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Abstract

Critical convective flows and dynamos driven by bottom-up and top-down buoyancy are ex-
amined for an electrically conducting Boussinesq fluid in a rotating spherical shell. This
system represents dynamics and dynamos in terrestrial planetary core, in which it is believed
that the compositional source of buoyancy is mainly supplied by bottom-up type for the
Earth and the Mercury, and by top-down type for the Ganymede, currently. Although it is
recognized that dynamos driven by the different mechanisms tend to have distinguishably
different magnetic fields, the reason why the differences arise has not yet been known. Un-
derstanding the physics of the core convection and dynamos is important for unveiling the
thermal history and internal structure in various bodies. In order to understand the basic
features of convection and dynamos, we investigate linear stability of convection without
magnetic fields, and then, dynamos, in which the obtained critical convection are given as
initial condition, for both top-down and bottom-up buoyancy types.

First, the onsets of bottom-up and top-down convection are searched for the Prandtl
number, Pr, fixed at 1. The Ekman number, Ek, is varied from 5 × 10−5 to 10−3, and the
critical value of the Rayleigh number, Ra, is obtained at each Ek. The critical Rayleigh
number, Rac, varies in proportion to E−1.14

k in the bottom-up case, and E−1.28
k in the top-

down case. It is consistent with previous works[1], but a little difference, especially for the
bottom-up case, could be caused by two factors: Ek is not sufficiently low, and the flow
patterns are different from the local analysis. The radial position of the columnar convection
is located at the middle of the shell for the top-down case, and adjacent to the inner core
tangent cylinder for the bottom-up case. Although the main convection column exists outside
the tangent cylinder, the bottom-up type flows have influx and outflux through the tangent
cylinder to conserve the mass around the inner boundary at low latitudes. The non-convective
influx and outflux in the bottom-up cases plays a role in balancing the total kinetic energy
budget by increasing the viscous dissipation.

The onsets of the dynamos are obtained at Pr = 1 and Ek = 10−4. It is found that the
critical Rayleigh number of a self-sustaining dynamo is 4.5Rac in top-down case, but it is
not obtained until Ra = 20Rac in bottom-up case. The successful dynamos for top-down
buoyancy cases generate magnetic fields with low dipolarity on the outer boundary. This
could result from the weak influence of the convection column on the total kinetic energy.
The flows in both successful and failed dynamos are dominated by the zonal flows owing not
to the thermal wind but to the Reynolds stresses. However, in many previous works, the full
MHD dynamo action driven by the bottom-up buoyancy has the thermal wind in the zonal
flows. Because achieving the successful dynamo driven by the bottom-up buoyancy is more
difficult than that by top-down buoyancy according to our results, the zonal flows formed
by the thermal wind could be required in the bottom-up-driven dynamos. It is possible that
the absence of thermal wind is caused by coupling equatorially symmetric flows only with
antisymmetric magnetic fields. The difference in the force balance of the zonal flows between
the top-down and bottom-up dynamos could affect the temporal variation of the observed
magnetic field in each terrestrial body.
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Chapter 1

Introduction

1.1 Planetary core dynamo

The core dynamos in the current terrestrial bodies are powered and sustained by a certain
kind of compositional buoyancy sources. The solidification scenarios for each body are decided
by three factor: pressure, temperature distribution and contents of light element in the
core. Here, we focus on sulfur as the representative of the light elements. The eutectic
temperature and the eutectic composition of the Fe-FeS core depend on the core pressure, and
the temperature distribution. The amount of sulfur decides whether the core is in the Fe-rich
side or FeS-rich side in the phase diagram. Table 1 shows basic information of the structure
and the observed magnetic field for Earth, Mercury and Ganymede, which currently have
the intrinsic fields maintained by the core dynamo (Connerney, 2007[2]). The geodynamo
generates the strongest magnetic field of about 104nT in the three bodies. In case of the
Earth, density deficit of the outer core inferred from the typical seismic velocity structure
such as PREM (Preliminary Reference Earth Model: Dziewonski and Anderson, 1981[3])
suggests the presence of some light elements of ∼10% in the outer core. This observational
evidence implies that the Earth’s core lies in the Fe-rich side. Under the circumstances of
the Earth’s core, if the melting curve of iron has a slope steeper than that of the adiabatic
temperature in the P-T diagram, the inner core nucleation should start at the geocenter in the
Earth’s thermal evolution. Since light elements are incompatible with the solid iron, they are
not included into the inner core upon solidification but left at the solidification front, giving
rise to compositional buoyancy. Thus, in the core, it is believed that the main buoyancy
is currently fed by light element ejection due to the inner core growth; here, I refer to the
mechanism supplying buoyancy from the bottom of the outer core as ‘bottom-up’ type. The
solidification is often followed by the ejection of thermal buoyancy released by latent heat at
the inner core boundary.

In the case of the Mercury, the strength of magnetic field on the surface is very low because
the core size is more than 75 percent depth in the planetary radius (Smith et al. 2012[5];
Hauck et al. 2013[6]; Rivoldini and Van Hoost 2013[7]). It is unknown why the weak magnetic
field is sustained by core dynamo. In addition to the strength, the compositional buoyancy
type in the core is ambiguous because the core could have silicate as well as sulfur (e.g.,
Malavergne et al. 2010[8]; Chabot et al. 2014[9]). Hence, the core may need to be considered
as a Fe-Si-S system. According to numerical study by dynamo simulation (Takahashi et al.
2019[10]), it is, however, possible that bottom-up type dynamo generates the magnetic field
with an offset dipole, consistent with MESSENGER observation (Anderson et al. 2012[11];
Johnson et al. 2012[12]). If the core should be a Fe-FeS system, compositional buoyancy is
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Table 1.1: Basic information of the Earth, Mercury and Ganymede.[4]

　 Earth Mercury Ganymede

Planetary radius (km) 6371 2439 2632

Core radius (km) 3480 1965 - 2050 650 - 880

Pressure at the CMB (GPa) 139 2.8 - 3.3 5.5 - 7.0

Pressure at the center (GPa) 357 33 - 37 9.5 - 11

Strength of magnetic field at planetary surface (nT) 30000 700 700

Em(quadrupole)/Em(dipole) 0.14 0.33 0.04

Strength of magnetic field is at equatorial surface in Earth and Ganymede, and at high northern latitudes
in Mercury. Em(quarupole) and Em(dipole) is magnetic power of the quadrupole and dipole fields at the

planetary surface.

fed by inner core growth for the Fe-rich core, or by FeS floatation for the FeS-rich core.
The Ganymede’s core could have the different buoyancy source type with the Earth’s one.

Pressure in the Ganymede’s core is less than 10GPa according to table 1, and the estimated
sulfur concentration in the core is 12 to 20wt%S according to Kuskov and Kronrod (2001)[13].
Under the conditions, the melting curve of iron in the Fe-rich core has a negative slope in
the P-T diagram (e.g., Fei et al. 1997[14], 2000[15]; Chudinovskikh and Boehler 2007[16];
Stewart et al. 2007[17]; Chen et al. 2008[18]; Buono and Walker 2011[19]). Then, the iron
solidification could start at the core-mantle boundary, resulting in ‘iron snow’ (Hauck et
al. 2006[20]). The iron snow remelts at some depth during free fall, and gives a negative
buoyancy near the outer boundary. Here, such a mechanism is classified as ‘top-down’ type.
However, it is known that the dynamos driven by top-down buoyancy trends to generate a
non-dipole dominant field (Zhan and Schubert 2012[21]), except for the cases with a stably
stratified layer on the outer boundary as a snow zone (Christensen 2015[22]). Driving force
of the Ganymede’s dynamo still has been in debate.

As mentioned above, compositional convection in these terrestrial bodies is driven by
either bottom-up or top-down type buoyancy. However, it is highly uncertain which one is
actually chosen due to lack of information about light elements contained in the core.

1.2 General theory of MHD in the core

1.2.1 Core flow

Core dynamics in the terrestrial bodies is primarily governed by the strong effects of rotation
and magnetic field as in Table 1.2, which shows the basic physical properties in the Earth’s
core in terms of the non-dimensional number (Roberts and King (2013)[23]). The most
important parameters is the Ekman number defined by

Ek =
ν

2ΩD2
(1.1)

where ν is the kinetic viscosity of the fluid, Ω the scale of angular velocity of rotating body,
and D the thickness of the fluid layer. The Ekman number is a measure of the relative
importance of the viscous force to the Coriolis force. In the core, the Ekman number is
extremely smaller than unity, so that the viscous force is forced much more weakly than the
Coriolis force.If the magnetic effect on the motion is small, the Coriolis force is balanced by

6



the force due to pressure gradient: it is so-called ‘geostrophic’ balance

2Ω⃗× u⃗ = −1

ρ
∇⃗P , (1.2)

where Ω⃗ is the angular velocity, u⃗ the velocity field, ρ the fluid density, and P the pressure.
Taking the curl of the equation yields

(Ω⃗ · ∇⃗)u⃗ = 0 . (1.3)

Under the force balance, thus, the flow does not change in the direction of the rotating
axis, known as the Taylor-Proudman theorem. In fact, the many numerical researches for
convection (e.g. Zhang and Busse (1987)[24]; Christensen (2002)[25]; Aubert (2005)[26])
and magnetoconvection (e.g. Zhang (1995)[27]; Olson and Glatzmaier (1995)[28]) obtain the
flows that possess the features of the Taylor Proudman theorem. If the strong magnetic field,
B⃗, is applied, the system could be in equilibrium with magnetostrophic balance:

2Ω⃗× u⃗ = −1

ρ
∇⃗P +

1

ρ
J⃗ × B⃗ , (1.4)

where J⃗ is electric current density, and the force of J⃗ × B⃗ is the Lorentz force. In order to
measure the effects of the magnetic field on core dynamics, using the Elsasser number, Λ,
given by

Λ =
B2

2ρµoηΩ
(1.5)

is useful. B is the characteristic magnetic strength, η the magnetic diffusivity, and µo the
magnetic permeability in free space, where the magnetic diffusivity is related with the elec-
trical conductivity, σ, as

η =
1

σµo
.

The Elsasser number is defined by the ratio of the Lorentz force to the Coriolis force. As the
Elsasser number is of the order of 10 (Table 1.2), it is likely that the geodynamo operates in
the magnetostrophic state.

In addition to the magnetostrophic flows, the observation of the geomagnetic field suggests
that the Earth’s core has zonal flow to move the geomagnetic field westward (Pais and Hulot
(2000)[29]; Finlay and Jackson (2003)[30]). The zonal flow is generated by the divergence of
the Reynolds stress, the zonal thermal wind, energy exchanged by the Lorentz force and the
viscous force. For convection without magnetic field, the Reynolds stresses is dominated in
the kinetic energy budget of zonal flow (e.g. Busse (1970)[31]; Busse and Hood (1982)[32];
Aubert et al. (2001)[33]; Christensen (2002)[25]). When the effect of magnetic field is
added in the system, the geostrophic zonal flow is destroyed by the Lorentz force, and the
zonal thermal wind becomes dominant in the dipole-dominant dynamo driven by bottom-up
type buoyancy (Aubert (2005)[26]). Most dynamos driven by top-down type buoyancy has
geostrophic zonal flow, although boundary conditions of velocity often affect the zonal flow
when the Ekman number is not close to zero (Simitev and Busse (2005)[34]).
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Table 1.2: Basic physical properties in the Earth’s core in terms of the non-dimensional numbers.

Dimensionless parameter Definition Core

Elsasser number, Λ B2 / 2Ωηρµo 10

Ekman number, Ek ν / 2ΩD2 10−15

Magnetic Reynolds number, Rm UD / η 103

Magnetic Prandtl number, Pm ν / η 10−6

Prandtl number, Pr ν / κ 10−1

Rayleigh number, Ra goDα∆Tc / 2Ωκ 109

Schmidt number, Sc ν / κξ 102

α is the coefficient of thermal expansion, ∆Tc is the difference in the temperature of the core-mantle
boundary and Earth’s surface, κ and κξ are the thermal and composition diffusivity, respectively, and g is

the gravitational acceleration.

1.2.2 MHD approximation

First, Maxwell’s equations and Ohm’s law give

∇⃗ ×
(
µ−1
o B⃗

)
= J⃗ +

∂D⃗

∂t
(1.6)

∇⃗ × E⃗ = −∂B⃗

∂t
(1.7)

∇⃗ · B⃗ = 0 (1.8)

∇⃗ · D⃗ = q , (1.9)

J⃗ = σ(E⃗ + u⃗× B⃗) , (1.10)

where D⃗, and E⃗ are the electric flux density, and the electric field, which are related as
D⃗ = εoE⃗, εo is the permittivity in free space, and q the volume density of charge. First, the
scales of (1.7) and (1.6) is estimated:

E

l
=

B

τb

B

lµo
= εo

E

τe
,

by assuming the time scale of E⃗ and B⃗, the spetial scale, and the characteristic intensity of
E⃗ and B⃗ as τe, τb, l, E, and B. The relation between the two time scales is that

τb
τe

=
1

εoµo

(
B

E

)2

=

(
cB

E

)2

τbτe = l2εoµo =

(
l

c

)2

,
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where c is the light speed. We consider the system in which the time scale of the magnetic
field, τb, is much longer than the propagation time scale of the light, l/c. In this situation,
another time scale, τe, is negligible;

τe =
l2/c2

τb
≪ 1 .

Thus, the relation of the time scales is τb ≫ τe. The ratio of the term on the right hand side
to the second term on the left hand side in (1.6) is written as

O
(
∂D⃗/∂t

)
O
(
∇⃗ × (µ−1

o B⃗)
) =

τe
τb

≪ 1 ,

so that this condition makes the temporal variation of D⃗ removed from the equation (1.6),
i.e.

∇⃗ ×
(
µ−1
o B⃗

)
= J⃗ . (1.11)

These equations are the Maxwell equations with magnetohydrodynamics (MHD) approxima-
tion. By using (1.11), (1.7), and (1.10), the induction equation is also obtained

∂B⃗

∂t
= ∇⃗ × (u⃗× B⃗)− ∇⃗ ×

(
η∇⃗ × B⃗

)
. (1.12)

1.2.3 Kinematics in dynamo theory

In this section the basic theory of kinematic dynamo is introduced when the Lorentz force
is negligible in the dynamics. We shall consider a basic property for fluid with a perfect
conductor is zero. An infinitesimal element on any curve frozen in the fluid, dxi, can be
represented as

dxi =
∂xi
∂aj

daj ,

where x⃗(⃗a, t) is the displacement field, which is the position of a fluid particle through
x⃗(⃗a, 0) = a⃗ at t = 0. The Lagrangian derivative of dxi is

D

Dt
dxi =

∑
j dxj∇jui . (1.13)

The induction equation of (1.12) is rewritten as

DB⃗

Dt
= (B⃗ · ∇⃗)u⃗− B⃗(∇⃗ · u⃗) . (1.14)

Using the equation of continuity, dρ/dt = −ρ∇⃗ · u⃗, where d/dt is Lagrange differentiation as

d/dt = ∂/∂t+ (u⃗ · ∇⃗), the equation (1.14) become

d

dt

(
B⃗

ρ

)
=

B⃗

ρ
· ∇⃗ u⃗ . (1.15)
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This formulation is similar to equation (1.13). Thus, B⃗(x⃗, t)/ρ(x⃗, t) has the similar solution
as dx⃗,

Bi(x⃗, t)

ρ(x⃗, t)
=

∂xi
∂aj

Bj (⃗a, 0)

ρ(⃗a, 0)
.

Suppose here that da⃗ is along the magnetic field line, B⃗(⃗a, 0), at = 0, so that B⃗(⃗a, 0)×da⃗ = 0.
The result is

εijkBj(x⃗, t)dxk (⃗a, t) = εijk

[
∂xj
∂am

ρ(x⃗, t)

ρ(⃗a, 0)
Bm(⃗a, 0)

] [
∂xk
∂an

dan

]
= εlmn

∂al
∂xi

ρ(x⃗, t)dx3

ρ(⃗a, 0)da3
Bm(⃗a, 0)dan

= εlmn
∂al
∂xi

Bm(⃗a, 0)dan[
B⃗(x⃗, t)× dx⃗(⃗a, t)

]
i
=
[
B⃗(⃗a, 0)× da⃗

]
l

∂al
∂xi

= 0 .

Thus, the magnetic field line is parallel to the infinitesimal displacement along the curve, so
that the magnetic lines in the perfect conductor is ‘frozen in’ the flow, and it is so-called
‘Alfvén theorem’ (c.f. Moffatt, 1978[35]; Gubbins and Herrero-Bervera (2007)[36]).

When the conductor has a finite electrical conductivity, the magnetic energy is dissipated
by the Joule effect. In this system the magnetic diffusion term is added in (1.14), then

dB⃗

dt
= (B⃗ · ∇⃗)u⃗− B⃗(∇⃗ · u⃗)− ∇⃗ × (η∇⃗ × B⃗) . (1.16)

Multiplying µ−1
o B⃗· by (1.16), the magnetic energy equation

∂

∂t

(
B2

2µo

)
= −u⃗ · (J⃗ × B⃗)− J2

σ
− ∇⃗ ·

(
E⃗ × B⃗

µo

)
(1.17)

is obtained. The second term on the right hand in (1.17) is the Joule dissipation, which
must decreases the magnetic energy in any non-perfect electrical conductor. The source of
magnetic energy is the first term, represented by the work of the flow done against the Lorentz
force. The residual term in the right hand is the magnetic energy flux convergence, known as
the energy flux of the Poynting vector. When dynamo is maintained, positive contribution
from the magnetic energy source in (1.17) needs to be larger than the dissipation.

There are some anti-dynamo theorems which say that the magnetic field cannot be main-
tained in principle by the velocity field with a certain property. First, the toroidal velocity
can not drive the dynamo (Bullard and Gellman (1954)[37]). The toroidal flows can not
generate enough source for overcoming the Joule dissipation. The well-known anti-dynamo
theorem is known as ‘Cowling’s theorem’ (Cowling (1933)[38]; Braginsky (1965)[39]; Ivers
and James (1984)[40]). Cowling’s theorem says that the axisymmetric magnetic field cannot
be maintained by any axisymmetric velocity fields. Since the magnetic field satisfies equa-
tion (1.8), the axisymmetric magnetic field, B⃗o, is represented in the cylindrical coordinate
system, (s, ϕ, z), as

B⃗o(s, z) = B⃗p(s, z) + B⃗t(s, z) = ∇⃗ × (X(s, z)e⃗ϕ) + Y (s, z)e⃗ϕ ,
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where B⃗p, B⃗t, X, Y , and e⃗ϕ are the poloidal magnetic field, the toroidal magnetic field, the
poloidal scalar, the toroidal scalar, and the unit vector in the azimuthal direction. Multiplying
the induction eqution (1.12) by e⃗ϕ· and e⃗ϕ · ∇⃗× gives

∂Y

∂t
=
[
∇⃗ × (u⃗t × B⃗p) + ∇⃗ × (u⃗p × B⃗t)

]
ϕ
+ η∆lY

− ∂

∂t
∆lX =

[
∇⃗ × ∇⃗ × (u⃗p × B⃗p)

]
ϕ
−∆l∆lX ,

where u⃗p, u⃗t, and ∆l are the poloidal velocity, the toroidal velocity, and the operator

∆l = ∇2 − 1

s2
.

[A⃗ ]ϕ denotes taking the azimuthal component from A⃗. The equations are rewritten

∂Y

∂t
=
[
∇⃗(e⃗ϕ · u⃗t)× ∇⃗(sX)

]
ϕ
− su⃗p · ∇⃗

(
Y

s

)
+ η∆lY (1.18)

∂X

∂t
= −1

s
u⃗p · ∇⃗(sX)−∆lX . (1.19)

By using two relations

s2A∆lA = s3A∇⃗ ·
(

1

s2
∇⃗(sA)

)
= ∇⃗ ·

[
sA∇⃗(sA)

]
− (∇⃗s3A) ·

(
1

s2
∇⃗(sA)

)
= ∇⃗ ·

[
sA∇⃗(sA)

]
− [∇⃗(sA)]2 − 2s2A

(
1

s

∂A

∂s
+

1

s2
A

)
= ∇⃗ ·

[
sA∇⃗(sA)− e⃗ssA

2
]
− [∇⃗(sA)]2

s−2B∆lB =
B

s3
∇⃗ ·
[
s2∇⃗

(
B

s

)]
= ∇⃗ ·

[
B

s
∇⃗
(
B

s

)]
−
(
∇⃗B

s3

)
·
(
s2∇⃗B

s

)
= ∇⃗ ·

[
B

s
∇⃗
(
B

s

)]
−
[
∇⃗
(
B

s

)]2
+

2

s2
B

(
1

s

∂B

∂s
− 1

s2
B

)
= ∇⃗ ·

[
B

s
∇⃗
(
B

s

)
+ e⃗s

B2

s3

]
−
[
∇⃗
(
B

s

)]2
,

multiplying equations (1.18) and (1.19) by s−2Y and s2X, respectively, and integrating the
equations over the volume, we can obtain

d

dt

∫
V

1

2

(
Y

s

)2

dV = −η

∫
V

[
∇⃗
(
Y

s

)]2
+

∫
V

Y

s2

[
∇⃗(e⃗ϕ · u⃗t)× ∇⃗(sX)

]
ϕ

(1.20)
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d

dt

∫
V

1

2
(sX)2dV = −

∫
V

[
∇⃗(sX)

]2
dV . (1.21)

According to equation (1.21), the poloidal magnetic energy decreases with time. Because
the toroidal magnetic energy is generated by the poloidal magnetic field, the toroidal energy
cannot be maintained if the poloidal energy is small in the system. Thus, when the fields
have only the axisymmetric components, the poloidal magnetic energy decays, and then
the toroidal magnetic energy could not increase with time if enough time is passed. It is
an inevitable conclusion that we must consider a general three-dimensional problem, which
strongly restricts analytic study and makes dynamo problem formidable for us.

1.2.4 Mean field theory

Dynamos driven by random ingredient of the flows have been studied as mean field electro-
dynamics. In case of the cylindrical and spherical coordinate system, the mean field is often
defined as the azimuthal average, while deviations from the means correspond to the fluctu-
ating parts. Typical magnetic field generation processes derived from the mean field theory
are the well-known α-effect (Parker, 1955[41]; Moffatt, 1978[35]). In addition, large-scale
toroidal field is often generated by shearing large-scale poroidal field due to differential rota-
tion, and it is so-called ω-effect (Soward, 1972[42]; Roberts, 1972[43]). When the magnetic

field, B⃗, and the velocity field, u⃗, are separated in terms of the mean and the fluctuating
parts, we have

B⃗ = B⃗o + b⃗ (1.22)

u⃗ = U⃗o + v⃗ , (1.23)

where B⃗o and U⃗o are the mean parts, and b⃗ and v⃗ are the fluctuating parts. Substituting
the expression to (1.16), we obtain the equations for the mean and fluctuating parts of the
magnetic field as;

∂

∂t
B⃗o = ∇⃗ × (U⃗o × B⃗o) + ∇⃗× < v⃗ × b⃗ > +η∇2B⃗o (1.24)

∂

∂t
b⃗ = ∇⃗ × (U⃗o × b⃗) + ∇⃗ × (v⃗ × B⃗o) + ∇⃗ × G⃗+ η∇2⃗b , (1.25)

where
G⃗ = v⃗ × b⃗ − < v⃗ × b⃗ > ,

and < v⃗ × b⃗ > means the azimuthal average of v⃗ × b⃗. Let us decompose the mean fields into
the poloidal and toroidal parts:

B⃗o = B⃗p + B⃗t

U⃗o = U⃗p + U⃗t ,

then the equation (1.24) yields the equations for the poloidal and toroidal magnetic field::

∂

∂t
B⃗p = ∇⃗ × (U⃗p × B⃗p) + ∇⃗ × εt + η∇2B⃗p (1.26)

∂

∂t
B⃗t = ∇⃗ ×

[
U⃗p × B⃗t

]
+ ∇⃗ ×

[
U⃗t × B⃗p

]
+ ∇⃗ × εp − η∇2B⃗t . (1.27)

In these equations εt and εp mean the toroidal components and poloidal components of

< v⃗ × b⃗ >, respectively. The mean electro-motive force denoted by εt and εp includes the α
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effect, which generates the mean fields via interaction between the fluctuating parts of the
magnetic and velocity fields. Another famous effect is the ω effect, and acts as a source of
the mean toroidal field through the second term on the right hand in the equation (1.27).
The term is written as

∇⃗ ×
[
U⃗t × B⃗p

]
= s(B⃗p · ∇⃗)ω

with U⃗t = sωe⃗ϕ. The differential rotation term includes the ω-effect, which acts as the source
of the toroidal magnetic field. The three terms by the α-effect and the ω-effect are the source
of the axisymmetric magnetic fields (Kageyama and Sato (1997)[44]; Olson et al. (1999)[45];
Roberts and King (2013)[23]).

By using the effects, the dynamo types have been defined (Moffatt, 1978[35]). When
contributions to the mean fields from εt and the ω effect are significant, the dynamos are
called as ‘αω-dynamos’. These dynamos are characterized by the mean toroidal component
much stronger than mean poloidal counterpart. If the mean fields are almost generated due
to the α effects, the dynamos are described as ‘α2-dynamos’. For α2-dynamos, strength of
the mean poloidal field tends to be similar to that of the mean toroidal field. Finally, so-
called ‘α2ω- dynamos’ are dynamos maintained by the three contributions in magnitude. It
is found that most of the numerical MHD dynamos are classified as α2 type (Roberts and
King, 2013[23]).

1.3 Previous works of linear stability analysis

The onset of thermal and/or compositional convection in a rotating spherical system has been
investigated because of its importance in finding out the basic features of dynamo driven by
convection in the interior of stars and planets. Convection depends upon the geometry,
various physical parameters that emerge in governing equations, and the distribution of
buoyancy sources and gravity. In particular, in the self-gravitating system the distribution of
the buoyancy sources decides the radial position where convection cells emerge. For example,
the flows caused by a homogeneous distribution of heat source are located at mid-depth depth
of the shell with the Prandtl number unity, whereas the flows caused by temperature difference
across the shell are located where adjacent to the inner sphere at the equator outside the
tangent cylinder (Dormy et al. 2004[46]). Although the structures of the flows and the
mathematical descriptions with asymptotic theory are investigated for each parameters and
conditions (e.g., Jones et al. 2000[47]; Dormy et al. 2004[46]), the physical reasons are not
clearly understood.

The understanding of the mechanism for convection is achieved through the budget anal-
ysis of the vorticity, heat, and kinetic energy. Hirsching and Yano (1994)[48] investigated the
thermal and the vorticity balance of the three types of critical convective flows, which are
columnar mode, spiralling mode and wall-attached mode, and distinguished the physics of
these morphologies by the differences of the balance. Although they explain the branches of
the mode by the analysis, the physical interpretation of each modes could not be investigated.

The physical interpretation for the spiraling mode is investigated by Takehiro (2010)[49].
He showed the kinetic energy balance for a critical spiraling convection driven by internal
heating type buoyancy in a thick shell, and then he explained how the balance could be
achieved with vorticity budget analysis. The kinetic energy is generated by the buoyancy
force most efficiently in the equatorial region, while it is dissipated by viscosity which is
distributed at higher latitude. The gap of the position between the generation and the
dissipation is bridged by a dynamic energy flux convergence, which results from ageostrophic
equatorward flows. However, the balance could change in a case that the inner boundary has
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an effect on the onset of convection. One of the aims of this thesis is to clarify the influence
of the inner sphere, which could be significant in the Earth ’s core, upon convective flow in
a rotating spherical shell.

Whereas the above works consider uniform heat source distribution corresponding to the
top-down type buoyancy profile, the main driving force of convection in the Earth’s core
is believed to be the bottom-up type. Al-shamali et al. (2004)[50] investigated the effect
of spherical shell geometry without the internal heat source similar to bottom-up type one.
They found a relation between the critical Rayleigh number, Rac, and the Ekman number,
Ek, as Rac = C(χ)E−1.16

k , in which C(χ) is the coefficient depending on the aspect ratio
of the radius at the inner boundary to the radius at the outer boundary, χ = Ri/Ro, for

Ek = 10−4 to 10−3. The relation is a little different from a relation Rac ∝ E
−4/3
k as Ek → 0

for the homogeneous heat source case (Chandrasekhar, 1961[1]; Roberts, 1968[51]), probably
because numerical calculations are carried out with different buoyancy source type and also
in a limited range of Ek . Another kind of works for this source case focuses on mathematical
description of the onset (e.g. Jones et al. 2000[47]; Dormy et al. (2004)[46]). Dormy et al.
(2004)[46] obtained the correct asymptotic relations, considering the boundary layer in the
two buoyancy source cases into account. It is, however, more awkward for this case than the
homogeneous source case to describe the solution of the governing equations with asymptotic

analysis due to a E
1/3
k ageostrophic shear layer, which plays a role of reducing the amplitude

of convective flows and temperatures to zero, on the inner core tangent cylinder. By this
work the mathematical problem about the onset of the linear stability analysis in the core is
almost complete for the no internal source case. However, its physical understanding of the
difference between the homogeneous and no internal source case have been far from complete.

1.4 Previous works of MHD dynamo

The bottom-up type dynamos as the geodynamo driven by compositional convection have
been investigated by many researchers. According to the previous studies (e.g. Nakajima
and Kono 1993[52]; Roberts and Schubert 2015[53]), it is found that the kinetic helicity
of the velocity field is important not only for in the mean field dynamo but also in the
laminar dynamo; for example, Nakajima and Kono (1993)[52] showed that the larger a mean
helicity, the more efficient the dynamo becomes.. In fact, correlation between the helicity
and dipolarity is apparent in modestly supercritical dynamos (Soderlund et al. 2012[54]),
where the dipolarity is defined by the ratio of the power in the dipole component to the total
power of the magnetic field on the outer boundary. The dipolarity on the Earth’s core-mantle
boundary surface up to spherical harmonic degree 12 is 0.68 (Soderlund et al. 2012[54]). The
geodynamo is regarded as a dipole-dominant dynamo, considering a dynamo with dipolarity
greater than 0.5 to be dipole-dominant.

The dipole-dominant dynamo is often obtained in the bottom-up-type source case. When
the dynamo is dipole-dominant at low Rayleigh number, the zonal flows in most cases are
generated by thermal wind, which destroys the geostrophic balance of zonal flows, owing
to difficulty for the geostrophic zonal flows forced by Reynolds stresses to coexist with the
axisymmetric dipole field (Ferraro, 1937[55]). In addition to the source of zonal flows, the
dipolarity is decided by the second-order force balance of inertial force versus viscous force.
The higher magnitude of the viscous effect than the inertial force makes the dipole-dominant
dynamo. For the low Rayleigh number the second-order force, thus, affects magnetic field
morphology (Soderlund et al. 2012[54]).

When the Rayleigh number is not low, the dynamo tends to generate multipole-dominant

14



magnetic fields in the bottom-up-type dynamos (Soderlund et al. 2012[54]; Aubert 2005[26]).
According to Aubert (2005)[26], the zonal flows in the multipole-dominant dynamo are gen-
erated by both the Reynolds stresses and thermal wind, and more geostrophic than the
dipole-dominant cases. At higher Rayleigh number, the convection column in dynamos is
destroyed, and an axial helicity becomes much lower than one. The dipole-dominant field in
the bottom-up cases requires the columnar convection with high helicity.

The temporal variations of the magnetic fields are investigated in Takahashi (2003)[56].
For differential heating case the flows inside the inner core tangent cylinder has high temporal
dependence, although the flows outside it are stable. The zonal toroidal magnetic field
outside the tangent cylinder are almost equatorial antisymmetric. Inside the tangent cylinder,
the equatorially symmetric toroidal field is often generated, and vanished by intermittent
fluctuation of the meridional circulation. The flows inside the tangent cylinder plays a role of
generating magnetic fields only when the Rayleigh number is large, generating the magnetic
field with the different temporal variation from outside.

Although the bottom-up type convection tends to generate dipole-dominant fields, the
top-down type convection has different field morphology. Dynamos generated in the top-
down cases with fixed temperature boundaries at low Rayleigh number are mainly divided
into three categories: quadrupole-family dynamo, dipole-family dynamo and hemispherical
dynamo. Grote et al. (2000)[57] show that the quadrupole-family components are dominant
at the magnetic Prandtl number of the order of unity and the Prandtl number equal to
1 with fixed temperature boundary condition. The axisymmetric magnetic fields for the
quadrupole-family dynamo oscillate in the direction of high latitude. As increasing Pm, the
dipole-family dynamo appears. Hemispherical dynamo is found as the intermediate case,
where the magnetic energy is equipartitioned between the dipole-family components and the
quadrupole-family components.

It is still in debate what causes the non-dipolar dynamo. Hori et al. (2010)[58] investi-
gated the influence of thermal boundary conditions on dynamos driven by internal heating.
Dynamos with fixed temperature boundaries tend to generate multipole fields at Pm = 3 and
Pr = 1, when the Rayleigh number is low. On the other hand, the dipole-dominant dynamo
is more easily obtained with fixed flux boundaries. Other studies, however, showed results
that dynamos driven by bottom-up convection often result in large dipolaritiy than those
by top-down convection, even when other conditions are kept unchanged, with no-slip and
fixed heat flux boundaries (e.g., Zhan and Shubert 2012[21]). Thus, both thermal bound-
ary condition and the profile of thermal or chemical flux are important in determining the
morphology of the resultant magnetic field.

1.5 Purpose of this study

The primary purpose of this thesis is to understand the basic features of convection and
dynamos driven by top-down/bottom-up buoyancy source in a rotating spherical shell. It
is important for comprehensive understanding of dynamics and dynamos in the planetary
core as well as its evolution history. For this purpose, I carry out the following investigation.
Firstly, in chapter 2, I investigate the physical elementary processes of convection in a rotating
spherical shell based on linear stability analysis without magnetic field. Because the full,
nonlinear problem is too complicated to clearly understand physics, it is reasonable to begin
with a simpler problem. Although linear stability analysis is helpful to understand the basic
features of core dynamics, mostly treated is thermal convection with internal heating as
buoyancy source. This study investigates the onset of the convection for both bottom-up
case and top-down case, in order to clarify difference between them, and to understand how
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such difference arises. Based on the understanding in chapter 2, results of MHD dynamos
are examined in chapter 3. In order to understand the physics of the dynamos for each
buoyancy case, the MHD dynamo treats a simpler, low nonlinearity problem; the onset
of the dynamo with limitation of equatorial dymmetry is considered. Finally, concluding
remarks are summarized in chapter4.
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Chapter 2

Critical Compositional Convection
with Linear Stability Analysis

2.1 Problem Setup & Method

We consider linear stability analysis of compositional convection driven by both the bottom-
up and top-down type buoyancy source without the magnetic fields in a spherical shell ro-
tating at a constant angular velocity, Ω⃗, about the z-axis. Although the most linear stability
has been used in critical thermal convection, the mathematical problem of the thermal con-
vection is the same as that of the critical compositional convection. Thus, in this chapter,
our results are compared with the results of the critical thermal convection in the previous
works. The shell with aspect ratio, χ = 0.2 is filled with the Boussinesq fluid, in which it is
assumed that the vertical length scale is sufficiently shorter than hydrostatic scale height of
pressure, temperature, and density. By using the Boussinesq approximation, we can remove
the local sound speed, cs. The total derivative of the density, ρ = ρ(S, P ), is written

dρ =

(
∂ρ

∂S

)
P

dS +

(
∂ρ

∂P

)
S

dP

=

(
∂C

∂S

)
P

(
∂ρ

∂C

)
P

dS +

(
∂ρ

∂P

)
S

dP (2.1)

dρ

dz
= −αξξρ

Cp

dS

dz
+

1

c2s

dP

dz
, (2.2)

where αξ, Cp and ξ are the coefficient of chemical expansion, the specific compositional
capacity at constant pressure, and the mass fraction. Since cs is much larger than the speed
of the variation in the magnetic and velocity fields in the Boussinesq fluid, the second term on
the right hand side of (2.2) is negligible, i.e. the dependency of the density on the pressure
is neglected. When the variable is changed from the entropy, S, to the mass fraction, ξ,
equation (2.1) is rewritten as

dρ = −ρoαdξ , (2.3)

where ρo is a constant reference value of the density. This represents the density variation
in the Boussinesq fluid. In this thesis, the compositional fluxes at both boundaries are fixed,
and the stress-free boundary conditions at both boundaries are used:

∂ξ

∂r
= 0, ur =

∂

∂r

(uθ
r

)
=

∂

∂r

(uϕ
r

)
= 0 , (2.4)
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where ur, uθ and uϕ is the radial, colatitudinal, and longitudinal, respectively, components
of the velocity, u⃗.

The fluid in the shell is self-gravitating as

g⃗ = −γr⃗ , (2.5)

where γ is a constant, and r⃗ is a position vector with respect to the center of the system.
The governing equations are

∂

∂t
u⃗+ (u⃗ · ∇⃗)u⃗+ 2Ωe⃗z × u⃗ = −∇⃗P +

dρ

ρo
g⃗ + ν∇2u⃗ (2.6)

∂C

∂t
+ (u⃗ · ∇⃗)C = κξ∇2C + σ (2.7)

∇⃗ · u⃗ = 0 , (2.8)

where σ is the rate of heating by source in the fluid. The unknown variables, u⃗ and C, are
divided into two parts: the time-independent, hydrostatic reference state and the deviation.
In a non-dimensional form, the governing equations for the perturbations are

∂

∂t
u⃗+ E−1

k e⃗z × u⃗ = Raξr⃗ − ∇⃗P +∇2u⃗ (2.9)

∂

∂t
ξ + (u⃗ · ∇⃗)ξo = S−1

c ∇2ξ (2.10)

∇⃗ · u⃗ = 0 , (2.11)

using the thickness of the shell d for the unit of length, the viscous diffusion time d2/ν for the
unit of time, and −βid and −βod for the unit of mass fraction in the bottom-up and top-down
cases, respectively. Here βi = (dξo/dr)Ri

(βo = (dξo/dr)Ro
) is the total compositional flux at

the inner (outer) boundary, where ξo is the mass fraction of the basic state, and Ri and Ro
are the radius at the inner and outer boundary, respectively. The profiles of the dξo/dr are

dξo
dr

= −R2
i (R

3
o − r3)

r2(R3
o −R3

i )
(2.12)

in the bottom-up buoyancy case, and

dξo
dr

= −R2
o(r

3 −R3
i )

r2(R3
o −R3

i )
(2.13)

in the top-down buoyancy case (Appendix Figure 4.1). These equations include three non-
dimensional parameters: the Rayleigh number, Ra = −βαξγd5/ν2, the Ekman number,
Ek = ν/2Ωd2, and the Schmidt number, Sc = ν/κξ. Since the velocity field is the solenoidal,
it is represented by using a poloidal scalar U and a toroidal scalar W as the form of

u⃗ = ∇⃗ × (∇⃗ × Ur⃗) + ∇⃗ ×Wr⃗ . (2.14)

We multiply the curl and the double curl of the momentum equation by r⃗, obtaining two
equations for U and W :[(

∇2 − ∂

∂t

)
L2 + E−1

k e⃗z × r⃗ · ∇⃗
]
W − E−1

k QU = 0 (2.15)
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[(
∇2 − ∂

∂t

)
L2 + E−1

k e⃗z × r⃗ · ∇⃗
]
∇2U + E−1

k QW −RaL2ξ = 0 , (2.16)

where L2 is the angular momentum operator,

L2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂ϕ2
,

and Q is the form as

Q = e⃗z · ∇⃗ − 1

2
(L2e⃗z · ∇⃗+ e⃗z · ∇⃗L2) .

The boundary conditions of (2.4) are rewritten as

U =
∂2U

∂r2
=

∂

∂r

(
W

r

)
=

∂ξ

∂r
= 0 at r =

χ

1− χ
and r =

1

1− χ
. (2.17)

Three unknown scalars, U(r, θ, ϕ, t),W (r, θ, ϕ, t) and ξ(r, θ, ϕ, t), are expanded by spherical
harmonics in the angular directions, and varied exponentially with time. Therefore the scalars
are

U(r, θ, ϕ, t) =
L∑
m,l

Umc,s
l (r)Y mc,s

l (θ, ϕ)ekt

W (r, θ, ϕ, t) =
L∑
m,l

Wmc,s
l (r)Y mc,s

l (θ, ϕ)ekt

ξ(r, θ, ϕ, t) =
L∑
m,l

ξmc,s
l (r)Y mc,s

l (θ, ϕ)ekt ,

where k is the complex growth rate of the unknown scalars. In the expansions Y mc,s
l is a

spherical harmonics of degree l and order m, which defined as Y mc
l (θ, ϕ) = Pm

l (cos θ) cosmϕ
and Y ms

l (θ, ϕ) = Pm
l (cos θ) sinmϕ, where Pm

l is the associated Legendre polynomial, and it
satisfies the orthogonality relations:∫ 2π

0

∫ π

0
Y m1c,s
l1

Y m2c,s
l2

sin θdθdϕ = δl1,l2δm1,m2(1 + δm1,0)π∫ 2π

0

∫ π

0
Y m1c,s
l1

Y m2s,c
l2

sin θdθdϕ = 0 ,

where δl1,l2 , δm1,m2 and δm1,0 are the Kronecker delta.
Finally, the expansions are substituted into (2.15), (2.16) and (2.10), and then integrating

them over the unit sphere after multiplying the equations by Y mc,s
l results in the following

equations to be solved numerically:

l(l + 1)∇2
lW

mc,s
l + E−1

k

[
dml+1

(
∂

∂r
+

l + 2

r

)
Umc,s
l+1 + dml

(
∂

∂r
− l − 1

r

)
Umc,s
l−1

]
±E−1

k mWms,c
l = l(l + 1)kWmc,s

l ,

(2.18)

l(l + 1)RaΘmc,s
l + E−1

k

[
dml+1

(
∂

∂r
+

l + 2

r

)
Wmc,s

l+1 + dml

(
∂

∂r
− l − 1

r

)
Wmc,s

l−1

]
−l(l + 1)∇2

l∇2
lU

mc,s
l ∓ E−1

k m∇2
lU

ms,c
l = −l(l + 1)k∇2

lU
mc,s
l ,

(2.19)
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and
∇2

lΘ
mc,s
l + l(l + 1)Umc,s

l = SckΘ
mc,s
l , (2.20)

where ∇2
l is a operation

∇2
l =

∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2
,

and dml is defined as

dml = (l + 1)(l − 1)

√
(l + 1)(l − 1)

(2l + 1)(2l − 1)
.

Note that the component of the unknown scalars having an order is not coupled with that
having the other orders since the system has no nonlinear effect. The radial derivations in
this chapter are approximated by finite differences; by using a second-order central difference,
the first and second derivatives of a scalar, f(ri), are

df

dr

∣∣∣∣
ri

= − b

a(a+ b)
f(ri − a)− a− b

ab
f(ri) +

a

b(a+ b)
f(ri + b)

d2f

dr2

∣∣∣∣
ri

=
2

a(a+ b)
f(ri − a)− 2

ab
f(ri) +

2

b(a+ b)
f(ri + b) ,

where a = ri − ri−1 and b = ri+1 − ri. However, the viscous term in the equation (2.16)
is approximated by the differences with five-point stencil, and the differentiations at the
boundaries are calculated by using the ghost grids outside the spherical shell. These equations
are solved as eigenvalue problem for k by using the LAPACK. In the above calculation, the
onsets of the convection, which have the lowest Rayleigh number in the cases with the zero
growth rate, Re(k) = 0, when the Ek and the Sc is fixed, are obtained, and then the flows and
the composition at the onset are investigated for the bottom-up and top-down type buoyancy
cases.

At first, validity of the numerical code that I have developed from scratch is checked by
comparison with the previous studies. Table 2.1 shows the reproduced results of critical
convection for the same conditions as Al-shamali et al. (2004)[50], Dormy et al. (2004)[46]
and Takehiro (2010)[49]. The Schmidt number in our numerical code is set up at the same
value of the Prandtl number in the previous works because the mathematical problem in
compositional convection is the same as in thermal convection. Although the numerical
methods in our study are different from those in three studies, Rac in the previous papers
and the reproduced Rac in our code match in the top two digits. It is confirmed that the
reproduction with my numerical code succeeds. In addition to the critical Rayleigh number,
the flow pattern and the temperature is reproduced, for example the second case from the top
in table 2.1. Figure 2.1 shows the temperature and radial velocity on the equatorial plane,
calculated at Ek = 3×10−4 with χ = 0.25. Although the solving method is different between
the previous work[50] and our study, two results agree not only for the critical Rayleigh
number but also for the flow pattern and the temperature. Therefore, our numerical code is
confirmed to be correct.

2.2 Results

In previous works (Hirsching and Yano (1994)[48]; Takehiro (2010)[49] ), the analysis of
vorticity, thermal and kinetic energy have been used in order to understand the physical
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Table 2.1: Reproduced results of critical convection for the same conditions as previous works.

paper B.C. Ek χ Rac mc reproduced Rac reproduced mc nr nl

A rigid 10−3 0.35 0.56× 105 4 0.56× 105 4 50 31

A rigid 3× 10−4 0.25 2.44× 105 3 2.42× 105 3 50 31

A rigid 10−4 0.15 10.71× 105 3 10.67× 105 3 50 31

A rigid 10−4 0.35 7.00× 105 7 6.90× 105 7 50 31

D free 10−5 0.35 2.1007× 107 13 2.0956× 107 13 100 63

D rigid 10−5 0.35 2.0720× 107 13 2.0600× 107 13 100 63

T free 10−5 0.10 404 19 401 19 80 63

Column 1: the papers in which I have reproduced the onset of the convection here. A, D and T denote the
paper of Al-shamali et al. (2004)[50], Dormy et al. (2004)[46] and Takehiro (2010)[49], respectively.;

Column 2: boundary condition used in the calculation.; Rac and mc are the critical Rayleigh number and
the critical azimuthal wavenumber, respectively , calculated in the previous works.; Reproduced Rac and
reproduced mc are the values reproduced with my numerical code.; nr and nl is the number of radial grid,

and the truncated degree of the spherical harmonics, respectively, in the reproduced calculation.

process of critical convective flows. The critical flows have been investigated mostly in the
case of a fluid with a homogeneous heat source distribution, which provides a stationary heat
flux of basic state in proportion to the spherical radius. This study investigates other types
of convection that has‘ bottom-up’type and ‘top-down’ type buoyancy source, and reveal
the differences of the underlying physics.

First, results of linear stability analysis are briefly summarized. Figure 2.2 shows the
critical Rayleigh number and the critical azimuthal wavenumber as a function of the E−1

k for
the bottom-up case (a) and the top-down case (b). The symbols denote the critical horizontal
wavenumbers, and the grey line is produced by fitting the obtained critical Rayleigh number

when the Ek is 1.1× 104 to 2.0× 104, with the relationship Rac = Co.Ej
k, where Co. = 43.07

and j = −1.14 for the bottom-up case, and Co. = 4.88 and j = −1.28 for the top-down
case. It is well known that j becomes −4/3 as Ek → 0 due to the analytic solution for
the uniform source type convection (Chandrasekhar, 1961[1]; Roberts, 1968[51]), while the
obtained relationship for the present results is close to the analytic solution with a slight
difference, especially for the bottom-up case. Both the critical Rayleigh number and the
critical wavenumber increase as increase in E−1

k . The positive correlation between Rac and

E−1
k results from the fact that effects of rotation in the spherical system without magnetic

field prevents convection from occurring easily.
Spatial structures of the critical convective flows are shown in figure 2.3, calculated at

Ek = 2.0× 104 for the bottom-up case in the top, and for the top-down case in the bottom,
where the vorticity, ω, is defined as the curl of the velocity, ω = ∇⃗ × u⃗. The first column
shows (a) the axial component of the vorticity on the equatorial plane. The second, third

and fourth columns show (b) the azimuthal-averaged axial helicity,
∫ 2π
0 (e⃗z · u⃗)(e⃗z · ω⃗)dϕ, (c)

azimuthal velocity, and (d) flow vector, respectively, on a meridional cross section through
a cyclonic convection column. The convection columns for the top-down case are located at
the middle of the shell, and for the bottom-up case are adjacent to the inner core tangent
cylinder. The difference of the column position could be caused by the profile of buoyancy
source, which is the same reason as that between uniform source case and differential heating
case (see Dormy et al. (2004)). As we can see in the azimuthal velocity profile, the contour
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Figure 2.1: Temperature and radial velocity on equatorial plane, calculated for χ = 0.25 in table 2.1. The
top and the bottom are the result in Al-shamali et al. (2004) and with my numerical code, respectively. The
red (blue) color is high (low) for temperature, or positive (negative) for radial velocity.

lines are parallel to the rotation axis, so the force balance seems to be the quasi-geostrophic
one, except for the boundary region. As shown in figure 2.3(d), the flows near the equator
penetrate into the inner core tangent cylinder and then move upward or downward along the
inner boundary for the bottom-up case, but there is no counterpart for the top-down case.

It is not certain whether the flows inside the tangent cylinder vanishes as Ek → 0, or
not.Figure 2.4 shows the contour lines of the radial component of the vorticity on the outer
boundary surface, calculated at E−1

k =3000, 7000, 8000 and 20000 for the bottom-up buoy-
ancy cases. Although the main vortex tubes in the convection are located at outside of the
tangent cylinder, about 70 degrees for all cases, the onsets for E−1

k = 7000 and 20000 have
the strong vortex tubes inside the tangent cylinder in which convection is not easy to occur.
The presence of vortex tubes inside the tangent cylinder relates to the critical azimuthal
wavenumber, mc. The critical azimuthal wavenumbers increase as the Ekman number, Ek,
increases for both the top-down and bottom-up cases (Figure 2.2). For the bottom-up cases in
Figure 2.2, the onsets of convection have the instability with mc = 1 for E−1

k = 103 to 2×103,
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Figure 2.2: The critical Rayleigh numbers, Rac, as a function of E−1
k for (a) bottom-up type and (b) top-down

type convection. The critical azimuthal wavenumber, is represented by mc. The Rac varies in proportion to
E−γ

k , where γ = 1.14 for the left and γ = 1.28 for the right.

mc = 2 for E−1
k = 3× 103 to 7 × 103, and mc = 3 for E−1

k = 8× 103 to 2 × 104. When the

Ekman number is the largest in the critical convection with the same mc, i.e. E
−1
k = 7× 103

and 2× 104, the vortex tubes inside the tangent cylinder are stronger. When the azimuthal
wavelength is unchanged even if Ek decreases, the lower Ek increases the Rayleigh number,
so that the motion at the low Ekman number has larger viscous effect. The viscous effect
tends to transfer the kinetic energy into the tangent cylinder (see the detail later). It is, thus,
possible that the flows inside the tangent cylinder exist if Ek →0.

The remarkable helicities in figure 2.3(b) for both cases corresponds to the convection
columns with negative value in the northern hemisphere and positive values in the southern
hemisphere, respectively. The relative axial helicity is often used to see correlation between
the axial components of the velocity and vorticity,

Hrel
z =

< uzωz >h

(< uzuz >h< ωzωz >h)1/2
,

where <>h is the volumetric average in a hemisphere excluding boundary layer (e.g. Olson
et al. (1999)[45]; Schmitz and Tilgner (2010)[59]). We write the axial helicity magnitude
averaged over both hemispheres, |Hrel

z | (Soderlund et al. 2012[54]). The figure 2.5 shows
the relative axial helicity versus the E−1

k for bottom-up case (solid circles) and the top-down
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(a) (b) (c) (d)

Figure 2.3: Flow patterns for the bottom-up case in the top and for the top-down case in the bottom,
calculated at Ek = 5 × 10−5. (a) The axial vorticity in the equatorial plane; (b) the axial helicity; (c) the
azimuthal component of the velocity; (d) the flow vector. (b)-(d) are drawn in a meridional cross section
through the middle of a cyclonic convection column.

case (open circles). The helicity in the bottom-up case is higher than that in the top-down
case. The lower helicity in the top-down cases is caused by the presence of the helicity with
opposite sign to the helicity of the columnar convection in the hemisphere (see Figure 2.3(b)).
For mean field theorem, helicities strengthen α effect; according to Moffatt (1978)[35], the
strength of the α−effect is proportional to a helicity. The α−effect is thought to be necessary
for generating large-scale magnetic field (e.g. Parker, 1955[41]; Moffatt, 1978[35]). It could
be expected that the bottom-up type dynamo is easier to achieve the successful dynamos
with the large-scale magnetic field than the top-down type dynamo.

Kinetic energy budget analysis was used in this study to understand the physical process
of the critical convective flows, and the our results are compared with those in a previous
work which investigated the kinetic energy budget in a uniform heating source case (Takehiro,
2010[49]). The kinetic energy transfer equation

∂

∂t

(
1

2
u⃗ · u⃗

)
= Raξr⃗ · u⃗− ∇⃗ · (Pu⃗)−Dk − ∇⃗ · Φ⃗ (2.21)

is derived by multiplying the momentum equation by u⃗·, where Φ is the viscous energy
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Figure 2.4: Contour lines of the radial component of the vorticity on the outer boundary surface, calculated
at E−1

k =3000 (a), 7000 (b), 8000 (c) and 20000 (d) for the bottom-up buoyancy cases. The vertical axis is
latitude from 0 to 90 degrees; the horizontal axis is longitude from 0 to 180 degrees. TC in the vertical axis
indicates the latitude, about 78.8 degrees, corresponding to the limb of inner core tangent cylinder.

transfer,

Φi = −
∑

j
σijuj ,

and Dk is the viscous dissipation,

Dk =
1

2

∑
i,j

σ2ij .

σij is the viscous stress tensor in the spherical coordinate, whose expressions are given in Lan-
dau and Lifshitz (1987)[60]. In the cylindrical coordinate system, (s, ϕ, z), the components
of the stress tensor are

σss = 2
∂us
∂s

, σsϕ =
1

s

∂us
∂ϕ

+
∂uϕ
∂s

−
uϕ
s

σϕϕ = 2

(
1

s

∂uϕ
∂ϕ

+
us
s

)
, σϕz =

∂uϕ
∂z

+
1

s

∂uz
∂ϕ

σzz = 2
∂uz
∂z

, σzs =
∂uz
∂s

+
∂us
∂z

.
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Figure 2.5: Relative axial helicity as a function of the inverse of the Ekman number for the bottom-up case
and the top-down case. The solid (open) circles show the helicities for the bottom-up (top-down) case.

In the transfer equation the left-hand-side shows temporal change of the kinetic energy, and
the right-hand-side show the generation of the energy due to the buoyancy force, the dynamic
energy flux convergence caused by the pressure gradient force, the viscous dissipation and the
viscous energy flux convergence from the left to right. The figure 2.6 illustrates the meridional
distribution of the azimuthally averaged terms of the right-hand side of the kinetic energy
equation (2.21) at E−1

k = 2 × 104 for (a) the bottom-up convection and (b) the top-down
convection. In the bottom-up case generation of the kinetic energy is located adjacent to, and
outside, the tangent cylinder. The kinetic energy in the top-down type convection at onset is
generated at the middle cylindrically-radius of the shell, especially on the equatorial plane.
The viscous dissipation has different patterns in each cases. Significant dissipation occurs
around the inner and the outer edges of the convection columns aligned to the rotation axis
in the bottom-up case. In addition, the strongest dissipation is found around the top and the
bottom edges of the convection columns in the top-down case. As seen in Takehiro (2010)[49],
the distribution of the generation term for a uniform source type convection is apart from the
tangent cylinder, and that of the viscous dissipation term is at the same cylindrical-radius as
the generation term but around the top and the bottom of the convection column (the detail
is described in Takehiro 2010[49]). The kinetic energy is dissipated in the top-down case and
the uniform source type case differently from that in the bottom-up case. The profile of the
viscous dissipation in the bottom-up case is different from that in the top-down case.

The kinetic energy generated by the buoyancy force is transferred to the region of strong
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Figure 2.6: Azimuthally averaged terms on the right hand side of the kinetic energy transfer equation (2.21),
calculated at Ek = 5× 10−5, and normalized by the maximum value in each terms. (a) The distributions for
the bottom-up case. (b) The distributions for the top-down case. The each figures from the left column are
corresponding to the terms on the right hand side of the kinetic energy equation from left to right.

viscous dissipation by the dynamic energy flux convergence in a uniform heat source case
(Takehiro (2010)[49]). The dynamic energy flux convergence in the present top-down cases
plays the same role as in the previous work, because negative contribution in the convection
region, and positive contribution in the top and bottom edges are observed (Figure 2.6
(a)). It is also confirmed that dynamic energy flux convergence term plays a similar role in
the bottom-up cases. Figure 2.7 shows cylindrically radial distribution of the axially and
zonally averaged terms of the kinetic energy equation. According to figure 2.7(a), the kinetic
energy generated in the convection is dissipated strongly at the inner and outer edges of the
convection column, especially at the inner one on the tangent cylinder.For the inner edge
the energy is transferred from the convection column to the tangent cylinder by the dynamic
energy flux convergence, and from the tangent cylinder to the interior of the cylinder by
the viscous energy flux convergence.The viscous energy flux convergence is important for the
balance of the kinetic energy budget for the bottom-up case.

Then, the viscous dissipation term is decomposed into individual contributions to analyze
in detail. Although the distribution of the viscous dissipation in the bottom-up case is
different from that in the top-down case, the same viscous stress tensors contribute the
profile of the dissipation. Figure 2.8 shows the cylindrically radial distributions of the viscous
dissipation and the six constituents of the viscous dissipation, averaged over the cylindrical
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Figure 2.7: Cylindrical radial distributions of the axially and zonally averaged terms of the kinetic energy
equation, calculated at Ek = 5 × 10−5. (a) The distributions for the bottom-up case. (b) The distributions
for the top-down case. Black solid line: generation term of kinetic energy by buoyancy force; grey solid line:
term of dynamic energy flux convergence; black broken line: viscous dissipation term; grey broken line: term
of viscous energy flux convergence.

surfaces. The six constituents in this section are defined as

−Dk = −1
2σ

2
ss −1

2σ
2
zz −1

2σ
2
ϕϕ −1

2(σ
2
sz + σ2zs) −1

2(σ
2
zϕ + σ2ϕz) −1

2(σ
2
sϕ + σ2ϕs)

≡ −Ns −Nz −Nϕ −Ssz −Szϕ −Sϕs .

In both cases the viscous dissipation related to the normal stress tensors in the cylindrically-
radial and azimuthal direction, Ns and Nϕ, mainly form the distribution of the total viscous
dissipation. The less dominance of Nz implies that the ageostrophic balance in the boundary
layer does not affect the viscous normal stresses, although the boundary layers destroy the
quasi-geostrophic balance. Because the critical convection in the bottom-up case is strongly
generated near the inner boundary on the low latitude, the system needs to make Ns stronger
on the inner boundary layer. The large magnitide of Ns require the equivalent one of Nϕ owing
to the mass conservation (2.11). In contrast, the top-down-type critical convection separates
the profile of the kinetic energy generation with the outer boundary touching the convection
column. The viscous dissipation in the top-down cases has influence of the secondary flows
in the convection column rather than the boundary layers. It seems that the distribution of
the viscous dissipation is attributed to the effect of the boundaries.

Further, viewed from another point, the viscous dissipation inside vorticity structure in
the bottom-up case is divided to the inner and outer edges of the structure by an energy
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Figure 2.8: Cylindrically radial distributions of the viscous dissipation and the six constituents of the viscous
dissipation, averaged over the cylindrical surfaces, calculated at Ek = 5 × 10−5 in the bottom-up case (a)
and the top-down case (b). The gold, violet and turquoise lines are the distributions of the normal stress
represented as Ns, Nz and Nϕ, respectively. The red, green and blue lines are the distributions of the shear
stresses represented as Ssz, Szϕ and Sϕs, respectively.

convergence. The representation of viscous dissipation, Dk, is separated into two terms as

−Dk = −ω⃗ · ω⃗ − 2∇⃗ ·
[
(u⃗ · ∇⃗)u⃗

]
= −ω2 +DA .

The first term on the right hand is kinetic energy reduction due to vorticity, and the second
term is advective energy flux convergence. The kinetic energy is dissipated by the vorticity
in the column convection, and then the energy is transferred from the convection column to
the inner and outer edges, more especially in the bottom-up case.

It is not certain that the viscous effect is vanished as decreasing with Ek. Figure 2.10
shows the cylindrically radial distributions of the viscous dissipation for five cases of the
Ekman number. The magnitude of the viscous dissipation at two strong points, which is the
inner edge and the outer edge of the convection, increase with the Ekman number decreasing.
Thus, this kinetic energy balance could be important if Ek → 0 .

2.3 Discussion

The onsets of the convection in the bottom-up buoyancy cases and the top-down buoyancy
cases have been investigated in the previous section in order to discover differences between
the two cases, and to understand its mechanisms. The differences in terms of the main
convection structure and the numerical problem have be clarified; the flow pattern in the
internal heating case like the top-down type and in the differential heating case like the
bottom-up type is located at the mid-depth of the shell, and adjacent (but exterior) to the
tangent cylinder, respectively ; according to the correct asymptotic theory (Dormy et al.
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2004[46]), the numerical description for the differential heating case needs to include the
effect of an ageostrophic shear layer on the tangent cylinder. In this paper the purpose is to
clarify the physical reasons why the difference arises by the different buoyancy cases.

The decrement of the critical Rayleigh number with the Ekman number is slightly smaller
in the bottom-up case than that calculated by a local analysis at Ek →0 (e.g. Chandrasekhar,
1961[1]; Roberts, 1968[51]). The same result was obtained in Al-shamali et al. (2004)[50], and
they found that the critical Rayleigh number varies in proportion to E−1.16

k , although they
concluded that the reason is that the calculation was not set up at Ek → 0. One of possible
reasons is Ek adopted in the present study is not small enough to be in the asymptotic limit.
In addition, the local analysis has not considered the influence of the inner boundary on
convection. In the bottom-up cases the effect is not negligible because the flows outside the
convection columns play the important role of balancing kinetic energy budget. Therefore, it
is not necessary that the present calculations yields the same results as those based on local
analysis.

A previous work (Dormy et al. 2004[46]) treats the ageostrophic shear layer on the inner
boundary as the one playing the role in vanishing the amplitude of the velocities. Because
the role leads to increasing the viscous dissipation in the layer, the distribution of the dissi-
pation in this results could be similar to that in the previous work. However, the onsets of
the bottom-up type convection in this study have the additional flows through the tangent
cylinder, and the flows help the viscous dissipation. The ageostrophic shear layer plays role
of strengthening the dissipation rather than vanishing the amplitude.

The reason why the the flows through the inner core tangent cylinder around the inner
boundary are formed in the bottom-up cases is probably as follows. Because the convection
column generally tends to have axisymmetric structure about the center axis of the convection
column, the convective flows around the tangential points to the inner core have little flux in
the azimuthal direction, but strong flux in the radial direction. The radial influx or outflux
needs to flow in the latitude or rotation-axis direction around the inner boundary because
the fluid at any point satisfies the continuity equations (2.11). The strong mass flux makes
the viscous dissipation in the ageostrophic layer more effectively (see Figure 2.7(a)) since

∇⃗ · u⃗ = σss + σϕϕ + σzz = 0.
Although our calculations of the critical convection are in linear problem, the mass con-

servation must be satisfied also in the MHD dynamo, if the fluid is still considered as the
Boussinesq one. For MHD numerical dynamos driven by bottom-up buoyancy, the magnetic
and velocity fields inside the inner core tangent cylinder often have different features from
outside (e.g. Takahashi et al. 2003[56]; Aubert, 2005[26]) ; for example, the multipolar dy-
namos driven by the bottom-up cases has the zonal flows by thermal wind inside the tangent
cylinder, but by the Reynolds stress outside (Aubert, 2005[26]). Although generating the
convection in the interior of the tangent cylinder is more difficult than the exterior, the flows
inside the tangent cylinder might exist, and have the different strucure from that outside. It
is possible that the position of the convection adjacent to the tangent cylinder in bottom-up
type produces the influx and outflux through the cylinder, and their flows could affect the
planetary core dynamics inside the tangent cylinder.
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Chapter 3

MHD Dynamo in a Rotating
Spherical Shell

3.1 Problem Setup & Method

MHD dynamo simulations are performed by the code based on Takahashi (2012)[61]. In the
similar system to the previous chapter we consider the dynamos driven by compositional
convection in a rotating spherical shell. The Boussinesq fluid in the shell shall has a finite
electrical conductivity in this chapter. By using the thickness of the shell d for the unit of
length, the viscous diffusion time d2 / ν for the unit of the time, (2ρµηΩ)1/2 for the unit of
the magnetic field, and −βid and −βod for the unit of mass fraction in the bottom-up case
and the top-down case, respectively, the non-dimensional equations are

Ek

[
∂u⃗

∂t
+ (u⃗ · ∇⃗)u⃗−∇2u⃗

]
= u⃗× e⃗z − ∇⃗P +RS−1

c ξ
r⃗

Ro
+

1

Pm
(∇⃗ × B⃗)× B⃗ (3.1)

∂B⃗

∂t
=

1

Pm
∇2B⃗ + ∇⃗ × (u⃗× B⃗) (3.2)

∂

∂t
(ξo + ξ) + (u⃗ · ∇⃗)(ξo + ξ) =

1

Sc
∇2(ξo + ξ) (3.3)

∇⃗ · u⃗ = 0 (3.4)

∇⃗ · B⃗ = 0 , (3.5)

where the gravitational acceleration is assumed as g⃗ = −gor⃗/Ro in this section. These equa-
tions have four non-dimensional parameter: the modified Rayleigh number R = −αξgoβd

2/2Ωκξ(=
RaEkSc), the Ekman number Ek = ν/2Ωd2, the magnetic Prandtl number Pm = ν/η, and
the Schmidt number Sc = ν/κξ. In this study, the parameter is set up at Ek = 10−4, Pm = 3
and Sc = 1. The profiles of the dξo/dr are the same as the previous chapter. The unknown

vectors, u⃗ and B⃗, are expanded to the form as

u⃗ = ∇⃗ × (∇⃗ × Upe⃗r) + ∇⃗ ×Wte⃗r (3.6)

B⃗ = ∇⃗ × (∇⃗ × Spe⃗r) + ∇⃗ × Tte⃗r , (3.7)

where Up and Wt are the poloidal and toroidal, respectively, scalars of u⃗, Sp and Tt are the

poloidal and toroidal, respectively, scalars of B⃗ in this section.
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We multiply the double curl and the curl of the momentum equation, and the induction
equation and the curl of the induction equation by e⃗r, obtaining four equations for Up, Wt,
Sp and Tt:

Ek

r2

[
∂

∂t
−∇2

s

]
L2∇2

sUp = −e⃗r · ∇⃗ × ∇⃗ × M⃗ (3.8)

Ek

r2

[
∂

∂t
−∇2

s

]
L2Wt = e⃗r · ∇⃗ × M⃗ (3.9)

1

r2

[
∂

∂t
− 1

Pm
∇2

s

]
L2Sp = e⃗r · [∇⃗ × (u⃗× B⃗)] (3.10)

1

r2

[
∂

∂t
− 1

Pm
∇2

s

]
L2Tt = e⃗r · [∇⃗ × ∇⃗ × (u⃗× B⃗)] , (3.11)

where

∇2
s =

∂2

∂r2
− L2

r2
,

and

M⃗ = −(u⃗ · ∇⃗)u⃗+ u⃗× e⃗z +RS−1
c ξ

r⃗

Ro
+

1

Pm
(∇⃗ × B⃗)× B⃗ .

The shell is electrically insulating with stress-free boundaries, and chemical flux is fixed at
the both boundaries:

Up =
∂

∂r

(
1

r2
∂Up

∂r

)
=

∂

∂r

(
Wt

r2

)
=

∂ξ

∂r
= Tt = 0 at r =

χ

1− χ
and r =

1

1− χ
. (3.12)

The unknown scalars are expanded by the spherical harmonics that is introduced in the
previous chapter;

Up(r, θ, ϕ, t) =
L∑
m,l

Umc,s
p,l (r, t)Y mc,s

l (θ, ϕ)

Wt(r, θ, ϕ, t) =
L∑
m,l

Wmc,s
t,l (r, t)Y mc,s

l (θ, ϕ)

Sp(r, θ, ϕ, t) =
L∑
m,l

Smc,s
p,l (r, t)Y mc,s

l (θ, ϕ)

Tt(r, θ, ϕ, t) =
L∑
m,l

Tmc,s
t,l (r, t)Y mc,s

l (θ, ϕ)

By multiplying the equations (3.8), (3.9), (3.10) and (3.11) by Y mc,s
l , and integrating them

over a spherical surface, equations for the unkown scalars are derived as forms of

Eknm
l(l + 1)

r2

[
∂

∂t
−∇2

s

]
∇2

sU
mc,s
p,l = −

∫
S
Y m′c,s
l′ e⃗r · ∇⃗ × ∇⃗ × M⃗dS (3.13)

Eknm
l(l + 1)

r2

[
∂

∂t
−∇2

s

]
Wmc,s

t,l =

∫
S
Y m′c,s
l′ e⃗r · ∇⃗ × M⃗dS (3.14)
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nm
l(l + 1)

r2

[
∂

∂t
− 1

Pm
∇2

s

]
Smc,s
p,l =

∫
S
Y m′c,s
l′ e⃗r · [∇⃗ × (u⃗× B⃗)]dS (3.15)

nm
l(l + 1)

r2

[
∂

∂t
− 1

Pm
∇2

s

]
Tm′c,s
t,l =

∫
S
Y m′c,s
l′ e⃗r · [∇⃗ × ∇⃗ × (u⃗× B⃗)]dS . (3.16)

The poloidal magnetic field needs to be connected with the exterior potential fields at the
boundaries as (

∂

∂r
− l + 1

r

)
Smc,s
p,l = 0 at r = Ri (3.17)(

∂

∂r
+

l

r

)
Smc,s
p,l = 0 at r = Ro . (3.18)

The Crank-Nicolson scheme for the diffusion terms, and the 3rd-order Adams-family
predictor-corrector scheme for the others are used to time-integrate the equations (3.13),
(3.14), (3.15) and (3.16). As the initial conditions in this time-integration, the obtained crit-
ical convection in Chapter 2, calculated at Ek = 10−4 in the top-down and bottom-up cases,
and axisymmetric dipole magnetic fields are given. Note that the dynamos in this study can
generate only quadrupole symmetric velocities and dipole dymmetric magnetic fields.Spatial
resolution is set at nr = 60, nθ = 192, nϕ = 288. Truncation level in the spherical harmonic

expansion is nl = 95, and the time increment is δt = 2.5× 10−7.

3.2 Results

First, we search for successful dynamos in the bottom-up and top-down buoyancy cases.
Figure 3.1 and 3.2 show temporal variation of the kinetic and magnetic energy density in
the cases of bottom-up and top-down source. The kinetic and magnetic energy densities in
Figure 3.2 are calculated as

Emag = 1
2EkPm

B2 = 1
2EkPmV

∫
V

[
|∇⃗ × (∇⃗ × Spe⃗r)|2+|∇⃗ × Tte⃗r|2

]
dV

Ekin = 1
2U

2 = 1
2V

∫
V

[
|∇⃗ × (∇⃗ × Upe⃗r)|2+|∇⃗ ×Wte⃗r|2

]
dV ,

where V is volume of the spherical shell, and then the densities are output in time increment
of 2 × 10−5. In this study, if the magnetic energy density drops by more than two orders
of magnitude, the case is defined as a failed dynamo. If the statistically steady state of the
magnetic and kinetic energy is obtained, the case is treated as a successful dynamo. As a
result, the steady states of the energy are achieved only in the two top-down cases which are
calculated at Ra = 4.5Rac (in the middle of Figure 3.2) and at Ra = 5Rac (in the bottom of
Figure 3.2). Thus, the onset of dynamo action in the top-down case starts at the Rayleigh
number about 4.5Rac, where Rac is the critical Rayleigh number for the onset of convection,
although we cannot obtain any successful dynamos up to Ra = 20Rac in the bottom-up case.

In Table 3.1, the time-averaged results of MHD dynamo for the top-down and bottom-up
buoyancy cases, calculated at Ek = 10−4 are represented. According to the time-averaged
|Hrel

z | in Table 3.1, although the onset of the dynamo in bottom-up case cannot be achieved
in this study, the relative axial helicities are not so different between the top-down and
bottom-up cases. In general, helical flows efficiently generate the magnetic field. It seems
that the onset of dynamo action in our results are not related only to helicity.
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Figure 3.1: Temporal variation of the kinetic (left) and magnetic (right) energy density at Ra = 10Rac (top),
Ra = 12Rac (middle), and Ra = 20Rac (bottom) in the bottom-up cases. Dimensionless time is scaled by
the viscous diffusion timescale. Black solid lines denote the total energy density, black broken lines denote
the poloidal energy density, and grey solid lines denote the toroidal energy density The energy densities are
output in time increments of 2 × 10−5.
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Figure 3.2: Same as Figure 3.1 but at Ra = 4Rac (top), Ra = 4.5Rac (middle), and Ra = 5Rac (bottom) in
the top-down cases.

The time-averaged kinetic energy and the ratio of the poloidal to toroidal kinetic energy,

Pkin =
1

2V

∫
V

[
|∇⃗ × (∇⃗ × Upe⃗r)|2

]
dV

Tkin =
1

2V

∫
V

[
|∇⃗ ×Wte⃗r|2

]
dV ,
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Table 3.1: The time-averaged results of MHD dynamo.

Type Ra/Rac Dynamo Ēkin Pkin/Tkin |Hrel
z | Λi Ēmag Pmag/Tmag fdip foct

T 4.0 F 770 6.8% 0.29 - - - - -

T 4.5 S 713 12% 0.36 0.14 240 23% 0.39 0.53

T 5.0 S 899 15% 0.38 0.24 405 30% 0.31 0.42

B 10 F 760 6.0% 0.35 - - - - -

B 12 F 990 7.3% 0.37 - - - - -

B 20 F 2390 16% 0.29 - - - - -

Column 1: buoyancy source type that is either bottom-up case (B) or top-down case (T); Column 2: the
input Rayleigh number normalized by the critical Rayleigh number; Column 3: symbols of successful

dynamo (S) or failed dynamo (F); Column 4; kinetic energy density; Column 5: the ratio of poloidal kinetic
energy to toroidal kinetic energy; Column 7: Elsasser number; Column 8: magnetic energy density; Column

9 : the ratio of the poloidal magnetic energy to the toroidal magnetic energy; Column 10: dipolarity,

fdip =
[∫

B⃗l=1(r = Ro) · B⃗l=1(r = Ro)dS
]1/2

/
[∫

B⃗(r = Ro) · B⃗(r = Ro)dS
]1/2

, Column 11: octupolarity,

foct =
[∫

B⃗l=3(r = Ro) · B⃗l=3(r = Ro)dS
]1/2

/
[∫

B⃗(r = Ro) · B⃗(r = Ro)dS
]1/2

.

Figure 3.3: Time-averaged relative axial helicity versus the ratio of the poloidal kinetic energy to the toroidal
kinetic energy, Pkin/Tkin. Red (blue) circle is in the top-down (bottom-up) cases. Solid (hollow) circle means
the plot in the successful (failed) dynamo. Black line indicates the onset of the dynamo action.

in Table 3.1, increase as increasing the Rayleigh number. In the top-down buoyancy cases the
successful dynamos are driven by the convection in which the ratio is more than 10 percent,
although the failed bottom-up dynamo calculated at Ra = 20Rac has the strongest ratio in
the six cases.
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Figure 3.4: The radial component of the velocity field on the equatorial plane viewed from the north. The top
(bottom) is the profile for the bottom-up case, B, (top-down case, T). The left column is the failed dynamo
cases (Ra/Rac = 12 in the bottom-up case, and Ra/Rac = 4 in the top-down case), and the right column
is the failed dynamo at Ra/Rac = 20 in the bottom-up case and the successful dynamo at Ra/Rac = 4.5 in
the top-down case.

Figure 3.3 shows the time-averaged relativ axial helicity versus the time-averaged ratio of
the poloidal kinetic energy to the toroidal kinetic energy. The successful dynamos in the top-
down cases have the relative axial helicity close to that in the failed bottom-up dynamo at
Ra/Rac = 4 and 4.5, but Pkin/Tkin in the successful dynamos is larger. On the other hand,
the failed bottom-up dynamo at Ra/Rac = 20 generates flows with the highest Pkin/Tkin,
but the lowest relative axial helicity in the six cases. Both |Hrel

z | and Pkin/Tkin affect the
onset of the dynamos, and the successful dynamos need the large value of both |Hrel

z | and
Pkin/Tkin.
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Figure 3.5: Flow patterns (arrows) and the axial vorticity (color) for the failed dynamo of the bottom-up
case at Ra = 12Rac and t = 1.495 (a), and Ra = 20Rac and t = 1.5 (b) on the equatorial plane.
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Figure 3.6: Same as Figure 3.5 but for the failed and successful dynamo of the top-down case at Ra = 4Rac
and t = 1.49 (a), and Ra = 4.5Rac and t = 1.5 (b), respectively.
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Figure 3.7: Snapshot of the radial component of the magnetic field at the outer boundary at Ra = 4.5Rac
(a) and Ra = 5Rac (b) in the successful top-down cases.

Figure 3.4 shows the radial component of velocity on the equatorial plane for the bottom-
up cases and the top-down cases. Compared with the bottom-up cases, the radial velocity
concentrates in the outer region of the shell in the top-down cases. This distribution is similar
to that in the internal heating case in the previous works (e.g. Hori et al. 2010[58]; Hori et
al. 2012[62]). The distribution of the radial velocity in the top-down case could be affected
by the conductive compositional gradient steeper than the inner region of the shell, as in the
previous studies. On the other hand, the radial flows in the bottom-up case at Ra = 12Rac
and the top-down case at Ra = 4Rac show a hemispherical asymmetry in Figure 3.4. The
concentration of the radial velocity, produced only by the poloidal components, could cause
the low Pkin/Tkin in table 3.1.

Figure 3.5 and 3.6 show flow patterns (arrow) and the axial component of the vorticity
(color) on an equatorial plane. All the cases have the westward zonal flow in the deep part
of the shell. It seems that the zonal toroidal flows become weaker than the other flows as
the Rayleigh number increases in the both cases. In fact, the ratios of the kinetic energy
constituted by the zonal flows to that by the total flows in the whole system decrease from
22% at Ra = 12Rac to 13% at Ra = 20Rac in the bottom-up cases, and from 27% at
Ra = 4Rac to 13% at Ra = 4.5Rac in the top-down cases.

Both the convective vorticities and zonal flows are located adjacent to the inner boundary
in the bottom-up cases (Figure 3.5). The zonal flows often become strong with increasing
the Rayleigh number in some dynamo models (Busse, 2002[63]; Aubert, 2005[26]), where
convection also becomes vigorous. According to Busse (2002)[63], but in the internal heating
case, the distributions of the convective flows and the zonal flows are spatially or temporally
distinct, so that the flows of the convection column can overcome the shearing action. Be-
cause the convection column has helical structure, the presence of the convection column is
important for the dynamo action. It is likely to be difficult for the bottom-up type dynamos
in this study that the convection is spatially distinguished from the zonal flows owing to the
profile of the conductive compositional flux.

The distribution of the radial component of the magnetic field on the surface at the outer
boundary in the successful top-down cases in shown in Figure 3.7. It seems that the profile
of the radial magnetic field is not dipole-dominant on the outer surface. In addition, the
dipolarity, which is defined by the ratio of the power in the dipole component to the total
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Figure 3.8: Time-averaged magnetic power spectrum at the outer boundary at Ra = 4.5Rac (a) and Ra =
5Rac (b) in the successful top-down cases, normalized by the value of the power at l = 3.

power of the magnetic field as

fdip =

[∫
B⃗l=1(r = Ro) · B⃗l=1(r = Ro)dS∫

B⃗(r = Ro) · B⃗(r = Ro)dS

]1/2
,

is not so large (Table 3.1), so that the dynamos generates non-dipole dominant magnetic
fields. The octupole field, which is defined as

foct =

[∫
B⃗l=3(r = Ro) · B⃗l=3(r = Ro)dS∫

B⃗(r = Ro) · B⃗(r = Ro)dS

]1/2
,

dominates the morphology rather than the dipole, (see also Figure 3.8: the time-averaged
magnetic power spectrum at r = Ro), because the proportions of octupole field is approxi-
mately half of the total fields.

As seen in table 3.1, the successful dynamos have the Elsasser number, Λ = 2PmEkĒmag,
less than one. This means that the total effect of the Lorentz force is smaller than that of
the Coriolis force. The convection in the two successful dynamos is hardly affected by the
magnetic force. Thus, the force balance in the whole system could be quasi-geostrophic at
the leading order.

Figure 3.9 shows zonal flows on meridional cross section in the bottom-up cases at Ra =
12Rac and Ra = 20Rac, and the top-down cases at Ra = 4Rac and Ra = 4.5Rac. The
contour lines of the zonal flows in all the cases almost extend in the rotation-axis direction.
This means that the zonal flows are almost geostrophic. In both the bottom-up cases and
the top-down cases, the thermal wind and Lorentz force have little impact on the zonal flows.
Figure 3.10 shows snap shots of the azimuthally-averaged mass fraction on the meridional
cross section in the bottom-up cases at Ra = 12Rac and Ra = 20Rac, and the top-down
cases at Ra = 4Rac and Ra = 4.5Rac.The axisymmetric mass fractions have homogeneous
distribution on the spherical surface. Thus, thermal wind is not dominant in all cases.
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Figure 3.9: Time-averaged zonal flows on the meridional cross section in the bottom-up cases at Ra = 12Rac
and Ra = 20Rac, and the top-down cases at Ra = 4Rac and Ra = 4.5Rac The isolines -120 to 120 in 12
increments in the bottom-up cases, and -56 to 56 in 5.6 increments in the top-down cases.
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Figure 3.10: Snapshots of the azimuthally-averaged mass fraction on the meridional cross section in the
bottom-up cases at Ra = 12Rac and Ra = 20Rac, and the top-down cases at Ra = 4Rac and Ra = 4.5Rac.
Red (blue) represents high (low) values. The isolines 0 to 0.14 in 0.07 increments in the bottom-up cases,
and -0.4 to 0 in 0.2 increments in the top-down cases.
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Figure 3.11: Time-averaged power budget of zonal flow in bottom-up case at Ra = 12Rac. PR is kinetic
energy flux divergence by the Reynolds stress; Pc and PL are power exchanged by the Coriolis force, and the
Lorentz force, respectively; PV is power that include viscous dissipation and viscous energy flux convergence.
The distribution of PL is not shown because this case is the failed dynamo. The isolines in 3.69 increments
in PR, in 4.23 increments in Pc, and in 8.47 increments in PV . The value above each figures is the volumic
integration of the term.
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Figure 3.12: Same as Figure 3.11 but in bottom-up case at Ra = 20Rac. The isolines in 36.8 increments in
PR, in 29.8 increments in Pc, and in 16.4 increments in PV .

The kinetic energy equation of zonal flow is written as

1

2
Ek

∂uϕ
2

∂t
= −Ek[(u⃗ · ∇⃗)u⃗]ϕuϕ − usuϕ +

1

Pm

[
(∇⃗ × B⃗)× B⃗

]
ϕ
uϕ + Ek∇2u⃗ϕuϕ , (3.19)
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Figure 3.13: Same as Figure 3.11 but in top-down case at Ra = 4Rac. The isolines in 0.436 increments in
PR, in 0.867 increments in Pc, and in 2.56 increments in PV

0

10.90

0

24.78

0

7.601

0

48.38

PR PC PL PV2.20 0.20 −1.61 −1.45

Figure 3.14: Same as Figure 3.11 but in top-down case at Ra = 4.5Rac. The isolines in 0.545 increments in
PR, in 1.24 increments in Pc, in 0.380 increments in PL, and in 2.42 increments in PV

where the overline means the azimuthal averaging operator. The terms on the right-hand-
side in equation (3.19) are kinetic energy flux divergence by the Reynolds stress (PR), power
exchanged by the Coriolis force (PC) and the Lorentz force (PL), respectively, and sink that
include viscous dissipation and viscous energy flux convergence (PV ). In Figures 3.11 to
3.14, the profiles of time-averaged power budget on meridional cross section are shown in the
bottom-up cases at Ra = 12Rac and 20Rac, and in the top-down cases at Ra = 4Rac and
4.5Rac.

In the energy budget of zonal flows, the energy flux divergence by the Reynolds stress
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is dominant in all the cases. The power exchanged by the Coriolis force is weak in all the
cases, so that the zonal flows do not have the influence of zonal thermal wind. For the failed
dynamos (Figures 3.11 to 3.13), the divergence by the Reynolds stress, PR, is balanced by
the viscous effect, PV . The meridional distributions of PR are different between the dynamos
driven by two buoyancy sources; those in the bottom-up and top-down cases extend on the
inner core tangent cylinder, and located outside, respectively. The distribution of PR could
be affected by the position of convection.

The successful dynamos in the top-down cases also have the strong power by the Reynolds
stress, but the dominance of the sink term is not only the power exchanged by viscous force
(Figure 3.14). The energy sink in the successful top-down dynamo is dominated by both the
viscous and Lorentz force. A strong effect of the Lorentz force was not expected because
the Elsasser number is lower than one, but the effect of the Lorentz force is strong in the
zonal flows. Because the power of PL is a work by the Lorentz force, the kinetic energy is
exchanged with the zonal magnetic energy by using the zonal flow and the axisymmetric
poloidal magnetic field.

The kinetic energy in the failed dynamos is dissipated by viscous effect. The distribution
of PV is located at the same region as that of PR. In the bottom-up cases (Figure 3.11 and
3.12), PV has positive value on the inner boundary, so that the role of the viscous effect in
the kinetic energy budget is not only dissipation but also energy transfer. This profile is
similar to the critical convection obtained in Chapter 2, in which the critical convection in
the bottom-up cases has the strong effect of the viscous energy flux convergence on the inner
boundary. It is possible that the viscous energy flux convergence plays the role of encouraging
the dissipation in not only the critical convection but also the energy budget of zonal flows
for the dynamo.

In the region of the work by the Lorentz force, the axisymmetric poloidal field line is
twisted, and the zonal toroidal field is generated. Figures 3.15 and 3.16 show the time
variation of the zonal field (color) and the axisymmetric magnetic field line (lines) for top-
down cases at Ra = 4.5Rac and Ra = 5Rac, respectively. The zonal magnetic fields are
generated in the region, especially for the high latitude around the outer boundary. This
mechanism is the ω−effect. In the top-down successful dynamos, the ω−effect arises in the
region.

The axisymmetric magnetic fields in the top-down cases oscillate toward the outer bound-
ary in the latitude direction, especially for the poloidal field lines in Figure 3.15 and 3.16.
The patches of the poloidal field line move from the equator to the poles. The oscillation is
also found in the previous studies with internal heating (e.g. Grote et al. 2000[57]; Busse
2002[63]; Busse and Simitev 2005[64]), although we calculate a part of the full dynamo action
because quadrupole symmetric velocities and dipole magnetic fields can be generated in this
study.

3.3 Discussion

In this calculation, we searched for the onset of the dynamos driven by top-down and bottom-
up buoyancy by giving the critical convection and the axisymmetric dipole magnetic field
as initial conditions. This system can generate only quadrupole symmetric velocities and
antisymmetric magnetic fields. The restriction on the symmetry could affect the dynamo
mechanism, especially for the bottom-up cases.

The onset of the dynamo driven by the top-down buoyancy was obtained at Ra = 4.5Rac
in this study. The patches of the axisymmetric magnetic fields in the successful top-down
dynamos move from the equator to the poles. This result is the same as the cases with full
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Figure 3.15: Temporal evolution of the zonal field (color) and the axisymmetric magnetic field line (lines)
for top-down case at Ra = 4.5Rac for equidistant times (from left to right in top, then in bottom) in 0.0075
time-increment. Solid (broken) lines indicate for positive (negative) values.

dynamo action in the previous works, which consider the dynamos driven by internal heating
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Figure 3.16: Same as Figure 3.15 but at Ra = 5.0Rac.

(e.g. Grote et al. 2000[57]; Busse 2002[63]; Busse and Simitev 2005[64]). In addition to the
oscillation, the patterns of axisymmetric fields are similar to that in the dipolar dynamo cases
in their previous works. The fact indicates that dipolar magnetic fields in top-down dynamos
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can be generated by only the quadrupole-symmetric velocities from the dipole-symmetric
magnetic fields.

The results for the top-down dynamo could not be affected by the boundary conditions of
velocities and magnetic fields. In this study, boundary conditions are stress-free boundaries
for the velocity field, and electrically insulating for the magnetic field. According to Simitev
and Busse (2005)[34], the resultant magnetic fields have little difference between the dynamos
with insulating and perfectly conducting inner core. For the velocity boundary conditions, if
the non-magnetic system is considered, the differential rotation is stronger in the convection
with no-slip boundaries than stress-free boundaries because the Ekman layer exists on no-
slip boundaries. However, the difference is destroyed by the Lorentz force in the dynamos
in which the Elasasser numbers are less than 1 in Simitev and Busse (2005)[34], so that the
velocity boundary conditions could not vary the velocity also in our dynamos.

The compositional (or thermal) boundary conditions strongly affect the kinetic energy
budget of the zonal flows in the top-down dynamos. In Hori et al. (2010)[58], when the
Rayleigh numbers are a few times of the critical Rayleigh number in the dynamos driven by
internal heating, the zonal flows are dominated by the Reynolds stresses in the case with the
fixed temperature boundaries; in contrast, the dynamos with the fixed heat flux boundaries
generate the zonal flows owing to thermal wind. They conclude that the structures in the
fixed heat flux cases are promoted by force balance between the Lorentz force by the strong
dipole field and the Coriolis force. However, the top-down dynamos in the present study with
fixed compositional flux boundaries do not have the thermal wind. It is possible that thermal
wind does not happen in the present calculation because of the restriction on symmetry of
the fields, with which only the quadrupole-symmetric velocities and the dipole-symmetric
magnetic fields are taken into account.

On the other hand, bottom-up dynamo did not succeed up to Ra = 20Rac. For full dy-
namo action, successful dynamos in similar situation are obtained at lower Rayleigh number
than our result; for example, the onset of the dynamo driven by differential heating buoyancy
source is about Ra = 6Rac at χ = 0.2 and Ek = 3 × 10−4, but Pm = 5 in Heimpel et al.
(2005)[65]. Some successful dynamos in full dynamo action have an oscillation of two modes
in axisymmetric velocity and magnetic fields, although the time-averaged fields has only one
mode; for example, the zonal flows in the time average are much higher quadrupole-symmetry
than in a time snapshot (Aubert, 2005[26]). For the previous work (Takahashi 2003[56]), the
zonal fields often oscillate between dipolar and quadrupolar symmetries inside the tangent
cylinder, but without oscillation outside. This means that the bottom-up dynamo can gener-
ate both the dipole-symmetric and quadrupole-symmetric fields inside the tangent cylinder.
Because our model generates only the dipole-family magnetic field, the generation process is
strongly limited in the present bottom-up cases. It could be essential for dynamo driven by
bottom-up buoyancy to generate both the symmetric and antisymmetric fields. Thus, it is
possible that coupling dipole-symmetric or quadrupole-symmetric flow with magnetic fields
with various symmetry is essential for the onset of the dynamo.

The coupling the symmetry is significant for the Mercury’s core dynamo, generating the
offset-dipole magnetic field (Takahashi et al. 2019[10]). In Takahashi (2019)[10] using dy-
namo driven by double-diffusive convection, the dynamo fed by bottom-up-type composi-
tional buoyancy can generate the offset-dipole magnetic field, although the kinematic dynamo
action in the bottom-up case generate not offset-dipole but quadrupole-family magnetic field.
Thus, the nonlinear Lorentz-force effect is essential for the Mercury’s core dynamo. Because
the Lorentz force couples dipole-symmetry fields with quadrupole-symmetry fields, the ful
bottom-up-type dynamo action could contain the stronger nonlinear effect than the full top-
down-type one.

It is possible that the zonal toroidal flows in our bottom-up failed dynamo prevent the
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columnar convection from generating the large-scale magnetic fields. The zonal flows were
generated by the divergence of the Reynolds stresses, although the most bottom-up dynamos
in previous works (e.g. Aubert 2005[26]; Sakuraba 2007[66]) have the zonal flows owing to the
zonal thermal wind even if the fixed temperature boundary conditions are satisfied. Because
the thermal wind destroys geostrophic balance of zonal flows, and results in differential
rotation of the flow, it is difficult for our model to generate the zonal toroidal field by ω-
effect. Dynamo might fail due to the difficulty.

The core dynamics in Earth has the strong zonal flows, which are averaged over the 1840-
1990 period, and the speed is about 0.3−1.0◦ par a year inside the inner core tangent cylinder
(Paris and Hulot (2000)). According to the numerical dynamos in previous works, the zonal
flows could be dominated by the zonal thermal wind in the dynamo driven by bottom-up
type buoyancy, especially for the interior of the inner core tangent cylinder. The present
results suggest a possibility of essential effects of the thermal wind on the zonal flows in the
bottom-up dynamos because the effects easily generates the zonal toroidal fields owing to
ω-effect. On the other hand, the top-down dynamos are likely to generate the zonal flows by
Reynolds stresses in both the present and previous calculations (e.g. Busse, 2002[63]; Grote
et al. (1999)[67]; Grote et al. (2000)[57]). The zonal flows by Reynolds stresses have a weaker
differential rotation than that by the thermal wind because they cannot directly destroy the
geostrophic balance in the zonal flows.

The different mechanisms dominating in zonal flow could affect the observed magnetic
fields in the other bodies. In the case of Ganymede, it is believed that the core dynamo is
mainly driven by either top-down or bottom-up type compositional buoyancy. The buoyancy
types could decide the azimuthally movement of the magnetic field frozen in the zonal flows,
so that the difference in the source of the zonal flows should be able to restrain the main
buoyancy type in the Ganymede’ core. The restraint of the buoyancy types can decide the
solidification scenarios in the Ganymede’s core. However, the detail of the zonal flows cannot
be estimated in this study because we did not calculate full dynamo action. Future work
should therefore investigate the full dynamo action, and discover the difference of kinetic
energy budget of the zonal flow between bottom-up and top-down types.
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Chapter 4

Conclusions

In this thesis, we investigated the onset of the convection (Chapter 2) and dynamo (Chapter
3) driven by the bottom-up and top-down buoyancy in a rotating spherical shell containing
the Boussinesq fluid. This research aimed to identify the physics of the critical convection
and the dynamo by comparing the results of the bottom-up cases with that of the top-down
cases.

In Chapter 2, we found that the location of the critical convection produced the different
kinetic energy budget between two buoyancy cases and the additional flow for the bottom-up
cases. In the bottom-up cases, the additional flow inward or outward the inner core tangent
cylinder is not directly generated by the buoyancy force, but important for balancing the
kinetic energy budget. Because this flow could result from mass conservation on the inner
boundary, this flow could be generated in the planetary core, and it might affect the core
dynamics.

In Chapter 3, it was found that the top-down dynamos are achieved at a Rayleigh num-
ber less supercritical than the bottom-up cases. For the bottom-up dynamo it is difficult to
generate the poloidal kinetic energy because the convective flows are destroyed by the zonal
flows located in the deep part of the shell. Helicity has little connection with the source of
dynamos in this research. Although the generation process caused by helical convection have
been explained by the equatorially-symmetric flows and equatorially-antisymmetric mag-
netic fields, it might be important for the process that equatorially-asymmetric flows and
equatorially-symmetric magnetic fields affect core dynamics.

50



Reference

[1] S. Chandrasekhar. Hydrodynamic and hydromagnetic stability. (Oxford; Clarendon
Press)(Reprinted by Dover publications), 1961.

[2] J.E.P. Connerney. Planetary magnetism. Treatise on Geophysics (Amsterdam: Elsevier),
vol. 10:243–280, 2007.

[3] A.M. Dziewonski and D.L. Anderson. Preliminary reference earth model. Phys. Earth
Planet. Inter., 25(4):297–356, 1981.

[4] D. Breuer, T. Rueckriemen, and T. Spohn. Iron snow, crystal floats, and inner-core
growth: modes of core solidification and implications for dynamos in terrestrial planets
and moons. Prog. Earth Planet. Sci., 2(1):1–26, 2015.

[5] D.E. Smith, M.T. Zuber, R.J. Phillips, S.C. Solomon, S.A. Hauck, F.G. Lemoine,
E. Mazarico, G.A. Neumann, S.J. Peale, J.L. Margot, et al. Gravity field and inter-
nal structure of mercury from messenger. science, 336(6078):214–217, 2012.

[6] S.A. Hauck, J.L. Margot, S.C. Solomon, R.J. Phillips, C.L. Johnson, F.G. Lemoine,
E. Mazarico, T.J. McCoy, S. Padovan, S.J. Peale, et al. The curious case of mercury’s
internal structure. J. Geophys. Res. Planets, 118(6):1204–1220, 2013.

[7] A. Rivoldini and T. Van Hoolst. The interior structure of mercury constrained by the
low-degree gravity field and the rotation of mercury. Earth Planet. Sci. Lett., 377:62–72,
2013.

[8] V. Malavergne, M.J. Toplis, S. Berthet, and J. Jones. Highly reducing conditions dur-
ing core formation on mercury: Implications for internal structure and the origin of a
magnetic field. Icarus, 206(1):199–209, 2010.

[9] N.L. Chabot, E.A. Wollack, R.L. Klima, and M.E. Minitti. Experimental constraints on
mercury’s core composition. Earth Planet. Sci. Lett., 390:199–208, 2014.

[10] F. Takahashi, H. Shimizu, and H. Tsunakawa. Mercury’s anomalous magnetic field
caused by a symmetry-breaking self-regulating dynamo. Nature communications,
10(1):1–8, 2019.

[11] B.J. Anderson, C.L. Johnson, H. Korth, R.M. Winslow, J.E. Borovsky, M.E. Purucker,
J.A. Slavin, M.T. Solomon, S.C. nad Zuber, and R.L. McNutt. Low-degree structure in
mercury’s planetary magnetic field. J. Geophys. Res. Planets, 117(E12):E00L12, 2012.

[12] C.L. Johnson, M.E. Purucker, H. Korth, B.J. Anderson, R.M. Winslow, M.MH Al Asad,
J.A. Slavin, I.I. Alexeev, R.J. Phillips, M.T. Zuber, et al. Messenger observations of
mercury’s magnetic field structure. J. Geophys. Res. Planets, 117(E12):E00L14, 2012.

51



[13] V. Kronrod. Core sizes and internal structure of earth’s and jupiter’s satellites. Icarus,
151:204–227, 2001.

[14] Y. Fei, C.M. Bertka, and L.W. Finger. High-pressure iron-sulfur compound, fe3s2, and
melting relations in the fe-fes system. Science, 275(5306):1621–1623, 1997.

[15] Y. Fei, J. Li, C.M. Bertka, and C.T. Prewitt. Structure type and bulk modulus of fe3s,
a new iron-sulfur compound. American Mineralogist, 85(11-12):1830–1833, 2000.

[16] L. Chudinovskikh and R. Boehler. Eutectic melting in the system fe–s to 44 gpa. Earth
Planet. Sci. Lett., 257(1-2):97–103, 2007.

[17] A.J. Stewart, M.W. Schmidt, W. van Westrenen, and C. Liebske. Mars: A new core-
crystallization regime. Science, 316(5829):1323–1325, 2007.

[18] B. Chen, J. Li, and S.A. Hauck. Non-ideal liquidus curve in the fe-s system and mercury’s
snowing core. Geophys. Res. Lett., 35(7), 2008.

[19] A.S. Buono and D. Walker. The fe-rich liquidus in the fe–fes system from 1 bar to 10
gpa. Geochim. Cosmochim. Acta, 75(8):2072–2087, 2011.

[20] S.A. Hauck, J.M. Aurnou, and A.J. Dombard. Sulfur’s impact on core evolution and
magnetic field generation on ganymede. J. Geophys. Res. Planets, 111(E9):E09008, 2006.

[21] X Zhan and G Schubert. Powering ganymede’s dynamo. J. Geophys. Res. Planets,
117(E8):E08011, 2012.

[22] U.R. Christensen. Iron snow dynamo models for ganymede. Icarus, 247:248–259, 2015.

[23] P.H. Roberts and E.M. King. On the genesis of the earth's magnetism. Rep. Prog. Phys.,
76(9):096801, 2013.

[24] K. Zhang and F.H. Busse. On the onset of convection in rotating spherical shells.
Geophys. Astrophys. Fluid Dyn., 39(3):119–147, 1987.

[25] U.R. Christensen. Zonal flow driven by strongly supercritical convection in rotating
spherical shells. J. Fluid Mech., 470:115, 2002.

[26] J. Aubert. Steady zonal flows in spherical shell dynamos. J. Fluid Mech., 542:53, 2005.

[27] K. Zhang. Spherical shell rotating convection in the presence of a toroidal magnetic
field. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci., 448(1933):245–268, 1995.

[28] P. Olson and G.A. Glatzmaier. Magnetoconvection in a rotating spherical shell: structure
of flow in the outer core. Phys. Earth Planet. Inter., 92(1-2):109–118, 1995.

[29] A. Pais and G. Hulot. Length of day decade variations, torsional oscillations and inner
core superrotation: evidence from recovered core surface zonal flows. Phys. Earth Planet.
Inter., 118(3-4):291–316, 2000.

[30] C.C. Finlay and A. Jackson. Equatorially dominated magnetic field change at the surface
of earth’s core. Science, 300(5628):2084–2086, 2003.

[31] F.H. Busse. Differential rotation in stellar convection zones. Astrophys. J., 159:629,
1970.

[32] F.H. Busse and L.L. Hood. Differential rotation driven by convection in a rapidly rotating
annulus. Geophys. Astrophys. Fluid Dyn., 21(1-2):59–74, 1982.

52



[33] J. Aubert, D. Brito, H.C. Nataf, P. Cardin, and J.P. Masson. A systematic experimental
study of rapidly rotating spherical convection in water and liquid gallium. Phys. Earth
Planet. Inter., 128(1-4):51–74, 2001.

[34] R. Simitev and F.H. Busse. Prandtl-number dependence of convection-driven dynamos
in rotating spherical fluid shells. J. Fluid Mech., 532:365–388, 2005.

[35] K. Moffatt. The Generation of Magnetic Fields in Electrically Conducting Fluids. (Cam-
bridge: Cambridge University press), 1978.

[36] D. Gubbins and E. Herrero-Bervera. Encyclopedia of geomagnetism and paleomagnetism.
Springer Science & Business Media, 2007.

[37] E.C. Bullard and H. Gellman. Homogeneous dynamos and terrestrial magnetism. Phil.
Trans. R. Soc. Lond. A, 247(928):213–278, 1954.

[38] T.G. Cowling. The magnetic field of sunspots. Mon. Notices Royal Astron. Soc., 94:39–
48, 1933.

[39] S.I. Braginskii. Self-excitation of a magnetic field during the motion of a highly-
conducting fluid. J. Exp. Theor. Phys., 20:726–735, 1964.

[40] D.J. Ivers, R.W. James, P. Fletcher, K.R. Franklin, R.P. Townsend, D.J. Ivers, and R.W.
James. Axisymmetric antidynamo theorems in compressible non-uniform conducting
fluids. Phil. Trans. R. Soc. Lond. A, 312(1520):179–218, 1984.

[41] E.N. Parker. Hydromagnetic dynamo models. Astrophys. J., 122:293, 1955.

[42] A.M. Soward and E.C. Bullard. A kinematic theory of large magnetic reynolds number
dynamos. Phil. Trans. Roy. Soc. Lond. A, 272(1227):431–462, 1972.

[43] P.H. Roberts and E.C. Bullard. Kinematic dynamo models. Phil. Trans. Roy. Soc. Lond.
A, 272(1230):663–698, 1972.

[44] A. Kageyama and T. Sato. Generation mechanism of a dipole field by a magnetohydro-
dynamic dynamo. Phys. Rev. E, 55(4):4617, 1997.

[45] P. Olson, U.R. Christensen, and G.A. Glatzmaier. Numerical modeling of the geody-
namo: mechanisms of field generation and equilibration. J. Geophys. Res. Solid Earth,
104(B5):10383–10404, 1999.

[46] E. Dormy, A. M. Soward, C. A. Jones, D. Jault, and P. Cardin. The onset of thermal
convection in rotating spherical shells. J. Fluid Mech., 501:43–70, 2004.

[47] C.A. Jones, A.M. Soward, and A.I. Mussa. The onset of thermal convection in a rapidly
rotating sphere. J. Fluid Mech., 405:157–179, 2000.

[48] W.R. Hirsching and J. Yano. Metamorphosis of marginal thermal convection in rapidly
rotating self-gravitating spherical shells. Geophys. Astrophys. Fluid Dyn., 74(1-4):143–
179, 1994.

[49] S. Takehiro. Kinetic energy budget analysis of spiraling columnar critical convection in
a rapidly rotating spherical shell. Fluid Dyn. Res., 42(5):055501, 2010.

[50] F.M. Al-Shamali, M.H. Heimpel, and J.M. Aurnou. Varying the spherical shell geometry
in rotating thermal convection. Geophys. Astrophys. Fluid Dyn., 98(2):153–169, 2004.

53



[51] P.H. Roberts. On the thermal instability of a rotating-fluid sphere containing heat
sources. Phil. Trans. R. Soc. Lond. A, 263(1136):93–117, 1968.

[52] T. Nakajima and M. Kono. Effect of helicity on the efficiency of laminar kinematic
dynamos. J. Geomag. Geoelectr., 45(11-12):1575–1589, 1993.

[53] P.H. Roberts and G. Schubert. Theory of the geodynamo. Treatise on Geophysics
(Amsterdam: Elsevier), vol. 8:57–90, 2015.

[54] K.M. Soderlund, E.M. King, and J.M. Aurnou. The influence of magnetic fields in
planetary dynamo models. Earth Planet. Sci. Lett., 333:9–20, 2012.

[55] V.C.A. Ferraro. The Non-uniform Rotation of the Sun and its Magnetic Field. Mon.
Not. R. Astr. Soc., 97(6):458–472, 1937.

[56] F. Takahashi, M. Matsushima, and Y. Honkura. Dynamo action and its temporal varia-
tion inside the tangent cylinder in mhd dynamo simulations. Phys. Earth Planet. Inter.,
140(1-3):53–71, 2003.

[57] E. Grote, F.H. Busse, and A. Tilgner. Regular and chaotic spherical dynamos. Phys.
Earth Planet. Inter., 117(1-4):259–272, 2000.

[58] K. Hori, J. Wicht, and U.R. Christensen. The effect of thermal boundary conditions on
dynamos driven by internal heating. Phys. Earth Planet. Inter., 182(1-2):85–97, 2010.

[59] S. Schmitz and A. Tilgner. Transitions in turbulent rotating rayleigh-bénard convection.
Geophys. Astrophys. Fluid Dyn., 104(5-6):481–489, 2010.

[60] L. D. Landau and E.M. Lifshitz. Fluid mechanics 2nd edn. (Course of Theoretical
Physics)(Oxford: Pergamon), 6:p 539, 1987.

[61] F. Takahashi. Implementation of a high-order combined compact difference scheme
in problems of thermally driven convection and dynamo in rotating spherical shells.
Geophys. Astrophys. Fluid Dyn., 106(3):231–249, 2012.

[62] K. Hori, J. Wicht, and U.R. Christensen. The influence of thermo-compositional bound-
ary conditions on convection and dynamos in a rotating spherical shell. Phys. Earth and
Planet. Inter., 196:32–48, 2012.

[63] F.H. Busse. Convective flows in rapidly rotating spheres and their dynamo action. Phys.
fluids, 14(4):1301–1314, 2002.

[64] F.H. Busse and R. Simitev. Dynamos driven by convection in rotating spherical shells.
Astron. Nachrichten: Astronomical Notes, 326(3-4):231–240, 2005.

[65] M.H. Heimpel, J.M. Aurnou, F.M. Al-Shamali, and N.G. Perez. A numerical study
of dynamo action as a function of spherical shell geometry. Earth Planet. Sci. Lett.,
236(1-2):542–557, 2005.

[66] A. Sakuraba. A jet-like structure revealed by a numerical simulation of rotating spherical-
shell magnetoconvection. J. Fluid Mech., 573:89, 2007.

[67] E. Grote, F.H. Busse, and A. Tilgner. Convection-driven quadrupolar dynamos in ro-
tating spherical shells. Phys. Rev. E, 60(5):R5025, 1999.

54



Appendix

Toroidal and poloidal vector field

In this thesis, the unknown vector was expanded with toroidal and poloidal components. In
chapter 2, the velocity was represented by using a poloidal scalar, U , and a toroidal scalar,
W , as a form of u⃗ = ∇⃗ × (∇⃗ × Ur⃗) + ∇⃗ ×Wr⃗. In a system of spherical coordinates (r, θ, ϕ),
the components of the poloidal and toroidal flows are:

Ur =
L2U

r
, Uθ =

1

r

∂2(rU)

∂θ∂r
, Uϕ =

1

r sin θ

∂2(rU)

∂ϕ∂r

Wr = 0, Wθ =
1

sin θ

∂W

∂ϕ
, Wϕ = −∂W

∂θ
.

The curl of the velocity, i.e. vorticity, ω⃗, is represented as

ω⃗ = ∇⃗ × u⃗ = ∇⃗ × [∇⃗ × (∇⃗ × Ur⃗)] + ∇⃗ × (∇⃗ ×Wr⃗)

= ∇⃗ × [−∇2(Ur⃗)] + ∇⃗ × (∇⃗ ×Wr⃗)

= ∇⃗ ×
[(

−1

r

∂2(rU)

∂r2
+

L2U

r2

)
r⃗

]
+ ∇⃗ × (∇⃗ ×Wr⃗) .

In chapter 3, the expansion is a little difference from chapter 2: u⃗ = ∇⃗× (∇⃗×Ue⃗r)+ ∇⃗×
We⃗r and B⃗ = ∇⃗ × (∇⃗ × Se⃗r) + ∇⃗ × T e⃗r. In a system of spherical coordinates (r, θ, ϕ), the
components of the poloidal and toroidal magnetic fields are:

Sr =
L2S

r2
, Sθ =

1

r

∂2S

∂θ∂r
, Sϕ =

1

r sin θ

∂2S

∂ϕ∂r

Tr = 0, Tθ =
1

r sin θ

∂T

∂ϕ
, Tϕ = −1

r

∂T

∂θ
,

and the curl of the magnetic field, i.e. electric current, has a form as

∇⃗ × B⃗ = ∇⃗ ×
[(

−∂2S

∂r2
+

L2S

r2

)
e⃗r

]
+ ∇⃗ × (∇⃗ × T e⃗r) .

Spherical harmonics

The scalars, U , W , S and T , and composition, ξ, are expanded in spherical harmonics, Y mc,s
l :

for example,
U(r, θ, ϕ, t) = U(r, t)Y mc,s

l (θ, ϕ) .
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Y mc,s
l are defined in this thesis as

Y mc
l (θ, ϕ) = Pm

l (cos θ) cosmϕ

Y ms
l (θ, ϕ) = Pm

l (cos θ) sinmϕ ,

where Pm
l is the normalized associated Legendre function:∫ π

0
Pm
l (cos θ)Pm

l (cos θ) sin θdθ = 1 .

Two functions of spherical harmonics are orthogonal when integrated over the surface of a
sphere: ∫ 2π

0
Y m1c,s
l1

(θ, ϕ)Y m2c,s
l2

(θ, ϕ) sin θdθdϕ = δl1l2δm1m2nm1∫ 2π

0
Y mc,s
l (θ, ϕ)Y ms,c

l (θ, ϕ) sin θdθdϕ = 0 ,

where nm1 = (1 + δm1,0)π. We use the identity

L2Y
mc,s
l = l(l + 1)Y mc,s

l .

Basic state of composition

The unknown variation often separates here into basic state of hydrostatic and its pertur-
bation. In terms of composition (or temperature), the governing equation of the basic state
is

κ∇2ξo + σ = 0 ,

where κ is the compositional diffusivity, and σ is the rate of heating by source. When we
assume that ξo is homogeneous on a spherical surface, the equation is rewritten as

1

r2
∂

∂r

(
r2
∂ξo
∂r

)
= −σ

κ
,

and then
∂ξo
∂r

= −1

3

σ

κ
r +

C

r2
,

where C is a integration constant.
For internal heating case, C is often negligible, and the radial gradient of ξo is

∂ξo
∂r

= −1

3

σ

κ
r

≡ −βr

The flux at outer boundary is the largest in the spherical system.
Another case is differential heating of no compositional source, thus

∂ξo
∂r

=
C

r2
.
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The boundary conditions in this case is often ξo = ξ1 at the inner boundary (r = Ri) and
ξo = ξ1 +∆ξo at the outer boundary (r = Ro). Thus, the flux is rewritten as

∂ξo
∂r

= −∆ξo
RiRo

r2
,

and has the maximum at the inner boundary.
When we consider only the compositional convection in the Earth, the flux is often zero

at the core-mantle boundary. The boundary conditions are dξo/dr = −hi(< 0) at r = Ri
and dξo/dr = 0 at r = Ro, then the compositional flux of the basic state is represented as

∂ξo
∂r

=
R2
i hi

R3
o −R3

i

(
r − R3

o

r2

)
.

In the thermal convection by removal from mantle convection and the compositional con-
vection in the Ganymede, the flux is supplied from the outer boundary. The boundary con-
ditions are dξo/dr = 0 at r = Ri and dξo/dr = −ho(< 0) at r = Ro, then the compositional
(or thermal) flux of the basic state is represented as

∂ξo
∂r

= − R2
oho

R3
o −R3

i

(
r − R3

i

r2

)
.

The radial distribution is shown in Figure 4.1, in which the radial ratio is set up at 0.2,
and the Prandtl number is one as an example.

Figure 4.1: Radial gradient of compositional basic state, dξo/dr The black solid line is the compositional flux
in the inertial heating case.; the grey solid line is in the differential heating case.; the black broken line is in
the bottom-up case.; the grey broken line is in the top-down case.
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Linear stability analysis

Flow patterns at onset

In chapter 2, we shows flow patterns in the bottom-up and top-down type convection at
Ek = 5× 10−5 as the examples. Here, flow patterns in all the cases are showed in following
figures.

(a) (b) (c) (d)

Figure 4.2: Flow patterns in the bottom-up cases, calculated at E−1
k = 1000, 2000 and 3000 from top to

bottom. The figures show that (a) rotating-axial vorticity in the equatorial plane, (b), (c) and (d) rotating-
axial helicity, the azimuthal component of the velocity, and the flow vector in a meridional cross section
through the middle of the cyclone.
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(a) (b) (c) (d)

Figure 4.3: Same as Figure 4.2 but at E−1
k = 4000, 5000, 6000, and 7000 from top to bottom.
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(a) (b) (c) (d)

Figure 4.4: Same as Figure 4.2 but at E−1
k = 8000, 9000, 10000, and 11000 from top to bottom.
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(a) (b) (c) (d)

Figure 4.5: Same as Figure 4.2 but at E−1
k = 12000, 13000, 14000, and 15000 from top to bottom.
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(a) (b) (c) (d)

Figure 4.6: Same as Figure 4.2 but at E−1
k = 16000, 17000, 18000, and 19000 from top to bottom.
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(a) (b) (c) (d)

Figure 4.7: Same as Figure 4.2 but at E−1
k = 1000, 2000 and 3000 in the top-down cases in from top to

bottom.
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(a) (b) (c) (d)

Figure 4.8: Same as Figure 4.2 but at E−1
k = 4000, 5000, 6000, and 7000 in the top-down cases from top to

bottom.
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(a) (b) (c) (d)

Figure 4.9: Same as Figure 4.2 but at E−1
k = 8000, 9000, 10000, and 11000 in the top-down cases from top

to bottom.
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(a) (b) (c) (d)

Figure 4.10: Same as Figure 4.2 but at E−1
k = 12000, 13000, 14000, and 15000 in the top-down cases from

top to bottom.
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(a) (b) (c) (d)

Figure 4.11: Same as Figure 4.2 but at E−1
k = 16000, 17000, 18000, and 19000 in the top-down cases from

top to bottom.

67



Kinetic energy budget

In chapter 2, we shows kinetic energy budget in the bottom-up and top-down type convection
at Ek = 5 × 10−5 as the examples. Here, kinetic energy budget in all the cases are showed
in following figures.

−3000

−2000

−1000

0

1000

2000

3000

m
ag

ni
tu

de

0.00 0.25 0.50 0.75 1.00 1.25

Cylindrically−radius

Rarξur

−∇ ι(pui)

−Dk

−∇ ιΦι

−3000

−2000

−1000

0

1000

2000

3000

m
ag

ni
tu

de

0.00 0.25 0.50 0.75 1.00 1.25

Cylindrically−radius

Rarξur

−∇ ι(pui)

−Dk

−∇ ιΦι

(a) (b)

Figure 4.12: Cylindrically radial distributions of the axially and zonally averaged terms of the kinetic energy
equation, calculated at E−1

k = 1000 (a) and 2000 (b) in the bottom-up cases. Black solid line: generation
term of kinetic energy by buoyancy force; grey solid line: term of dynamic energy flux convergence; black
broken line: viscous dissipation term; grey broken line: term of viscous energy flux convergence.
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Figure 4.13: Same as Figure 4.12 but at E−1
k = 3000 (a) and 4000 (b) in the bottom-up cases.
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Figure 4.14: Same as Figure 4.12 but at E−1
k = 5000 (a) and 6000 (b) in the bottom-up cases.
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Figure 4.15: Same as Figure 4.12 but at E−1
k = 7000 (a) and 8000 (b) in the bottom-up cases.
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Figure 4.16: Same as Figure 4.12 but at E−1
k = 9000 (a) and 10000 (b) in the bottom-up cases.
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Figure 4.17: Same as Figure 4.12 but at E−1
k = 11000 (a) and 12000 (b) in the bottom-up cases.
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Figure 4.18: Same as Figure 4.12 but at E−1
k = 13000 (a) and 14000 (b) in the bottom-up cases.
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Figure 4.19: Same as Figure 4.12 but at E−1
k = 15000 (a) and 16000 (b) in the bottom-up cases.

71



−12000

−9000

−6000

−3000

0

3000

6000

9000

12000

15000

m
ag

ni
tu

de

0.00 0.25 0.50 0.75 1.00 1.25

Cylindrically−radius

Rarξur

−∇ ι(pui)

−Dk

−∇ ιΦι

−12000

−9000

−6000

−3000

0

3000

6000

9000

12000

15000

m
ag

ni
tu

de

0.00 0.25 0.50 0.75 1.00 1.25

Cylindrically−radius

Rarξur

−∇ ι(pui)

−Dk

−∇ ιΦι

(a) (b)

Figure 4.20: Same as Figure 4.12 but at E−1
k = 17000 (a) and 18000 (b) in the bottom-up cases.
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Figure 4.21: Same as Figure 4.12 but at E−1
k = 19000 (a) in the bottom-up case.
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Figure 4.22: Same as Figure 4.12 but at E−1
k = 1000 (a) and 2000 (b) in top-down cases.
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Figure 4.23: Same as Figure 4.12 but at E−1
k = 3000 (a) and 4000 (b) in top-down cases.
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Figure 4.24: Same as Figure 4.12 but at E−1
k = 5000 (a) and 6000 (b) in top-down cases.
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Figure 4.25: Same as Figure 4.12 but at E−1
k = 7000 (a) and 8000 (b) in top-down cases.
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Figure 4.26: Same as Figure 4.12 but at E−1
k = 9000 (a) and 10000 (b) in top-down cases.
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Figure 4.27: Same as Figure 4.12 but at E−1
k = 11000 (a) and 12000 (b) in top-down cases.
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Figure 4.28: Same as Figure 4.12 but at E−1
k = 13000 (a) and 14000 (b) in top-down cases.
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Figure 4.29: Same as Figure 4.12 but at E−1
k = 15000 (a) and 16000 (b) in top-down cases.
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Figure 4.30: Same as Figure 4.12 but at E−1
k = 17000 (a) and 18000 (b) in top-down cases.
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Figure 4.31: Same as Figure 4.12 but at E−1
k = 19000 (a) in top-down case.
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