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1 Introduction
It is well-known that differential geometry is closely related to the theory of the
integrable systems, and various integrable equations arise as compatibility condi-
tions of the geometric objects such as the curves and surfaces. A typical example
is the pseudospherical surfaces described by the sine-Gordon equation under the
Chebyshev net parametrization. For more information on such connections we re-
fer to a monograph [9] by Rogers and Schief. On the other hand, in the theory of
the connections between differential geometry and the integrable systems, the dis-
cretizations of this theory preserving the underlying integrable structure have been
actively studied by many researchers under the name of the discrete differential
geometry [10].

In this thesis, we particularly interested in the relation between deformations
of curves and integrable systems, which has been first pointed out by Hasimoto
[39], and then studied further by Lamb and Goldstein-Petrich [12,51]. In these re-
searches it has been clarified that certain deformations of curves in the Euclidean
geometry are governed by the AKNS hierarchy. Then, in the development of the
discrete differential geometry, the discretizations of these theories have been stud-
ied in [1, 8, 13–19, 35], which mean to construct the frameworks of discrete plane
and space curves governed by the semi-discrete or discrete integrable systems.
Besides the Euclidean geometry, deformations of smooth and discrete curves in
various Klein geometries have been studied in [6–8, 20–23].

The purpose of this thesis is to investigate deformations of smooth and discrete
curves, which are described by continuous and semi-discrete integrable equations,
in the Euclidean geometry and the centroaffine geometry which is one of Klein
geometries, and present an relationship between the integrable deformation of
discrete curves and linkage mechanisms.

In the first part of this thesis, we consider a certain deformation of smooth
plane curves in the centroaffine geometry, which is governed by the defocusing
modified Korteweg-de Vries equation (mKdV equation). Then we construct a
framework of discrete plane curves in the centroaffine geometry (discrete cen-
troaffine plane curves), and present a particular deformation of discrete centroaffine
plane curves governed by the Lotka-Volterra equation. On the other hand, it is
known that the KdV equation and its semi-discrete analog describe the integrable
deformations of smooth and discrete plane curves in the equicentroaffine geome-
try [5–8], and a solution to the KdV equation can be constructed from a solution
to the (defocusing) mKdV equation by the Miura transformation [42]. We in-
vestigate the correspondences between deformations of centroaffine and equicen-
roaffine plane curves by using the Miura transformation.
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In the next part of this thesis, we present a mathematical model of a special
class of linkages, which is called the Kaleidocycles, by using the theory of discrete
space curves. A linkage is a mechanical system consisting of rigid bodies joined
together by joints. They are used to transform one motion to another as in the
famous Watt parallel motion and a lot of examples are found in engineering as
well as in natural creatures [31]. In particular, we focus on linkages consisting of
hinge joints in this thesis.

Meanwhile, we also consider continuous deformations of discrete space curves
in the Euclidean geometry, which are governed by the semi-discrete mKdV and
the semi-discrete sine-Gordon equations. Many researchers, working on the dis-
crete differential geometry, have studied various continuous deformations of the
discrete space curves in [1, 35, 40, 60, 62]. We present how to identify hinged
linkages by using discrete space curves, and investigate particular configuration
spaces of hinged linkages which are governed by the semi-discrete mKdV and the
semi-discrete sine-Gordon equations.

In the last part of this thesis, we introduce a figure called the spherical Kalei-
docycle, which is defined on the standard unit 3-sphere in R4. It has the similar
shape with the Kaleidocycles if we see it in R3 via the stereographic projection.
Moreover, a particular deformation of it exhibits the turning-over motion, which is
reminiscent of the motion of Kaleidocycles. We present an algorithm to construct
spherical Kaleidocycles and visualize them.

This thesis is organized as follows. In Chapter 2, we present frameworks
of plane curves in the centroaffine geometry, and consider continuous deforma-
tions of smooth and discrete centroaffine plane curves governed by the defocusing
mKdV and Lotka-Volterra equations, respectively. In Chapter 3, we review the de-
formation of smooth plane curves in the equicentroaffine geometry described by
the KdV equation, and its semi-discrete analog based on [5,8]. Then we construct
correspondences between continuous deformations of smooth and discrete plane
curves in the centroaffine geometry and the equicentroaffne geometry in Chapter
4. In Chapter 5, first in Section 5.1 and 5.2, we set up a mathematical model of
linkages. Next in Section 5.3–5.5, We formulate Kaleidocycles by using discrete
space curves and investigate the relationship between the motion of Kaleidocycles
and deformations of discrete space curves governed by the semi-discrete mKdV
and semi-discrete sine-Gordon equations. Then in Section 5.6–5.8, we introduce
some properties and numerical observations about motions of Kaleidocycles. Fi-
nally in Chapter 6, we prepare some basic theories of the standard unit 3-sphere
and the Clifford torus, and then we construct the spherical Kaleidocycles.
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2 Integrable deformation of plane curves in the cen-
troaffine geometry

In this chapter, we present a framework of the smooth/discrete curve theories in
the centroaffine geometry. Also, we investigate particular curve deformations that
are described by the defocusing mKdV and the Lotka-Volterra equations.

2.1 Defocusing mKdV flow on smooth centroaffine plane curves
In this section, we investigate a continuous curve deformation in the centroaffine
geometry based on [2,3], that is described by the defocusing mKdV equation. The
defocusing mKdV equation has diffenrent properties from that of the focusing
one, since it does not have a traveling wave solution under the rapidly decreasing
boundary condition. It should be noted that Chou and Qu formulated in [4] a curve
deformation described by the defocusing mKdV equation, however, while their
formulation depends on quantities of the Euclidean geometry, ours is independent
of those. We introduce an invariant parameter for curves, which is a centroaffine
analogue of the arclength parameter, and then formulate the defocusing mKdV
flow as the simplest deformation that preserves the centroaffine arclength. In this
geometry, we are interested in the invariants of the centroaffine transformation:

Definition 2.1 (centroaffine transformation) Let φ : Rn→Rn be a linear trans-
formation. Then φ is called the centroaffine transformation if it is expressed, for
any x ∈ Rn, as

φ(x) = Ax, A ∈ GL(n), (2.1)

where GL(n) is the general linear group.

Since the arclength is not an invariant for the centroaffine transformation, we need
to look for a different invariant value. We simply regard R2 as a vector space, and
consider a plane curve γ(ξ ) : I⊂R→R2 which is parametrized by an arbitrary pa-
rameter ξ . Also we introduce a frame Φ(ξ ) =

[
γ(ξ ),γξ (ξ )

]
, where the subscript

indicates differentiation with respect to the designated parameter. We assume that
detΦ(ξ ) 6= 0. Then, for a nonzero real number λ , we reparametrize γ = γ(ξ ) for
a parameter x so as to be

det [γx,γxx]

det [γ,γx]
= λ . (2.2)
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In fact, we can look for x = x(ξ ) as

det
[
γξ ,γξ ξ

]
=
(
xξ

)3 det [γx,γxx]

=
(
xξ

)3
λ det [γ,γx]

=
(
xξ

)2
λ det

[
γ,γξ

]
, (2.3)

which implies that

x(ξ ) =
∫

ξ

ξ0

(
det
[
γξ ,γξ ξ

]
λ det

[
γ,γξ

])1/2

dξ . (2.4)

In order for (2.4) to define a reparametrization ξ 7→ x, we shall assume that the
given curve γ satisfies the condition det

[
γξ ,γξ ξ

]
6= 0. We summarize the above

discussion as follows.

Definition 2.2 (centroaffine plane curve)

1. Let γ(ξ ) : I ⊂ R→ R2 be a parametrized plane curve in the centroaffine
geometry, where ξ is an arbitrary parameter. We call γ(ξ ) a centroaffine
plane curve if γ(ξ ) satisfies det

[
γ(ξ ),γξ (ξ )

]
6= 0 for all ξ .

2. Let γ(ξ ) be a centroaffine plane curve. We call γ(ξ ) is regular if it satisfies
det
[
γξ (ξ ), γξ ξ (ξ )

]
6= 0 for all ξ .

3. Let γ(ξ ) be a regular centroaffine plane curve. Then, for a nonzero real
number λ , γ(ξ ) can be reparametrized by the parameter x in such a way
that in (2.2). We call the parameter x the centroaffine arclength parameter,
and it can be derived from ξ as (2.4).

Let γ(x) be a centroaffine arclength parametrized centroaffine plane curve. Then,
there exists a function κ = κ(x) satisfies

γxx =−λγ +κγx. (2.5)

We call the function κ the centroaffine curvature. It is easy to verify that κ also
can be expressed as

κ =
det [γ,γxx]

det [γ,γx]
. (2.6)

Proposition 2.3 The centroaffine arclength and the centroaffine curvature are in-
variant under the centroaffine transformation.

6



Figure 1: Centroaffine plane curve.

Proof. Let γ = γ(ξ ) be a regular centroaffine plane curve parametrized by an
arbitrary parameter ξ . For any A ∈ GL(2), we define a curve γA = γA(ξ ) by
γA = Aγ . Then, γA is also a regular centroaffine plane curve since

det [γA,γA
ξ
] = det [Aγ,Aγξ ] = (detA)2 det [γ,γξ ] 6= 0, (2.7)

det [γA
ξ
,γA

ξ ξ
] = det [Aγξ ,Aγξ ξ ] = (detA)2 det [γξ ,γξ ξ ] 6= 0. (2.8)

The parameter xA = xA(ξ ) characterized by

det
[
γA

xA,γ
A
xAxA

]
det
[
γA,γA

xA

] = λ , (2.9)

satisfies

xA =
∫

ξ

ξ0

 det
[
γA

ξ
,γA

ξ ξ

]
λ det

[
γA,γA

ξ

]
1/2

dξ

=
∫

ξ

ξ0

(
det
[
Aγξ ,Aγξ ξ

]
λ det

[
Aγ,Aγξ

])1/2

dξ

=
∫

ξ

ξ0

(
det
[
γξ ,γξ ξ

]
λ det

[
γ,γξ

])1/2

dξ = x. (2.10)

Similarly, the centroaffine curvature κA of γA satisfies by (2.10)

κ
A =

det
[
γA,γA

xAxA

]
det
[
γA,γA

xA

] =
det
[
γA,γA

xx
]

det [γA,γA
x ]

=
det [Aγ,Aγxx]

det [Aγ,Aγx]
=

det [γ,γxx]

det [γ,γx]
= κ, (2.11)
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which prove the proposition. �
Then introducuing the frame Φ : R→GL(2) given by Φ(x) = [γ,γx], equation

(2.5) is rewritten in terms of Φ = Φ(x) as

Φx = ΦL, L =

[
0 −λ

1 κ

]
. (2.12)

We call it the Frenet formula of the centroaffine plane curves.

Example 2.4 Let us consider the special case where κ = 0. Solving (2.5), we
obtain an ellipse or a hyperbola

γ =

{
cos
(√

λ x
)
e1 + sin

(√
λ x
)
e2 λ > 0

cosh
(√
−λ x

)
e1 + sinh

(√
−λ x

)
e2 λ < 0,

where e1 and e2 are linearly independent constant vectors. We remark that straight
lines are excluded from the curve theory in the centroaffine geometry, because they
are not regular.

Now we consider a family of regular centroaffine plane curves γ = γ (x, t). where
x is the centroaffine arclength parameter at each time t. We define two functions

λ (t) =
det [γx,γxx]

det [γ,γx]
, κ (x, t) =

det [γ,γxx]

det [γ,γx]
(2.13)

and a deformation of the curves by

γt = 2λκγ +

(
κx−

κ2

2
−4λ

)
γx. (2.14)

Then we have the following.

Theorem 2.5 (defocusing mKdV flow on centroaffine plane curves [3]) Let γ =

γ(x, t) be a regular centroaffine plane curve, which is deformed according to the
formula (2.14). Then we have:

1. The frame Φ = Φ(x, t) satisfies

Φt = ΦM, M =

[
2λκ λ

(
κx +

1
2κ2)+4λ 2

κx− 1
2κ2−4λ κxx− 1

2κ3−2λκ

]
. (2.15)

2. λ does not depend on t.
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3. The centroaffine curvature κ satisfies the defocusing mKdV equation:

κt = κxxx−
3
2

κ
2
κx. (2.16)

Proof. We note that (2.5) and (2.14) are rewritten, in terms of the frame Φ, as

γxx = Φ

[
−λ

κ

]
, (2.17)

γt = Φ

[
2λκ

κx− κ2

2 −4λ

]
, (2.18)

respectively. Then, differentiating (2.18) with respect to x, we have from (2.12)

γtx = Φx

[
−2λκ

κx− 1
2κ2−4λ

]
+Φ

[
−2λκx

κxx−κκx

]

= Φ

([
0 −λ

1 κ

][
−2λκ

κx− 1
2κ2−4λ

]
+

[
−2λκx

κxx−κκx

])

= Φ

[1
2λκ2 +4λ 2 +λκx
κxx− 1

2κ3−2λκ

]
, (2.19)

which immediately yields (2.15). Also, differentiating (2.19) with respect to x
again, we get

γtxx = Φx

[1
2λκ2 +4λ 2 +λκx
κxx− 1

2κ3−2λκ

]
+Φ

[
λκκx +λκxx

κxxx− 3
2κ2κx−2λκx

]

= Φ

([
0 −λ

1 κ

][1
2λκ2 +4λ 2 +λκx
κxx− 1

2κ3−2λκ

]
+

[
λκκx +λκxx

κxxx− 3
2κ2κx−2λκx

])

= Φ

[
1
2λκ3 +2λ 2κ +λκκx

κxxx +κκxx− 3
2κ2κx−λκx− 1

2κ4− 3
2λκ2 +4λ 2

]
. (2.20)

Now we verify that λ does not depend on t. By differentiating (2.2) with respect
to t, we have

λt =
1

(det [γ,γx])
2

(
det [γ,γx]

∂

∂ t
det [γx,γxx]−det [γx,γxx]

∂

∂ t
det [γ,γx]

)
. (2.21)

Then it is easy to verify that the right hand side of the (2.21) vanishes by (2.19)
and (2.20), and it implies λt = 0. Namely, λ does not depend on t. Finally we con-
sider the compatibility condition of the Frenet formula (2.5) and the deformation
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equation (2.14). Differentiating (2.17) with respect to t, we have

γxxt = Φt

[
−λ

κ

]
+Φ

[
−λt
κt

]

= Φ

([
2λκ λ

(
κx +

1
2κ2)+4λ 2

κx− 1
2κ2−4λ κxx− 1

2κ3−2λκ

][
−λ

κ

]
+

[
−λt
κt

])

= Φ

[
λκκx +2λ 2κ + 1

2λκ3−λt

κκxx−λκx− 1
2κ4− 3

2λκ2 +4λ 2 +κt

]
. (2.22)

Then, by the compatibility condition γtxx = γxxt , namely, comparing (2.20) with
(2.22), we get from λt = 0

κt = κxxx−
3
2

κ
2
κx,

which is the defocusing mKdV equation. �

2.2 Lotka-Volterra flow on discrete centroaffine plane curves
In this section, we construct a discrete analogue of the plane curve theory in the
centroaffine geometry, and we present a particular deformation of discrete cen-
troaffine plane curves which is governed by the Lotka-Volterra equation.

Consider a map γ : Z→ R2, n 7→ γn. We call γn a discrete plane curve if any
three consecutive points γn, γn+1 and γn+2 are not collinear. We define the discrete
centroaffine plane curve in the similar way to the smooth case as follows.

Definition 2.6 (discrete centroaffine plane curve) Let γ : Z→ R2, n 7→ γn be a
discrete plane curve in the centroaffine geometry. We call γn a discrete centroaffine
plane curve if γn satisfies det [γn,γn+1] 6= 0.

Let γn be a discrete centroaffine plane curve. We define the tangent vector Tn and
the second divided difference ∆Tn of γn by

Tn =
γn+1− γn

εn
, ∆Tn =

2
εn + εn−1

(Tn−Tn−1) , (2.23)

respectively. Here εn is determined as γn satisfies

λn =
det [Tn,∆Tn]

det [γn,Tn]
, (2.24)
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for an arbitrary real value function λ : Z→ R. Then putting a function κn as

κn =
det [γn,∆Tn]

det [γn,Tn]
, (2.25)

we have
∆Tn =−λnγn +κnTn, (2.26)

which is discrete analogue of the Frenet equation of centroaffine plane curves
(2.5). Introducing the frame Φn = [γn,Tn], the Frenet equation (2.26) is rewritten
in terms of Φn as

Φn+1 = ΦnLn, Ln =

[
1 vn
εn wn

]
, (2.27)

where vn and wn are given by

vn =
−(εn+1 + εn)λn+1

2− (εn+1 + εn)κn+1
, wn =

2− εn (εn+1 + εn)λn+1

2− (εn+1 + εn)κn+1
. (2.28)

We note that vn and wn satisfy the following equations:

wn

vn
= εn−

2
(εn+1 + εn)λn+1

, εnvn−wn =−
2

2− (εn+1 + εn)κn+1
. (2.29)

Now we consider a family of discrete centroaffine plane curves γn(t) with t ∈ R,
and define εn(t), κn(t) and λn(t) as given in above discussion. We assume that
ε = εn(t) does not depend on both of n and t. One way that we describe a motion
of discrete curves is to put functions fn(t) and gn(t) as following:

d
dt

γn(t) = fn(t)γn(t)+gn(t)Tn(t). (2.30)

For simplicity, we denote differentiation with respect to t by dot above the desig-
nated function. Then noticing that the deformation of discrete centroaffine plane
curves (2.30) is rewritten in terms of Φn = Φn(t) as

γ̇n = Φn

[
fn
gn

]
, (2.31)

we have from (2.27) and (2.30)

Ṫn =
1
ε
(γ̇n+1− γ̇n)

=
1
ε

(
Φn

[
1 vn
ε wn

][
fn+1
gn+1

]
−Φn

[
fn
gn

])
=

1
ε

Φn

[
fn+1− fn + vngn+1

ε fn+1 +wngn+1−gn

]
. (2.32)
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Thus a deformation of discrete centroaffine plane curves given in (2.30) is rewrit-
ten in terms of Φn as

Φ̇n = ΦnMn, Mn =

[
fn αn
gn βn

]
, (2.33)

where αn = αn(t) and βn = βn(t) are given by

αn =
fn+1− fn + vngn+1

ε
, βn = fn+1 +

wngn+1−gn

ε
(2.34)

Then the compatibility condition of the difference equation (2.27) and the differ-
ential equation (2.33), namely, L̇n = LnMn+1−MnLn, yields

v̇n = (βn+1− fn)vn−αnwn +αn+1, (2.35)
ẇn =−gnvn +(βn+1−βn)wn + εαn+1. (2.36)

We also have from (2.35) and (2.36)

ε v̇n− ẇn = (ε (βn+1− fn)+gn)vn− (εαn +βn+1−βn)wn

= (ε (βn+1− fn)+gn)vn− ( fn+1− fn + vngn+1 +βn+1−βn)wn

= (ε (βn+1− fn)+gn−gn+1wn)vn− ( fn+1− fn +βn+1−βn)wn

= ε ( fn+1− fn +βn+1−βn)vn− ( fn+1− fn +βn+1−βn)wn,

which yields
ε v̇n− ẇn

εvn−wn
= fn+1− fn +βn+1−βn. (2.37)

Then we have the following.

Theorem 2.7 (Lotka-Volterra flow on discrete centroaffine plane curves) Let γn =
γn(t) be a discrete cetroaffine plane curve, which is deformed by a formula (2.30)
with

fn = k
(

vn−1−
1

2ε

)
, gn =−k, (2.38)

where k is an arbitrary constant. We assume that ε does not depend on both of n
and t, and put λn = λ = ε−2. Then we have:

1. The frame Φn = Φn(t) satisfies

Φn+1 = ΦnLn, Ln =

[
1 vn
ε 0

]
, (2.39)

dΦn

dt
= ΦnMn, Mn =

k
ε

[
εvn−1− 1

2 −vn−1
−vn−1 εvn +

1
2

]
. (2.40)
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2. λ does not depend on t.

3. vn = vn(t) satisfies the Lotka-Volterra equation:

dvn

dt
= kvn (vn+1− vn−1) . (2.41)

Proof. The second statement is trivial by assumption, and we immediately get
µn = 0 from (2.28) by λ = ε−2, which yields (2.39). Also substituting (2.38) into
(2.34), we have

αn =−
kvn−1

ε
, βn = k

(
vn−1 +

1
2ε

)
, (2.42)

which imply (2.40). Then the compatibility condition (2.37) is rewritten from
(2.38) and (2.42) as

dvn

dt
= kvn (vn+1− vn−1) , (2.43)

which is the Lotka-Volterra equation. �

3 Integrable deformation of plane curves in the equi-
centroaffine geometry

It is known that plane curves in the equicentroaffine geometry are governed by
the KdV equation [5–7]. Moreover, a discretization of the curve motion has been
constructed [5, 8]. In this chapter, we briefly review these results so that we con-
struct relevances between the KdV flows on equicentroaffne plane curves and the
defocusing mKdV/Lotka-Volterra flows on centroaffine plane curves, in the after
section.

3.1 KdV flow on smooth equicentroaffine plane curves
In this section, we review the KdV flow on smooth equicentroaffine plane curves
based on [5–7].

Let Γ(ξ ) : I ⊂ R→ R2 be a parametrized plane curve in the equicentroaffine
plane, where ξ is an arbitrary parameter. The curve Γ(ξ ) is called the equicen-
troaffine plane curve if Γ(ξ ) satisfies det [Γ,Γξ ] 6= 0 for all ξ . Also, If Γ(ξ ) is an
equicentroaffine plane curve, then Γ(ξ ) can be reparametrized by the parameter
x in such a way that det [Γ,Γx] = 1. We call the parameter x the equicentroaffine
arclength parameter. Then, there exists the function u = u(x) such that

Γxx =−uΓ, (3.1)
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which is called the eqicentroaffine curvature. Introducing the frame Ψ(x)= [Γ,Γx]∈
SL(2), we have

Ψx = ΨU, U =

[
0 −u
1 0

]
, (3.2)

which is called the Frenet formula of the equicentroaffine plane curves. Now we
introduce a continuous deformation parameter t ∈ R, and consider a deformation
of Γ = Γ(x, t) given by

Γt = 2uΓx−uxΓ. (3.3)

Then (3.3) is rewritten in terms of Ψ = Ψ(x, t) as

Ψt = ΨV, V =

[
ux 2u

−2u2−uxx −ux

]
. (3.4)

Then this deformation preserves the area det [Γ,Γx], namely ∂

∂ t det [Γ,Γx] = 0, and
the compatibility condition Ψxt = Ψtx of the system of partial differential equa-
tions (3.2) and (3.4) yields the KdV equation

ut = uxxx +6uux. (3.5)

We call the motion of equicentroaffine plane curves (3.3) the KdV flow on the
smooth equicentroaffine plane curves.

3.2 Semi-discrete KdV flow on discrete equicenroaffine plane
curves

In this section, we review the semi-discrete KdV flow on discrete equicentoraffine
plane curves [5].

Let Γn : Z→ R2 be a discrete plane curve in the equicentroaffine geometry. If
Γn satisfies an := det[Γn,Γn+1] 6= 0 for all n, then we call Γn the discrete equicen-
troaffine plane curve. Also, assuming

an +an−1 = det[Γn,Γn+1−Γn−1] 6= 0, (3.6)

which means that the end point of Γn+1 is not on the line Γn−1 +RΓn, we have

0 = det
[

Γn,
Γn+1−Γn

an

]
−det

[
Γn,

Γn−Γn−1

an−1

]
(3.7)

= det
[

Γn,
Γn+1−Γn

an
− Γn−Γn−1

an−1

]
. (3.8)
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Then there exists a function κn : Z→ R such that

1
an +an−1

(
Γn+1−Γn

an
− Γn−Γn−1

an−1

)
=−κnΓn. (3.9)

In terms of the frame Ψn =
[
Γn,

Γn+1−Γn
an

]
∈ SL(2), (3.9) is rewritten as

Ψn+1 = ΨnUn, Un =

[
1 −(an+1 +an)κn+1
an 1−an(an+1 +an)κn+1

]
, (3.10)

which is called the Frenet formula of discrete equicentroaffine plane curves. Now
we assume that an = a is a constant and define the function un by

un = 1−a2
κn, (3.11)

Then (3.10) is rewritten as

Ψn+1 = ΨnUn, Un =

[
1 2(un+1−1)/a
a 2un+1−1

]
. (3.12)

Now we introduce continuous deformation parameter t ∈R, and consider a defor-
mation of Γn = Γn(t) given by

d
dt

Γn =
1
a

(
1
un

Γn+1−Γn

)
. (3.13)

This deformation is rewritten, in terms of the frame Ψn = Ψn(t), as

d
dt

Ψn = ΨnVn, Vn =
1
a

[
1
un
−1 1

a

(
2− 1

un
− 1

un+1

)
a
un

1− 1
un

]
. (3.14)

Then the deformation preserves the area det[Γn,Γn+1], namely d
dt det[Γn,Γn+1] =

0, and the compatibility condition of the partial difference and differential equa-
tions (3.12) and (3.14) yields the semi-discrete KdV equation:

d
dt

un =
1
2a

(
1

un+1
− 1

un−1

)
. (3.15)

We call the motion of discrete equicentroaffine plane curves (3.13) the semi-
discrete KdV flow on the discrete equicentroaffine plane curves.
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4 Miura transformation
It is well-known that there is a transformation between solutions to the (defocus-
ing) mKdV equation and the KdV equation, which is called the Miura transfor-
mation [42]. Accordingly it is expected that there is a close relationship between
curve flows in centroaffine geometry and equicentroaffine geometry. In this chap-
ter, we establish concrete correspondences between curve flows on centroaffine
plane curves and equicentroaffine plane curves for both smooth and semi-discrete
cases.

4.1 Correspondence between motions of smooth plane curves
In this section, we present a relationship between the defocusing mKdV flow on
centroaffine plane curves and the KdV flow on equicentroaffine plane curves by
using the Miura transformation. We start with the introduction to a part of the
Miura transformation.

Proposition 4.1 (Miura transformation [42]) If κ = κ(x, t) satisfies the defo-
cusing mKdV equation (2.16), then a function u defined by

u =
κx

2
j− κ2

4
, (4.1)

where j is a split complex number, namely j2 = 1, satisfies the KdV equation (3.5).

For a centroaffine plane curve γ = γ(x, t), where x is the centroaffine arclength
parameter at each time t, we can assume det [γ,γx] > 0 by a parameter change
x 7→ −x if necessary. For a solution γ to the defocusing mKdV flow (2.14), we
define a new curve flow Γ = Γ(x, t) by

Γ = hγ, h = (det [γ,γx])
−1/2 . (4.2)

Then we immediately have from (4.2)

det
[
Γ,Γx

]
= h2 det [γ,γx] = 1. (4.3)

Moreover, differentiating h with respect to x and t, we get

hx =−
1
2
(det [γ,γx])

−3/2 det [γ,γxx]

=−κ

2
(det [γ,γx])

−1/2 ,

16



and

ht =−
1
2
(det [γ,γx])

−3/2 (det [γt ,γx]+det [γ,γxt ])

=

(
κ3

4
− κxx

2

)
(det [γ,γx])

−1/2 ,

which yield

hx

h
=−κ

2
, (4.4)

ht

h
=−κxx

2
+

κ3

4
, (4.5)

respectively. Here we have used (2.5) and (2.14). Now we put a function u =

u(x, t) as

u =
κx

2
− κ2

4
. (4.6)

Then differentiating Γ with respect to x, we have from (4.4) and (2.5)

Γx = hxγ +hγx = h
(
−κ

2
γ + γx

)
, (4.7)

and

Γxx = hx

(
−κ

2
γ + γx

)
+h
(
−κx

2
γ− κ

2
γx + γxx

)
= h

(
κ2

4
− κx

2
−λ

)
γ

=−(u+λ )Γ. (4.8)

On the other hand, differentiating Γ with respect to t we get from (2.14), (4.5) and
(4.7)

Γt = htγ +hγt

= h
(

κ3

4
− κxx

2
+2λκ

)
γ +h

(
κx−

κ2

2
−4λ

)
γx

=
(

κκx

2
− κxx

2

)
Γ+

(
κx−

κ2

2
−4λ

)
Γx

=−uxΓ+2(u−2λ )Γx. (4.9)
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Therefore the frame given by Ψ=
[
Γ,Γx

]
, satisfies the system of differential equa-

tions Ψx = ΨU and Ψt = ΨV , where

U =

[
0 −u−λ

1 0

]
,

V =

[
−ux −2(u+λ )(u−2λ )−uxx

2(u−2λ ) ux

]
,

which gives a Lax pair for the KdV equation ut = uxxx + 6uux, with a spectral
parameter λ . Introducing the Galilean transformation

s = x−6λ t, (4.10)

we see that the curve Γ(s, t) = Γ(x, t) satisfies (3.1) and (3.3) with u(s, t) =
u(x, t)+λ . Thus, (4.2) with (4.10) is the Miura transformation between the defo-
cusing mKdV flow (2.14) on centroaffine plane curves and the KdV flow (3.3) on
equicentroaffne plane curves.

4.2 Correspondence between motions of discrete plane curves
In this section, we present a relationship between the Lotka-Volterra flow on dis-
crete centroaffine plane curves and the semi-discrete KdV flow on discrete equi-
centroaffine plane curves.

Let γn = γn(t) be the Lotka-Volterra flow on a discrete centroaffine plane curve,
described in Section 2.2. We define a new discrete curve flow Γn = Γn(t) and a
function un = un(t) by

Γn = hn(t)γn, un+1un =−
1

4εvn
, (4.11)

where hn = hn(t) is determined by

hn+1hn det [γn,Tn] = 1. (4.12)

Then we immediately have from (4.11)

det [Γn,Γn+1] = ε.

Then switching the parameter n of the equation (4.12), we get

hn+2hn+1 det[γn+1,Tn+1] = hn+1hn det[γn,Tn], (4.13)

which yields from (2.39)

vn =−
1
ε

hn

hn+2
. (4.14)
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On the other hand, differentiating (4.12) with respect to t, we have from (2.39)

0 =
d
dt
(hn+1hn)det [γn,Tn]+hn+1hn

(
det
[

dTn

dt
,γn

]
+det

[
Tn,

dγn

dt

])
=

(
dhn+1

dt
hn +hn+1

dhn

dt
−2hn+1hn(vn + vn−1)

)
det[γn,Tn],

(4.15)

which is rewritten as

1
hn+1

dhn+1

dt
+

1
hn

dhn

dt
= 2hn+1hn(vn + vn−1), (4.16)

and it implies
1
hn

dhn

dt
= 2vn−1. (4.17)

Then substituting (4.14) into (4.17), we get

1
hn

dhn

dt
=−2

ε

hn−1

hn+1
. (4.18)

Now we consider the Frenet equation and the deformation equation of Γn. Notic-
ing that

Φn−1 =−
1

εvn−1
Φn

[
0 −vn−1
−ε 1

]
, (4.19)

we have

Γn+1−2Γn +Γn−1 = hn+1γn+1−2hnγn +hn−1γn−1

= (hn+1−2hn)γn +

(
εhn+1 +

hn−1

vn−1

)
Tn. (4.20)

We can easily verify that the coefficient of Tn of (4.20) vanishes by (4.14). There-
fore we obtain

Γn+1−2Γn +Γn−1 =

(
hn+1

hn
−2
)

Γn. (4.21)

Now we consider the deformation equation of Γn. Differentiating Γn with respect
to t, we have

d
dt

Γn =
dhn

dt
γn +hn

dγn

ds

=

(
1
hn

dhn

dt
−2vn−1−

1
ε

)
Γn +

2
ε

hn

hn+1
Γn+1, (4.22)

19



which yields from (4.18)

d
dt

Γn =
1
ε

(
2hn

hn+1
Γn+1−Γn

)
. (4.23)

On the other hand, we obtain by substituting (4.14) into (4.11)

hn+1

hn
= 2un. (4.24)

Finally, the Frenet equation (4.21) and the deformation equation (4.23) of Γn are
rewritten from (4.24) as

Γn+1−2Γn +Γn−1 =−2(1−un)Γn, (4.25)
d
dt

Γn =
1
ε

(
1
un

Γn+1−Γn

)
, (4.26)

respectively. Then we see that the curve Γn(t) = Γn(t) satisfies (3.9) and (3.13)
with un(t) = un(t). Namely, Γn(t) is the semi-discrete KdV flow on equicen-
troaffine plane curves. Therefore, (4.11) with (4.12) is the Miura transforma-
tion between the Lotka-Volterra flow on centroaffine plane curves and the semi-
discrete KdV flow on equicentroaffine plane curves.

5 Integrable deformations of discrete space curves
and its application to linkage mechanisms

We consider a particular class of linkage mechanisms, which can be described the
semi-discrete mKdV and the semi-discrete sine-Gordon flows on discrete space
curves. In this Chapter, a mathematical analysis of linkages is discussed based on
the paper [11].

A linkage is a mechanical system consisting of rigid bodies (called links)
joined together by joints. Mathematical study of linkage dates back to Euler,
Chebyshev, Sylvester, Kempe, and Cayley and since then the topology and the ge-
ometry of the configuration space have attracted many researchers (see [36,48,55]
for a survey). Most of the research focuses on pin joint linkages, which consist of
only one type of joint called pin joints. A pin joint constrains the positions of ends
of adjacent links to stay together. To a pin joint linkage we can associate a graph
whose vertices are joints and edges are links, where edges are assigned its length.
The state of a pin joint linkage is effectively specified by the coordinates of the
joint positions, where the distance of two joints connected by a link is constrained
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to its length. Thus, its configuration space can be modelled by the space of iso-
metric imbeddings of the corresponding graph to some Euclidean space. Note that
in practice, joints and links have sizes and they collide to have limited mobility,
but here we consider ideal linkages with which joints and links can pass through
each other.

While the configuration spaces of (especially planar) pin joint linkages are
well studied, there are other types of linkages which are not so popular. In this
thesis, we are mainly interested in linkages consisting of hinges (revolute joints).
To set up a framework to study linkages with various types of joints, we first intro-
duce a mathematical model of general linkages as graphs decorated with groups
(Section 5.1), extending previous approaches (see [58] and references therein).
This formulation can be viewed as a special type of constraint network (e.g., [38]).
Then in Section 5.2, we focus on linkages consisting of hinges. Unlike a pin joint
which constrains only the relative positions of connected links, a hinge has an axis
so that it also constrains the relative orientation of connected links.

We are particularly interested in a simple case when n links in R3 are joined
by hinges to form a circle (Section 5.3). Such a linkage can be roughly thought
of as a discrete closed space curve, where hinge axes are identified with the lines
spanned by the binormal vectors. Properties of such linkages can thus be trans-
lated and stated in the language of discrete curves. An example of such linkage
is the threefold symmetric Bricard 6R linkage consisting of six hinges (Figure
2), which exhibits a turning-over motion and has the configuration space home-
omorphic to a circle. As a generalization to the threefold symmetric Bricard 6R
linkage, we consider a family of linkages consisting of copies of an identical links
connected by hinges, which we call Kaleidocycles, and they are characterized as
discrete curves of constant speed and constant torsion.

Figure 2: Threefold symmetric Bricard 6R linkage.

The motion of Kaleidocycles corresponds to isoperimetric and torsion-preserving
deformation of discrete closed space curves of constant torsion. In Section 5.4,
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we define a flow on the configuration space of a Kaleidocycle by the semi-discrete
mKdV and the semi-discrete sine-Gordon equations. This flow generates the char-
acteristic turning-over motion of the Kaleidocycle.

Kaleidocycles exhibit interesting properties and pose some topological and
geometrical questions. In Section 5.6 we indicate some directions of further study
to close this exposition.

Mobility analysis of a linkage mechanism studies how many degrees of free-
dom a particular state of the linkage has, which corresponds to determination of
the local dimension at a point in the configuration space (see, for example, [59]).
On the other hand, rigidity of linkages consisting of hinges are studied in the con-
text of the body-hinge framework (see, for example, [44, 49]). The main focus of
the study is to give a characterization for a generic linkage to have no mobility.
That is, the question is to see if the configuration space is homeomorphic to a
point or isolated points.

Sato and Tanaka [66] study the motion of a certain linkage mechanism with a
constrained degree of freedom and observed that soliton solutions appear.

Closed (continuous) curves of constant torsion have attracted sporadic interest
of geometers, e.g., [25, 29, 43, 69, 70]. In particular, [30] discusses an evolution
of a constant torsion curve governed by a sine-Gordon equation in the continuous
setting.

5.1 A mathematical model of linkage
In this section, we set up a general mathematical model of linkages. We define an
abstract linkage as a decorated graph, and its realization as a certain imbedding
of the graph in a Euclidean space. Our definition generalizes the usual graphical
model of a pin joint linkage to allow different types of joints.

Denote by SO(n) the group of orientation preserving linear isometries of the
n-dimensional Euclidean space Rn. An element of SO(n) is identified with a se-
quence of n-dimensional column vectors [ f1, f2, . . . , fn] which are mutually or-
thogonal and have unit length with respect to the standard inner product 〈x,y〉
of x,y ∈ Rn. Denote by SE(n) the group of n-dimensional orientation preserv-
ing Euclidean transformations. That is, it consists of the affine transformations
Rn→ Rn which preserves the orientation and the standard metric. We represent
the elements of SE(n) by (n+1)× (n+1)−homogeneous matrices acting on

Rn ' {t(x1,x2, . . . ,xn,1) ∈ Rn+1}

by multiplication from the left. For example, an element of SE(3) is represented
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by a matrix 
a11 a12 a13 l1
a21 a22 a23 l2
a31 a32 a33 l3
0 0 0 1

 .

The vector l = t(l1, l2, l3) is called the translation part. The upper-left 3×3-block
of A is called the linear part and denoted by Ā∈ SO(3). Thus, the action on v∈R3

is also written by v 7→ Āv+ l.

Definition 5.1 An n-dimensional abstract linkage L consists of the following data:

• a connected oriented finite graph G = (V,E)

• a subgroup Jv ⊂ SE(n) assigned to each v ∈V , which defines the joint sym-
metry

• an element Ce ∈ SE(n) assigned to each e ∈ E, which defines the link con-
straint.

In practical applications, we are interested in the case when n = 2 or 3. When
n = 2 linkages are said to be planar, and when n = 3 linkages are said to be
spatial.

We say a linkage L is homogeneous if for any pair v1,v2 ∈ V , the following
conditions are satisfied:

• there exists a graph automorphism which maps v1 to v2 (i.e., Aut(G) acts
transitively on V ),

• Jv1 = Jv2 ,

• and Ce1 =Ce2 for any e1,e2 ∈ E.

A state or realization φ of an abstract linkage L is an assignment of a coset to
each vertex

φ : v 7→ SE(n)/Jv

such that for each edge e = (v1,v2) ∈ E, the following condition is satisfied:

φ(v2)Jv2 ∩φ(v1)Jv1Ce 6= /0, (5.1)

where cosets are identified with subsets of SE(n).
Let us give an intuitive description of (5.1). Imagine a reference joint sitting at

the origin in a reference orientation. The subset φ(v1)Jv1 consists of all the rigid
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transformations which maps the reference joint to the joint at v1 with a specified
position and an orientation φ(v1) up to the joint symmetry Jv1 . The two subsets
φ(v2)Jv2 and φ(v1)Jv1Ce intersects if and only if the joint at v1 can be aligned to
that at v2 by the transformation Ce.

Example 5.2 The usual pin joints v1,v2 connected by a bar-shaped link e of
length l are represented by Jv1 = Jv2 = SO(n) and Ce being any translation by
l. Note that SE(3)/Jv1 ' R3. It is easy to see that (5.1) amounts to saying the
difference in the translation part of φ(v2) and φ(v1) should have the norm equal
to l.

Two revolute joints (hinges) v1,v2 in R3 connected by a link e of length l
making an angle α are represented by Jv1 = Jv2 being the group generated by
rotations around the z-axis and the π-rotation around the x-axis, and Ce being the
rotation by α around x-axis followed by the translation along x-axis by l; that is

Jv1 = Jv2 =




cosθ ∓sinθ 0 0
sinθ ±cosθ 0 0

0 0 ±1 0
0 0 0 1


∣∣∣∣∣∣∣∣θ ∈ R

 ,Ce =


1 0 0 l
0 cosα −sinα 0
0 sinα cosα 0
0 0 0 1

 .

Note that SE(3)/Jv1 is the space of based lines (i.e., lines with specified origins)
in R3, and the line is identified with the axis of the hinge.

The space C (L) of all realizations of a given linkage L admits an action of
SE(n) defined by φ 7→ gφ(v) for g ∈ SE(n). The quotient of C (L) by SE(n)
is denoted by C (L) and called the configuration space of L. Each connected
component of C (L) corresponds to the mobility of the linkage L in a certain state.
When a connected component is a manifold, its dimension is what mechanists
call the (internal) degrees of freedom (DOF, for short). Given a pair of points
on C (L), the problem of finding an explicit path connecting the points is called
motion planning and has been one of the main topics in mechanics [54]. In a
similar manner, many questions about a linkage can be phrased in terms of the
topology and the geometry of its configuration space.

Example 5.3 Consider the following spatial linkages consisting of pin joints de-
picted in Figure 3. In the latter, we assume the two joints a and b are fixed to the
wall. Up to the action of the global rigid transformation SE(3), these two linkages
are equivalent and share the same configuration space C (L); in the left linkage,
the global action is killed by fixing the positions of three joints except for p. The
topology of C (L) changes with respect to the parameter l which is the length of
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Figure 3: Example of equivalent pin joint linkages.

the bars. Namely, we have

C (L) = {xp ∈ R3 | |xp− xa|2 = |xp− xb|2 = l2}=


S1 (l > 2h)
pt (l = 2h)
/0 (l < 2h)

.

This seemingly trivial example is indeed related to a deeper and subtle question
on the topology of the configuration space; the space is identified with the real
solutions to a system of algebraic equations.

5.2 Hinged linkage in three space
Now, we focus on a class of spatial linkages consisting of hinges, known also as
three dimensional body-hinge frameworks [44]. In this case, the definition in the
previous section can be reduced to a simpler form.

Notice that in R3 a pair of hinges connected by a link can be modelled by
a tetrahedron. A hinge is an isometrically embedded real line in R3. Given a
pair of hinges, unit-length segments on the hinges containing the base points in
the centre span a tetrahedron, or a quadrilateral when the two hinges are parallel
(see Figure 4 Left). It is sometimes convenient to decompose the link constraint
C(v1,v2) ∈ SE(3) into three parts; a translation along the hinge direction at v1, a
screw motion along an axis perpendicular to both hinges, and a translation along
the hinge direction at v2. This corresponds to a common presentation among
mechanists called the Denavit–Hartenberg parameters [33]. We can find the de-
composition geometrically as follows: Find a line segment which is perpendicular
to the both hinges connected by the link e, which we call the core segment. It is
unique unless the hinges are parallel. The intersection points of the core segment
and the hinges are called the marked points. Form a tetrahedron from the line seg-
ments on hinges containing the marked points in the centre. By construction, this
tetrahedron has a special shape that the line connecting the centre of two hinge
edges (the core segment) is perpendicular to the hinge edges. Such a tetrahedron
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is called a disphenoid. The shape of the disphenoid defines a screw motion along
the core segment up to a π-rotation. The translations along the hinge directions
are to match the marked points to the base points (see Figure 4). To sum up,
a spatial hinged linkage can be considered as a collection of lines connected by
disphenoids at marked points. Thus, we arrive in the following definition.

Figure 4: Left: a disphenoid formed by two hinge edges, Right: three hinges
connected by disphenoids. The dots indicate the marked points.

Definition 5.4 A hinged network consists of

• a connected oriented finite graph G = (V,E),

• two edge labels ν : E → [0,π) called the torsion angle and ε : E → R≥0
called the segment length,

• and a vertex label ιv : E(v)→ R called the marking, where E(v)⊂ E is the
set of edges adjacent to v ∈V .

A state of a hinged network is an assignment to each vertex v ∈V of an isometric
embedding hv : R→ R3 such that for any (v1,v2) ∈ E

1. |l|= ε(v1,v2), where l = hv1 ◦ ιv1(v1,v2)−hv2 ◦ ιv2(v1,v2)

2. l ⊥ hv1(R) and l ⊥ hv2(R)

3. ∠hv1(R)hv2(R) = ν , where the angle is measured in the left-hand screw
manner with respect to l.

Intuitively, hv(R) is the line spanned by the hinges, and the first two conditions
demand that the marked points are connected by the core segments l, whereas the
last condition dictates the torsion angle of adjacent hinges hv1(R) and hv2(R).

A hinged network is said to be serial when the graph G is a line graph; i.e., a
connected graph of the shape • → •→ •→ ·· · → •. It is said to be closed when
the graph G is a circle graph; i.e., a connected finite graph with every vertex having
outgoing degree one and incoming degree one. A hinged network is homogeneous
if
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• Aut(G) acts on G transitively,

• ν(e),ε(e), and ιv do not depend on e ∈ E and v ∈ V . That is, it is made of
congruent tetrahedral links.

Example 5.5 A planar pin joint linkage is a special type of hinged network with
ν(e) = 0 for all e ∈ E and ιv = 0 for all v ∈V . That is, all hinges are parallel and
marked points are all at the origin. On the other hand, any hinged network can be
thought of as a spatial pin joint linkage by replacing every tetrahedral link with
four bar links connected by four pin joints forming the tetrahedron. Therefore,
hinged networks form an intermediate class of linkages which sits between planar
pin joint linkages and spatial pin joint linkages.

Figure 5: A degenerate hinged network over a circle corresponding to a planar
six-bar pin joint linkage.

Example 5.6 The hinged network depicted in Figure 6 is over the wedge sum of
two circle graphs. It exhibits a jump roping motion. A similar but more complex
network is found in [31, Section 6].

Figure 6: A hinged network over the wedge of two circles.
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Example 5.7 Closed hinged networks with ε(e) = 0 (that is, adjacent hinge lines
intersect) for all e ∈ E provide a linkage model for discrete developable strips
studied recently by K. Naokawa and C. Müller (see Figure 7). They are made
of (planar) quadrilaterals joined together by the pair of non-adjacent edges as
hinges.

Figure 7: Developable discrete Möbius strip consisting of 6 (respectively 12) con-
gruent quadrilateral links.

5.3 Hinged network and discrete space curve
In this section, we describe a connection between spatial closed hinged networks
and discrete closed space curves. This connection is the key idea of this chapter
which provides a way to study certain linkages using tools in discrete differential
geometry.

First, we briefly review the basic formulation of discrete space curves (see, for
example, [1]). A discrete space curve is a map

γ : Z→ R3, (i 7→ γn).

For simplicity, in this chapter we always assume that γn 6= γn+1 for any n and that
three points γ−1, γ0 and γ1 are not colinear. The tangent vector T : Z→ S2 is
defined by

Tn =
γn+1− γn

εn
, εn = |γn+1− γn| . (5.2)

We say γ has a constant speed of ε if εn = ε for all n. A discrete space curve with a
constant speed is sometimes referred to as an arc length parametrized curve [41].
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The normal vector N : Z→ S2 and the binormal vector B : Z→ S2 are defined by

Bn =


Tn−1×Tn
|Tn−1×Tn| (Tn−1×Tn 6= 0)

Bn−1 (Tn−1×Tn = 0 and n > 0)
Bn+1 (Tn−1×Tn = 0 and n < 0),

(5.3)

Nn = Bn×Tn, (5.4)

respectively. Then, [Tn, Nn, Bn] ∈ SO(3) is called the Frenet frame of γ . For our
purpose, it is more convenient to use a modified version of the ordinary Frenet
frame, which we define as follows. Set b0 =B0 and define bn =±Bn recursively so
that 〈bn×bn−1,Tn−1〉 ≥ 0 and 〈bn−1,bn〉 6=−1. Then, Φn = [Tn, Ñn,bn] ∈ SO(3),
where Ñn = bn×Tn (see Figure 8).

Figure 8: A discrete space curve with the frame Φn.

For θ ∈ R, we define R1(θ),R3(θ) ∈ SO(3) by

R1(θ) =

1 0 0
0 cosθ −sinθ

0 sinθ cosθ

 , R3(x) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 . (5.5)

There exist κ : Z→ [−π, π) and ν : Z→ [0, π) such that

Φn+1 = ΦnLn, Ln = R1(−νn+1)R3(κn+1). (5.6)

We call κ the signed curvature angle and ν the torsion angle. Figure 9 illustrates
how to obtain Φn−1 from Φn by (5.6). Note that we have

〈Tn,Tn−1〉= cosκn, 〈bn,bn−1〉= cosνn, 〈bn, Ñn−1〉= sinνn,

〈bn,Tn〉= 〈bn+1,Tn〉= 0.
(5.7)
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Figure 9: The curvature angle κ and the torsion angle ν .

The reason why we introduce the modified frame is that the ordinary Frenet
frame behaves discontinuously under deformation when the ordinary curvature
angle vanishes at a point. During the turning-over motion of a Kaleidocycle, it
goes through such a state at some points, and the above modified frame behaves
consistently even under the situation.

Fix a natural number N. A discrete space curve γ is said to be closed of length
N if γn+kN = γn for any k ∈ Z. Unlike the ordinary Frenet frame, closeness does
not imply Φn+kN = Φn but they may differ by rotation by π around Tn. We say b
is oriented (resp. anti-oriented) if bn = bn+N (resp. bn =−bn+N) for all n.

We can consider a discrete version of the Darboux form [32, 70], which gives
a correspondence between spherical curves and space curves. Given b : Z→ S2

with bn× bn−1 6= 0 for all n and ε : Z→ R≥0, we can associate a discrete space
curve satisfying

γ0 = 0, γn = γn−1 + εn−1
bn×bn−1

|bn×bn−1|
, (5.8)

which we denote by γb,ε . The curve γb,ε is closed of length N if

N−1

∑
n=0

(
εk+n

bk+n+1×bk+n

|bk+n+1×bk+n|

)
= 0 (5.9)

for all k.
Notice that a serial (resp. closed) hinged network with ιv = 0 for all v∈V (see

Def. 5.4) can be modelled by an open (resp. a closed) discrete space curve; its
base points form the curve and hinge directions are identified with bn (see Figure
10). This is the crucial observation of this chapter.

Now we introduce our main object, Kaleidocycles, which are homogeneous
closed hinged networks. We model them as constant speed discrete space curves
of constant torsion. They are a generalization to a popular paper toy called the
Kaleidocycle (see, e.g., [28, 67]). A serial hinged network similar to our Kaleido-
cycle is proposed in [57].
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Figure 10: Hinged network and discrete space curve.

Definition 5.8 Fix ν ∈ [0,π] and ε > 0. An N-Kaleidocycle with a speed ε and a
torsion angle ν is a closed discrete space curve γ of length N which has a constant
speed εn = ε and a constant torsion angle νn = ν . It is said to be oriented (resp.
anti-oriented) when associated b is oriented (resp. anti-oriented).

When ν is either 0 or π , the corresponding Kaleidocycles are planar, and we
call them degenerate. For fixed N and ε , an oriented (resp. anti-oriented) non-

Figure 11: Left: anti-oriented Kaleidocycle with N = 9. Right: a Kaleidocycle
with a knotted topology.

degenerate Kaleidocycle with a torsion angle ν is determined by the Darboux
form γb,ε by a map b : Z→ S2 satisfying p

• bn+N = bn (resp. bn+N =−bn),

• 〈bn,bn+1〉= cosν ,

•
N−1
∑

n=0
bn+1×bn = 0.
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We use b and γ interchangeably to represent a Kaleidocycle.
Consider the real algebraic variety M N defined by the following system of

quadratic equations ( [68, Ex. 5.2, 8.13]):

〈bn,bn+1〉= c (0≤ n < N),
N−1

∑
n=0

bn+1×bn = 0, bN =±b0, (5.10)

where c is considered as an indeterminate. The orthogonal group O(3) acts on
bi’s in the standard way, and hence, on M N . Denote by MN the quotient of M N
by the action of O(3). The variety MN serves as the configuration space of all N-
Kaleidocycles with varying c = cosν . It decomposes into two disjoint sub-spaces
M+

N consisting of all oriented Kaleidocycles (bN = b0) and M−
N consisting of

anti-oriented ones (bN =−b0).
As M−

N (resp. M+
N ) is a closed variety, its image under the projection πc onto

the c-axis is a union of closed intervals. Notice that the image πc(M
−
N ) does not

coincide with the whole interval [−1,1]; c = 1 means bi are all equal so we can-
not have bN = −b0. The fibre π−1

c (c) consists of N-Kaleidocycles with a fixed
c. With a generic value of c, a simple dimension counting in (5.10) shows that
dim(π−1

c (c)) = N− 6. Hence, the degree of freedom (DOF) of the Kaleidocycle
with a torsion angle ν = arccos(c) is generally N−6. For N > 6, a generic Kalei-
docycle is reconfigurable meaning that it can continuously change its shape. We
will investigate a particular series of reconfiguration in the next section.

Remark 5.9 The most popular Kaleidocycle with N = 6 has c= 0, which is equiv-
alent to the threefold symmetric Bricard 6R linkage (Figure 2). This Kaleidocycle
is highly symmetric and not generic, resulting in 1 DOF [37].

5.4 Continuous isoperimetric deformations on discrete curves
Kaleidocycles exhibit a characteristic turning-over motion (see Figure 12 and
see [46] for some animations). In general, an N-Kaleidocycle has N− 6 degrees
of freedom so that it wobbles in addition to turning-over. With special values of
torsion angle, however, the DOF of the Kaleidocycle seems to degenerate to ex-
actly one, leaving only the turning-over motion as we will discuss in Section 5.6.
In this case, the motion of the core segment looks to be orthogonal to the hinge
directions. In the following, we would like to model the motion explicitly. It turns
out that we can construct the motion of Kaleidocycles using semi-discrete mKdV
and sine-Gordon equations.

In this section, we consider certain continuous deformations of discrete space
curves which correspond to motion of homogeneous serial and closed hinged
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Figure 12: Turning-over motion of a Kaleidocycle with N = 7.

networks. Our approach is to construct a flow on the configuration space by
differential-difference equations. We use the same notations as in Section 5.3.
Observe that a hinged network moves in such a way that its tetrahedral links are
not distorted. In the language of discrete space curves, the motion corresponds to
a deformation which preserves the speed εn and the torsion angle νn for all n.

Let γ(0) : Z→ R3 be an (open) discrete space curve which has a constant
speed εn(0) = ε∗(0) and a constant torsion angle νn(0) = ν∗(0). Given a family
of functions w(t) : Z→ R with the deformation parameter t ∈ R and a constant
ρ > 0, we consider a family of discrete space curves γ(t) defined by

dγn

dt
=

εn

ρ

(
coswnTn + sinwnÑn

)
(n ∈ Z). (5.11)

That is, the motion of each point γn is confined in the osculating plane and its speed
depends only on the length of the segment εn = |γn+1− γn|. We say a deformation
is isoperimetric if the segment length εn does not depend on t for all n, We would
like to find conditions on w under which the above deformation is isoperimetric.
From (5.2), (5.6) and (5.11), we have

dεn

dt
=

εn

ρ

〈
Φn+1

coswn+1
sinwn+1

0

−Φn

coswn
sinwn

0

 ,Φn

1
0
0

〉

=
εn

ρ

〈
Φn

 cos(κn+1 +wn+1)− coswn
cosνn sin(κn+1 +wn+1)− sinwn
−sinνn sin(κn+1 +wn+1)

 ,Φn

1
0
0

〉

=
εn

ρ

(
cos(κn+1 +wn+1)− coswn

)
.

Therefore, for each n, dεn/dt vanishes if and only if

cos(κn+1 +wn+1)− coswn = 0, (5.12)
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which yields
wn =−wn−1−κn, (5.13)

or
wn = wn−1−κn. (5.14)

We consider a deformation when (5.13) (resp. (5.14)) simultaneously holds for all
n. Note that in this case wn(t) for all n is determined once w0(t) is given.

Those deformations are characterized by the following propositions:

Proposition 5.10 Let γ(0) : Z→ R3 be a discrete space curve with a constant
speed εn(0) = ε∗(0) and a constant torsion angle νn(0) = ν∗(0). Let γ(t) be its
deformation according to (5.11) with w : Z→ R satisfying the condition (5.13).
Then we have:

1. The speed εn(t) and the torsion angle νn(t) do not depend on t nor n. That
is, εn(t) = ε∗(0) and νn(t) = ν∗(0) for all t and n.

2. The signed curvature angle κn = κn(t) and wn = wn(t) satisfy

dκn

dt
= α (sinwn−1− sinwn) , (5.15)

where α = 1+cosν∗(0)
ρ

.

3. The deformation of the frame Φn(t) = [Tn(t), Ñn(t), bn(t)] is given by

dΦn

dt
= ΦnMn,

Mn =
1
ρ

 0 (1+ cosν∗(0))sinwn −sinν∗(0)sinwn

−(1+ cosν∗(0))sinwn 0 sinν∗(0)coswn

sinν∗(0)sinwn −sinν∗(0)coswn 0

 .
(5.16)

Proposition 5.11 Let γ(0) : Z→ R3 be a discrete space curve with a constant
speed εn(0) = ε∗(0) and a constant torsion angle νn(0) = ν∗(0). Let γ(t) be its
deformation according to (5.11) with w : Z→ R satisfying the condition (5.14).
Then we have:

1. The speed εn(t) and the torsion angle νn(t) do not depend on t nor n. That
is, εn(t) = ε∗(0) and νn(t) = ν∗(0) for all t and n.
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2. The signed curvature angle κn = κn(t) and wn = wn(t) satisfy

dκn

dt
=−α̂ (sinwn + sinwn−1) , (5.17)

where α̂ = 1−cosν∗(0)
ρ

.

3. The deformation of the frame Φn(t) = [Tn(t), Ñn(t), bn(t)] is given by

dΦn

dt
= ΦnMn,

Mn =
1
ρ

 0 (1− cosν∗(0))sinwn sinν∗(0)sinwn

−(1− cosν∗(0))sinwn 0 −sinν∗(0)coswn

−sinν∗(0)sinwn sinν∗(0)coswn 0

 .
(5.18)

Proof. We only prove Proposition 5.10 since Proposition 5.11 can be proved in the
same manner. We first show the second and the third statements. We denote ḟ =
d f
dt , ν = ν∗(0) and ε = ε∗(0) for simplicity. Since ε is a constant by the preceding
argument, the deformation of Tn can be computed from (5.11) and (5.14) as

Ṫn =
1
ρ

Φn

Ln

coswn+1
sinwn+1

0

−
coswn

sinwn
0


=

1
ρ

Φn

 cos(κn+1 +wn+1)− coswn
cosν sin(κn+1 +wn+1)− sinwn
−sinν sin(κn+1 +wn+1)


=

1
ρ

Φn

 0
−(1+ cosν)sinwn

sinν sinwn

 . (5.19)

Differentiating cosκn = 〈Tn,Tn−1〉 with respect to t, we have

− κ̇n sinκn = 〈Ṫn,Tn−1〉+ 〈Tn, Ṫn−1〉. (5.20)

Noting

Tn−1 = ΦnL−1
n−1

1
0
0

= Φn

 cosκn
−sinκn

0

 , (5.21)
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and

Ṫn−1 =
1
ρ

ΦnL−1
n

 0
−(1+ cosν)sinwn−1

sinν sinwn−1


=

1
ρ

Φn

−(1+ cosν)sinκn sinwn−1
−(1+ cosν)cosκn sinwn−1

−sinν sinwn−1

 , (5.22)

we get from (5.19) and (5.20)

κ̇n =
1+ cosν

ρ
(sinwn−1− sinwn) , (5.23)

which is equivalent to (5.17). This proves the second statement. Next, we see
from the definition of bn

ḃn =
d
dt

(
1

|Tn−1×Tn|

)
Tn−1×Tn +

1
|Tn−1×Tn|

(
Ṫn−1×Tn +Tn−1× Ṫn

)
. (5.24)

Noting

Tn−1×Tn = Φn

 cosκn
−sinκn

0

×Φn

1
0
0

= Φn

 0
0

sinκn

 , (5.25)

Ṫn−1×Tn =
1
ρ

Φn

−(1+ cosν)sinκn sinwn−1
−(1+ cosν)cosκn sinwn−1

−sinν sinwn−1

×Φn

1
0
0


=

1
ρ

Φn

 0
−sinν sinwn−1

(1+ cosν)cosκn sinwn−1

 , (5.26)

and

Tn−1× Ṫn = Φn

 cosκn
−sinκn

0

× 1
ρ

Φn

 0
−(1+ cosν)sinwn

sinν sinwn


=

1
ρ

Φn

 −sinν sinκn sinwn
−sinν cosκn sinwn

−(1+ cosν)cosκn sinwn

 , (5.27)

we get from (5.23) and (5.24)

ḃn =
1
ρ

Φn

−sinν sinwn
sinν coswn

0

 . (5.28)
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We immediately obtain ˙̃Nn from (5.19) and (5.24) as

˙̃N = ḃn×Tn +bn× Ṫn =
1
ρ

Φn

(1+ cosν)sinwn
0

−sinν coswn

 . (5.29)

Then we have (5.18) from (5.19), (5.24) and (5.29), which proves the third state-
ment. Finally, differentiating cosν = 〈bn,bn−1〉 with respect to t, it follows from
(5.28) and (5.12) that

−ν̇ sinν = 〈ḃn,bn−1〉+ 〈bn, ḃn−1〉=−
sin2

ν

ρ

(
cos(κn +wn)− coswn−1

)
= 0,

which implies ν̇ = 0. This completes the proof of the first statement. �

Remark 5.12 The condition (5.13) suggests the potential function θn in Proposi-
tion 5.10 such that we have

κn =
θn+1−θn−1

2
, wn =

θn−θn+1

2
. (5.30)

Then, (5.15) is rewritten as

d
dt

(θn+1 +θn) = 2α sin
(

θn+1−θn

2

)
. (5.31)

To the best of the authors’ knowledge, this is a novel form of the semi-discrete
potential mKdV equation. In fact, the continuum limit α = 2

ε
, X = εn+ t, T = ε2

12t,
ε → 0 yields the potential mKdV equation

θT +
1
2
(θX)

3 +θXXX = 0. (5.32)

Similarly, introducing the potential function θn in Proposition 5.11 such that

κn =
θn+1−θn−1

2
, wn =−

θn+1 +θn

2
, (5.33)

suggested by (5.14), we can rewrite (5.17) as

d
dt

(θn+1−θn) = 2α sin
(

θn+1 +θn

2

)
, (5.34)

which is nothing but the semi-discrete sine-Gordon equation [27, 63, 64].
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Remark 5.13 In the above argument, we assume that the speed of the deforma-
tion ρ in (5.11) is a constant and does not depend on n. Then, by demanding that
the deformation preserve arc length ((5.13) or (5.14)), it followed that the torsion
angle is also preserved. Conversely, it seems to be the case that for the deforma-
tion to preserve both the arc length and the torsion angle, the speed ρ is required
not to depend on n.

Remark 5.14 (Continuum limit) The isoperimetric torsion-preserving discrete
deformations for the discrete space curves of constant torsion have been consid-
ered in [1], where the deformations are governed by the discrete sine-Gordon and
the discrete mKdV equations. It is possible to obtain the continuous deformations
discussed in this section by suitable continuum limits from those discrete defor-
mations. More precisely, let γm

n (m ∈ Z) be a family of discrete curves obtained
by applying the discrete deformations m times to γ0

n = γn, where γn is the discrete
curve with a constant speed ε and a constant torsion angle ν . Then the above
discrete deformation is given by

γ
m+1
n = γ

m
n +δm (coswm

n T m
n + sinwm

n Nm
n ) . (5.35)

Then if we choose δm and wm
0 so that the sign of σm

n = sin(wm
n+1 +κm

n+1−wm
n−1)

does not depend on n, the isoperimetric condition and the compatibility condition
of the Frenet frame yield the discrete mKdV equation

wm+1
n+1 −wm

n

2
= arctan

(
b+a
b−a

tan
wm+1

n
2

)
− arctan

(
b+a
b−a

wm
n+1

)
, (5.36)

when σm
n > 0, and the discrete sine-Gordon equation

wm+1
n+1 +wm

n

2
= arctan

(
b+a
b−a

tan
wm+1

n
2

)
+ arctan

(
b+a
b−a

wm
n+1

)
, (5.37)

when σm
n < 0 with

a =
(

1+ tan2 ν

2

)
ε, b =

(
1+ tan2 ν

2

)
δ . (5.38)

For the discrete mKdV equation (5.36), in the limit of

a =
2ε

ρα
, m =

ρ

εδ
t, b→ 0 (δ → 0), (5.39)

(5.36) is reduced to the semi-discrete mKdV equation (5.15). Similarly, the dis-
crete sine-Gordon equation (5.37) is reduced to the semi-discrete sine-Gordon
equation (5.17) in the limit

a =
αρ

ε
, m =

ρ

εδ
t, b→ ∞ (δ → 0). (5.40)
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Obviously, the discrete deformation equation of the discrete curve (5.35) is re-
duced to the continuous deformation equation (5.11). Moreover, it is easily veri-
fied that the discrete deformation equations of the Frenet frame in [1] are reduced
to (5.16) and (5.18).

5.5 Turning-over motion of Kaleidocycles
An N-Kaleidocycle corresponds to a closed discrete curve γ of length N having
a constant speed ε and a constant torsion angle ν whose b is oriented. Since γ

is closed, for (5.11) to define a deformation of γ , we need a periodicity condition
wn+N = wn (when oriented) or wn+N =−wn (when anti-oriented) for any n ∈ Z.

When N is odd and the Kaleidocycle is oriented, the equation (5.13) together
with w0 = wN forms a linear system for wn (0≤ n≤ N) which is regular. There-
fore, we can find wn (0≤ n≤N) uniquely as the solution to the system. Then, the
equation (5.11) generates a deformation of γ which preserves the segment length
and the torsion angle, while γ remains closed. That is, the turning-over motion of
the Kaleidocycle is governed by the semi-discrete mKdV equation (5.15) (see Fig-
ure 13). Note that by (5.15), the total curvature angle ∑

N−1
i=0 κn(t) is also preserved.

Figure 13: Surface drawn by the evolution of the center curves of Kaleidocycles
with N = 7 and N = 25 respectively.

When the Kaleidocycle is anti-oriented, the equation (5.14) together with
w0 = −wN forms a linear system for wn (0 ≤ n ≤ N) which is regular for any
N. Similarly to the above, in this case the turning-over motion of the Kaleidocy-
cle is governed by the semi-discrete sine-Gordon equation (5.17).

Note that if an N-Kaleidocycle with an odd N is anti-oriented b0 = −bN , we
can define an oriented Kaleidocycle by taking its “mirrored image” bi 7→ (−1)ibi
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which conforms to the definition 5.8. Thus, for an odd Kaleidocycle, both the
semi-discrete mKdV equation and the semi-discrete sine-Gordon equation gener-
ate the turning-over motion.

5.6 Extreme Kaleidocycles
We defined Kaleidocycles in Def. 5.8 and saw the torsion angle cannot be cho-
sen arbitrarily. A natural question is for what torsion angle ν there exists an N-
Kaleidocycle for each N. It seems there are no Kaleidocycles with ν ∈ (0,π) for
N ≤ 5. For 6≤N ≤ 50, we conducted numerical experiments with [46] and found
that there exists c∗N ∈ [0,1] which satisfy the following. Recall that πc : MN → R
is the projection of the configuration space MN onto the c-axis, where c = cosν .

1. When N is odd, πc(M
+
N ) = [−c∗N ,1] and πc(M

−
N ) = [−1,c∗N ].

2. When N is even, πc(M
+
N ) = [−1,1] and πc(M

−
N ) = [−c∗N ,c

∗
N ].

Moreover, N arccos(c∗N) converges monotonously to a constant, where arccos
takes the principal value in [0,π]. Interestingly, at the boundary values c = ±c∗N ,
the fibre of πc seems to be exactly one-dimensional for any N ≥ 6. This means,
they are exactly the one-dimensional orbits defined in Section 5.5.

We summarize our numerical findings.

Conjecture 5.1 Let N ≥ 6. We have the following:

1. The space π−1
c (c∗N)∩M−

N is a circle. Moreover, the involution defined by
bn 7→ (−1)nbn induces isomorphisms π−1

c (−c∗N)∩M+
N ' π−1

c (c∗N)∩M−
N

when N is odd and π−1
c (−c∗N)∩M−

N ' π−1
c (c∗N)∩M−

N when N is even.

2. The orbit of any element γ ∈ π−1
c (c∗N)∩M−

N of the flow generated by the
semi-discrete sine-Gordon equation described in Section 5.5 coincides with
π−1

c (c∗N)∩M−
N ' S1.

3. When N is odd, the orbit of any element γ ∈ π−1
c (−c∗N)∩M+

N generated
by the semi-discrete mKdV equation described in Section 5.5 coincides with
π−1

c (−c∗N)∩M+
N ' S1. Moreover, on π−1

c (−c∗N)∩M+
N we have ∑

N−1
n=0 κn =

0 and we can also define its deformation by the semi-discrete sine-Gordon
equation if we define w by (5.14) and ∑

N−1
n=0 κ̇n = 2α ∑

N−1
n=0 sin(wn) = 0. The

orbit coincides with π−1
c (−c∗N)∩M+

N as well. That is, for an oriented
Kaleidocycle with ν = arccos(−c∗N), we can define two motions one by the
semi-discrete sine-Gordon equation (5.14), the other by the semi-discrete
mKdV equation (5.13), and they coincide up to rigid transformations.
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4. Any strip (γb,ε ,b) corresponding to b ∈ π−1
c (c∗N)∩M−

N is a 3-half twisted
Möbius strip (see Section 5.8). There are no Kaleidocycles with one or two
half twisting.

5. When N tends to infinity, N arccosc∗N converges to a constant. There exists a
unique limit curve up to congruence for any sequence γN ∈ π−1

c (c∗N)∩M−
N ,

and it has a constant torsion up to sign.

We call those Kaleidocycles having the extremal torsion angle extreme Kaleido-
cycles.

Remark 5.15 The extreme Kaleidocycles were discovered by the first named au-
thor and his collaborators [45, 47]. In particular, when it is anti-oriented, it is
called the Möbius Kaleidocycle because they are a discrete version of the Möbius
strip with a 3π-twist. Coincidentally, Möbius is the first one to give the dimen-
sion counting formula for generic linkages [56] (although it is often attributed to
Maxwell), and our Möbius Kaleidocycles are exceptions to his formula.

We end this chapter with a list of interesting properties, questions and some
supplementary materials of Kaleidocycles for future research.

5.7 Kinematic energy
Curves with adapted frames serve as a model of elastic rods and are studied, for
example, in Langer and Singer [53] in a continuous setting, and in [26] in a dis-
crete setting. Serial and closed hinged networks are discrete curves with specific
frames as we saw in Section 5.3. From this viewpoint, we consider some en-
ergy functionals defined for discrete curves with frames and investigate how they
behave on the configuration space MN of Kaleidocycles.

Let γ be a constant speed discrete closed curve of length N. The elastic energy
Ee and the twisting energy Et are defined respectively by

Ee(γ) =
N−1

∑
n=0

κ
2
n , Et(γ) =

N−1

∑
n=0

ν
2
n .

By the definition of Kaleidocycle, Et takes a constant value when a Kaleidocycle
undergoes any motion.

Interestingly, a numerical simulation by [46] suggests that on π−1
c (c∗N)∩M−

N
(and also on π−1

c (−c∗N)∩M+
N for an odd N and on π−1

c (−c∗N)∩M−
N for an even

N) for a fixed N, Ee takes an almost constant value. The summands of Ee are
locally determined and vary depending on the states, however, the total is almost
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stable so that only small force should be applied to rotate the Kaleidocycle. It is
also noted that the sum Ee +Et is a discrete version of the elastic energy of the
Kirchoff rod defined by the strip, and it also takes almost constant values.

Similarly, we introduce the following three more energy functionals, which are
observed to take almost constant values on π−1

c (−c∗N)∩M+
N . The dipole energy

is defined to be

Ed(γ) := 2

(
∑
i< j

〈bi,b j〉
|γi− γ j|3

−3
〈bi,γi− γ j〉〈b j,γi− γ j〉

|γi− γ j|5

)
.

The Coulomb energy with an exponent α > 0 is defined to be

Ec(γ) := 2 ∑
i< j

1
|γi− γ j|α

.

The averaged hinge magnitude is defined to be

Ea(γ) :=
1
N

∣∣∣∣∣N−1

∑
n=0

bn

∣∣∣∣∣ .
However, we have no rigorous statements about them. It may be the case that one
needs some other discretization of the continuous counterparts of these energies to
show their behavior theoretically. It is also interesting to characterize or generalize
extreme Kaleidocycles in terms of variational calculus on the space of discrete
closed curves.

5.8 Topological invariants
As noted in [53], for a curve to be closed, topological constraints come into the
story. This quantises some continuous quantity and makes it an isotopy invariant.

Let γ be a constant speed discrete closed curve of length N. First, interpolate
γn and bn for (0 ≤ n < 2N) linearly to obtain a continuous vector field b̄ defined
on the polygonal curve γ̄ , which goes around the polygon twice. We define the
twisting number T of γ as the linking number between twice the centre curve
γ̄ and the boundary curve γ̄ + ε b̄, where ε > 0 is small enough. Intuitively, it is
the number of half-twists of the strip defined by γ and b. The Cǎlugǎreanu-White
formula relates this topological invariant to the sum of two conformal invariants
and provides a direct discretization without the need of interpolation (cf. [50]):

T = 2(Tw+Wr), (5.41)
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Figure 14: Twisting number as the linking number between centre and boundary
curves.

where Wr is the writhe of the polygonal curve γ which can be computed as a
double summation [50, Eq. (13)] and

Tw =
1

2π

N−1

∑
n=0

ν

is the total twist. The twisting number T takes values in the integers, enforcing
topological constraints to the curve.

Recall by definition that anti-oriented extreme Kaleidocycles are discrete closed
space curves of constant speed and constant torsion which have the minimum odd
twisting number. Our numerical experiments suggest that the minimum is not one
but three.

Let γ be a discrete closed space curve of constant speed and constant torsion
corresponding to a Kaleidocycle. Under any motion of the Kaleidocycle, Tw stays
constant by definition. By (5.41) the corresponding deformation of the curve pre-
serves the writhe as well. This can equivalently be phrased in terms of the Gauss
map G(γ) : n 7→ Tn (0 ≤ n ≤ N − 1). The Gauss-Bonnet theorem tells us that
A+ 2πTw = 0 mod π , where A is the area on the sphere enclosed by G(γ). By
(5.41) we have Wr = A/2π mod 1/2. Thus, the deformation of the closed dis-
crete space curve considered in Section 5.5 induces one of the closed discrete
spherical curves which preserves the enclosed area A.

Kaleidocycles can be folded from a piece of paper. We include a development
plan for the extreme Kaleidocycle with N = 8 so that the readers can personally
make and investigate its motion.
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Figure 15: Development plan of an extreme Kaleidocycle with eight hinges. Black
horizontal lines indicate valley folds and black slanted lines indicate mountain
folds.

6 Spherical Kaleidocycles
In this chapter, we introduce a figure on 3-sphere

(
S3) in R4, which is called the

spherical Kaleidocycle. That is a circular chain of linked geodesic tetrahedra on
S3, where all vertices are lied on a Clifford torus, and it turns-over into a periodic
motion by S3-isometries. Then, after it is stereographic projected into R3, the
chain deforms conformally by the corresponding global conformal motion in R3.
This motion of spherical Kaleidocycles looks similar as the turning-over motion
of Kaleidocycles, which we considered in Chapter 5. However, while the motion
of Kaleidocyles is local isometric in R3, the motion of spheical Kaleidocycles is
conformal but not isometric in R3. Thus, they have quite different mathematical
properties. We present an algorithm to construct the spherical Kaleidocycles, and
introduce properties of them.
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6.1 Standard unit 3-sphere and Clifford torus
In this section, we briefly review basic theories about 3-sphere and the Clifford
torus, which are background theories of the structure of the spherical Kaleidocy-
cles.

The standard unit 3-sphere, denoted by S3, is the set of points in R4 defined
by

S3 =




x1
x2
x3
x4

 ∈ R4 : x2
1 + x2

2 + x2
3 + x2

4 = 1

 . (6.1)

Sometimes, it is convenient to regard S3 as a subset of the space with 2 complex
dimensions C2. In this case, S3 is given by

S3 =

{(
z1
z2

)
∈ C2 : |z1|2 + |z2|2 = 1

}
. (6.2)

Now we consider S3 as the set of 2-dimensional complex numbers in (6.2). Then
we can parametrize S3 with three independent parameters since S3 is a 3-manifold.
Particularly, we consider a function F : [0,2π)× [0,2π)×

(
0, π

2

)
→ S3 defined by

F(ξ1,ξ2,η) =

(
z1(ξ1,ξ2,η)
z2(ξ1,ξ2,η)

)
=

(
cosη e

√
−1(ξ1+ξ2)

sinη e
√
−1(ξ1−ξ2)

)
. (6.3)

Then the coordinates of S3 by F are called the Hopf coordinates. For any fixed
η , the function F draws a 2-dimensional torus called the Clifford torus, via a
stereographic projection s : R4→ R3 given by

s


x1
x2
x3
x4

 :=

x̂1
x̂2
x̂3

=

(
x1

1− x4
;

x2

1− x4
;

x3

1− x4

)
, (6.4)

where z1 = x1 +
√
−1x2 and z2 = x3 +

√
−1x4.

Remark 6.1 We observe how do parameters ξ1 and ξ2 act on the Clifford torus
for fixed η . We introduce different coordinates of S3, just for comparison, by a
function F ′ : [0,2π)× [0,2π)×

(
0, π

2

)
→ S3 as

F ′(ξ ′1,ξ
′
2,η
′) 7→

(
z1(ξ

′
1,ξ
′
2,η
′)

z2(ξ
′
1,ξ
′
2,η
′)

)
=

(
cosη ′ e

√
−1ξ ′1

sinη ′ e
√
−1ξ ′2

)
. (6.5)

Then, for fixed η = η ′, we can see how do parameters ξ1 and ξ2 in (6.3) and ξ ′1
and ξ ′2 in (6.5) act on a torus, respectively, in Figure 16.
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(a) (b)

Figure 16: Profiles of tori(stereographically projected to R3) by formula (a) in
(6.3), (b) and in (6.5), where η = η ′ = π

6 .

Remark 6.2 The parameter η in (6.3) affects the shape of the Clifford torus. We
can verify shapes of the Clifford torus when we shall give a value of η from 0 to
π/2 in Figure 17.

(a) (b) (c) (d)

Figure 17: Profiles of tori by formula in (6.3) with (a) η → 0 (b) η = π

6 (c)
η = 2π

5 (d) η → π

2 .

One interesting way to observe the Clifford torus is to see rotations of the
Clifford torus on S3. It might be not so interesting to consider global rotations
of the Clifford torus in R4. However, if we observe rotations of them in R3 via
a stereographic projection, we can see various moves of the Clifford torus. For
example, rotating the Clifford torus on x1x4-plane in R4, we get the Dupin cyclide
via a stereographic projection(see Figure 18). Now we mainly interested in the
rotation of the Clifford torus on x3x4-plane, which is expressed as

F(ξ1,ξ2,η ; t) =

(
cosη e

√
−1(ξ1+ξ2)

sinη e
√
−1(ξ1−ξ2+t)

)
, (6.6)

for a real value parameter t ∈ R. Instead the rotation (6.6) does not give a dra-
matic change of shape of the Clifford torus, it gives the turning-over motion of
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Figure 18: Dupin cyclide, which is derived by rotating the Clifford torus.

the Clifford torus via a stereographic projection(see Figure 19). This turning-over
motion looks like the turning-over motion of Kaleidocycles described in Section
5.

(a) (b) (c) (d)

Figure 19: Profiles of the rotaion of the torus described in (6.6), where (a) t = 0
(b) t = π

2 (c) t = π (d) t = 3π

2 .

6.2 Construction of spherical Kaleidocycles
In this section, we present an algorithm to construct the spherical Kaleidocycles.
As a first step, we construct a spherical tetrahedron on S3, whose segments are
parts of some geodesics of S3. We denote the xix j-axis geodesic curve of S3 by

γi j : [−π,π)→ S3, t 7→ γi j(t), (6.7)

and we introduce a notation

γ
α
i j := γi j|[−α,α], α ∈ (−π,π). (6.8)

Now we put γ14 = γ14(t), and the rotation matrix R14 =R14(θ) : [0,2π)→M4×4(R)
as

γ14 =


sin t

0
0

cos t

 , R14 =


cosθ 0 0 sinθ

0 1 0 0
0 0 1 0

−sinθ 0 0 cosθ

 , (6.9)
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respectively, and we define a spherical segment H0 : [−φ ,φ ]→ S3 by

H0 = R14

(
π

2

)
γ

φ

14, (6.10)

for some φ ∈ (−π,π). Then denoting the center point of H0 as P0, we have s◦P0 =

s ◦H0(0) = (1,0,0), where a function s is the stereographic projection given in
(6.4) (see Figure 20).

(a) (b)

Figure 20: Profiles of (a) s◦ γ
φ

14 and (b) s◦H0 = s◦R14(
π

2 )γ
φ

14.

Now we define an another spherical segment H1 : [−φ ,φ ]→ S3 by

H1 = R12

(
2π

N

)
R14

(
π

2

)
R13 (ψ)γ

φ

14, (6.11)

for a real number ψ ∈ (0,2π), and an integer N ≥ 3(see Figure 21). Here, R12 =

R12(θ) and R13 = R13(θ) are rotation matrices defined by

R12 =


cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 0
0 0 0 1

 , R13 =


cosθ 0 −sinθ 0

0 1 0 0
sinθ 0 cosθ 0

0 0 0 1

 , (6.12)

respectively.
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(a) (b) (c)

Figure 21: The red curve in each figure describes (a) s ◦ R13 (ψ)γ
φ

14, (b) s ◦
R14
(

π

2

)
R13 (ψ)γ

φ

14 and (c) s◦R12
(2π

N

)
R14
(

π

2

)
R13 (ψ)γ

φ

14, respectively.

Then now we can construct a spherical tetrahedron on S3 by putting segments
between all of end points of H0 and H1 each other, where we always choose the
shortest path on S3 when we connect two points among them. In Figure 22, we
describe a tetrahedron in R3 by connecting end points of s ◦H0 and s ◦H1 each
other. Note that since all of segments of a tetrahedron in Figure 22 are generated
after H0 and H1 are projected to R3, they do not reflect the real shape of segments
of spherical tetrahedron on S3.

(a)

Figure 22: Profiles of a tetrahedron which is generated by connecting all of end
points of s◦H0 and s◦H1 each other, where N = 6, φ = π

6 and ψ = π

2 . Here blue
lines describe the s◦H0 and s◦H1. Also the red and green arrows describe the x̂1
axis, and the x̂3 axis, respectively.

Let us recall the rotation of the Clifford torus described in (6.6). Now we
consider a similar motion of the spherical tetrahedron described in Figure 22. We
introduce a family of tetrahedra which are determined by connecting all of end
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points of s◦R34(t)H0 and s◦R34(t)H1 for each t ∈ R, where R34 = R34(θ) is the
rotation matrix defined by

R34 =


1 0 0 0
0 1 0 0
0 0 cosθ −sinθ

0 0 sinθ cosθ

 . (6.13)

Note that it is nothing but the rotation of a spherical tetrahedron on x3x4-plane.
Then we can see the motion of the tetrahedron in Figure 23.

(a) (b)

(c) (d)

Figure 23: Rotation on x3x4-plane of the tetrahedron described in Figure 22. It
turns over according to figures (a)→ (b)→ (c)→ (d)→ (a).

Then now we construct a ring of spherical tetrahedra by putting additional
spherical segments appropriately: For a real number φ ∈ (−π,π), and an integer
N ≥ 3, we define a series of spherical segments Hi : [−φ ,φ ]→ S3 by

Hi = R12

(
2iπ
N

)
R14

(
π

2

)
R13 (iψ)γ

φ

14. (6.14)

Here we choose an angle ψ ∈ R such as Nψ = kπ for an integer k so that Hi =

Hi+N for all i. Then generating N spherical tetrahedra by connecting endpoints of
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Hi and Hi+1 each other for all i, we get a closed ring of N spherical tetrahedra,
which is called the spherical Kaleidocycle(see Figure 24). Note that since each
Hi is a common segment of two connected spherical tetrahedra, each Hi plays
a similar role as a hinge of Kaleidocycles. For this reason, we call a spherical
segment Hi the hinge of spherical Kaleidocycles.

(a) (b)

Figure 24: Profile of the spherical Kaleidocycle, whose hinges are given by (6.14)
with same parameters as that in Figure 22, 23.

(a) (b) (c) (d)

Figure 25: Rotation on x3x4-plane of the spherical Kaleidocycle described in
Figure 24. It turns over according to figures (a)→ (b)→ (c)→ (d)→ (a).

As we mentioned in Section 6.1, all of segments of the spherical Kaleidocycle
in Figure 24 are straight lines since we generated them after every hinge is pro-
jected to R3. If we, however, make them on S3, all of segments are curved along
the face of S3. To visualize the real form of a spherical Kaleidocycle approxima-
tively, we divide all of faces of a spherical Kaleidocycle, by putting more points
on faces, and project all of points to R3. Then we get a spherical Kaleidocycle
whose shapes are close to the real form of that(see Figure 26).
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(a) (b) (c) (d)

Figure 26: Rotation on x3x4-plane of the spherical-Kaleidocycle described in
Figure 24, where each face of tetrahedra is divided in 64 triangles It turns over
according to figures (a)→ (b)→ (c)→ (d)→ (a).

6.3 Gallery
In this section, we present various kind of spherical Kaleidocycles. Unlike Kalei-
docycles, spherical Kaleidocycles have various shape up to values of parameters.
Though they usually have similar shapes as Kaleidocycles(see Figure 27), they
sometimes look like the Möbius strip(see Figure 29). Moreover, if we put the
value of the parameter φ as bigger than π/2, corresponding spherical Kaleidocy-
cles have the unusual from(see Figure 31).

(a) (b)

Figure 27: Spherical Kaleidocycle where N = 16, φ = π

18 and ψ = π

2 .
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(a) (b)

Figure 28: Spherical Kaleidocycle where N = 16, φ = π

18 and ψ = π

2 , and each
face is divided into 64 triangles.

(a) (b)

Figure 29: Spherical Kaleidocycle where N = 8, φ = π

6 and ψ = π

4 .

(a) (b)

Figure 30: Spherical Kaleidocycle where N = 8, φ = π

6 and ψ = π

4 , and each face
is divided into 64 triangles.
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(a) (b)

Figure 31: Spherical Kaleidocycle where N = 8, φ = 11π

8 and ψ = π

4 .

(a) (b)

Figure 32: Spherical Kaleidocycle where N = 8, φ = 11π

8 and ψ = π

4 , and each
face is divided into 64 triangles.
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