𝛿
) 𝑇0𝑔 (

𝑇(𝑡)

𝑇0
) +

𝛼

𝛿
𝐼(𝑡) + 𝑃(𝑡) +

𝜇 + 𝜌 + 𝛿

𝜌
𝑉(𝑡), 
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where 𝑔(𝑥) ≔ 𝑥 − 1 − log 𝑥  is defined for 𝑥 > 0. Note that 𝑔(𝑥) ≥ 0 for 𝑥 > 0 and 𝑔(𝑥) = 0 at 

𝑥 = 1, implying that the Lyapunov function, 𝐿0(𝑡), is always non-negative in ℝ+
4 , but equal to 0 at 𝐸0. 

It is also clear that: 

𝑑

𝑑𝑡
(𝑥∗𝑔 (

𝑥(𝑡)

𝑥∗
)) =

𝑑

𝑑𝑡
(𝑥(𝑡) − 𝑥∗ − 𝑥∗ log

𝑥(𝑡)

𝑥∗
) =

𝑑𝑥(𝑡)

𝑑𝑡
−

𝑥∗

𝑥(𝑡)
∙

𝑑𝑥(𝑡)

𝑑𝑡
= (1 −

𝑥∗

𝑥(𝑡)
)

𝑑𝑥(𝑡)

𝑑𝑡
 

for any constant 𝑥∗. In addition, we have: 

𝑑

𝑑𝑡
((휁 +

𝛼

𝛿
) 𝑇0𝑔 (

𝑇(𝑡)

𝑇0
)) = (휁 +

𝛼

𝛿
) (1 −

𝑇0

𝑇(𝑡)
) (𝑠 − 𝑑𝑇(𝑡) − 𝛽𝑇(𝑡)𝑉(𝑡))  

= (휁 +
𝛼

𝛿
) (1 −

𝑇0

𝑇(𝑡)
) (𝑑𝑇0 (1 −

𝑇(𝑡)

𝑇0
) − 𝛽𝑇(𝑡)𝑉(𝑡))  

= (휁 +
𝛼

𝛿
) {𝑑𝑇0 (2 −

𝑇0

𝑇(𝑡)
−

𝑇(𝑡)

𝑇0
) − 𝛽𝑇(𝑡)𝑉(𝑡) (1 −

𝑇0

𝑇(𝑡)
)} . 

Then, the following relation can be derived: 

𝑑𝐿0(𝑡)

𝑑𝑡
= (휁 +

𝛼

𝛿
) 𝑑𝑇0 (2 −

𝑇0

𝑇(𝑡)
−

𝑇(𝑡)

𝑇0
) − (휁 +

𝛼

𝛿
) 𝛽𝑇(𝑡)𝑉(𝑡) (1 −

𝑇0

𝑇(𝑡)
) +

𝛼

𝛿
(𝛽𝑇(𝑡)𝑉(𝑡) − 𝛿𝐼(𝑡))

+ (휁𝛽𝑇(𝑡)𝑉(𝑡) + 𝛼𝐼(𝑡) − (𝜇 + 𝜌 + 𝛿)𝑃(𝑡)) +
𝜇 + 𝜌 + 𝛿

𝜌
(𝜌𝑃(𝑡) − 𝑐𝑉(𝑡))

= (휁 +
𝛼

𝛿
) 𝑑𝑇0 (−𝑔 (

𝑇0

𝑇(𝑡)
) − 𝑔 (

𝑇(𝑡)

𝑇0
)) + {(휁 +

𝛼

𝛿
) 𝛽𝑇0 −

𝑐(𝜇 + 𝜌 + 𝛿)

𝜌
} 𝑉(𝑡)

= (휁 +
𝛼

𝛿
) 𝑑𝑇0 (−𝑔 (

𝑇0

𝑇(𝑡)
) − 𝑔 (

𝑇(𝑡)

𝑇0
)) +

𝑐(𝜇 + 𝜌 + 𝛿)(𝑅0 − 1)𝑉(𝑡)

𝜌
. 

Therefore, I concluded that 𝑑𝐿0(𝑡)/𝑑𝑡 ≤ 0 if 𝑅0 ≤ 1. In particular we can see that 𝑑𝐿0(𝑡)/𝑑𝑡 = 0 

only if 𝑇(𝑡) = 𝑇0. Substituting 𝑇(𝑡) = 𝑇0 into both sides of Eq. (7), I have 0 = −𝛽𝑇0𝑉(𝑡), and hence 

𝑉(𝑡) = 0. If 𝑉(𝑡) = 0, then 𝑃(𝑡) = 0 follows from Eq. (10), and thus 𝐼(𝑡) = 0 follows from Eq. (9). 

Consequently, I derived that 𝑑𝐿0(𝑡)/𝑑𝑡 = 0 only if the solution is in virus-free equilibrium, 𝐸0. Hence, 

by applying Lyapunov–LaSalle’s invariance principle, all of the trajectories of the transformed ODE [i.e., 

Eqs. (7–10)] converge to 𝐸0, that is, 𝐸0 is globally asymptotically stable (i.e., GAS) if 𝑅0 ≤ 1. 
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Next, I defined the following Lyapunov function: 

𝐿+(𝑇(𝑡), 𝐼(𝑡), 𝑃(𝑡), 𝑉(𝑡))

≔ (휁 +
𝛼

𝛿
) 𝑇+𝑔 (

𝑇(𝑡)

𝑇+
) +

𝛼

𝛿
𝐼+𝑔 (

𝐼(𝑡)

𝐼+
) + 𝑃+𝑔 (

𝑃(𝑡)

𝑃+
) +

𝜇 + 𝜌 + 𝛿

𝜌
𝑉+𝑔 (

𝑉(𝑡)

𝑉+
). 

We have: 

𝑑𝐿+(𝑡)

𝑑𝑡
= (휁 +

𝛼

𝛿
) (1 −

𝑇+

𝑇(𝑡)
)

𝑑𝑇(𝑡)

𝑑𝑡
+

𝛼

𝛿
(1 −

𝐼+

𝐼(𝑡)
)

𝑑𝐼(𝑡)

𝑑𝑡
+ (1 −

𝑃+

𝑃(𝑡)
)

𝑑𝑃(𝑡)

𝑑𝑡

+
𝜇 + 𝜌 + 𝛿

𝜌
(1 −

𝑉+

𝑉(𝑡)
)

𝑑𝑉(𝑡)

𝑑𝑡
. 

The first term could be evaluated as follows: 

(휁 +
𝛼

𝛿
) (1 −

𝑇+

𝑇(𝑡)
)

𝑑𝑇(𝑡)

𝑑𝑡
= (휁 +

𝛼

𝛿
) (1 −

𝑇+

𝑇(𝑡)
) (𝑠 − 𝑑𝑇(𝑡) − 𝛽𝑇(𝑡)𝑉(𝑡))

= (휁 +
𝛼

𝛿
) (1 −

𝑇+

𝑇(𝑡)
) (𝑑𝑇+ + 𝛽𝑇+𝑉+ − 𝑑𝑇(𝑡) − 𝛽𝑇(𝑡)𝑉(𝑡))  

= (휁 +
𝛼

𝛿
) (1 −

𝑇+

𝑇(𝑡)
) {𝑑𝑇+ (1 −

𝑇(𝑡)

𝑇+
) + 𝛽𝑇+𝑉+ (1 −

𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
)}

= (휁 +
𝛼

𝛿
) {𝑑𝑇+ (1 −

𝑇+

𝑇(𝑡)
) (1 −

𝑇(𝑡)

𝑇+
) + 𝛽𝑇+𝑉+ (1 −

𝑇+

𝑇(𝑡)
) (1 −

𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
)}

= (휁 +
𝛼

𝛿
) {𝑑𝑇+ (2 −

𝑇+

𝑇(𝑡)
−

𝑇(𝑡)

𝑇+
) + 𝛽𝑇+𝑉+ (1 −

𝑇+

𝑇(𝑡)
−

𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
+

𝑉(𝑡)

𝑉+
)}

≤ (휁 +
𝛼

𝛿
) 𝛽𝑇+𝑉+ (1 −

𝑇+

𝑇(𝑡)
−

𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
+

𝑉(𝑡)

𝑉+
)

= (휁 +
𝛼

𝛿
) 𝛽𝑇+𝑉+ [−𝑔 (

𝑇+

𝑇(𝑡)
) − 𝑔 (

𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
) + 𝑔 (

𝑉(𝑡)

𝑉+
)]. 

In addition, the second, third, and fourth terms are rewritten as follows: 
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𝛼

𝛿
(1 −

𝐼+

𝐼(𝑡)
)

𝑑𝐼(𝑡)

𝑑𝑡
=

𝛼

𝛿
(1 −

𝐼+

𝐼(𝑡)
) (𝛽𝑇(𝑡)𝑉(𝑡) − 𝛿𝐼(𝑡)) −=

𝛼

𝛿
(1 −

𝐼+

𝐼(𝑡)
) (𝛽𝑇(𝑡)𝑉(𝑡) − 𝛿𝐼+ ∙

𝐼(𝑡)

𝐼+
)

=
𝛼

𝛿
(1 −

𝐼+

𝐼(𝑡)
) (𝛽𝑇(𝑡)𝑉(𝑡) − 𝛽𝑇+𝑉+

𝐼(𝑡)

𝐼+
) =

𝛼

𝛿
𝛽𝑇+𝑉+ (1 −

𝐼+

𝐼(𝑡)
) (

𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
−

𝐼(𝑡)

𝐼+
)

=
𝛼

𝛿
𝛽𝑇+𝑉+ (

𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
−

𝐼(𝑡)

𝐼+
−

𝑇(𝑡)𝐼+𝑉(𝑡)

𝑇+𝐼(𝑡)𝑉+
+ 1)

=
𝛼

𝛿
𝛽𝑇+𝑉+ [𝑔 (

𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
) − 𝑔 (

𝐼(𝑡)

𝐼+
) − 𝑔 (

𝑇(𝑡)𝐼+𝑉(𝑡)

𝑇+𝐼(𝑡)𝑉+
)] , 

and 

(1 −
𝑃+

𝑃(𝑡)
)

𝑑𝑃(𝑡)

𝑑𝑡
= (1 −

𝑃+

𝑃(𝑡)
) (휁𝛽𝑇(𝑡)𝑉(𝑡) + 𝛼𝐼(𝑡) − (𝜇 + 𝜌 + 𝛿)𝑃(𝑡))

= (1 −
𝑃+

𝑃(𝑡)
) (휁𝛽𝑇(𝑡)𝑉(𝑡) + 𝛼𝐼(𝑡) − (𝜇 + 𝜌 + 𝛿)𝑃+ ∙

𝑃(𝑡)

𝑃+
)

= (1 −
𝑃+

𝑃(𝑡)
) (휁𝛽𝑇(𝑡)𝑉(𝑡) + 𝛼𝐼(𝑡) − (휁𝛽𝑇+𝑉+ + 𝛼𝐼+)

𝑃(𝑡)

𝑃+
)

= (1 −
𝑃+

𝑃(𝑡)
) (휁𝛽𝑇(𝑡)𝑉(𝑡) +

𝛼

𝛿
𝛿𝐼+

𝐼(𝑡)

𝐼+
− 휁𝛽𝑇+𝑉+

𝑃(𝑡)

𝑃+
−

𝛼

𝛿
𝛿𝐼+

𝑃(𝑡)

𝑃+
)

= (1 −
𝑃+

𝑃(𝑡)
) (휁𝛽𝑇(𝑡)𝑉(𝑡) +

𝛼

𝛿
𝛽𝑇+𝑉+

𝐼(𝑡)

𝐼+
− 휁𝛽𝑇+𝑉+

𝑃(𝑡)

𝑃+
−

𝛼

𝛿
𝛽𝑇+𝑉+

𝑃(𝑡)

𝑃+
)

= (1 −
𝑃+

𝑃(𝑡)
) {휁𝛽𝑇+𝑉+ (

𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
−

𝑃(𝑡)

𝑃+
) +

𝛼

𝛿
𝛽𝑇+𝑉+ (

𝐼(𝑡)

𝐼+
−

𝑃(𝑡)

𝑃+
)}

= 휁𝛽𝑇+𝑉+ (
𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
−

𝑃(𝑡)

𝑃+
−

𝑇(𝑡)𝑃+𝑉(𝑡)

𝑇+𝑃(𝑡)𝑉+
+ 1)

+
𝛼

𝛿
𝛽𝑇+𝑉+ (

𝐼(𝑡)

𝐼+
−

𝑃(𝑡)

𝑃+
−

𝐼(𝑡)𝑃+

𝐼+𝑃(𝑡)
+ 1)

= 휁𝛽𝑇+𝑉+ [𝑔 (
𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
) − 𝑔 (

𝑃(𝑡)

𝑃+
) − 𝑔 (

𝑇(𝑡)𝑃+𝑉(𝑡)

𝑇+𝑃(𝑡)𝑉+
)]

+
𝛼

𝛿
𝛽𝑇+𝑉+ [𝑔 (

𝐼(𝑡)

𝐼+
) − 𝑔 (

𝑃(𝑡)

𝑃+
) − 𝑔 (

𝐼(𝑡)𝑃+

𝐼+𝑃(𝑡)
)] , 

and 
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𝜇 + 𝜌 + 𝛿

𝜌
(1 −

𝑉+

𝑉(𝑡)
)

𝑑𝑉(𝑡)

𝑑𝑡
=

𝜇 + 𝜌 + 𝛿

𝜌
(1 −

𝑉+

𝑉(𝑡)
) (𝜌𝑃(𝑡) − 𝑐𝑉(𝑡))

=
𝜇 + 𝜌 + 𝛿

𝜌
(1 −

𝑉+

𝑉(𝑡)
) (

𝜌

𝜇 + 𝜌 + 𝛿

𝑃(𝑡)

𝑃+

(𝜇 + 𝜌 + 𝛿)𝑃+ −
𝑉(𝑡)

𝑉+
𝑐𝑉+)

=
𝜇 + 𝜌 + 𝛿

𝜌
(1 −

𝑉+

𝑉(𝑡)
) (

𝜌

𝜇 + 𝜌 + 𝛿

𝑃(𝑡)

𝑃+

(𝜇 + 𝜌 + 𝛿)𝑃+ −
𝑉(𝑡)

𝑉+
𝜌𝑃+)

=
𝜇 + 𝜌 + 𝛿

𝜌
(1 −

𝑉+

𝑉(𝑡)
) (

𝜌

𝜇 + 𝜌 + 𝛿

𝑃(𝑡)

𝑃+

(𝜇 + 𝜌 + 𝛿)𝑃+

−
𝑉(𝑡)

𝑉+

𝜌

𝜇 + 𝜌 + 𝛿
(𝜇 + 𝜌 + 𝛿)𝑃+)

=
𝜇 + 𝜌 + 𝛿

𝜌

𝜌

𝜇 + 𝜌 + 𝛿
(𝜇 + 𝜌 + 𝛿)𝑃+ (1 −

𝑉+

𝑉(𝑡)
) (

𝑃(𝑡)

𝑃+
−

𝑉(𝑡)

𝑉+
)

= (휁𝛽𝑇+𝑉+ + 𝛼𝐼+) (1 −
𝑉+

𝑉(𝑡)
) (

𝑃(𝑡)

𝑃+
−

𝑉(𝑡)

𝑉+
)

= (휁𝛽𝑇+𝑉+ +
𝛼

𝛿
𝛿𝐼+) (1 −

𝑉+

𝑉(𝑡)
) (

𝑃(𝑡)

𝑃+
−

𝑉(𝑡)

𝑉+
)

= (휁𝛽𝑇+𝑉+ +
𝛼

𝛿
𝛽𝑇+𝑉+) (1 −

𝑉+

𝑉(𝑡)
) (

𝑃(𝑡)

𝑃+
−

𝑉(𝑡)

𝑉+
)

= (휁𝛽𝑇+𝑉+ +
𝛼

𝛿
𝛽𝑇+𝑉+) (

𝑃(𝑡)

𝑃+
−

𝑉(𝑡)

𝑉+
−

𝑃(𝑡)𝑉+

𝑃+𝑉(𝑡)
+ 1)

= (휁𝛽𝑇+𝑉+ +
𝛼

𝛿
𝛽𝑇+𝑉+) [𝑔 (

𝑃(𝑡)

𝑃+
) − 𝑔 (

𝑉(𝑡)

𝑉+
) − 𝑔 (

𝑃(𝑡)𝑉+

𝑃+𝑉(𝑡)
)]

= 휁𝛽𝑇+𝑉+ [𝑔 (
𝑃(𝑡)

𝑃+
) − 𝑔 (

𝑉(𝑡)

𝑉+
) − 𝑔 (

𝑃(𝑡)𝑉+

𝑃+𝑉(𝑡)
)]

+
𝛼

𝛿
𝛽𝑇+𝑉+ [𝑔 (

𝑃(𝑡)

𝑃+
) − 𝑔 (

𝑉(𝑡)

𝑉+
) − 𝑔 (

𝑃(𝑡)𝑉+

𝑃+𝑉(𝑡)
)], 

respectively. Taken together the four rewritten terms, we get evaluation as follows: 
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𝑑𝐿+(𝑡)

𝑑𝑡
≤ (휁 +

𝛼

𝛿
) 𝛽𝑇+𝑉+ [−𝑔 (

𝑇+

𝑇(𝑡)
) − 𝑔 (

𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
) + 𝑔 (

𝑉(𝑡)

𝑉+
)]

+
𝛼

𝛿
𝛽𝑇+𝑉+ [𝑔 (

𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
) − 𝑔 (

𝐼(𝑡)

𝐼+
) − 𝑔 (

𝑇(𝑡)𝐼+𝑉(𝑡)

𝑇+𝐼(𝑡)𝑉+
)]

+ 휁𝛽𝑇+𝑉+ [𝑔 (
𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
) − 𝑔 (

𝑃(𝑡)

𝑃+
) − 𝑔 (

𝑇(𝑡)𝑃+𝑉(𝑡)

𝑇+𝑃(𝑡)𝑉+
)]

+
𝛼

𝛿
𝛽𝑇+𝑉+ [𝑔 (

𝐼(𝑡)

𝐼+
) − 𝑔 (

𝑃(𝑡)

𝑃+
) − 𝑔 (

𝐼(𝑡)𝑃+

𝐼+𝑃(𝑡)
)]

+ 휁𝛽𝑇+𝑉+ [𝑔 (
𝑃(𝑡)

𝑃+
) − 𝑔 (

𝑉(𝑡)

𝑉+
) − 𝑔 (

𝑃(𝑡)𝑉+

𝑃+𝑉(𝑡)
)]

+
𝛼

𝛿
𝛽𝑇+𝑉+ [𝑔 (

𝑃(𝑡)

𝑃+
) − 𝑔 (

𝑉(𝑡)

𝑉+
) − 𝑔 (

𝑃(𝑡)𝑉+

𝑃+𝑉(𝑡)
)]

= 휁𝛽𝑇+𝑉+ [−𝑔 (
𝑇+

𝑇(𝑡)
) − 𝑔 (

𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
) + 𝑔 (

𝑉(𝑡)

𝑉+
) + 𝑔 (

𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
) − 𝑔 (

𝑃(𝑡)

𝑃+
)

− 𝑔 (
𝑇(𝑡)𝑃+𝑉(𝑡)

𝑇+𝑃(𝑡)𝑉+
) +𝑔 (

𝑃(𝑡)

𝑃+
) − 𝑔 (

𝑉(𝑡)

𝑉+
) − 𝑔 (

𝑃(𝑡)𝑉+

𝑃+𝑉(𝑡)
)]

+
𝛼

𝛿
𝛽𝑇+𝑉+ [−𝑔 (

𝑇+

𝑇(𝑡)
) − 𝑔 (

𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
) + 𝑔 (

𝑉(𝑡)

𝑉+
) + 𝑔 (

𝑇(𝑡)𝑉(𝑡)

𝑇+𝑉+
) − 𝑔 (

𝐼(𝑡)

𝐼+
)

− 𝑔 (
𝑇(𝑡)𝐼+𝑉(𝑡)

𝑇+𝐼(𝑡)𝑉+
) + 𝑔 (

𝐼(𝑡)

𝐼+
) − 𝑔 (

𝑃(𝑡)

𝑃+
) − 𝑔 (

𝐼(𝑡)𝑃+

𝐼+𝑃(𝑡)
) + 𝑔 (

𝑃(𝑡)

𝑃+
) − 𝑔 (

𝑉(𝑡)

𝑉+
)

− 𝑔 (
𝑃(𝑡)𝑉+

𝑃+𝑉(𝑡)
)]

= 휁𝛽𝑇+𝑉+ [−𝑔 (
𝑇+

𝑇(𝑡)
) − 𝑔 (

𝑇(𝑡)𝑃+𝑉(𝑡)

𝑇+𝑃(𝑡)𝑉+
) − 𝑔 (

𝑃(𝑡)𝑉+

𝑃+𝑉(𝑡)
)]

+
𝛼

𝛿
𝛽𝑇+𝑉+ [−𝑔 (

𝑇+

𝑇(𝑡)
) − 𝑔 (

𝑇(𝑡)𝐼+𝑉(𝑡)

𝑇+𝐼(𝑡)𝑉+
) − 𝑔 (

𝐼(𝑡)𝑃+

𝐼+𝑃(𝑡)
) − 𝑔 (

𝑃(𝑡)𝑉+

𝑃+𝑉(𝑡)
)] ≤ 0. 

As per this derivation, 𝑑𝐿+(𝑡)/𝑑𝑡 = 0 holds only if 𝑇(𝑡) = 𝑇+. Substituting 𝑇(𝑡) = 𝑇+ into both 

sides of Eq. (7), we have 0 = 𝑠 − 𝑑𝑇+ − 𝛽𝑇+𝑉(𝑡). Since the virus-infection equilibrium, 𝐸+ , is 

unique, this equality implies 𝑉(𝑡) = 𝑉+. Then, substituting 𝑉(𝑡) = 𝑉+ into both sides of Eq. (10), we 
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have 𝑃(𝑡) = 𝑃+ . By substituting 𝑇(𝑡) = 𝑇+ , 𝑉(𝑡) = 𝑉+ , and 𝑃(𝑡) = 𝑃+  into Eq. (9), we have 

𝐼(𝑡) = 𝐼+. Consequently, we can revealed that 𝑑𝐿+(𝑡)/𝑑𝑡 = 0 only if the solution is in 𝐸+. Hence, 

by Lyapunov–LaSalle’s invariance principle, We can concluded that 𝐸+ is GAS in intℝ+
4  whenever 

it exists (i.e., 𝑅0 > 1).. 

 
 

Discussion 

 

The first mathematical model of viral dynamics formulated by a linear equation was applied to 

the analysis of clinical datasets of cases under human immunodeficiency virus type I (HIV-1) 

monotherapy [1, 54]. Then, the basic model of viral dynamics and its revised versions as described by 

ODEs were well parameterized for infections by several viruses using datasets for HIV-1, HCV, Ebola 

virus, and influenza virus [2, 4-6, 21, 55-57]. In contrast, an age-structured PDE model of viral dynamics 

was first studied for HIV-1 infection [47]. This model was extended to consider the effect of antiviral 

therapies [42]. Stability analysis for age-structured PDE models is generally rather difficult, especially 

for, analysis for the virus-infection equilibria, were restricted to LAS [17]. To show GAS of the virus-

infection equilibrium of age-structured PDE systems, we not only have to construct a suitable Lyapunov 

function, but also have to show the existence of a compact persistent attractor in which such a Lyapunov 

function is well defined. This usually requires some long proofs and calculations on the necessary 

mathematical arguments, including the relative compactness (asymptotic smoothness) of the solution 

orbit, the existence of a compact attractor that consists of total trajectories, and the uniform persistence 

of the system [40, 58]. For example, by constructing suitable Lyapunov functions, GAS of the virus-

infection equilibrium was investigated [43]. However, in that previous study [43], analysis of the relative 

compactness of the solution orbit was omitted, and it was completed for a more general model with a 

nonlinear infection rate [44]. These processes make the global stability analysis for age-structured PDE 

models difficult, and some methods of reducing such a PDE system to an ODE system are often more 

valid [50]. 
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In my recent report [50], I transformed the original PDE model of HCV infection [Eqs. (1–4)] into 

an ODE model [Eqs. (7–10)]. Without any assumptions, the ODE model and the original PDE model are 

mathematically identical. In the work (Guedj et al. 2013), they solved approximately the PDE model 

about the compartment of concentration of virus [i.e., 𝑉(𝑡) in Eq. (4)]. The solution includes fewer 

parameters than the PDE model, this means that it enables us to easily estimate other parameters with 

smaller datasets. While this is merit of the approximation, it does not accept any other data but the 

concentration of virus. And more, even if we can get enough dataset to estimate parameters with very 

high accuracy, the approximation remains some error depends on the effectiveness of antiviral treatments. 

In contrast, compared with the approximate solution, my ODE model includes full of parameters and 

requires some rich dataset for parameter estimation. However, the ODE model can accept any other data, 

so we can answer the request by giving additional data from in vitro experiment for example time series 

of the amount of virus RNA [i.e., 𝑅(𝑎) in Eq. (3)]. Note that my transformed ODE describes the total 

amount of intracellular viral RNA dynamics [i.e., 𝑃(𝑡)  in Eq. (9)], while the original PDE model 

describes the individual amount of intracellular viral RNA dynamics [i.e., 𝑅(𝑡) in Eq. (3)]. In this paper, 

I derived the basic reproduction number, 𝑅0, from the ODE model. The basic reproduction number 

explains the average number of newly infected cells produced from any one infected cell based on the 

dynamics of the total amount of intracellular viral RNA (Fig. 2-1), which provides the threshold of the 

mathematical structure of the ODE system. In addition, exploiting standard approaches for mathematical 

analysis on the ODE model, I proved GAS of the steady states of the transformed ODE: 𝐸0 always exists 

in ℝ+
4  and GAS if 𝑅0 ≤ 1, and 𝐸+  is GAS in intℝ+

4  if 𝑅0 > 1. Thus, I showed that the dynamic 

behavior of the multiscale model is determined by 𝑅0.  

Although we have a limitation that there are more parameters in the transformed ODE model 

compared with approximate solutions [14, 16], in addition to these mathematical advantages, the ODE 

model makes a significant contribution work effectively in “data-rich cases” like in vitro experimental 

data analysis previously [30]. For example, once we could estimate all parameters in the transformed 
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ODE model, since the ODE model includes all parameters in the original PDE model, we could 

reconstruct the virus infection dynamics including “age information” which cannot be obtained by 

conventional experimental approach. These novel insights for the age-structured multiscale model 

provide us further understanding for several viral infections including HCV infection. 

 

 

Abbreviations 

 

HCV: Hepatitis C Virus; ODE: Ordinary Differential Equation; PDE: Partial Differential Equation, 

LAS: Local Asymptotically stable, GAS: Global Asymptotically stable 
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Figure 

 

 
 

Figure 2-1 | Biological interpretation of basic reproduction number. Instead of the dynamics of the 

individual amount of intracellular viral RNA in the original PDE model, the dynamics of the total amount 

of intracellular viral RNA is described in the transformed ODE model, and the viruses are formulated 

from the viral RNAs. The basic reproduction number, 𝑅0, derived from the ODE model is divided by the 

two renewal processes: 𝑅𝑣 is the reproduction number for infected cells mediated by the viral RNA 

brought by the entered virion (entry virus-derived RNA, 휁) and 𝑅𝑟 is the newly replicated intracellular 

viral RNA (replicated viral RNA). 
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