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Preface 

Viral infections have suffered from a great number of people so far (Barre-Sinoussi et 

al., 2013; Scheel and Rice, 2013; Wu et al., 2020). In development of molecular and cellular 

biology, many aspects of viral infections have been revealed (Dang et al., 2004; Gao et al., 2020; 

Lohmann et al., 1999). Additionally, to eradicate viral infections, enough data on drug treatment 

are obtained (Koizumi et al., 2017; Ohashi et al., 2020; Shen et al., 2008). However, there are still 

some difficulties in understanding, quantifying and predicting viral infections, using only 

experimental approaches (Dang et al., 2004; Ho et al., 1995).  

On the other hand, in the mathematical biology area, lots of theory on viral infections 

(e.g., virus dynamics) have been developed (Iwami et al., 2013; Nowak and May, 2000; Perelson 

et al., 1997; Iwami et al., 2017). Furthermore, these theories have been widely applied to quantify 

and predict the understanding of infectious disease and drug efficacy (Perelson et al., 1997). In 

addition, the other mathematical biology theories (e.g., negative binomial distribution) were 

utilized in ecology area and others (Iwasa, 1998).  

For the above reasons, in viral infection area, quantitative and theoretical approaches 

(e.g., virus dynamics) have been expected and contributed to explore the mechanism, dynamics 

and quantification on viral infections. Thus, I’ve mainly studied viral infections quantitatively 

and theoretically.  

In the following, I summarize the contents of two chapters as my Ph.D. thesis. 

Chapter 1: Number of infection events per cell during HIV-1 cell-free infection 

HIV-1 accumulates changes in its genome through both recombination and mutation during the 

course of infection. For recombination to occur, a single cell must be infected by two HIV strains. 

These coinfection events were experimentally demonstrated to occur more frequently than would 

be expected for independent infection events and do not follow a random distribution. Previous 



mathematical modeling approaches demonstrated that differences in target cell susceptibility can 

explain the non-randomness, both in the context of direct cell-to-cell transmission, and in the 

context of free virus transmission (Q. Dang et al., Proc. Natl. Acad. Sci. USA 101:632-7, 2004: K. 

M. Law et al., Cell reports 15:2711-83, 2016). Here, I build on these notions and provide a more 

detailed and extensive quantitative framework. I developed a novel mathematical model explicitly 

considering the heterogeneity of target cells and analysed datasets of cell-free HIV-1 single and 

double infection experiments in cell culture. Particularly, in contrast to the previous studies, I took 

into account the different susceptibility of the target cells as a continuous distribution. 

Interestingly, I showed that the number of infection events per cell during cell-free HIV-1 

infection follows a negative-binomial distribution, and our model reproduces these datasets. This 

study was published in Scientific Reports (Ito et al., 2017). 

 

Chapter 2: Dynamics of HIV-1 coinfection in different susceptible target cell populations 

during cell-free infection 

HIV-1 mutations rapidly accumulate through genetic recombination events, which require the 

infection of a single cell by two virions (coinfection). Accumulation of mutations in the viral 

population may lead to immune escape and high-level drug resistance. The existence of cell 

subpopulations characterized by different susceptibility to HIV-1 infection has been proposed as 

an important parameter driving coinfection (Q. Dang et al., Proc. Natl. Acad. Sci. USA 

2004:101(2):632-7). While the mechanism and the quantification of HIV-1 coinfection have been 

recently investigated by mathematical models, the detailed dynamics of this process during cell-

free infection remains elusive. In this study, we constructed ordinary differential equations 

considering the heterogeneity of target cell populations during cell-free infection in cell culture, 

and reproduced the cell culture experimental data. Our mathematical analyses showed that the 



presence of two differently susceptible target cell subpopulations could explain our experimental 

datasets, while increasing the number of subpopulations did not improve the fitting. In addition, 

we quantitatively demonstrated that cells infected by multiple viruses mainly accumulated from 

one cell subpopulation under cell-free infection conditions. In particular, the frequency of 

infection events in the more susceptible subpopulation was 6.11-higher than that from the other 

subpopulation, and 98.3% of coinfected cells emerged from the more susceptible subpopulation. 

Our mathematical-experimental approach is able to extract such a quantitative information, and 

can be easily applied to other virus infections. This study was published in Journal of Theoretical 

Biology (Ito et al., 2018) . 

Besides the above main works, I published a study on Simian Human 

Immunodeficiency Vius as the first author (Hara et al., 2019). I also show the collaborated works 

I joined. For instance, I’ve studied and published the other papers related to the above chapters as 

a co-author: T. Oda et al., 2020 (Oda et al., 2020), K. Kim et al., 2020 (Kim et al., 2020). In 

addition, I’ve contributed to collaborated researches on the drug efficacy: H. Ohashi et al., 2020 

(Ohashi et al., 2020).  

In the end of this preface, this thesis was submitted to the faculty of the Graduate School 

in partial fulfillment of the requirements for the degree Doctor of Philosophy in Science Kyushu 

University. 
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Chapter 1 

Number of infection events per cell during HIV-1 cell-free infection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The study of this chapter, done in collaboration with Dr Azaria Remion, Dr. Alexandra Tauzin, Dr. 

Keisuke Ejima, Prof. Shinji Nakaoka, Prof. Yoh Iwasa, Prof. Shingo Iwami and Prof. Fabrizio 

Mammano, was published in Scientific Reports 7:6559 in July 2017  



  

Introduction 

The Human Immunodeficiency Virus type-1 (HIV-1) population in an infected individual is 

characterized by high genetic diversity that allows rapid adaptation to the changing environment, such as the 

development of an immune response or the initiation of an antiretroviral therapy. Genetic recombination events 

participate in the continuous production of these viral variants. For recombination to take place, distinct viruses 

must infect the same cell, and then different genomes must be packaged into a single virion so that the reverse 

transcription process can generate a chimeric viral genome by template switching (reviewed in ref (Burke, 

1997a)). By mixing the viral genomes, in one step, recombination creates new variants whose adaptation to the 

environment may exceed those of the parental viruses (Charpentier et al., 2006; Nora et al., 2007). This process 

could participate in the unfavourable prognosis of patients infected by two strains of HIV, known as double 

infection (Sagar et al., 2003). Although the majority of HIV-infected lymphocytes in the peripheral blood of 

patients carry only one viral genome copy (Josefsson et al., 2011; Josefsson et al., 2013), the epidemiologic 

spread of circulating recombinant forms (CRF) of HIV-1 demonstrates that recombination, and thus double 

infections, take place in infected patients (Allen and Altfeld, 2003a). It was also shown that recombination in 

HIV-infected patients may rescue defective viral genomes that carry drug resistance mutations (Donahue et al., 

2013; Quan et al., 2009a). 

The frequency of cells carrying multiple viral genomes is influenced by the virus transmission route. 

HIV-1 infection can spread either by cell-free virus particles or by a cell-associated process, in which viral 

particles and cellular receptors converge at the donor- and target-cell contact sites (Chen et al., 2007; Jolly and 

Sattentau, 2004). Previous work has established that cell-associated HIV-1 transmission leads to frequent 

multiple infection events, while the majority of cells infected by free virions carry a single genome (Del Portillo 

et al., 2011). The genomes transmitted by one infected cell via the cell-mediated path- way, however, are 

expected to be very similar, thus reducing the likelihood that recombination will produce chimeric variants with 

new properties following this transmission method. Interestingly, despite the difference in efficacy, both virus 

transmission pathways result in a higher frequency of double-infected cells than would be expected for 



 

independent transmission events, showing that these infections do not follow a random distribution (Bregnard 

et al., 2012; Chen et al., 2005; Dang et al., 2004; Haqqani et al., 2015; Remion et al., 2016). Two previous 

studies proposed that differences in cell susceptibilities could justify the experimental observation of double 

infection frequencies that are higher than expected for independent infection events (Dang et al., 2004; Law et 

al., 2016). In one study, the authors considered only either “susceptible” or “unsusceptible” cell populations, 

and using a mathematical model found that heterogeneity in target cell susceptibility could account for the 

observation that more double infections occur in vivo than predicted by random models (Law et al., 2016). In 

that report, the percentage of susceptible cells in a target cell population was estimated to be 2.76%. In the other 

study, the cell population was considered as composed of a discrete number of subpopulations characterized by 

distinct susceptibility levels, and for simplicity 5 subpopulations of the same size were considered (Dang et al., 

2004). Here, by considering susceptibility as a continuous variable, I expand on those original reports, and 

provide a more detailed quantitative framework. I describe a novel mathematical model that explicitly considers 

the heterogeneity of target cells as a continuous variable. By fitting the model to experimental datasets of cell-

free HIV-1 single and double infections, I show that the number of infection events per cell follows a negative-

binomial distribution. I also quantified the increase in the double and multiple infection events as a function of 

the amount of inoculated virus, and I found that a significant proportion of cells can be infected by multiple 

genomes following cell-free HIV-1 exposure. Together, our results re-evaluate the potential impact of cell-free 

HIV-1 infection on HIV-1 genetic recombination.  

 

  



 

Materials and Methods  

Cells and proviral plasmids.  

This part was done by Ms. Azaria Remion, Mr. Alexandra Tauzin, Prof. Fabrizio Mammano. 

HEK293T cells were maintained in Dulbecco modified Eagle’s medium (DMEM) supplemented with 10% heat-

inactivated foetal calf serum (FCS) and antibiotics (100 IU/ml penicil- lin and 100 µg/ml streptomycin). MT4R5 

cells (Amara et al., 2003) were grown in RPMI-1640 medium supplemented with 10% heat-inactivated FCS, 

100 IU/ml of penicillin, 100 µg/ml of streptomycin, and 0.25 µg/ml of amphotericin B. All cultures were 

maintained at 37 °C in a humidified atmosphere with 5% CO2. The proviral constructs used here were derived 

from previously published plasmids based on the pNL4-3 construct and each carried a sequence coding for 

either green fluorescent protein (GFP) or heat stable antigen (HSA) reporter proteins cloned before the nef gene, 

with an IRES sequence allowing concomitant expression of the viral and reporter proteins (Imbeault et al., 2009; 

Levy et al., 2004a). To prevent virus spread in culture, these constructs by deleting 1.3 kb of the env gene 

between the KpnI and BglII sites were conducted (Remion et al., 2016). To complement these proviral constructs, 

an HIV-1 Env-expresser plasmid in which HIV-1 (pNL4-3) Env, (as well as Tat and Rev) expression is under 

the control of a chimeric SRα promoter (SV40-early promoter and LTR from HTLV-I) was used (Remion et al., 

2016). 

Preparation of virus stocks, infection, and datasets.  

This part was performed by Ms. Azaria Remion, Mr. Alexandra Tauzin, Prof. Fabrizio Mammano. 

Stocks of viruses expressing either GFP or HSA were prepared by transfecting sub-confluent 293-T cells in T75 

flasks by JetPei (Polyplus Inc. Illkrich, France), following the manufacturer’s instructions. Medium was 

changed 16 h later, and the virus-containing supernatant was collected 40 h post-transfection and overlaid on a 

20% sucrose cushion in a Beckman SW32 tube, after which particles were pelleted by centrifugation (98,000 g, 

4 °C) for 90 min. Viral pellets were re-suspended in RPMI medium with FCS to obtain a 10-fold concentration 

as compared with the initial amount present in the culture supernatant, separated into several aliquots, and frozen 

at −80 °C. One day before infection, 2.0 × 105 MT4R5 cells per well were seeded in a 96-well plate. Cells were 



 

then exposed to two-fold dilutions of one virus (single infection) or of both viruses at the same time (coinfection), 

using the indicated combinations of each virus input amount. Two hours after infection, cells were washed to 

eliminate excess virus and cultured for a total of 48 h. The percentage of GFP-positive cells was measured after 

cell fixation with 2% para-formaldehyde (PFA). HSA expression on the surface of infected cells was detected 

using a rat anti-HSA PerpCy5.5 antibody (Pharmingen, Le Pont-de Claix, France) before fixation in PFA. Flow-

cytometry data were acquired using a FACSCalibur instrument (Becton Dickinson, Le Pont-de Claix, France) 

with CellQuest software and were analysed using FlowJo software (Treestar, Ashland, OR, USA). Cell viability 

was measured in parallel and found to be stable for at least 72h post-infection (data not shown).  

Calculation of the frequencies in different FACS quadrants. 

Cells in a FACS graph can be divided into four quadrants, A, B, C, and D, based on their expression 

of GFP and/or HSA (Fig. 1). Cells in quadrant A express HSA only, those in quadrant B are positive both for 

HSA and GFP, cells in quadrant Care uninfected (i.e., negative both for HSA and GFP), and cells in quadrant D 

are positive for GFP only. Note that multiple infection events by viruses expressing the same reporter gene in 

quadrants A and D cannot be distinguished using FACS. Since for a given susceptibility parameter, s, the 

probability of a target cell being uninfected (i.e., no virus) is !!"#$, the probability of a target cell being infected 

is 	1 − !!"#$ (Haqqani et al., 2015). I assumed that the susceptibility parameter, % , obeys the Gamma 

distribution with the scale parameter, &, and the rate parameter, ' (see Results for detailed calculations). 

Because two fluorescent proteins (i.e., HSA and GFP) are used, the term ( is divided into ()%&' and ()()*, 

which represent the amount of effective HIV-1 expressing HSA and GFP, respectively. Additionally, to consider 

the case of each inoculated HIV-1 dataset (see Preparation of virus stocks and infection), I assumed ()%&' =

(%&' and ()()* = (()* for 3.12 µl of inoculated HIV-1 expressing HSA and GFP, respectively, and ()%&' =

(%&' × ,∗, and ()()* = (()* × ,∗, for the other amounts of inoculated HIV-1. I estimated the distribution of the 

following 11 parameters (-): the shape parameter, &, the composed parameters, .(%&'/' and .(()*/', for 

single HSA and GFP HIV-1 experiments, respectively, and the scaling parameters ,∗  for 

6.25, 12.5, 25, 37, 50, 75, 100 and 20089 of the inoculated HIV-1 (Table 1) (i.e., - = {&, .(%&'/', .(()*/



 

', ,,../, ,0../, ,./, ,12, ,/3, ,033, ,.33}). Therefore, under the assumptions, the theoretically predicted frequency 

of quadrant A, B, C, and D, respectively, in double HIV-1 infection experiments is calculated as follows: 

<',56(-) = ? @1 − !!"#$7!"#A
8

3
!!"#$7$%&

'9%9!0

Γ(&)
!!:#C%, 

<;,56(-) = ? @1 − !!"#$7!"#A
8

3
@1 − !!"#$7$%&A

'9%9!0
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'9%9!0

Γ(&)
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I further calculated and simplified those equations as follows:  

<',56(-) =
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Notably, in the experiments with only HSA-expressing HIV-1 (i.e., single HSA HIV-1 experiments), 

I derived <',>(-) = 1 − 1/(1 + .()%&'/')9, <;,>(-) = 0, <<,>(-) = 1/(1 + .()%&'/')9, and <=,>(-) = 0. 

Furthermore, in the single GFP HIV-1 experiments, I derived <',?(-) = 0 , <;,?(-) = 0 , <<,?(-) =

1/(1 + .()()*/')9, and <=,?(-) = 1 − 1/(1 + .()()*/')9 (see Data fitting, concerning the meaning of the 

index ,, J, KL). 

 



 

Data fitting  

To fit the predicted frequency of each quadrant (i.e., Eqs (1–4)) with the experimental measure- 

ments by FACS analyses, I employed likelihood estimation to obtain an optimal set of parameter values. If I 

assume that the datasets used follow the Gaussian distribution with the mean 8@  and the variance 

M.(i.e.,	N(8@ , M.), the corresponding likelihood function is given as follows: 

O(P; R) =S
1

√2UM.
!!

(B'!C')
.E(

(F)*+*

@G0
= DS

1

√2UM.

F)*+*

@G0
F !

! 0
.E(∑ (B'!C')(

,)*+*
'-. . 

Note that ρ and represent the set of parameters and the measurements, respectively. The specific form 

of sum of squared residuals (SSR) is given by 
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Here, 	-  is the set of parameters needed to estimate. 	<:JKL>KMN,>,?,56	 and <[:JKL>KMN,>,?,56 ( ']^C,^_`  = 

{A,B,C,D}) represent the predicted frequencies and the measurements by FACS analyses, respectively. The 

index ,, J, KL  represent experiments with different amounts of inoculated HIV-1 (i.e., , = 1,… ,10 

correspond to 3.12, 6.25, 12.5, 25, 37, 50, 75, 100, 100 and 200 µl, respectively, of single HSA HIV-1 

experiments; J = 1,… ,10 correspond to 3.12, 6.25, 12.5, 25, 50, 50, 75, 100, 100 and 200 µl, respectively, of 

single GFP HIV-1 experiments; KL = 1,… ,18 correspond to 25 and 25, 25 and 50, 50 and 25, 37 and 50, 50 

and 50, 37 and 75, 75 and 50, 75 and 75, 25 and 100, 100 and 25, 37 and 100, 50 and 100, 100 and 50, 100 and 

50, 75 and 100, 100 and 75, 100 and 100 µl and 100 and 100 µl, respectively, of double HSA and GFP HIV-1 

experiments). If the variance M. is constant, then likelihood estimation is completely determined by the SSR 

between theoretical values and measurements (i.e., ∑(d − R).). However, to take into account for possible 

variations, I assume that the variance is not constant, and employed Bayesian inference approach with the 

Markov Chain Monte Carlo (MCMC) method to estimate distribution of parameters. 

 



 

Bayesian inference method for the parameter estimation 

The R package FME enables one to per- form MCMC sampling by “delayed rejection and adaptive 

Metropolis algorithm” (Soetaert and Petzoldt, 2010). In the framework of the FME package to perform Bayesian 

inference, the error between observations and model predictions is assumed to follow Gaussian distribution with 

the mean 0 and the variance M. . Moreover, the reciprocal of the variance (i.e., 	1/M. ) follows a Gamma 

distribution, while the prior distribution of all parameters is a Gaussian distribution (Soetaert and Petzoldt, 2010). 

In this study, 120,000 MCMC samples were generated, and the first 20,000 chains were discarded as burn-in 

samples. Convergence of the Markov chain was manually checked by the output of the ‘traceplot’ and the 

histogram of the posterior distribution. As shown in Table 1, the 95% CI (credible interval) represents the range 

from 2.5% to 97.5% in each estimated distribution, and the mean value represents the one of each posterior 

distribution, and also the estimated posterior distributions are obtained by using the same random seed. The fits 

of Eqs (1–4) to the experimental data with different amounts of inoculated HIV-1 are shown in Fig. 2 and Fig. 

S1. Our estimated parameter values are summarized in Table 1. 

  



 

Results 

The number of infection events during cell-free infection follows a negative-binomial distribution.  

It was previously demonstrated that cells infected by more than one virus occur at a frequency higher 

than that expected by Poisson distribution (Bregnard et al., 2012; Dang et al., 2004; Del Portillo et al., 2011; 

Haqqani et al., 2015; Remion et al., 2016). Here, I developed a novel mathematical model explicitly considering 

the heterogeneity of target cells susceptibility to infection. In our model, I define the following parameters: V 

is the amount of effective virus for infection events, β is the infection rate of HIV-1, and s is the susceptibility 

of the target cells to HIV-1 infection. The probability of a target cell being infected (i.e., carrying and expressing 

an integrated HIV genome) by n viruses can be determined by Poisson distribution as previously described 

(Bregnard et al., 2012; Del Portillo et al., 2011; Haqqani et al., 2015): 

e(f = _	; 	.%() =
(.%()M	!!"#$

_!
. (5) 

Additionally, to consider the heterogeneity of target cell susceptibility (Dang et al., 2004; Remion et 

al., 2016), I assumed that the susceptibility parameter, %, obeys the following Gamma distribution (MacDonald, 

2008): 

J(%; 	&, ') =
'9	%9!0!!#:

h(&)
. (6) 

It is well known that Gamma distribution can approximate any one-peak distribution and reproduce 

a variety of biological phenomena (Bliss and Fisher, 1953; Kakizoe et al., 2015; MacDonald, 2008). Here & > 

0 and ' > 0 are the shape and rate parameters, and h(∗) is the gamma function. In a previous study (Dang et 

al., 2004), it was artificially assumed that there are a finite number of subpopulations of cells with different 

susceptibilities to infection (i.e., five discrete susceptible populations). I extended that assumption to a 

continuous range of susceptible populations allowing our model to reflect, for example, the level of expression 

of CD4 and/or co-receptors on target cells, which are widely but continuously distributed (Chen et al., 2005; 

Kabat et al., 1994; Platt et al., 1998). Using Eqs (5, 6), I calculated the probability density function for a cell 

being infected by _ HIV-1 in a heterogeneous target cell population: 
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Therefore, the number of HIV-1 infection events per cell during cell-free HIV-1 infection (i.e., j,(f = _)) 

follows a negative-binomial distribution of mean .&(/' and variance .&(/'(1 + .(/'). 

I estimated the parameters in Eq. (7) by fitting Eqs (1–4) to the experimental measured frequencies 

of quad- rants A, B, C, and D in our FACS analyses (see MATERIALS AND METHODS), and these values are 

summarized in Table 1. A set of representative analyses is shown in Fig. 2. In these panels, the coloured and 

white bars represent experimental measurements and theoretical predictions, respectively. In both single (Fig. 

2a,b) and double HIV-1 infection experiments (Fig. 2c), our mathematical model reproduces all experimental 

datasets well. An independent set of data and the corresponding analysis are shown in Supplemental Figure 1, 

both for single and double infection experiments. 

The expected negative-binomial distributions of the number of infection events per cell in 200 µl for 

GFP and HSA HIV-1 single experiments are shown in green and red curves, respectively, as examples in Fig. 

3a. The black curves represent the expected Poisson distribution with the mean of the Gamma distributed 

susceptibility parameter, % (i.e., the target cell population is assumed to have homogeneous susceptibility). 

While the mean and variance of a Poisson distribution are the same, the variance of a negative-binomial 

distribution is larger than its mean. This property of negative-binomial distribution explains that the more 

susceptible one cell is, the more effectively it will be infected by HIV-1 (Chen et al., 2005; Dang et al., 2004). 

 

Calculation of the odds ratio in a cell-free HIV-1 infection.  

The frequency of co-infected cells with HIV-1 expressing HSA and GFP has previously been 



quantified by calculating the odds ratios (Chen et al., 2005; Dang et al., 2004; Remion et al., 2016). The odds 

of HSA-positive cells being GFP-positive can be calculated by 

m<[; @<[' + <[;An o p1 − m<[; @<[' + <[;An oq = <[; <['⁄ ,n  

while the odds of HSA-negative cells being GFP-positive can be calculated by <[= <[<⁄ . If the coinfection were 

random (i.e., independent events), then the <[; <['⁄  and <[= <[<⁄ . would be expected to be equal to 1, that is, the 

experimental odds ratio  

stO = @<[; <['⁄ A @<[= <[<⁄ A = <[;<[< <['<[=⁄ = 1n . 

If coinfection occurred more or less frequently than that expected from random events, then the 

expected odds ratio would be stO > 1 and stO < 1, respectively. A higher frequency of coinfection has 

been experimentally confirmed in independent reports (Chen et al., 2005; Dang et al., 2004; Remion et al., 

2016). To study whether or not our novel model quantitatively reproduces this important property of HIV-1 

coinfection, I derived the theoretical odds ratio, stP, from Eqs (1–4) as follows: 
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The second term is always positive (see Supplementary Note), which implies that stP > 1 for 

all arbitrary parameter values. Therefore, under the condition of heterogeneous target cell susceptibility, our 

model always predicts that non-random HIV-1 coinfection occurs more frequently than would be expected for 

independent infection events (i.e., stP > 1). Notably, if the target cells have homogeneous susceptibilities 

(that is, the susceptibility parameter, %, is not distributed but fixed), then our model converges to a Poisson 

distribution and stP = 1. In Fig. 3b, I compared the odds ratio measured by our experiments,	stO, with the 



 

theoretical odds ratio, stP, which was calculated by our estimated parameters(Table 1). Thus, our novel model 

quantitatively reproduces the odds ratio and captures the known property of coinfection during cell-free HIV-1 

infection in vitro. 

Quantification of infection events during cell-free HIV-1 infection 

As discussed in previous work (Del Portillo et al., 2011; Haqqani et al., 2015), some multiple 

infection events cannot be detected by FACS analyses because cells that are infected with one copy of HIV-1 

expressing HSA and those carrying two copies of the same viral genome are similarly HSA-positive. Therefore, 

FACS analysis usually underestimates the true frequency of multiple infection (Del Portillo et al., 2011). As I 

derived <:JKL>KMN,>,?,56(, = 1,… ,10)(J = 1,… ,10)(KL = 1,… ,18) in the MATERIALS AND METHODS, 

I calculated the number of infection events during cell-free HIV-1 infection, using Eqs (1–4) and our estimated 

parameters in Table 1. The frequency of cells infected by multiple HSA or GFP virions was calculated by the 

fol- lowing equation, in which _QRS and _TUV are the number of infection events with HSA and GFP virions, 

respectively: 

?
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The estimated multiple infection frequencies in double HIV-1 infection experiments are shown in 

Fig. 4a (for other combinations of multiple infection, the frequency is less than 0.001). For example, in the 

experiment with 100 µl each of HSA and GFP HIV-1, although the experimentally measured frequency of 

coinfection was 5.47% (Fig. 2c, lower right panel, blue bar in B), our model revealed that 18.0% of the target 

cells were multiply infected (i.e., 1−(0.57 + 0.10 + 0.15)=0.18). Our estimated value during cell-free infection 

is smaller than the values pre- viously estimated (21% in ref. (Del Portillo et al., 2011)) during cell-to-cell HIV-

1 infection in cell culture. This analysis further supports that cell-to-cell infection enhances multiple infection 

events as compared with cell-free infection. In Fig. 4b, I calculated the mean frequency of multiple infection 

events following incubation with different amounts of HIV-1 in both single and double infection experiments. 

The marks ▲, ◆, ●, and ■ show the mean frequencies of zero, one, two, and three infection events per cell, 



respectively (data not shown for four or more infections events). As the amount of inoculated virus increases, 

the frequencies of multiple events consistently increase, and those of uninfected cells decrease. Interestingly, 

for these numbers of infection events, the frequencies reach steady state values around 150 µl of inoculated 

HIV-1. Thus, our quantitative analyses reveal the true frequency of multiple infection events and demonstrate 

that cell-free HIV-1 infection by itself induces multiple infection events. Furthermore, taking advantage of our 

modelling approach, I could estimate the mean number of infection events per infected cell during cell-free 

HIV-1 infection. In Fig. 4c, I found that the number increases from 1.02 to 1.65 as the amount of inoculated 

HIV-1 increases. Our estimated range is consistent with the previous observa- tion of proviral copy number in 

infected cells measured by fluorescence in situ hybridization (Del Portillo et al., 2011). 

  



Discussion 

In this study, I modelled the distribution of HIV infection events during cell-free infection in vitro, 

taking into account differences in susceptibility within the target cell population. Our model fits well with our 

collected experimental data for both single and double infections, indicating that the assumptions and the 

mathematical formulation successfully capture the biological processes underlying the distribution of HIV-1 

infection events. More importantly, our mathematical model describes the hypothesis that variation in target cell 

susceptibility could account for non-random co-infection more accurately than previous work.  

Two previous reports suggested that differences in cell susceptibilities could be responsible for the 

observed higher frequency of double infections, as compared to predictions based on the assumption of 

independent infection events (Dang et al., 2004; Law et al., 2016). In those reports, cell susceptibility was either 

considered as a binary feature (cells were either susceptible or non-susceptible) (Law et al., 2016), or a limited 

number of subpopulations characterized by distinct susceptibility levels were considered (Dang et al., 2004). 

Here, by considering susceptibility as a continuous variable, I expand on those original reports. The idea that 

the susceptibility of target cells is continuously distributed is intuitive because, even in cultured cells, it should 

be slightly different due to, for example, the change in the expression of (co-)receptors on each cell membrane 

over time. Employing this condition, I showed that the theoretical odds ratio (stP) is always greater than 1 

(see Fig. 3 and Supplementary Note). This result is consistent with the findings of previous work (Chen et al., 

2005; Dang et al., 2004; Remion et al., 2016). Hence, considering susceptibility as a continuous variable seems 

to be a more appropriate assumption for describing the cooperative nature of the HIV-1 infection process, for 

which several quantitative and qualitative parameters (number of receptors, availability of nucleotide pool, 

phase of the cell cycle, etc.) participate in defining the susceptibility of each cell within a population.  

The approach described here may also be customized to describe other biological situations that 

display similar properties, for instance a distribution of eclipse period of virus-infected cells (Kakizoe et al., 

2015; Pinilla et al., 2012). Note that our model does not restrict the analysis to a situation in which the two 

events (infection by the GFP and the HSA virus, in our study) have the same efficiency. Indeed, for each virus 



I estimated a composed parameter (.()QRS '⁄  or .()TUV '⁄  in Table 1) to express the effective virus dose for a 

given volume of different viruses (e.g., 3.12 µl of inoculated HIV-1 expressing HSA or GFP). This choice 

increases the flexibility of our approach and allows an extension of its range of potential applications. 

Furthermore, I performed the experiments under conditions compatible with a large proportion of cells 

remaining uninfected to prevent saturation of the system and the potential associated biases. Of note, MT4 cells 

and their derivatives are highly susceptible to HIV infection. A gradual increase in the percentage of infected 

cells is observed when they are exposed to increasing virus doses, including conditions in which the majority 

of cells are infected. This feature allowed testing a wide range of experimental conditions, assisting the 

development of our model. Additionally, the model can be customized to work with less susceptible cells by 

experimentally determining the values of the parameters, & and ', because these two parameters are strongly 

associated with the susceptibility in a target cell population.  

Our model allows estimation of the frequency of single and multiple infection events for individual 

virus inputs. As shown in Fig. 3a (for 200 µl of each virus), our model predicts values that differ from the 

Poisson distribution; in particular, it predicts higher frequencies of multiple infection events. Also, our model 

predicts an stP of coinfection that is always >1, reproducing the experimental observations from different 

groups (Bregnard et al., 2012; Chen et al., 2005; Dang et al., 2004; Haqqani et al., 2015; Remion et al., 2016), 

while the Poisson distribution predicts an stP = 1 . Finally, having derived the values of the relevant 

parameters, our model allows the estimation of the frequency of multiple infections with the same virus, which 

are events that could not be experimentally determined in our system. Indeed, infection with one or more viruses 

carrying the same tag will produce similar distributions in the resulting FACS plots, preventing their 

experimental discrimi- nation. In Fig. 4b, I quantified the frequency of multiple infection events for different 

amounts of inoculated HIV-1. As the inoculated amount increases, a significant proportion of cells can be 

infected by multiple viruses (e.g. ●/■). This demonstrates that cell-free HIV-1 infection by itself may have an 

important impact on driving the recombination of viruses. The range of infection events per infected cell 

predicted by our model in Fig. 4c fits the range of previously experimentally measured multiple infection events 



produced by cell-free HIV-1 infection using in situ hybridization (Del Portillo et al., 2011). Taken together, our 

findings and predictions lead to a more detailed understanding of the link between co-infection events and 

recombination.  

An alternative mechanism was previously proposed to explain the disproportionate frequency of 

double-infected cells observed during co-infection experiments. The authors proposed that otherwise silent 

infection events were detected as a consequence of the additional Tat expression induced by the second virus 

(Bregnard et al., 2012). I have previously demonstrated that in our experimental system this potential artefact 

did not play a role, since the use of lentiviral vectors that only expressed GFP resulted in similarly high 

frequencies of double-infected cells as those obtained using vectors that also encode Tat (Remion et al., 2016). 

In addition to these in vitro experimental and theoretical analyses, other mathematical models and 

computer simulations have been proposed to explain the observation of multiple infections in vivo. For instance, 

it was described that CD4+ T cells from the spleen of HIV-infected individuals carry on average 3.2 HIV proviral 

copies (Dixit and Perelson, 2004; Jung et al., 2002). Also, the number of multiply infected cells was found to 

correlate with the square of the overall number of infected cells (Dixit and Perelson, 2005; Levy et al., 2004a; 

Wodarz and Levy, 2011) in homogeneous target cell populations. 

In agreement with previous reports (Del Portillo et al., 2011), I show here that multiple infection events 

take place with measurable frequencies following incubation with cell-free HIV-1 particles in a heterogeneous 

target cell population. Although the alternative pathway of infection that relies on cell contact-mediated 

infection is a more powerful transmission means, the impact of cell-free virus coinfection on HIV-1 genetic 

diversity may be expected to be more substantial because of the likelihood that spatially separated cells harbour 

genetically distinct variants. The impact on HIV-1 diversity, and consequently on the potential to adapt to a 

changing environment, are expected to correlate with the genetic distance between the parental variants. In the 

absence of antiretroviral treatment, the recurrent exposure of cells to infectious virions over the course of several 

years during this chronic infection creates numerous occasions for coinfections to happen. In view of these 

considerations, infection by cell-free virions emerges as a relevant means of HIV-1 diversification.  



Figure 

 

Figure1: Flow cytometry analysis of single and double HIV-1 infection. Panels represent the following 

conditions, clockwise starting from the upper left panel: no infection; infection by the HSA virus; coinfection 

with HSA and GFP viruses, infection by the GFP virus. In each panel, the quadrants correspond to HSA+ (A); 

HSA+GFP+ (B); uninfected cells (C); and GFP+ (D). The percentage of cells in each quadrant is indicated 

under the letter identifying the quadrant.  

  



 

Figure 2. Frequency of single infection and coinfection: (a) The experimental and theoretical frequencies of 

quadrants A (i.e., HSA-positive) and C (i.e., HSA-negative) in three independent experiments using only HSA 

HIV-1 are shown by red and white bars, respectively. (b) The experimental and theoretical frequencies of 

quadrants D (i.e., GFP-positive) and C (i.e., GFP-negative) in single GFP HIV-1 experiments are shown by 

A B C D0

20

40

60

80

100

Fr
eq
ue
nc
y

First Co-infection

A B C D0

20

40

60

80

100

Fr
eq
ue
nc
y

First Co-infection

A B C D0

20

40

60

80

100

Fr
eq
ue
nc
y

First Co-infection

A B C D0

20

40

60

80

100

Fr
eq
ue
nc
y

First Co-infection

A B C D0

20

40

60

80

100

Fr
eq
ue
nc
y

First Co-infection

A B C D0

20

40

60

80

100

Fr
eq
ue
nc
y

First Co-infection

A B C D0

20

40

60

80

100

Fr
eq
ue
nc
y

First Co-infection

A B C D0

20

40

60

80

100

Fr
eq
ue
nc
y

First Co-infection

A B C D0

20

40

60

80

100

Fr
eq
ue
nc
y

First Co-infection

D C0

20

40

60

80

100

Fr
eq
ue
nc
y

First Green infection

D C0

20

40

60

80

100

Fr
eq
ue
nc
y

First Green infection

D C0

20

40

60

80

100

Fr
eq
ue
nc
y

First Green infection

A C0

20

40

60

80

100

Fr
eq
ue
nc
y

First Red infection

A C0

20

40

60

80

100

Fr
eq
ue
nc
y

First Red infection

A C0

20

40

60

80

100

Fr
eq
ue
nc
y

First Red infectiona

b

c

HSA HIV-1 25μl HSA HIV-1 50μl HSA HIV-1 100μl

GFP HIV-1 25μl GFP HIV-1 50μl GFP HIV-1 100μl

HSA HIV-1 25μl + GFP HIV-1 25μl HSA HIV-1 25μl + GFP HIV-1 50μl HSA HIV-1 25μl + GFP HIV-1 100μl

HSA HIV-1 50μl + GFP HIV-1 25μl HSA HIV-1 50μl + GFP HIV-1 50μl HSA HIV-1 50μl + GFP HIV-1 100μl

HSA HIV-1 100μl + GFP HIV-1 25μl HSA HIV-1 100μl + GFP HIV-1 50μl HSA HIV-1 100μl + GFP HIV-1 100μl

Fr
eq

ue
nc

y i
n 

qu
ad

ra
nt

Fr
eq

ue
nc

y i
n 

qu
ad

ra
nt

Fr
eq

ue
nc

y i
n 

qu
ad

ra
nt

Fr
eq

ue
nc

y i
n 

qu
ad

ra
nt

Fr
eq

ue
nc

y i
n 

qu
ad

ra
nt

Fr
eq

ue
nc

y i
n 

qu
ad

ra
nt

Fr
eq

ue
nc

y 
in

 q
ua

dr
an

t

Fr
eq

ue
nc

y 
in

 q
ua

dr
an

t

Fr
eq

ue
nc

y 
in

 q
ua

dr
an

t

Fr
eq

ue
nc

y 
in

 q
ua

dr
an

t

Fr
eq

ue
nc

y 
in

 q
ua

dr
an

t

Fr
eq

ue
nc

y 
in

 q
ua

dr
an

t

Fr
eq

ue
nc

y 
in

 q
ua

dr
an

t

Fr
eq

ue
nc

y 
in

 q
ua

dr
an

t

Fr
eq

ue
nc

y 
in

 q
ua

dr
an

t

A B C D A B C D A B C D

A B C D A B C D A B C D

A B C D A B C D A B C D

A C A C A C

D C D C D C



green and white bars, respectively. (c) The experimental and theoretical frequencies of quadrants A (i.e., HSA-

positive), B (i.e., positive both for HSA and GFP), C (i.e., negative both for HSA and GFP), and D (i.e.,GFP-

positive) in double HIV-1 experiments are shown by blue and white bars, respectively. Two independent 

experiments were run with the nine indicated combinations of HSA and GFP HIV-1 corresponding to all possible 

combinations of the three different amounts of each virus used in single experiments. Note that each error bar 

represents the 95% credible interval obtained from Markov Chain Monte Carlo (MCMC) parameter inferences 

(Table 1). 

  



 

Figure 3. Frequency of multiple infection events per cell: (a) The expected negative-binomial distributions of 

the number of infection events per cell in 200 µl in GFP and HSA HIV-1 single experiments are shown in green 

and red curves, respectively. These curves were drawn using the mean derived from MCMC parameter 

inferences (Table 1). The black curves represent the expected Poisson distribution with the mean of the Gamma- 

distributed susceptibility parameter, (i.e., the target cell population is assumed to have homogeneous 

susceptibility). (b) The experimental odds ratio (ORE) and theoretical odds ratio (ORM, calculated by our 

estimated parameters) are shown in blue and black box plots, respectively. The dotted line corresponds to the 

odds ratio of 1 predicted by a Poisson distribution (i.e., ORM = 1: random HIV-1 infection). 
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Figure 4. Quantitative analyses of multiple infection: (a) The distribution of the number of infection events per 

cell in double HIV-1 infection experiments with nine different combinations of virus amounts are shown. The 

number in each square is the estimated frequency of the corresponding infection events. (b) The mean frequency 
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of the multiple infection events per cell inoculated with each different amount of HIV-1 is calculated. For double 

infection experiments, the amount is defined as the total inoculation of HSA and GFP HIV-1. The marks ▲, ◆, 

●, and ■ show the mean frequencies of zero, one, two, and three infection events per cell, respectively. (c) The 

estimated mean number of infection events per infected cell with different amounts of HIV-1 is calculated. The 

red, green, and blue curves correspond to the experiments with HSA and GFP HIV-1 single infections, and 

double infections, respectively. In (a), (b), and (c), these calculations were all performed using the mean value 

obtained from MCMC parameter inferences (Table 1). 

  



Table 

Table 1. Estimated parameters in the mathematical model of cell-free infection 

Parameters Estimated values (mean) 95%CI 

, 1.176 0.878 - 1.512 

$%8345 '⁄  1.484 × 10$9 1.034 × 10$9 - 1.963 × 10$9 

$%8678 '⁄  2.115 × 10$9 1.486 × 10$9 - 2.796 × 10$9 

P:.9< 2.417 1.487 - 3.344 

P%9.< 4.231 2.588 - 5.812 

P9< 4.352 2.683 - 6.026 

P=> 11.09 7.100 - 15.16 

P<- 8.115 5.322 - 10.97 

P>< 12.79 8.485 - 17.42 

P%-- 16.75 11.82 - 22.16 

P9-- 26.87 17.49 - 36.81 

 

  



Supplementary Note 

Calculation of theoretical odds ratio  

I derived the theoretical odds ratio, stP, by Eqs. (1–4) as follows: 
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Because $ > 0, , > 0, 1/' > 0, %8345 > 0, %8678 > 0 and 

0 < 1 +
.
'
(()QRS + ()TUV) < D1 +

.
'
()QRSF D1 +

.
'
()TUVF, 

I obtained the following relationship of  
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.
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9
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Thus, it is shown that 
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Hence, the numerator in the second term of 23. is always positive. Similarly, since 

0 < 1 +
.
'
()TUV < 1 +

.
'
(()QRS + ()TUV), 

I obtained 

0 < D1 +
.
'
()TUVF

9

< w1 +
.
'
(()QRS + ()TUV)x

9

, 

this leads to 



1

D1 +
.
' (
)TUVF

9 −
1
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.
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)QRS + ()TUV)H
9 	> 0. 

This inequality explains why the denominator in the second term of stP is always positive. Therefore, I was 

able to show that stP > 1 holds. 

  



Supplementary Figure 
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Figure S1 | Frequency of single infection and coinfection in other experiment: (a) The experimental and 

theoretical frequencies of quadrants A (i.e., HSA-positive) and C (i.e., HSA- negative) in seven independent 

experiments using only HSA HIV-1 are shown by red and white bars, respectively. (b) The experimental and 

theoretical frequencies of quadrants D (i.e., GFP- positive) and C (i.e., GFP-negative) in single GFP HIV-1 

experiments are shown by green and white bars, respectively. (c) The experimental and theoretical frequencies 

of quadrants A, B (i.e., positive both for HSA and GFP), C (i.e., negative both for HSA and GFP), and D in 

double HIV-1 experiments are shown by blue and white bars, respectively, with different combinations of 

inoculated viral amount. Note that each error bar represents 95% credible interval obtained from Markov Chain 

Monte Carlo(MCMC) parameter inferences. 
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Figure S1 | Frequency of single infection and coinfection in other experiment: (a) The

experimental and theoretical frequencies of quadrants A (i.e., HSA-positive) and C (i.e., HSA-

negative) in seven independent experiments using only HSA HIV-1 are shown by red and white

bars, respectively. (b) The experimental and theoretical frequencies of quadrants D (i.e., GFP-

positive) and C (i.e., GFP-negative) in single GFP HIV-1 experiments are shown by green and

white bars, respectively. (c) The experimental and theoretical frequencies of quadrants A, B

(i.e., positive both for HSA and GFP), C (i.e., negative both for HSA and GFP), and D in double

HIV-1 experiments are shown by blue and white bars, respectively, with different combinations

of inoculated viral amount. Note that each error bar represents 95% credible interval obtained

from Markov Chain Monte Carlo(MCMC) parameter inferences.



 

FigureS2 | The outline of our study: (Blue area) The frequency of cells in each quadrant were taken by FACS 

analyses in 3 independent experiments. (Green area) I calculated the predicted frequencies corresponding to 

the measurements, and the 11 parameters are unknown. (Red area) To estimate the distribution of the all 

parameters, the bayesian method are applied. Using the values, the calculations on the number of infection 

events were done(see Fig4).  
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FigureS2 | The outline of our study: (Blue area) The frequency of cells in each quadrant were taken by FACS analyses in 3 independent experiments. (Green

area) We calculated the predicted frequencies corresponding to the measurements, and the 11 parameters are unknown. (Red area) To estimate the

distribution of the all parameters, the bayesian method are applied. Using the values, the calculations on the number of infection events were done(see Fig4).
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Chapter 2 

Dynamics of HIV-1 coinfection  

in different susceptible target cell populations during cell-free infection 
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Introduction 

 Human Immunodeficiency Virus type-I (HIV-1) infection remains one of the leading public-health 

concerns since the early 1980s (Barre-Sinoussi et al., 2013; Fauci, 2003). The major hurdles to the control of 

HIV-1 infection are viral escape from immune responses and high-level drug resistance to antiretroviral therapy 

(Chang et al., 2013). These phenomena are caused by the rapid production and accumulations of HIV-1 

mutations over time in HIV-1 patients, driving viral evolution and escape (Gottlieb et al., 2004; Nora et al., 

2007). One of the most efficient mechanisms favoring the accumulations of mutation consists in the 

recombination events, which allow to combine in a single step portions of the viral genomes that evolved 

independently (Burke, 1997b; Jung et al., 2002). Recombination events require the infection of a single cell by 

two virions. Double infections can take place within a short time frame (coinfection) or with variable delay 

(super-infection) (Law et al., 2016; Remion et al., 2016). Double-infected cells produce virus particles that may 

carry two different RNA molecules, which can recombine during reverse transcription and produce a chimeric 

genome (Redd et al., 2013).  

 Genetic recombination is a relevant phenomenon in infected patients, and several reports have 

described patients infected by multiple HIV-1 variants (Allen and Altfeld, 2003b; Powell et al., 2009; Ronen et 

al., 2013; Smith et al., 2005). Although most infected circulating cells in patients harbor a single viral genome, 

double-infected cells are consistently detected (Josefsson et al., 2011; Josefsson et al., 2013). Genetic 

recombination in coinfected cells constantly happens over time (Fraser, 2005; Simon-Loriere and Holmes, 2011), 

and double infections by HIV-1 was shown to lead to the emergence of multidrug resistant viruses (Donahue et 

al., 2013; Quan et al., 2009b). 

 Interestingly, it was previously shown in tissue culture that HIV-1 coinfection is not a random event, 

and it takes place with higher frequency than expected for independent events (Dang et al., 2004). Dang et al., 

suggested that the heterogeneity of target cells in terms of susceptibility to infection, is largely responsible for 

the nonrandom distribution of coinfection events in vitro (Dang et al., 2004). In their study, for simplicity, five 

subpopulations with a gradient of susceptibility to the infection were considered (Dang et al., 2004). The concept 



of heterogeneity of target cells has been widely supported by subsequent publications (Chen et al., 2005; Ito et 

al., 2017; Remion et al., 2016; van der Kuyl and Cornelissen, 2007). One aspect that has not been sufficiently 

investigated, is the time-evolution of coinfection. To understand such non-random multiple infection events 

from the point of view of “virus dynamics”, the kinetics of HIV-1 coinfection during the course of the infection 

should be quantified. In a recent report by Law et al., (Law et al., 2016), a simple ordinary differential equation 

model has been proposed and the frequency of HIV-1 coinfection in vivo was investigated. Their mathematical 

analysis showed that HIV-1 coinfection is indeed non-random, and target cell population must have different 

susceptibilities to explain their experimental data in vivo. Here, to further expand their approach, considering 

target cell heterogeneity and number of infection events, and to investigate the time-evolution of HIV-1 

coinfection in detail, we developed a novel mathematical model, which captures a large dataset from in vitro 

experiments, and characterized HIV-1 cell-free infection dynamics.  



Results 

Mathematical model considering target cell heterogeneity and number of infection events 

Our model extended the well-parameterized basic model of viral dynamics (e.g., (Perelson, 2002)) by 

incorporating both target cell heterogeneity and number of infection events. N target cell subpopulations with 

different susceptibility were assumed. Dynamics of the target cell subpopulation y	(∈ {1, . . . , N}) and the viral 

dy- namics in cell culture were modelled as follows: 
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 Here {@ is the number of uninfected (i.e., susceptible) target cell subpopulation y. The subpopulation 

y was further divided into 9 sub-groups by the state of infection: SB
C# and SB

D$ are infected cells either by HSA 

HIV-1 (symbolized by R) or GFP HIV-1 (symbolized by G), SB
C#D$ is coinfected cells, where the subscripts T and 

U correspond to the number of infection events either by HSA or by GFP HIV-1, respectively (see Fig. 1). %C and 



%D 	are the amount of HSA and GFP HIV-1, respectively. The de novo infection, $%X(Y + $%X(Z is assumed linearly 

dependent on the number of viral populations, %C  and %D . $  is the infection rate and %@  is the relative 

susceptibility for subpopulation	y. For sim- plicity, we ordered the target cell subpopulations by susceptibility 

(i.e., 1 = .% > .9 > ⋯ > .B  for y ≥ 2). That is, .(= .%0) is the net infection rate of the most susceptible 

target cell population {0 for HIV-1 and, for example, .%. is the reduced infection rate of the 2nd susceptible 

populations {.. Since these HSA and GFP HIV-1 could not infect their target cells multiple times (i.e., single 

cycle experiments), we only considered a viral clearance rate K but not virus production. As we previously 

estimated in (Ito et al., 2017), more than 99.9% of infection events were largely occupied by 1 and/or 2 infections 

by either HSA or GFP HIV-1 even in the 100 and 100 µl of double HSA and GFP HIV-1 experiment. Therefore, 

we neglected the case which }, ~ > 3 in Eq.(1) for analysing our experimental datasets, and assumed that more 

than one infection events did not occur simultaneously (i.e., .. = 0). Based on our previous findings, the death 

rate of HIV-1 infected cell is negligible because cells were exposed to the virus only during 2 hours in our 

experiments (Ito et al., 2017; Remion et al., 2016). 

 

Heterogeneity of target cell populations 

To characterize the heterogeneity of target cell population we quantified the goodness-of-fit between 

the candidate models with different number of cell subpopulations, and the experimental data (see Methods for 

our data fitting). To this end, we calculated the Akaike Information Criteria (AIC) for each fit using 

WSX = Y"E+ ln 7
\\3]5̂_
Y"E+

9 + 2Y"FG , 

and compared them for the different number of susceptible subpopulations in Fig2. Here N9N#  and N9K> 

represent the number of data points and the number of parameters, respectively. The sum of the residuals 

��t(XÄ) is explained in Methods. Interestingly, complete homogeneity of target cells (i.e., the number of 

susceptible target cell population is equal to “1”) yields a very poor fit (high AIC) to our cell culture 

experimental datasets (see Fig2). Although the very best fit (smallest AIC) was obtained with two susceptible 

subpopulations (i.e., N = 2), higher dimensional models having more than three subpopulations provide an 



adequate description of the data. We summarized our best-fitted parameter values (i.e., estimated parameter 

values for N = 2) in Table1. A set of representative data fitting is shown in Fig3. In these panels, the colored 

and white bars represent experimental and predicted frequencies for each quadrant, respectively. In both single 

(Fig3a and b) and double (Fig3c) HIV-1 infection experiments, our mathematical model reproduces all 

experimental datasets well. An independent set of data and the corresponding analysis is shown in FigS1 in 

Appendix A, both for single and double infection experiments. In addition, our mathematical model with 

estimated parameters successfully reproduces an important index on non-randomness of HIV-1 coinfection, i.e., 

odd ratio (Dang et al., 2004; Del Portillo et al., 2011; Ito et al., 2017; Remion et al., 2016), as well (see FigS2 

in Appendix B). 

 

Dynamics of HIV-1 coinfection during cell-free infection 

The FACS analysis itself could not extract a time-evolution of HIV-1 coinfection (see Methods). This 

is because conventional FACS analysis cannot distinguish infected cells having different number of infection 

events by the same virus (e.g., Å@
W. and Å@

W(; Å@
W.(. and Å@

W(((). In this study, using the mathematical model 

with our estimated parameter values, we reconstructed the frequency of HIV-1 coinfection dynamics during the 

cell-free infection in cell culture. For example, as described in Fig4a-d, we calculated the frequency dynamics 

of HSA HIV-1 infected (i.e., quadrant A), double infected (quadrant B), uninfected susceptible target cells 

(quadrant C) and GFP HIV-1 infected (quadrant D) cells in the 100 and 100 µl of double HSA and GFP HIV-1 

experiment, respectively. We found that the frequency of infection in the 1st susceptible target cell population 

was 6.11-fold higher than that of the 2nd susceptible cell population, when cells were exposed to the virus 

inoculum for 2 hours. In other words, cells from the more susceptible population were almost selectively 

infected among the total target cell population (c.f., (Ito et al., 2017)). Furthermore, in Fig4e, we calculated the 

time-evolution of the number of infection events. Interestingly, multiple infection events rapidly occur upon 

exposure of cells to the virus, and they accumulate in up to 10% of all target cells within hours. 

 



Contribution of differently susceptible target cell populations to coinfection  

The more susceptible a target cell is, the more likely it will be infected by HIV-1. To investigate how 

target cell heterogeneity affects the HIV-1 coinfection frequency, we quantified the contribution of different 

target cell subpopulation to the event. The contribution of {@ at 2 hours post exposure to the virus is defined as 

follows: 

SB
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C#D$(2)H
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∑ SB
C%(2)H

BJ% + ∑ SB
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9
KJ%
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Interestingly, in Fig5, we revealed that 98.3% of coinfection events emerged within the most susceptible target 

cell subpopulation (i.e., 1st susceptible target cell population: {0) on average based on the mathematical model 

with our estimated parameter values. This demonstrates that certain susceptible target cell subpopulations might 

be a driving force of HIV-1 recombination which may lead to drug resistance and immune escape. 

  



Methods 

HIV-1 coinfection experiment 

 The proviral constructs were derived from previously published plasmids based on the pNL4-3 

construct and each carried a sequence coding for either green fluorescent protein (GFP) or heat stable antigen 

(HSA) reporter proteins cloned before the nef gene, with an IRES sequence allowing concomitant expression 

of the viral and reporter proteins. To limit infections to a single cycle, we used Env-defective constructs, 

pseudotyped by HIV Env glycoproteins expressed in trans. Stocks of viruses expressing either GFP or HSA 

were prepared by transfecting sub-confluent 293-T cells in T75 flasks by JetPei (Polyplus Inc. Illkrich, France), 

following the manufacturer’s instructions. Subsequently, MT4R5 cells in a 96-well plate were exposed to two-

fold dilutions of one virus (single infection) or of both viruses at the same time (coinfection), using different 

ratios of the two viruses (as detailed in the results). Finally, flow cytometry data were acquired using a FACS-

Calibur instrument (Becton Dickinson, Le Pont-de Claix, France) with CellQuest software and were analysed 

using FlowJo software (Treestar, Ashland, OR, USA). Note that the detailed description of our experiment can 

be found in our previous publications (Ito et al., 2017; Remion et al., 2016). 

 

Data fitting 

In coinfection experiments, the expression of the two reporter proteins (GFP and HSA) allows to 

separate infected cells in different quadrants of the FACS analysis: A: HSA-positive (HSA+), B: both HSA-

positive and GFP-positive (HSA+GFP+), C: both HSA-negative and GFP-negative (HSA-GFP-), and D: GFP-

positive (GFP+) (Fig1a). Since these data are measured as frequencies, we normalized the total cell number (i.e., 

∑ {@(`) +
F
@G0 ∑ ∑ Å@

W5(`).
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F
@G0 + ∑ ∑ Å@

(6(`).
\G0

F
@G0 +∑ ∑ ∑ Å@

W5(6(`).
\G0

.
[G0

F
@G0 = 1 ), and calculated the 

expected values corresponding to each quadrant using Eq.(1) at 2 hours post exposure to the virus. Note that 

FACS analysis does not allow to identify the number of infection events per cell, as cells infected by one or 

multiple virions carrying the same reporter gene will be indistinguishable. Here, for considering the different 

amounts of inoculated HIV-1, we assumed that (W)))(0) = (W(0) and (()))(0) = (((0) for 3.12	89 of HIV-1 



supernatant (our smallest inoculum), while (W)))(0) = (W(0) × ,∗  and (()))(0) = (((0) × ,∗  for the other 

inoculated amounts in Eq.(1). Therefore, the set of parameters n Eq.(1), X = (., K, %@ , (W(0), (((0), ,∗) was 

estimated by fitting: infection rate ., viral clearance rate K, reduction rate on the target cell susceptibility %@, 

HSA-positive initial value (W(0) , GFP-positive initial value (((0) , the scaling parameters ,∗  for 

6.25, 12.5, 25, 37, 50, 75, 100, and	200	89  of the inoculated HIV-1 (see Table1). Note that %0 = 1  and 

number of differently susceptible target cell subpopulations, N, is determined by the AIC values (see Results). 

To estimate those parameters in Eq.(1), we assumed the dataset follows the Gaussian distribution 

with mean 8@ and common variance M., and used the following likelihood function: 

a(b, c9; e) =f
1

√2hc9
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Here, d, R and X represent the set of the expected values by Eq.(1), the experimental measurements and the 

set of parameters in Eq.(1), respectively. The sum of the residuals, ��t(X), is defined as 
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where <∗,# and <[∗,# are the expected values by Eq.(1) and the experimental measurements at 2 hours post 

exposure to the virus, respectively. Here ∗ and # correspond to one of the quadrants (i.e., ä, ã, å, ç) and one 

of the experiments with different amounts of inoculated HIV-1 (i.e., , = 1,… ,10 correspond to 3.12, 6.25, 

12.5, 25, 37, 50, 75, 100, 100 and 200 µl, respectively, of single HSA HIV-1 experiments; J = 1,… ,10 

correspond to 3.12, 6.25, 12.5, 25, 50, 50, 75, 100, 100 and 200 µl, respectively, of single GFP HIV-1 

experiments; KL = 1,… ,18 correspond to 25 and 25, 25 and 50, 50 and 25, 37 and 50, 50 and 50, 37 and 75, 

75 and 50, 75 and 75, 25 and 100, 100 and 25, 37 and 100, 50 and 100, 100 and 50, 100 and 50, 75 and 100, 



100 and 75, 100 and 100 µl and 100 and 100 µl, respectively of double HSA and GFP HIV-1 experiments). 

To consider the uncertainty of the variance as well as parameters in Eq. (1), we employed a bayesian inference 

approach to estimate the parameters. We applied MCMC method sampling by “delayed rejection and adaptive 

Metropolis algorithm” to the parameter estimation using the R FME package (R version 3.4.1) (Soetaert and 

Petzoldt, 2010). In this package, the error between experimental values and predicted values is assumed to 

follow a Gaussian distribution with mean 0 and the variance M.. The additional assumption is that the inverse 

of the variance (i.e., 1/M.) follows a Gamma distribution, and the prior distribution of the parameters follows 

a Gaussian distribution. We set 300,000 iterations, while the first 200,000 chains are discarded as burn-in-sample. 

Finally, the convergence of the posterior distributions of the all parameters is confirmed by checking the 

“traceplot” and “histgram”. The 95% credible interval is the range from 2.5% to 97.5%, and each mean 

represents one of the posterior distribution (Table1). 

  



 

Discussion 

 HIV mutation and recombination are driving forces of HIV evolution, especially for immune evasion 

and drug resistance in vivo (Gottlieb et al., 2004; Nora et al., 2007; Price et al., 1997). HIV recombination has 

been well studied both in vitro and in vivo (Cromer et al., 2016; Law et al., 2016; Levy et al., 2004b; Schlub et 

al., 2010). An essential factor for viral recombination is coinfection, and therefore it has been investigated 

extensively (Dang et al., 2004; Del Portillo et al., 2011; Dixit and Perelson, 2005; Ito et al., 2017; Remion et al., 

2016). Taking advantage of mathematical modeling and its computational simulations, the dynamics of viral 

recombination and coinfection has been gradually revealed (Dixit and Perelson, 2005; Giorgi et al., 2013; Keele 

et al., 2008), although those studies did not take into account the heterogeneity of the target cell population. 

To further our understanding of the coinfection (and multiple infection) dynamics for HIV-1 infection, 

in particular, in the context of different susceptible target cell populations, we propose the novel mathematical 

model including target cell heterogeneity (i.e., described as y) and explicitly counting the number of infection 

events in infected cells (i.e., } and ~) (Fig1). By our experimental-theoretical approach, we characterized the 

heterogeneity of target cell population, and found that the presence of two different susceptible subpopulations 

is enough to reproduce our cell culture experimental datasets for multiple infections, although models having 

three or more subpopulations also might be acceptable (Fig2 and Fig3). For example, in (Dang et al., 2004), it 

was reported that a simulation model considering 5 different susceptible subpopulations explained the 

nonrandom HIV-1 infection in cell culture. They did not estimate the number of subpopulations from 

experimental datasets, but our results further support their simple assumption. 

In addition, based on our estimated parameter values, we were able to extract the dynamics of HIV-

1 coinfection during cell-free infection in cell culture (Fig4). Our simulation explained that multiple infection 

events rapidly occur and accumulate in up to 10% of all target cells within hours. This implies that there might 

be massive multiple infection events, which enhance viral recombination, during an exponential viral growth 

phase in patients. In fact, it has been reported that in vivo the estimated template switching rate is close to in 

vitro estimated rate found in primary T lymphocytes (Cromer et al., 2016). Furthermore, our important finding 



is that around 98% of the infection by more than 1 virus has emerged from the most susceptible target cell 

subpopulation (Fig5). This demonstrates that certain target cell populations play a dominant role as major 

coinfection source, as compared to the whole target cell population. Since highly susceptible target cells are 

selectively infected and removed from the population due to apoptosis or virus lysis, one can hypothesize that 

the coinfection rate and its associated viral recombination rate reach a maximum during the exponential viral 

growth phase, a possibility that it will be worth examining in future studies. This is indeed a testable hypothesis 

both experimentally and mathematically. 

 HIV-1 coinfection is an important strategy to promote the genetic recombination followed by viral 

evolution, with consequences for viral escape from the immune or pharmacological pressures. As we previously 

estimated in (Iwami et al., 2015), the cell-to-cell infection accounts for approximately 60% of HIV-1 infection 

events in cell culture and therefore this is a major infection mode. Despite its lower infection efficiency, we 

show here that cell-free HIV transmission results in frequent coinfection events. In the context of genetic 

recombination, cell-free infection may have an advantage over cell-to-cell transmission, in that it is more likely 

to bring together viruses that have different genotypic and phenotypic properties. Indeed, cell-free viruses 

produced by different cells, may carry advantageous traits due to their exposure to different selective forces. 

Our study, by exploring the conditions that favor coinfection and its kinetics, help elucidating this process that 

participates in virus escape.  



Figure 

 

Figure 1 | Flow cytometry analysis of HIV-1 double infection and its mathematical modelling. (a) The 

panel shows a representative flow cytometry result of double infection with HSA and GFP viruses: the quadrants 

correspond to HSA+ cells (A); HSA+GFP+ cells (B); uninfected susceptible target cells (C); and GFP+ cells (D). 

The colors of dots represents the density of the above cells. The percentage of cells in each quadrant is indicated 

under the letter identifying the quadrant. (b) Each quadrant, i.e., (A), (B), (C) and (D) is defined as ∑ Å@
W5

@,[ , 

∑ {@@ , ∑ Å@
(6

@,\ and ∑ Å@
W5(6

@,[,\ , respectively, in our mathematical model. Here the indices y represents the class 

of target cell susceptibility, and }, ~ correspond to the number of infection events either by HSA virus or by 

GFP virus, respectively.  



 

Figure 2 | Target cell heterogeneity based on AIC calculation. For each number of different susceptible target 

cell populations, AIC values were calculated in Eq.(1), and compared. The mean value of SSR derived from 

Markov Chain Monte Carlo (MCMC) inferences was used to calculate the AIC value.  



 

Figure 3 | Frequency of single infection and double infection. (a) The experimental and predicted frequencies 

of quadrants A (i.e., HSA+) and C (i.e., HSA-) at 2 hours post exposure to the virus in three independent 

experiments using only HSA HIV-1 are shown by red and white bars, respectively. (b) The experimental and 

predicted frequencies of quadrants D (i.e., GFP+) and C (i.e., GFP-) in single GFP HIV-1 experiments are shown 

by green and white bars, respectively. (c) The experimental and predicted frequencies of quadrants A (i.e., 

HSA+), B (i.e., HSA+GFP+), C (i.e., HSA-GFP-), and D (i.e., GFP+) in double HIV-1 experiments are shown by 

blue and white bars, respectively. Two independent experiments were performed with the nine indicated 

combinations of HSA and GFP HIV-1 using the three different amounts of each virus used in single experiments. 

Note that each error bar represents the 95% credible interval obtained from MCMC inferences (Table 1).  



 

Figure 4 | Dynamics of HIV-1 coinfection during cell-free infection. The predicted frequency dynamics of 

HSA-infected (i.e., quadrant A), double infected (quadrant B), uninfected susceptible target (quadrant C) and 

GFP-infected (quadrant D) cells were calculated in (a), (b), (c) and (d), respectively, using the mean estimated 

parameter values derived from MCMC inferences in 100 and 100 µl of double HSA and GFP HIV-1 experiment. 

The solid and dashed lines in (a), (b) and (d) correspond to the dynamics of total HIV-1 infection and each 

dynamics of 1, 2, 3 and 4 (co)infection event(s) denoted as in panels, respectively. In (c), the solid and dashed 

lines represent the dynamics of total and each uninfected susceptible cell population, respectively. In (e), the 

dynamics of 1, 2, 3 and 4 infection event(s) were separately calculated.  



 

Figure 5 | Contribution of differently susceptible target cell populations to coinfection events. In 18 double 

HSA and GFP HIV-1 experiments, 98.28% and 1.72% of coinfected cells, on average, were generated from 1st 

and 2nd susceptible target cell population at 2 hours post exposure to the virus, respectively.  



Table 
Table 1. Estimated parameters in the mathematical model of cell-free infection 

  

Parameter name Parameters Unit Estimated 
mean values 95% credible interval 

Number of differently 
susceptible target cell 
subpopulations 

Y - 2 - 

Infection rate $ (virion/ij)-1∙(hour)-1 2.709 × 10$< (1.818 − 3.836) × 10$< 
Viral clearance rate l (hour)-1 0.3060 0.08060 − 0.5347 
Reduction rate on 
target cell 
susceptibility 

.9 - 0.1304 0.1075 − 0.1566 

Initial HSA HIV-1 
viral amount %C888(0) (RNA copies/ij) 0.8505 × 10= (0.5967 − 1.200) × 10= 

Initial GFP HIV-1 viral 
amount %D888(0) (RNA copies/ij) 1.205 × 10= (0.8383 − 1.704) × 10= 

Increase rate at 6.12ij 
of inoculated virus P:.9< - 2.311 1.735 − 2.958 

Increase rate at 12.5ij 
of inoculated virus P%9.< - 4.011 3.138 − 4.913 

Increase rate at 25ij 
of inoculated virus P9< - 4.040 3.247 − 4.874 

Increase rate at 37ij 
of inoculated virus P=> - 10.27 8.195 − 12.43 

Increase rate at 50ij 
of inoculated virus P<- - 7.425 6.005 − 8.938 

Increase rate at 75ij 
of inoculated virus P>< - 11.86 9.512 − 14.26 

Increase rate at 100ij 
of inoculated virus P%-- - 15.03 12.13 − 18.08 

Increase rate at 200ij 
of inoculated virus P9-- - 24.24 19.59 − 	29.11 



Appendix 

Appendix A 

In addition to the representative experimental datasets in Fig3, we used the other datasets from 7 

single HSA HIV-1 infection, 7 single GFP HIV-1 infection and 9 double HIV-1 infection in our simultaneous 

fitting for our parameter estimation. As described in FigS1, our mathematical model fits well to datasets 

independent of inoculated viral amounts. 

 

Appendix B 

HIV-1 coinfection events were demonstrated to occur more frequently than would be expected for 

independent infection events and do not follow a random distribution (Chen et al., 2005; Dang et al., 2004; Ito 

et al., 2017; Remion et al., 2016). If the coinfection occurred more frequently than that expected from random 

events, then the expected odds ratio would be more than 1. As we reported in (Ito et al., 2017), the experimental 

odds ratio, <;,#<<,# <',#<=,#⁄ , was estimated to be more than 1 independent of inoculated viral amount. To 

quantitatively further support our model prediction, we calculated the theoretical odds ratio, <[;,#<[<,#/<[',#<[=,#, 

from our mathematical model with our estimated parameters in Table1. In FigS2, we compared the odds ratio 

measured by our experiments with the theoretical odds ratio. Thus, our novel model quantitatively reproduces 

the odds ratio and captures the known property of coinfection during cell-free HIV-1 infection in cell culture. 

  



Appendix Figure 

 

Figure S1 | Frequency of single infection and double infection in other experiments: (a) The experimental 

and predicted frequencies of quadrants A (i.e., HSA+) and C (i.e., HSA-) at 2 hours post exposure to the virus in 

seven independent experiments using only HSA HIV-1 are shown by red and white bars, respectively. (b) The 

experimental and predicted frequencies of quadrants D (i.e., GFP+) and C (i.e., GFP-) in single GFP HIV-1 

experiments are shown by green and white bars, respectively. (c) The experimental and predicted frequencies 

of quadrants A (i.e., HSA+), B (i.e., HSA+GFP+), C (i.e., HSA-GFP-), and D (i.e., GFP+) in double HIV-1 

experiments are shown by blue and white bars, respectively, with different combinations of inoculated viral 

amount. Note that each error bar represents 95% credible interval obtained from Markov Chain Monte Carlo 

(MCMC) parameter inferences.  



 

 

Figure S2 | Comparison of measured odds ratio with predicted odds ratio: The experimental odds ratio and 

predicted odds ration are shown in blue and black box plots, respectively, using 18 HIV-1 double infection 

experiment datasets. The dotted line corresponds to the odds ratio of 1 predicted by a simple homogeneous 

target cell model (i.e., Eq.(1) with y = 1). Note that the predicted odds ratios were calculated by the mean value 

of posterior distribution obtained from MCMC method. 
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