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ON INVARIANTS OF SURFACES IN THE
3-SPHERE
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Abstract

In this paper we study isotopy classes of closed connected orientable surfaces in the stan-
dard 3-sphere. Such a surface splits the 3-sphere into two compact connected submanifolds,
and by using their Heegaard splittings, we obtain a 2-component handlebody-link. In this
paper, we first show that the equivalence class of such a 2-component handlebody-link up
to attaching trivial 1-handles can recover the original surface. Therefore, we can reduce
the study of surfaces in the 3-sphere to that of 2-component handlebody-links up to sta-
bilizations. Then, by using G-families of quandles, we construct invariants of 2-component
handlebody-links up to attaching trivial 1-handles, which lead to invariants of surfaces in
the 3-sphere. In order to see the effectiveness of our invariants, we will also show that our
invariants can distinguish certain explicit surfaces in the 3-sphere.

1 Introduction

Throughout this paper, we work in the PL category. In this paper, we will study closed
connected orientable surfaces embedded in the standard 3-sphere S3. Such embedded surfaces
were extensively studied by Fox, Homma, Tsukui, and Suzuki around 1950s-1970s (e.g., see
[3, 5, 15, 18]). In their studies, 3-manifold theory and fundamental group techniques were
mainly used.

A closed connected orientable surface in S3 splits S2 into two compact connected submani-
folds of codimension 0 with common boundary. Then, by considering their Heegaard splittings,
we obtain a pair of a handlebody and a compression body from each submanifold. Moreover,
it is known as the Reidemeister—Singer theorem that any two Heegaard splittings of a compact
connected orientable 3-manifold become equivalent after finitely many stabilizations. Hence,
given a surface embedded in S3, we can associate a certain 2-component handlebody-link up
to stabilizations. Then, we show that an isotopy class of the original surface is uniquely deter-
mined from the equivalence class of an associated 2-component handlebody-link Therefore, we
can reduce the study of surfaces in S to that of 2-component handlebody links in a certain
sense.

Handlebody-links (-knots) have recently been studied quite actively (e.g., see [6, 7, 8]). For
example, by using a G-family of quandles, which is an algebraic system with binary operations
parametrized by the elements of a group G, we can construct invariants of handlebody-links (see
7)-

One of the main purposes of the present paper is to construct invariants of surfaces embedded
in S3 by means of the associated 2-component handlebody-links and G-families of quandles.

The present paper is organized as follows. In Section 2, we first recall the notion of compres-
sion bodies. Handlebodies can be regarded as a special class of compression bodies. We will also



recall the notions of Heegaard splittings of 3-manifolds and their stabilizations. Then, we review
the Reidemeister—Singer theorem, which will be used in Section 3. We will show that for two
surfaces in S2, if the associated 2-component handlebody-links are equivalent up to attaching
1-handles, then two surfaces are isotopic.

In Section 3, we construct invariants of surfaces embedded in S3. Plenty of invariants of
handlebody-links were given in [7]. We first use X-colorings for the construction of surfaces in
S3. We observe a variation of the cardinality of the set of X-coloring due to a stabilization. Then,
we give a technique which cancels the variation of the cardinality of the set of X-colorings after
a stabilization of 2-component handlebody-link. Hence, we obtain an invariant of handlebody-
links up to stabilizations. We consider such an invariant for each connected component of
a 2-component handlebody-link. Then, as one of the results, we obtain an invariant as the
unordered pair of rational numbers. Moreover, we will show that, by using a similar argument,
we can construct another invariant of surfaces in S® by using another quandle invariant which
is defined by using cohomology theory of G-families of quandles [7].

In Section 4, we compute our invariants constructed in Theorem 3.1 for two explicit examples
of surfaces in S3. By using a G-family of quandles with a simple algebraic structure, we show
that our invariant distinguish the two surfaces by a small amount of calculation.

In Section 5, we study surface in S from geometric viewpoints. We construct a geometric
invariant of surfaces, which is an analogy of the unknotting tunnel number of a knot. Then, we
study the relationship between a surface in S and the closures of the connected components of
the exterior of the surface.

Throughout the paper, for a manifold M, we denote by dM and int(M) the boundary and
the interior of M, respectively. For a subset N of M, denote by cl(N) the closure of N in M.
Furthermore, for two sets My and My, we denote by M; L1 M the disjoint union of M7 and M.
For a set Z we denote by #Z the cardinality of Z. We also denote by idz the identity map of
Z. For a group G, we denote by e the identity element of G. We denote by g(F') the genus
of a closed connected orientable surface F'. For a compact connected orientable surface F' in a
compact connected orientable 3-manifold M, we denote by N(F') a regular neighborhood of F
in M. A multiset is a set whose elements allow duplications. A duplication of an element of a
multiset is called the multiplicity of the element.

2 Preliminaries

In this section, we present definitions and known results that will be used when we construct
invariants of embedded surfaces in S3. The main theme of this paper is to study closed connected
orientable surfaces in S? as we mentioned.

Let F be a closed connected orientable surface embedded in S3. We denote by Vi and Wg
the closures of the connected components of S*\F. Then, by considering Heegaard splittings
of Vr and Wpg, we will obtain a 2-component handlebody-link from the original surface F'.
Moreover, we study the relationship between a surface in S and the associated 2-component
handlebody-link. We also recall definitions and related results of G-family of quandles. By the
Alexander theorem ([1]), all 2-spheres in S® are isotopic, then we consider surfaces of genus
greater than 0.



2.1 3-manifolds and Heegaard splittings

In this section, we recall terminologies of 3-manifolds and Heegaard splittings. We also
introduce several known results related to Heegaard splittings. Originally, Heegaard splittings
were introduced for closed 3-manifolds. After that, the definition of a Heegaard splitting was
extended to compact 3-manifolds, and such a splitting is called a generalized Heegaard splitting
(Definition 2.6). We start from the definition of compression bodies.

Definition 2.1 ([12, 13]). Let X be a closed connected orientable surface. Consider the product
manifold ¥ x [0,1]. Then, attach 2-handles along mutually disjoint simple closed curves on
Y x {0}, and cap off every resulting 2-sphere component by a 3-handle. The resulting 3-manifold
C' is called a compression body. We denote ¥ x {1} by 0,C and 0C\0,+C by o0_C. 1If C is
constructed without any 3-handle, then C' can be obtained from 0_C x [0,1] by attaching
mutually disjoint 1-handles on 0_C x {1}. A compression body C is said to be a handlebody if
0_C = J. We define the genus of a handlebody as the genus of its boundary.

Let us recall handlebody-knots (-links) and their related terminologies. A handlebody-knot
of genus ¢ is a handlebody of genus g embedded in S%. Two handlebody-knots are equivalent
if there exists an ambient isotopy of S3 which maps one to the other. Let Hy, Ho,..., H, be
mutually disjoint handlebody-knots. Then, L := Hy 1 Hy i - - - 1 Hy, is called a handlebody-link,
or sometimes an n-component handlebody-link. Two handlebody-links are equivalent if there
exists an ambient isotopy of S® which maps one to the other. A handlebody-knot H (-link L)
is represented by a spatial trivalent graph K if a regular neighborhood of K is ambient isotopic
to H (L). Here, a spatial trivalent graph is a finite graph embedded in S® or R3 such that each
vertex is of valence three. It is known that any handlebody-knot (-link) can be represented by
a spatial trivalent graph (see [6]). A diagram D of a handlebody-knot H (L) is a diagram of a
spatial trivalent graph K of H (L) obtained by projecting K to the 2-sphere S? or the 2-plane
R2. A diagram D of a handlebody-knot (-link) consists of arcs, which are parts of curves, and
each of the endpoints of an arc are a vertex or an undercrossing. At each crossing of D, an arc
is called an under-arc if one of the its endpoints is undercrossing. Otherwise, an arc is called an
over-arc. An oriented diagram is a diagram of whose each of an arc is oriented.

Let M and N be a compact 3-manifold and a submanifold of M, respectively. Then, N is
said to be properly embedded in M if ON < 0M and int(N) < int(M).

A properly embedded 2-disk D in M is said to be inessential if there exists a 2-disk D in
OM such that 0D = ¢D" and D U D’ is the boundary of a 3-ball in M. A properly embedded
2-disk D is said to be essential if D is not inessential. Moreover, let M be a compact connected
3-manifold. Then, an essential 2-disk D in M is said to be separating if M\D consists of two
connected components. Otherwise, D is said to be non-separating.

Definition 2.2. Let M be a compact connected orientable 3-manifold. Then, M is said to be
irreducible if any 2-sphere S in M bounds a 3-ball in M.

We refer the reader to [2, 4] about the 3-manifold theory used in this paper.

Definition 2.3 ([20]). Let M be a compact orientable 3-manifold. Let F' be a compact orientable
surface in M or in M. Then, F is said to be compressible if F' satisfies either of the following
conditions.

(1) There exists a properly embedded 2-disk D in M such that D nint(F) = 0D and 0D is
non-contractible in int(F') .



(2) There exists a 3-ball B such that B n F' = 0B.
The surface F' is said to be incompressible if F' is not compressible.

The following theorem and lemma given in [2] and [20], respectively, will be used to see
a relationship between the set of equivalence classes of 2-component handlebody-links up to
attaching 1-handles and the set of isotopy classes of embedded surfaces.

Theorem 2.4 ([2]). Let M be an orientable irreducible 3-manifold. Let F be a compressible
boundary component of M. Then, there exists an incompressible neighborhood V' of F, which is
unique up to isotopy of M.

For the definition of an incompressible neighborhood of a compressible boundary component,
the reader is referred to Definition 2.14.

Lemma 2.5 ([20]). Let M be a compact connected orientable 3-manifold. Let F be the union
of mutually disjoint incompressible surfaces in M. We set M = cl(M\N(F)). Then M is
wrreducible if and only if M is irreducible.

We introduce the notion of Heegaard splittings of 3-manifolds. Originally, Heegaard splittings
were introduced to represent a closed connected orientable 3-manifold by the union of two
handlebodies along their common boundaries. In the context of knot theory, the Heegaard
genus of a Heegaard splitting of the exterior F(K) of a knot K is related to the tunnel number
of K.

Definition 2.6 (Heegaard Splittings). Let M be a compact connected orientable 3-manifold
possibly with boundary. Fix a partition of 0M as 0M = 1M v oM. A Heegaard splitting of
M is a decomposition of M into two compression bodies C7 and Cy such that M = Cy u Oy,
34_01 =95= a+02, Cl M CQ = S, 8_01 = (91M, and 8_02 = aQM. We call (3+C1 =5 = a_;,_Cz a
Heegaard surface of M. We denote by (M, S) a Heegaard splitting of M with a Heegaard surface
S. We also denote by C7 ug Cy a Heegaard splitting of M consisting of two compression bodies
C7 and (9 with a Heegaard surface S. The minimal genus of Heegaard surfaces of M is called
the Heegaard genus of M. In particular, a Heegaard splitting of M with the minimal genus is
called a minimal genus Heegaard splitting of M.

Concerning Heegaard splittings of 3-manifolds, it is known as Moise’s theorem that every
compact connected orientable 3-manifold possibly with boundary admits a Heegaard splitting
([10]).

We define a parallel arc in a compression body. Parallel arcs will be used when we define
the stabilization of a Heegaard splitting of a 3-manifold.

Definition 2.7 (Parallel arc). Let C be a compression body. A properly embedded arc a in C'
with 0C n da = 0. C n O is parallel to an arc 8 in 0+ C with 08 = da if there is an embedded
disk D in C such that 0D = a U .

Definition 2.8 (Stabilization). Let M be a compact connected orientable 3-manifold possibly
with boundary. Let (M, S) be a Heegaard splitting of M with a Heegaard surface S. The follow-
ing procedure to construct a new Heegaard splitting (M, S') from (M, S) is called a stabilization.
Suppose that M = C ug Cs is a Heegaard splitting of M consisting of two compression bodies
C1 and C9 with 0, C1 = S = 0, Cy. Take a parallel arc o in C5 to an arc 8 in 0. Cs. Then, we
remove a tubular neighborhood N («) of a from Cy, take the closure of C2\N(«), and add N («)
to C1, namely, we have C| := C; U N(a) and Cj := cl(C2\N(a)). We can show that C] and C,
are also compression bodies satisfying C} U g Cy = M, where §' := 0C] = 0C,.
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Hence we obtained a new Heegaard splitting (M, S/) of M from the given Heegaard splitting
(M, S). We also have g(S") = g(S) + 1.
We give an example of a Heegaard splitting of a handlebody of genus g.

Example 2.9 (The trivial Heegaard splitting). Let H, be a handlebody of genus g. Set 0H, =
F. Consider a parallel surface F' to F inside of H,. Then, the closures of the connected
components of the exterior of F' consists of a handlebody of genus g and a compression body
with the same boundaries. These handlebody and compression body give a Heegaard splitting
of Hy. Such a splitting is called the trivial splitting of H,.

Concerning Heegaard splittings of the handlebody of any genus g, it is known that all Hee-
gaard splittings of a handlebody of genus g are standard, that is, they are obtained from the
trivial Heegaard splitting by applying a finite number of stabilizations ([13]).

We introduce the notion of the equivalence of two Heegaard splittings of a compact connected
orientable 3-manifold M possibly with boundary. Let (M, S) and (M, S') be Heegaard splittings
of M with Heegaard surfaces S and S'. They are equivalent if there exists an ambient isotopy
of M which maps S to S". The following theorem, known as the Reidemeister—Singer theorem,
plays an important role when we construct invariants of embedded surfaces in S3.

Theorem 2.10 (Reidemeister—Singer theorem [11, 14]). Let M be a compact connected ori-
entable 3-manifold possibly with boundary. We fiz a partition of M as M = 1M 1 oM.
Then, any two Heegaard splittings of M become equivalent after finitely many stabilizations.

The following is also known as Waldhausen’s theorem.

Theorem 2.11 ([19]). A Heegaard splitting of S® is unique up to isotopy in every genus of a
Heegaard surface.

In Definition 2.8, we introduced the notion of the stabilization of a Heegaard splitting of
a compact conneccted orientable 3-manifold. Then, a stabilization of handlebody-links. This
definition is induced from the definition of the stabilization of a Heegaard splitting of a compact
connected orientable 3-manifold with connected boundary. Two handlebody-links L; and Lo
are said to be separated if there exists 3-balls B and B3 in S3 such that B} n B = 0B} n 0B3,
Ly < int(B3), and Ly < int(B3). Similarly, n handlebody-links Li, Lo, ..., L, are said to be
separated if there exists 3-balls B}, B3, ..., B2 in S? such that Bf’ N B;-)’ = (?Bf’ N GB? (whenever
i # j) and Ly < int(B3}), Ly < int(B3),. .., L, < int(B3).

Definition 2.12 (Stabilization of handlebody-links). Let H be a handlebody-knot. Then, the
stabilization of H is the disk sum of H and the standard solid torus T, denoted by HY{T, by a
2-disk D on 0H so that the connected components of HfT\N (D) are separated by a 3-ball. Let
L = H; u Hy be a 2-component handlebody-link. Let T! and T2 be the standard solid tori.
Then, the stabilization of L is stabilizations of H; with T* by a 2-disk D; on ¢H; or that of Ho
with T2 by a 2-disk Dy on 0Hs so that the connected components of cl(L§T T2\ u?_; N(D;))
are separated by 3-balls in S3. Two handlebody-links are stably equivalent if they are equivalent
after finitely many stabilizations.

We note that if both Hy and H» are stabilized, then the attached solid tori are separated by
some 3-balls in S3.



2.2 Surfaces in S? and handlebody-links

Let us now study the relationship between embedded surfaces and 2-component handlebody-
links. Let us start with a classification of embedded surfaces into three classes. We denote by Vg

and W the closures of the connected components of the exterior of a given embedded surface
F.

Definition 2.13. Let F be a closed connected orientable surface in S3.

(i) The surface F' is said to be an unknotted surface if both Vi and Wr are homeomorphic to
handlebodies.

(ii) The surface F' is said to be a knotted surface if exactly one of Vg or Wy is homeomorphic
to a handlebody.

(iii) The surface F' is said to be a bi-knotted surface if neither Vi nor Wg is homeomorphic to
a handlebody.

Let F} and F» be surfaces in S2. Two surfaces F; and Fj are said to be isotopic, denoted
by [} = F,, if there exists an isotopy f; : S — 53 t € [0,1] such that f; = idgs and
fi(F1) = F». We denote by V; and W; the closures of the connected components of S3\Fj,
(1t = 1,2). Let V; = Hy, u Cy, and W; = Hy, u Cy, be Heegaard splittings of V; and W;,
respectively, consisting of handlebodies Hy;, Hyy, and compression bodies Cy;, Cyy,. We call the
2-component handlebody link L; := Hy, u Hy, an associated 2-component handlebody-link of
F;.

We now introduce the notion of incompressible neighborhood.

Definition 2.14 (Incompressible neighborhood, [2]). Let M be an orientable irreducible 3-
manifold. Let F' be a compressible boundary component of M. Then, a 3-dimensional sub-
manifold V' of M is said to be an incompressible neighborhood of F' if V satisfies the following
conditions.

(1) The 3-manifold V' is a compact connected submanifold of M such that F' < V < M and
OV\F < int(M).

(2) The 2-manifold 0V\F' is incompressible in M.

(3) For some zg € F,

Image(m1(V, z9) — 71 (M, xz0)) = Image(m (F, z9) — 71 (M, x9)).

We first give a necessary and sufficient condition of the existence of a closed connected
orientable surface in S? corresponding to a given 2-component handlebody-link. We use Kneser’s
theorem and a characterization of 3-manifolds (with connected boundary) whose fundamental
groups are free. We also use Lemma 2.5, then we have the following.

Proposition 2.15. Let L = Hy 1 Hs be a 2-component handlebody-link. We denote by E(L) :=
S3\int(L) the exterior of L. Then, there exists a closed connected orientable surface F in S°
such that 0H1 and 0Ho are Heegaard surfaces of the connected components the exterior of F if
and only if the fundamental group 1 (E(L)) is given by free products of the fundamental group
of a closed connected orientable surface and some infinite cyclic groups.



Generally, since a Heegaard splitting of a compact connected orientable 3-manifold is not
unique, then a 2-component handlebody-link associated to a closed connected orientable surface
in S3 is not unique. However, by using the Reidemeister—Singer theorem, we have the following.

Proposition 2.16. Let F be a closed connected orientable surface in S® and L be an associ-
ated 2-component handlebody-link of F, respectively. Then, L is unique up to stabilizations of
Heegaard splittings of the closures of the connected components of S3\F.

Proposition 2.17. Let Fy and F5 be closed connected orientable surfaces in S3. We denote
by Vi and W; the closures of connected components of S3\F; (i = 1,2). Let V; = Hy, u Cy,
and W; = Hyw, u Cy, be Heegaard splittings of V; and W; (i = 1,2), respectively, where Hy,
and Hy, are handlebodies and Cy, and Cy, are compression bodies. Let L1 = Hy, u Hy, and
Ly = Hy, u Hyy, be associated 2-component handlebody-links of Fy and Fs, respectively. If Ly
and Lo are stably equivalent, then Fy and Fy are isotopic.

Proof. We assume that Hy, is mapped to Hy, and Hy, is mapped to Hyy, by an isotopy of
S3. We denote by E(L;) the exterior of L;. Then, by Lemma 2.5, we can show that F(L;) is
irreducible. If both Cy, and Cy, admit 1-handles, then we can show that 0Hy, and dHy, are
compressible in E(L;). Then, we can assume that Cy, and Cy, are incompressible neighborhoods
of 0Hy, and 0Hy,. By Theorem 2.4, Cy, and Cly, are unique up to ambient isotopy of E(L1).
Therefore, by the use of isotopy extension theorem, we can show that F} and F5 are isotopic. If
exactly one of Cy, or Cy, admits 1-handles, let us suppose that Cy, admits 1-handles. Then, by
using similar argument, we can show that Cy, is an incompressible neighborhood of 0Hy, and
unique. On the other hand, since Cy, does not admit any 1-handle, then by the triviality of a
Heegaard splitting of a handlebody, C'y, is in the form 0 Hy, x [0, 1]. Then we have the equivalence
of F1 and F3. If neither Cy, nor Cy, admits any 1-handle, then by using Waldhausen’s theorem
(Theorem 2.11), we can show that F; and F, are isotopic. O

Proposition 2.17 implies that an isotopy class of a surface in S® is uniquely determined from
the stably equivalence class of an associated 2-component handlebody-link of the surface.

2.3 G-family of quandles and handlebody-links

Let us now go on to introducing the notions of quandles and a G-families of quandles. A lot
of invariants of links have been obtained by using quandles. Moreover, G-families of quandles
can be used for studying handlebody-links and gives plenty of invariants(refer to [7]). We start
by the definition of quandles. We refer the reader [7] about the theory of G-families of quandles
used in the paper.

Definition 2.18. Let X be a non-empty set with a binary operation * : X x X — X. The pair
(X, #) is a quandle if * satisfies the following conditions.

(i) %2 =z for any z € X.
(ii) The map S, : X — X defined by S, (y) = y = x is bijective for any x € X.
(i) (zxy)*z= (z*2)x(y=*z) for any z,y,2€ X .

Definition 2.19. Let G be a group and X be a non-empty set with a family of binary operations
#g 1+ X x X — X parametrized by g € G, respectively. The pair (X, {#4}4ec) is a G-family of
quandles if for any z,y,z € X and any g, h € G, %4 satisfies the following conditions (see [7]).



(i) z*ga = .
(i) z*gny = (x*5y) *py and x #., y = .
(iii) (w#gy) *n 2z = (T *p 2) *p-1gp (Y *n 2).
We note that for a G-family of quandles, the pair (X, #4) is a quandle for each g € G.
Definition 2.20. Let G and (X, {#,4}4ec) be a group and a G-family of quandles, respectively.

Set @ = X x G. We define the binary operation * : Q x Q — Q by (z,9)*(y, h) = (z*,y, h~1gh).
Then, the pair (Q, #) is a quandle called the associated quandle of X.

Using a G-family of quandles (X, {#4}4ec), we can introduce the notion of an X-coloring for
an oriented diagram D of a habdlebody-link. We denote by </ (D) the set of arcs of D. The
normal orientation of an oriented arc is given by rotating an orientation of the arc counterclock-
wise by /2. The normal orientation of an oriented arc is represented by an arrow on the arc
(see Figure 1). Using a G-family of quandles (X, {#4}4e), we can introduce the notion of an
X-coloring for an oriented diagram D of a habdlebody-link.

Definition 2.21 (X-colorings). Let G' be a group and (X, {#4}¢eq) a G-family of quandles,
respectively. Let D be an oriented diagram of a handlebody-link. A map C': &/(D) —» Q = X xG
is an X -coloring of D if C satisfies the following conditions:

(i) at each crossing x of D, the map C satisfies C'(x2) = C(x1) * C(x3), and

(ii) at each vertex w of D and for the two natural projections px : @ — X and pg : Q@ — G,
the map C satisfies

px ©Cla1) = px o Claz) = px © C(as),
(P © C(an))" W) - (pg 0 C(a2))" ) - (pg 0 Cag) ") = e,

where x1, x2 are under arcs and x3 is an over-arc of D (Figure 1). Furthermore, e(w, a;)
is the sign of an arc a; at w which is defined as follows (see Figure 2) :

e(w, ;) = 1, if the orientation of «; points into w,
T —1, otherwise.

We denote by Colx (D) the set of X-colorings of D.
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Figure 1: Crossing x and normal orientations of x1, x2, and x3

Theorem 2.22. ([7]) Let G be a group and (X, {*4}4ec;) be a G-family of quandles, respectively.
Let D be a diagram of an oriented spatial trivalent graph of a handlebody-link. Then, the
cardinality §Colx (D) is an invariant of the handlebody-link.

Let D be an oriented diagram of a handlebody-knot H. Let H be a handlebody-knot
obtained from the disk sum of H and the standard solid torus. Then, a diagram D" of H' is
obtained from D by attaching an edge and a circle component to an arc of D. Therefore, an
orientation of D' is induced from that of D except for the edge and the circle component.

The following lemma will be used in Section 3 for constructing invariants of embedded

surfaces.

asz
ew,az) =1

c(way) =1

t(w,ay) =—1

Figure 2: Vertex w



Lemma 2.23. Let G and X be a finite group and a finite set, respectively, and (X, {*4}4ec) be a
G-family of quandles. Let F be a closed connected orientable surface in S3. We denote by Vi and
Wr the closures of the connected components of S?\F. Let (Vi, Fy) be a Heegaard splitting of
Vr. Let (Vp, F; ) be a Heegaard splitting obtained from (Vp, Fy) by applying a stabilization. Let
Hp, and H be handlebody-knots obtained from the Heegaard splittings (Vp, Fy) and (Vi, F; ),

respectively. Let Dp, be an oriented diagram of Hp, and D be a diagram of Hp with an
V
orientation induced from that of Dg,. Then, we have §Colx (D, ) = §Colx(Dp, ) - ij
Vv

Proof. By the definition of a stabilization and by using an isotopy S%, we may assume that the
diagram D, is obtained from Dp, by attaching an edge ep and an S 1 component 3 to an arc

ag of Dp, so that ey and 8 do not admit crossings. Then, we give arbitrary orientations to
ep and 3. For the other arcs, orientations are induced from that of Dp, as shown in Figure 3.
Let C be an X-coloring of Dp,,. Suppose that C(ag) = (x,9) € X x G. Then, C is extended
to an X-coloring of DF‘// by defining C(eg) = (z,eq) and C(B) = (x,h). Hence, we obtain
$Colx (D ) #Colx (Dp) - 4G. Conversely, for any C(8) = (z,h) we have C(eg) = (z,eq) by
the axiom of an X- coloring. Then we have §Colx (D ) #Colx (Dpy ) - #G. The same holds for
those of Wp. O

(x,9) (x,9)
(x, h)

(x,e)

(x,9)
ao DFV DF’V

Figure 3: Attaching an edge ep and a circle component 5 to Dp,

Let us introduce the notions of an X-set Y and an Xy-coloring of a diagram of a handlebody-
link (refer to [7]).

Definition 2.24. Let (X, {#,}4eq) be a G-family of quandles, and let Y be a non-empty set
with a family of maps ¥, : Y x X — Y parametrized by g € G. The pair (Y, {#¥4}4eq) is called
an X-set if for any y € Y, 2,z € X, and any ¢, h € G, the following conditions are satisfied.

(i) y*gnx = (y*qx)*px and y*e,x = y.
(ii) (y#gx)sna’ = (y#na)Ep-1gn (@ ).
Let D be an oriented diagram of a handlebody-link. Let D’ be a diagram obtained from D

by connecting undercrossing arcs at each crossing of D. Then D’ admits no crossing. We call
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a connected component of RQ\D/ a complementary region of D. We denote by Z(D) the set of
complementary regions of D. We set y  (z,g) = y#4z for y € Y and (z,9) € X x G = Q. Then,
we introduce the notion of Xy -colorings.

Definition 2.25 (Xy-coloring). Let G' be a group, and (X, {#4}¢ec) and (Y, {#4}4ec) be a G-
family of quandles and an X-set, respectively. Let D be an oriented diagram of a handlebody-
link. An Xy -coloring of D is a map C : &/(D) u Z(D) — Q v Y satisfying the following
conditions. We denote by Colx(D)y the set of Xy-colorings of the oriented diagram D.

Cl. C(#(D)) c Q and C(Z(D)) c Y.
C2. The restriction of C' on /(D) is an X-coloring of D.

C3. For an over-arc a and adjacent complementary regions a; and ag, C satisfies C(ag) =
C(aq) # C(a), where the normal orientation of o points from «y to ay (see Figure 4).

aq a

Figure 4: The coloring condition C3
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X1 ] X2

e(x) =1

X3

Figure 5: Weight of a crossing x

Using a G-family of quandles and an Abelian group A, we define a chain complex, denoted by
C«(X)y, and the cochain complex, denoted by C*(X; A)y := Hom(Cy(X)y, A). Then, we also
define the associated homology groups and cohomology groups (refer to [7]). For an Xy-coloring
C and a crossing x of a diagram D of an oriented spatial trivalent graph of a handlebody-link,
we define the weight of the crossing x by w(x;C) := e(x)(C(Ry),C(x1),C(x3)), where x1 is
an under-arc such that the orientation of x; points into the crossing x, x3 is an over-arc whose
normal orientation points from xi to the other arc x2, R, is a complementary region such that
normal orientations of x; and y3 point to the opposite regions with respect to x; and x3 (Figure
5), and €(x) is the sign of the crossing x.

Concerning homology theory of G-families of quandles, the following lemma is known (see

[7])-

Lemma 2.26. Let (X, {#4}4eq) and (Y, {*4}4ec) be a G-family of quandles and an X-set, re-
spectively. Let D be a diagram of an oriented spatial trivalent graph of a handlebody-link. Let C
be an Xy -coloring of D. Then, the sum of the weights W (D;C) := erDw(X§ C) is a 2-cycle
of C«(X)y-

Let A be an Abelian group. Let 6 be a 2-cocycle of the cochain complex C*(X; A)y. We
define the multiset ®y(D) as follows:

Oy(D) :={0(W(D;C))e A|C e Colx(D)y}.
Concerning cohomology theory of G-families of quandles, the following theorem is also known
(see [7]).

Theorem 2.27. Let (X, {#4}4eq) and (Y, {*¢}4ec) be a G-family of quandles and an X -set, re-
spectively. Let H be a handlebody-link and D be a diagram of an oriented spatial trivalent graph
of H. Let A and 0 be an Abelian group and a 2-cocycle of the cochain complex C*(X; A)y, respec-
tively. Then, ®o(D) does not depend on the choice of D and is an invariant of the handlebody-link
H.

12



We can write the multiset ®y(D) in the form

Py(D) = {(ar)iys- -5 (@m)i, }

where [; is the multiplicity of a; € A, and (aj)lj represents aj, ..., a;. Using these notations and
-

l;-times
a natural number N, we define the set ®y(D)n as follows:

(I)Q(D)N = {(al,ll/N),. cey (am,lm/N) ’ (ai,li/N) € Ax Q}

3 Main results

In this section, we construct algebraic invariants of embedded surfaces in S3. We first use
X-colorings combined with Lemma 2.23. Then, we will also use another quandle invariant given
in Theorem 2.27.

Theorem 3.1. Let G be a finite group and (X, {*4}4ec) a G-family of quandles, where X is
a finite set. Let F be a closed connected orientable surface in S3. We denote by Vy and Wp
the connected components of the exterior of F'. Let Fyy and Fy be Heegaard surfaces of Vp and
Wr, and Hy and Hy the corresponding handlebodies, respectively. We denote by Dy and Dy
diagrams of oriented spatial trivalent graphs representing Hy and Hyy, respectively. Then, the

unordered pair
#Colx (Dv) §Colx(Dw)
(#G)9E) 7 (1G)9Fw)

of rational numbers is an isotopy invariant of F'.

Proof. Let (Vp, Fy) and (Vp, F‘l/) be Heegaard splittings of V. Then, we have the correspond-
ing pairs of a handlebody-knot and a compression body in S3, say (Hy,Cy) and (H{/,C{/),
respectively. By the Reidemeister—Singer theorem, the two Heegaard splittings (Vr, Fy/) and
(Vr, F{/) become equivalent to the same Heegaard splitting (Vz, Fy/) after m times and n times
stabilizations, respectively, for some non-negative integers m and n. Let H be the handlebody-
knot and Cy be the compression body corresponding to (V, Fy/). Let Dy be a diagram of
an oriented spatial trivalent graph representing Hy. Then, by Lemma 2.23, we observed a
variation of the cardinality of the set of X-coloring after applying a stabilization. Then, we
have #Coly(Dy) = #Colx(Dy) - (G)™ = #Colx(Dy,) - (1G)". On the other hand, we have

!

g(Fv) = g(Fv) + m = g(F,) + n. Hence we see

(ﬁCle(Dv)> _ <hCoIX(Dv>> _ (#Colx (Dy)
(#G)otFv) (4Gt G )

Combining Theorem 2.22, we have the desired conclusion. O

In Theorem 3.1, we used each connected component of a 2-component handlebody-link inde-
pendently. Then we constructed an invariant of handlebody-knots up to stabilizations. However,
we can show the following even if we use an invariant of 2-component handlebody-links up to
stabilizations.
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Theorem 3.2. Let G be a finite group and (X, {#4}4eq) a G-family of quandles, where X is
a finite set. Let F be a closed connected orientable surface in S3. We denote by Vp and Wr
the connected components of the exterior of F'. Let Fyy and Fy be Heegaard surfaces of Vp and
Wr, and Hy and Hy the corresponding handlebodies, respectively. Let L = Hy u Hyy be the
2-component handlebody-link. We denote by D a diagram of an oriented spatial trivalent graph
representing L. Then, the rational number

ﬂCOlX (D)
(1G)9FV)+9(Fw)

s an isotopy invariant of F.

By using an argument similar to that used in Theorem 3.1, we can also construct another
algebraic invariant of embedded surfaces in 3. In order to construct such an invariant, we use
Theorem 2.22 and 2.27.

Theorem 3.3. Let G be a finite group and (X, {*4}sec) a G-family of quandles, where X is a
finite set. Let Y be an X-set, where Y is a finite set. Let F' be a closed connected orientable
surface in S3. We denote by Vi and W the connected components of the exterior of F. Let Fy,
and Fy be Heegaard surfaces of Vi and Wg, and Hy and Hy the corresponding handlebodies,
respectively. Let L = Hy u Hyy be a 2-component handlebody-link. We denote by D a diagram
of an oriented spatial trivalent graph representing L. Then, the multiset @g(D)(ﬁG)g(Fv)+g(FW) 18
an isotopy invariant of F.

Proof. Let L' be a 2-component handlebody-link obtained from L by applying a stabilization,
and we denote by D a diagram of an oriented spatial trivalent graph representing L. By
the definition of a stabilization of handlebody-links, attached solid tori are separated, then the
condition of crossings of D’ is same as that of D. Moreover, by using an argument similar to
that used in the proof of Lemma 2.23, we can show that ﬁColX(D')y = #Colx (Dy)y - #G. Then,
we also have an invariance of the weight of each crossing. Therefore, we obtain the required
conclusion. O

For a 2-component handlebody-link, its linking number is an invariant (refer to [9]). We have
a 2-component handlebody-link from a closed connected orientable surface in S by considering
Heegaard splittings of the connected components of the exterior of the surface. By the definition
of the stabilization of handlebody-links, we can show that linking number does not change after
applying a stabilization. Then, the linking number of a 2-component handlebody-link obtained
from F' is also an isotopy invariant of F'.

4 Examples

We compute our invariants given in Theorem 3.1 for the following examples of bi-knotted
surfaces. Throughout this section, we set X = Z/3Z, G = Z/27Z, g o h := g, g %1 h = 2h — g for
any g,h € Z/3Z and 0,1 € Z/2Z. Then, it is known that (X, {*¢}4ec) is a G-family of quandles
(I7))-

In order to construct bi-knotted surfaces, we consider two mutually disjoint 3-balls B; and
Bs, respectively. Then we take properly embedded arcs a1 and ag from By and Bs, respectively.
We assume that o7 is unknotted and aso is knotted corresponding to the trefoil. We denote by
N(ay) and N(ag) regular neighborhoods of o1 and ag. Then we remove regular neighborhoods
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N(a1) and N(ag) from By and By. We set B;, = cl(B1\N (1)) and By = cl(B2\N(az)). Then
we connect B and B, by the 1-handle D! x D? so that {—1} x D? is attached to 0B;, {1} x D? is
attached to 83,2, and the attached 1-handle throughs straightforwardly both regions which are
obtained from B; and B by removing N(«1) and N (ag). We assume that the attached 1-handle
admits a tangle induced from that of N(ag). We set F' as the boundary of the the resulting
compact connected orientable 3-manifold M (see Figure 6). Similarly, we construct compact
connected orientable 3-manifold M’ by using an unknotted arc and a knotted arc corresponding
to the figure eight knot. Then we set F' as the boundary of the 3-manifold (see Figure 7).

We assume that M is embedded in S. Then, M is one of the connected components of the
exterior of F' = 0M, say, Vr (see Figure 8). Then, we obtain the other connected components
of the exterior of F' by the following procedures. We first consider the closure of the exterior of
Bll in S3, which is obtained from a 3-ball B3 by attaching N(c;). Then, we remove the interior
of By from B? and attach N (a2) to 0By. Finally, we remove the 2-handle D? x D! so that
D? x {—1} is attached to 0B3, D? x {1} is attached to 0Bs, and the 2-handle throughs both
N(ay) and N(ag) straightforwardly. The resulting compact connected orientable 3-manifold,
say W, is the other connected component of F' (see Figure 9). We set M’ = V. (see Figure 14).
Then, by a similar argument, we obtain the other connected component W;; of F' (see Figure
15).

Moreover, by removing 2-handles from Vr and from W, respectively, we obtain two handlebody-
knots Hy and Hy (Figures 10 and 11). Then, by projecting their oriented spatial trivalent
graphs on R?, we obtain diagrams Dy and Dy of Hy and Hy (Figure 12 and Figure 13).
By using a similar argument, we obtain handlebody-knots H}; and H{,V (Figures 16 and 17).
Similarly, by projecting their oriented spatial trivalent graphs on R?, we obtain diagrams D;/
and D;,V of H{, and Hy, (Figures 18 and 19)

Example 4.1. For the surface F' (Figure 6), we compute §Colx(Dy ) and §Colx(Dyw ). Then
we have §Colx (Dy) = 6 and §Colx (Dy ) = 48. Therefore we obtain

fColx (Dy) :§ #Colx (Dw )
(#(z/22))* 4" (4(z/22))°

Example 4.2. Let us now focus on the surface F' (Figure 7). We also compute #Colx(Dy,)
and #Colx (Dy,). Then we have #Coly (Dy,) = 6 and §Coly (Dy,) = 24. Hence we have

= 6.

£Colx(Dy) 3 #Colx(Dyy)
(#(z/2z2))3 4" (4(z/27))°

We can show that two surfaces F and F’ are not isotopic by using our invariant.
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Figure 7: Bi-knotted surface F’
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Figure 8: Exterior component Vp

Figure 9: Exterior component Wr
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Figure 10: Handlebody-knot Hy

Figure 11: Handlebody-knot Hyy
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Figure 12: Diagram Dy of the handlebody-knot Hy
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Figure 13: Diagram Dy, of the handlebody-knot Hyy
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Figure 15: Exterior component W
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Figure 18: Diagram D, of the handlebody-knot Hy
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Figure 19: Diagram Dy, of the handlebody-knot H;
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5 Further results

In this section, we study closed connected orientable surfaces in S from geometric view-
points. Then, we construct a geometric invariant of surfaces in S3. We also give a necessary
condition of the existence of a surface which is obtained from a 2-component handlebody-link
corresponding to a minimal genus Heegaard splittings of the closures of the connected compo-
nents of the exterior of the surface. We denote the interval [—1,1] and the unit 2-disk by D!
and D?, respectively.

Definition 5.1 (Handle attaching [15]). Let F' be a closed connected orientable surface embed-
ded in S3. Let h; : D! x D?* — S3 (i = 1,2,...,n) be embeddings of the 1-handle such that
hi(D* x D*) " F = h;(0D' x D?) and h;(D* x D?) nhj(D! x D?) = ¢§ (whenever i # j). We call
hi(D!x0D?) a handle. We denote by F(hy,ha ..., hy) := Fu(u? hi(Dx0D?)\ui_, hi(0D! x
int(D?)) the surface obtained from F by attaching n handles. Note that F(hy, hs. .., h,) is again
a closed connected orientable surface embedded in S and that its genus is equal to g(F) + n.

Two closed connected orientable surfaces F; and Fh in S® are said to be separated if there
exists 3-balls B} and B3 such that F; < int(B3) and Fy < int(B3). Two closed connected
orientable surfaces F} and F; are also said to be separated if there exists a 3-ball B such that
Fy < int(B3) and F» = S?\B3. The 3-ball B? is called the associated ball. Similarly, n closed
connected orientable surfaces Fy, Fa, ... F, in S? are said to be separated if there exists n 3-balls
B3 (i=1,2,...,n) such that F; c int(B}) for each i = 1,2,...,n.

Given two separated embedded surfaces in S3, we can construct a new embedded surface by
using the following way, which is called the isotopy sum.

Definition 5.2 (Isotopy sum [18]). Let F} and Fy be closed connected orientable separated
surfaces embedded in S% and B? be the associated ball as above, respectively. Let ¢ : D! x
D? — S3 be an embedding of the 1-handle such that p(D! x D?) n Fy = o({—1} x D?),
o(D! x D) n Fy = ({1} x D?), and ¢(D' x D?) n B3 = ¢({0} x D?). We define the isotopy
sum of Fy and Fy, denoted by FifisoFh, by FitlisoFs := F1 U Fy U (D! x 0D?)\p(0D' x int(D?)).

We note that the isotopy sum of two separated embedded surfaces does not depend on the
the choice of the associated ball and the choice of an embedding ¢ up to an isotopy of S3.
Moreover, it does not depend on the order of F; and F,. We also note that (FfisoF5)fisoF3 =
Fifliso(Fatiiso F3) for separated closed connected orientable surfaces Fy, Fy and F3 in S3. In this
sense the isotopy sum is well-defined. For an embedded surface F', if F' is isotopic to the isotopy
sum Fifliso Folliso - + - fiso Fi for separated surfaces Fi, Fs, ..., Fy, we call it a decomposition of F
into factors Fy, 1 =1,2,... k.

In order to construct a geometric invariant of closed connected orientable surfaces in S3, we
introduce the notion of the tunnel number of a compact connected orientable 3-manifold with
connected boundary embedded in S3.

Definition 5.3 (Tunnel number). Let V' be a compact connected orientable 3-manifold with
connected boundary embedded in S®. The tunnel number of V is the minimal number n of
mutually disjoint 1-handles such that c1(S®\(V | J u?_ hi(D' x D?))) is homeomorphic to a han-
dlebody and V' n h;(D' x D?) = h;(0D' x D?), where h; (i = 1,2,...n) are embeddings of the
I-handle D! x D? into S3. We denote by ¢(V') the tunnel number of V.

It is not hard to see that since every compact connected orientable 3-manifold possibly
with boundary admits a Heegaard splitting, ¢(V') is always finite. Let F' be a closed connected
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orientable surface in S3. We denote by Vi and W the closures of the connected components of
S3\F. By Definition 5.3, we also see that the Heegaard genus of W is given by g(F) + t(Vr).
Similarly, the Heegaard genus of Vp is given by g(F') + t(Wp).

We note that if Vr is a handlebody-knot, then the tunnel number of Vr coincides with that
of a handlebody-knot [8].

Proposition 5.4. Let h; : D! x D? — S3 (i = 1,2,...,n) be embeddings of the 1-handle such
that hy(D* x D?) n F = h;(0D' x D?) and h;(D* x D?) n hj(D! x D?) = & (whenever i # j).
For any closed connected orientable surface F in S3, there exists a finite numbers of handles
such that F(hy, ..., hy), which is a surface obtained from F by attaching n handles to F, is an
unknotted surface.

Proof. Let Vi and Wr be the closures of the connected components of S3\F. Then, we have
S3 = Ve U Wp. Let t(Vr) and t(Wr) be the tunnel numbers of Vp and Wr. Then, by
the definition of the tunnel number, we obtain two handlebody-knots H; and Hs such that
Hy U Hy = S and 0H; = 0Hj by attaching ¢(Vz) + t(Wp) 1-handles to the common boundary
F = Ve Wg of Ve and Wg. Since the union of H; and H> along their boundaries gives a
Heegaard splitting of S2. Then, combining Waldhausen’s theorem 2.11, the common boundary
of Hy and H» is an unknotted surface. ]

We introduce the definition of the handle number of embedded surface.

Definition 5.5 (Handle number). Let F be a closed connected orientable surface in S3. Let
h;: D' x D? — 83 (i = 1,2,...,n) be embeddings of the 1-handle such that h;(D! x D?) " F =
hi(0D' x D?) and h;(D' x D?) n h;(D' x D?) = & (whenever i # j). Let F(hy, ha,...,h,) be
a surface obtained from F by attaching n handles to F. The handle number of F', denoted by
h(F), is the minimal number n of handles such that F'(hi,...,hy) is an unknotted surface.

Let F be a closed connected orientable surface in S3. We denote by Vx and W the closures
of the connected components of S\ F. We show the relationship between the handle number of
F and the tunnel numbers of Vi and Wg.

Proposition 5.6. Let F be a closed connected orientable surface in S°. We denote by Vi
and W the closures of the connected components of S3\F. Let t(Vr) and t(Wg) be the tunnel
numbers of Vg and Wg. Then, for the handle number of F', we have h(F) = t(Vg) + t(Wp).

Proof. Let n be the handle number of F. Let h; : D' xD? — 83 (i =1,2,...,n) and {hq,..., h,}
be embeddings of the lhandle satisfying the conditions given in Definition 5.1 and the set of
attached handles to F' such that F'(hq,...,hy) is an unknotted surface, respectively. We divide
the set of handles {hi,...,h,} into the disjoint union of the sets of handles {h},...,hY} and
{hV, ..., hV}, where h) (D! x D?) is attached to Vi, and h}/V(Dl x D?) is attached to Wr. Then,
by Proposition 5.4, we have n = k+ 1 < t(Vr) + t(Wr). On the other hand, by the definition of
the tunnel number, we have t(Vp) < k and ¢(Wp) < I. Then, we obtain t(Vr) +t(Wp) < k + L.
Therefore, we have h(F) =k +1 =t(Vp) + t(Wp). O

As an immediate sequence, we have that the unordered pair (t(Vr),t(Wp)) of non-negative
integers is an invariant of F'. Furthermore, it is not hard to see the following. Let V@ = Hy uCy
and Wr = Hy u Cy be minimal genus Heegaard splittings of VF and Wy consisting of pairs of
a handlebody Hy and a compression body Cy and a handlebody Hy and a compression body
Cw, respectively. If F'is an unknotted surface, then both Hy and Hyy are trivial handlebody-
knots. Hence ¢(Vp) = 0 and ¢(Wr) = 0. If F is a knotted surface, then exactly one of Vi or
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WF is homeomorphic to a handlebody, and the other is not homeomorphic to a handlebody.
Hence exactly one of ¢(Vr) or t(WF) is equal to zero, and the other is a positive integer. If F is
a bi-knotted surface, then we have that neither Vr nor Wr is homeomorphic to a handlebody.
Hence both ¢(Vr) and ¢(Wp) are positive integers.

It is not hard to see that since the unordered pair (¢(Vr),¢(Wr)) of non-negative integers is
an invariant of F', then the handle number h(F') is also an invariant of F. We prove the following
corollary.

Corollary 5.7. Let F be a closed connected orientable surface in S3. We denote by Vr and
Wr the closures of the connected components of SP\F. Let n be the handle number of F. Let
hi: D' x D? — 83 (i = 1,2,...,n) be embeddings of the 1handle satisfying the conditions given
in Definition 5.1. Let {h1,ha,..., hn} = {hY,...,hY} u {RY, ... h}V} be the set of attached
handles, where hY (D' x D?) is attached to Vi, and h}’V(D1 x D?) is attached to Wr. Let t(VF)
and Wg be the tunnel numbers of Vg and Wg. Then, k = t(Vr) and |l = t(Wg).

Proof. In the proof of Theorem 5.6, we saw that k + 1 = t(Vp) + t(Wp), t(VF) < k, and
t(Wp) < I. Let us assume that ¢(Vr) < k. Then, we have ¢(Wp) > [. This is a contradiction.
Hence k = t(VF). The same holds for [, that is, I = ¢(Wp). O

Proposition 5.8. Let F be a closed connected orientable surface in S3. We denote by Vi
and W the closures of the connected components of S?\F. For any minimal genus Heegaard
splitting of Vi, say Vg = Hy v Cy, the tunnel number t(Hy) of the handlebody-knot Hy does
not depend on the choice of minimal genus Heegaard splittings. The same holds for any minimal
genus Heegaard splitting of Wg.

Proof. Let Vp = Hy uCy and Vi = H{/ V) C’{/ be minimal genus Heegaard splittings of V. Let
n = k + [ be the handle number of the surface F', where k and [ are the numbers of 1-handles
attached to Vy and Wr. Let h; : D' x D? — 3 (i = 1,2,...,n) and {hy,...,h,} be embeddings
of the lhandle satisfying the conditions given in Definition 5.1 and the set of attached handles
to F such that F(hq,...,h,) is an unknotted surface, respectively. Then, we divide the set of
handles {h1,...,h,} into the disjoint union of two sets {h{,...,h}} and {h}",... h/V}, where
hZV is a handle attached to Vi, and h"i is a handle attached on Wpr. By the definition of
the tunnel number of Wg, cl(S3\(Wr | \_:E(:ml/p)hi(Dl x Ds3))) is isotopic to a handlebody. In
particular, since Vp = Hy u Cy is a minimal genus Heegaard splitting, we can assume that
(SHA\(WrJ ui(:Vi/F)hi(Dl x D?))) is homeomorphic to Hy. Hence, dHy is obtained from F
by attaching ¢(Wp) handles. Then, by the definition of the handle number of F, we can also
assume that we obtain an unknotted surface from dHy by attaching k handles. Moreover, by
the definition of the tunnel number of Hy/, we obtain an unknotted surface from Hy . Then, we
have k = t(Hy). By using a similar argument, we also have k = ¢(Hy,). The same holds for
minimal genus Heegaard splittings of Wg. O

Let F be a closed connected orientable surface embedded in S3. We denote by Vr and Wg the
closures of the connected components of S3\F. By considering Heegaard splittings Vi and W,
we obtain an associated 2-component handlebody-link L of F. By applying the Reidemeister—
Singer theorem, we showed that L is uniquely determined from F' up to stabilizations of Heegaard
splittings of Vi and Wp. Conversely, let us consider a 2-component handlebody-link Z'. Then,
does there always exist a closed connected orientable surface F’ embedded in S3 such that the
connected components of 0L  are Heegaard surfaces of Vi and W7 A necessary and sufficient
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condition was given in Proposition 2.15. We consider such a problem from the viewpoints of the
handle number and the tunnel number.
By Proposition 5.8, we have the following corollary.

Corollary 5.9. Let L = Hju Hy be a 2-component handlebody-link. Let us assume that t(Hp)—
t(Ha) # g(0H2) — g(0H1). Then, there does not exist a closed connected orientable surface in
S3 such that L is obtained from minimal Heegaard splittings of the closures of the exterior of
the surface.

Let M be a compact connected orientable 3-manifold whose boundary is not homeomorphic
to a 2-sphere. Then, M is said to be d-irreducible if for every properly embedded 2-disk D in
M, 0D bounds a 2-disk on dM. We assume that the boundary of M is connected, and that
M is not homeomorphic to a 3-ball. Then, M is said to be 0-prime if for any decomposition
My§Ms, where My and Ms are compact connected orientable 3-manifolds, either My or My is
homeomorphic to a 3-ball, where MifMs is the disk sum, or the boundary connected sum, of
My and Ms. Then, the following is known.

Proposition 5.10 ([16]). Let M be a compact connected orientable 3-manifold embeddable in
S3 with connected boundary with g(OM) = 2. Then, the following conditions are equivalent.

(i) The 3-manifold M is 0-prime.
(ii) The 3-manifold M is 0-irreducible.

(iii) The fundamental group m (M) of M is indecomposable with respect to free products.
We now present the notion of prime surfaces in S3.

Definition 5.11 (Prime surface [18]). Let F be a closed connected orientable surface in S® with
g(F) = 1. Then, F is said to be prime if for any decomposition F' =~ Ffis, Fo, either Fy or F is
a surface of genus 0. We note that every closed connected orientable surface of genus 1 is prime.

About closed connected orientable prime surfaces in S2, the following is known.

Theorem 5.12 ([17]). Let F be a closed connected orientable surface of genus 2 in S®. Then, F
is prime if and only if either m (Vp) or m(Wr) is indecomposable with respect to free products.

Let M be a compact connected orientable 3-manifold with connected boundary embedded in
S3. Then, M is said to be reducibly embedded if there exists a 2-sphere S in S® such that M n S
is a properly embedded 2-disk D in M, and that D separates M into two parts which are not
homeomorphic to 3-balls. Otherwise, M is said to be irreducibly embedded. We call a reducibly
embedded handlebody-knot a reducible handlebody-knot. Similarly, we call an irreducibly em-
bedded handlebody-knot an irreducible handlebody-knot.

Let us now focus on prime surfaces of genus 2 embedded in S®. Let F be a prime surface
of genus 2 in S3. We denote by Vi and Wg the closures of the connected components of S\ F.
By virtue of Theorem 5.12 and Proposition 5.10, we know that either Vi or Wg is 0-prime.
Then, let us assume that exactly one of Vg or W is ¢-prime. On that assumption, we have the
following proposition.

Proposition 5.13. Let F be a closed connected orientable prime surface of genus 2 in S°.
We denote by Vi and W the closures of the connected components of S®\F. We assume that
exactly one of Vi or Wg is 0-prime. Let Vi = Hy uCy and Wgp = Hy u Cy be minimal genus
Heegaard splittings of Vi and W, respectively. Then, exactly one of Hy or Hy is a reducible
handlebody-knot, and the other is an irreducible handlebody-knot.
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Proof. By the assumption, we assume that Vp is not 0-prime and Wy is ¢-prime. Since Vp
is not O-prime, there exists a decomposition Vp = Vl}hVI% such that neither Vl% nor Vlg is
homeomorphic to a 3-ball B3. Then, by the use of the solid torus theorem, V} (i =1,2) are
either a handlebody-knot of genus 1 or the exterior of a hanlebody-knot of genus 1.

(1) In case of both VI} and VI% are handlebody-knots of genusl, since F' is a prime surface, then
Vp = VAgVE is an irreducible handlebody-knot. Since the Heegaard splittings of a handlebody-
knot are standard, Hy is an irreducible handlebody-knot. On the other hand, Wg the exterior of
the handlebody-knot Vr. Then the Heegaard surfaces of Wr are unknotted surfaces. Therefore
Hyy is a reducible handlebody-knot.

(2) In case of V3 is a handlebody-knot of genus 1 and V2 is the exterior of a handlebody-knot
of genus 1, then VZ? is obtained from a 3-ball B3 by removing a 2-handle (see Figure 20). Then,
by connecting V3 and VI% by a 1-handle, we obtain V. It can be also assumed to be that Vg
is obtained from VI% by attaching a 1-handle which throughs the removed 2-handle from B? at
least one time up to isotopy. Since V} is a handlebody-knot, by removing 2-handles from Vlg, the
minimal genus Heegaard splitting of Vp is obtained (see Figure 21). By considering a minimal
genus Heegaard splitting of VFQ, we obtain the trivial handlebody-knot of some genus > 2. Such
a handlebody-knot is obtained from B? by removing 2-handles. However, by the assumption of
the 1-handle attached to Vlg and applying a deformation depicted in Figure 22, the attached 1-
handle throughs every removed 2-handle of the trivial handlebody-knot (Figure 23). Hence Hy
is an irreducible handlebody-knot. On the other hand, Wy = cl(S3\(V2 U V2 U {2-handle})) =
cl((B? U {1-handle})\ (V2 U {2-handle})). We note that the removed 2-handle throughs both V2
and the attached 1-handle at least one time up to isotopy (see Figure 24). To obtain a Heegaard
splitting of W, we need to move the 2-handle so as not to it throughs the attached 1-handle
by removing 2-handles (Figures 25 and Figure 26). Then, after removing 2-handles from B? we
obtain a minimal genus Heegaard splitting of Wr. By the above procedure, we can see that Hyy
is a reducible handlebody-knot. The same holds for in case of Vﬁ is a handlebody-knot of genus
1 and V},l is the exterior of a handlebody-knot of genus 1.

(3) In case of both V}} and V2 are the exterior of handlebody-knots of genus 1, by applying the
same procedure given in (2) for Vr, we can show that Vg is an irreducible handlebody-knot. On
the other hand, by applying the same procedure given in (2) for Wr, we can show that Wr is
a reducible handlebody-knot. O
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Figure 20: Construction of VI%
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Figure 21: Removing of 2-handles
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Figure 22: Deformation

Figure 23: Part of the handlebody-knot Hy
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