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Abstract

The violation of charged conjugate and parity transformation symmetry (CP-
violation) beyond the Standard Model is considered to be essential to explain the
asymmetry between matter and antimatter in the current universe. Under the
CPT theorem, CP-violation is equal to the violation of time-reversal symmetry
(T-violation). Therefore, a number of experiments have been conducted to search
for T-violation, and the current strongest limit has been obtained by searching for
neutron electric dipole moment (nEDM).

Neutron-induced compound nuclei are expected to be sensitive to T-violation,
and it is theoretically predicted that the sensitivity is proportional to a factor κ(J)
which depends on the mixing angle ϕ of the 1/2 and 3/2 components of the total
angular momentum of the neutron in a p-wave resonance. However, the ϕ has
not yet been measured for most nuclei. It is predicted that the p-wave resonance
shape depends on both the ϕ and the γ-ray emission angle (θγ) with respect to
the direction of the incident neutron. The ϕ can be determined by measuring the
angular dependence of the p-wave resonance shape.

This dissertation reports a measurement result of the angular dependence and
an analysis result determining the ϕ and the κ(J) for 117Sn. The experiment
was performed using a pulsed neutron beam and a germanium detector assembly
at Japan Proton Accelerator Research Complex (J-PARC) with the time-of-flight
method. The angular dependence of the 1.33 eV p-wave resonance was observed
in the direct transition from the compound state of 118Sn to the ground state.
The asymmetry value ALH was defined to evaluate the angular dependence as
ALH = (NL − NH)/(NL + NH), where NL(H) is the integrated values in the lower
(higher) energy region of the resonance. The result was obtained to be ALH =
(0.473±0.057) cos θγ+(0.091±0.019). Two results obtained by the analysis based
on the theoretical formalism are

ϕ = (10.3+6.4
−7.2)

◦ and |κ(J)| = 0.42+0.05
−0.06

or

ϕ = (−80.8+7.1
−6.4)

◦ and |κ(J)| = 2.6+6.8
−1.3.

T-violation in the compound nuclear reaction will be searched by irradiating
a polarized neutron beam into a polarized target and measuring a T-odd term
in the neutron forward scattering amplitude. Assuming that the polarization of
the neutron beam and 117Sn target with a thickness of 5 cm is 85% and 20%, the
measurement time to improve the current upper limit for T-violation by the nEDM
search was estimated to be approximately 10 days in the case of ϕ = −80.8◦.
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Chapter 1

Introduction

1.1 Overview of this dissertation

It is theoretically predicted that neutron-induced compound states would be highly
sensitive to the violation of time-reversal symmetry (T-violation) due to an en-
hancement mechanism. The sensitivity to T-violation depends on a parameter
ϕ. In order to determine the ϕ value precisely, the measurement was performed
at Japan Proton Accelerator Research Complex (J-PARC). This dissertation de-
scribes that the determination of the ϕ value and the possibility of a T-violation
search experiment using the compound nuclear reaction of 117Sn.

In Chapter 1, the history of discrete symmetry violation and the current status
of the T-violation search are described. Chapter 2 describes a theoretical predic-
tion of the enhancement mechanism for T-violation in compound nuclear reactions.
The ϕ value can be determined by measuring the angular distribution of γ rays
emitted from the neutron-induced compound states. In Chapter 3, the theoreti-
cal formalism of the angular distribution and the differences between a previous
study and this study are described. Chapter 4 describes the experimental setup,
characteristics of a neutron beam and detectors, and a data acquisition system.
Measurement data and targets used in the measurements are described in Chap-
ter 5. An analysis method is explained in Chapter 6 and the ϕ value is determined.
Chapter 7 compares this study with the previous study and discusses the exper-
imental sensitivity of T-violation and future prospects. Chapter 8 concludes this
dissertation.

1.2 Discrete symmetry violation

Before the 1950s, physical law was considered invariant to a particular direction
or location. The invariance of physical systems with respect to transformation
leads to a conservation law, which is known as Noether’s theorem. For example,
invariances with respect to spatial translation and rotation give the conservation
laws of linear momentum and angular momentum, respectively. In this case, linear
momentum p and angular momentum L satisfy [p,H] = 0 and [L,H] = 0, where
H is a Hamiltonian in the system. This idea can be applied to discrete transfor-
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mations: parity (P) and time-reversal (T) transformations. Parity transformation
indicates the flip in the sign of a spatial coordinate. Time-reversal transformation
is the reversal of the direction of time. Invariance of the physics law to parity and
time-reversal transformation also requires [P,H] = 0 and [T,H] = 0. In addition,
charge conjugation (C) transformation is defined in particle physics as the change
of a particle into its antiparticle. These discrete transformations were believed to
have symmetries to the physical law.

In 1956, T. D. Lee and C. N. Yang proposed a possibility of P-violation in
the weak interaction as a solution of the θ-τ puzzle [1]. In 1957 [2], C. S. Wu
et al. experimented to verify this postulate by measuring the angular distribution
of electrons from polarized 60Co via β decay. This experiment established that
electrons are likely to emit in the direction opposite to the spin of 60Co. This
asymmetric distribution to the spin direction is direct evidence of P-violation.

In 1964, CP-violation in the weak interaction was observed in the decay process
of neutral kaon by J. H. Christenson et al. [3]. The two types of kaon K1 and K2

have different charge-conjugation and parity (CP) eigenstates. K1 decays to two
pions (π0π0 and π+π−) and K2 decays to three pions (π0π0π0 and π0π+π−). Two
more types of kaon KL and KS were also observed. They have different lifetimes:
τL = 5.2× 10−8 s and τS = 8.9× 10−11 s. KL and KS were believed to be exactly
K2 and K1, respectively. However, J. H. Christenson et al. discovered that KL

decays to two pions with a branching ratio of 2.2× 10−3. This means that KL and
KS are the mixtures of two different CP eigenstates.

In addition, CP-violation was also observed in the decay process of B meson
at Belle experiment [4] and BaBar experiment [5]. These experiments are known
as the B-factories because the electrons collide with the positrons at the center-
of-mass energy equal to the mass of Υ(4S) which decays to BB̄ pairs. In the Belle
experiment, B and B̄ mesons can fly longer than the value of cτ , where c is the
speed of light and τ is the average lifetime of the B meson. This is because their
lifetimes in the observer’s rest frame are increased by the Lorentz boost factor,
which is caused by the asymmetric energy collision. The difference in decay rates
between B and B̄ mesons was observed by measuring the difference of the average
flight lengths between them.

1.3 CP-violation in the Standard Model

The observed CP-violation can be explained by the Standard Model (SM) of par-
ticle physics. In the SM, there are two possible sources of CP-violation. One is
the complex phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [6]. The
charged current by the W boson exchange is described as

jµ = (ū, c̄, t̄)
γµ(1− γ5)

2
VCKM

ds
b

 , (1.1)

where γµ is the gamma matrix, γ5 = iγ0γ1γ2γ3. VCKM is a 3 × 3 unitary matrix
which can be parameterized by three mixing angles and the CP-violating complex
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phase and given as

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


=

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
s13e

iδ 0 c13

 c12 s12 0
−s12 c12 0
0 0 1


=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12c23e
iδ −c12c23 − s12s23s13e

iδ s23c13
s12c23 − c12c23s13e

iδ −c12c23 − s12c23s13e
iδ c23c13

 , (1.2)

where sij = sin θij, cij = cos θij, and δ is the phase responsible for CP-violating
phenomena in flavor-changing processes in the SM. The values of these parameters
are s12 = 0.22650 ± 0.00048, s13 = 0.00361+0.00011

−0.00009, s23 = 0.04053+0.00083
−0.00061, and

δ = 1.196+0.045
−0.043, respectively [7].

The other CP-violating source is the θ term in the Quantum Chromodynamics
(QCD) which describes the strong interaction of colored quarks and gluons. The
Lagrangian of QCD is given by

LQCD =
∑
q

ψ̄q,a(iγ
µ∂µδab − gsγ

µtCabAC
µ −mqδab)ψq,b

− 1

4
FA
µνF

Aµν +
g2sθ

32π2
FA
µνF̃

Aµν , (1.3)

where the ψq,a are quark-field spinors for a quark flavor q with its mass mq, and
an index a runs from a = 1 to Nc = 3 which indicates the three colors. The AC

µ

is the gluon field and an index C runs from 1 to N2
c − 1 = 8 which indicates eight

types of gluons. The tCab corresponds to eight 3× 3 matrices which are defined as
Gell-Mann matrices. The field tensor FA

µν is given by

FA
µν = ∂µAA

ν − ∂νAA
µ − gsfABCAB

µAC
µ (1.4)[

tA, tB
]

= ifABCt
C (1.5)

F̃Aµν =
1

2
ϵµνσρF

Aσρ, (1.6)

where the fABC are the structure constants of the SU(3) group and ϵµνσρ is the
antisymmetric Levi-Civita symbol. The 3rd term of Eq. (1.3) corresponds to the
CP-violating term in the QCD Lagrangian. However, the value of θ is limited to
|θ| ≲ 10−10 by experimental results. This indicates that CP-violation in the strong
interaction is very small, and this is called the strong CP problem.

1.4 Asymmetry between matter and antimatter

In the early stages of the universe with a high-density and high-energy state, it
was believed that particles and antiparticles maintained an equilibrium state by
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repeating pair productions and annihilations, and the number of particles was the
same as that of antiparticles. However, the matter-antimatter asymmetry indicates
an imbalance between baryonic and antibaryonic matter in the currently observed
universe. The asymmetry between baryons and antibaryons is evaluated using the
parameter η as

η ≡ nB − nB̄

nB + nB̄

=
nB − nB̄

nγ

∼ 10−9, (1.7)

where nB and nB̄ are number densities of baryons and antibaryons, respectively.
The nγ is the number density of photons. On the other hand, the theoretical
estimation from the SM is done as follows [8];

nB − nB̄

nB + nB̄

∼ 10−18. (1.8)

This large discrepancy is one of the most important problems in particle physics
and cosmology and implies that the SM cannot explain the current matter-dominant
universe. In 1967, A. Sakharov proposed three conditions which are critical for
the explanation of the matter-dominant universe. The three ”Sakharov conditions”
are [9]:

• Baryon number violation.

• C- and CP-violation.

• Interaction outside thermal equilibrium.

The 2nd condition suggests that there is a possibility of unknown CP-violation
sources beyond the SM. This implies the existence of unknown T-violation sources
under the CPT theorem [10,11].

1.5 CP-violation in low-energy scale

Multiple experimental searches for T-violation have been conducted in the world.
Figure 1.1 shows the hierarchy of scales between the CP-odd sources and three
generic classes of observable electric dipole moments (EDMs). The fundamental
CP-odd phase appears several EDMs through different paths in low-energy scale.
This idea is based on the effective field theory (EFT).

The reason why a non-zero value of the EDM indicates the existence of T-
violation is explained as follows. The Hamiltonian of interactions between a par-
ticle and an electromagnetic field can be written using a magnetic moment µ and
an EDM d as

H = −µ ·B − d ·E, (1.9)

where B and E are a magnetic field and an electric field, respectively. Under the
T transformation, B, E, µ, and d are transformed as

B → −B,E → E,µ → −µ,d → −d. (1.10)
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Figure 1.1: Schematic plot of the hierarchy of scales between the CP-odd sources
and three generic classes of observable EDMs. The dashed lines indicate generically
weaker dependencies [12].

Therefore, the Hamiltonian is transformed in the T-transformed coordinate as

H = −µ ·B + d ·E. (1.11)

If the value of d is non-zero, the Hamiltonian H will change by the T transforma-
tion. This means that a non-zero EDM value of the particle implies the existence
of T-violation.

The neutron EDM (nEDM) has been studied for a long time. Because it is a
simpler system than massive atoms, it is relatively easy to compare the experimen-
tal results with the theoretical calculations. In addition, nEDM search is expected
to be sensitive to supersymmetric baryogenesis in the minimal supersymmetric
standard model (MSSM). As an example, the nEDM search for O(10−27) e · cm
can exclude MSSM more effectively than collider experiments as shown in Fig. 1.2.
However, it is hard to obtain sufficient statistics due to the short lifetime of neu-
trons and the difficulty in generating neutrons. Figure 1.3 shows a historical plot of
the upper limit of nEDM. The current upper limit was obtained by the experiment
conducted at Paul Scherrer Institute (PSI) as

|dn| < 1.8× 10−26 e · cm (90% C.L.). (1.12)

The error of this experimental result is largely due to statistical errors. The de-
velopment of technology to increase the number of neutrons is essential to further
improve accuracy.

One of the different methods to search for T-violation employs a neutron-
induced compound state. The compound nucleus model was introduced by N. Bohr
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Figure 1.2: Sensitivity of EDMs and LHC to supersymmetric baryogenesis in the
minimal supersymmetric standard model [13]. The horizontal axis is the gaugino
mass M1 and the vertical axis is the supersymmetric mass µ. The red region was
excluded by the Large Electron-Positron Collider (LEP) experiment. The limit
of electron EDM excludes the cyan region. The blue bands lead to the observed
baryon asymmetry η. Large Hadron Collider (LHC) and nEDM searches will
probe the region to the left of the green-dashed lines and the black-dashed lines,
respectively.

1950 1960 1970 1980 1990 2000 2010 2020 2030

Publication year

27−10

26−10

25−10

24−10

23−10

22−10

21−10

20−10

19−10

18−10

U
pp

er
 li

m
it 

of
 n

E
D

M
 [e

cm
]

Figure 1.3: History of the upper limit of nEDM [14–28].
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in 1936 [29]. When a neutron irradiates into a target nucleus, the energy of the
incident neutrons is distributed to each nucleon in the nucleus, and the nucleons
repeatedly collide with each other. The energy exchanged between the nucleons is
small, and it takes time of approximately 10−16 seconds for the excess energy to be
released. This time is much longer than that of approximately 10−22 seconds that
a neutron with the energy of a few MeV takes to pass through a nucleus without
interactions. Such long-excited states can be treated as a type of nucleus with a
lifetime, which allows defining internal degrees of freedom such as spin.

The compound nuclear reaction is sensitive to the coupling constant of pion
exchange interaction between nucleons. Therefore, experimental searches using
the compound nuclear reaction are sensitive to the T-violating coupling constant
ḡπNN shown in Fig. 1.1. The T-violating cross section in the compound nuclear
reaction (∆σT) is theoretically estimated as follows [30];

∆σT
2σtot

=
−0.185 b

2σtot
×
(
ḡ(0)π + 0.26ḡ(1)π

)
. (1.13)

Here, ḡ
(0)
π and ḡ

(1)
π are isoscalar coupling constant and isovector coupling constant

with T-violation, respectively. The variable σtot indicates the total cross section
in the compound nuclear reaction. On the other hand, the value of nEDM is
estimated using T-violating isotensor coupling constant ḡ

(2)
π as [31]

dn ≃ 0.14
(
ḡ(0)π − ḡ(2)π

)
. (1.14)

This implies that the T-violation search using compound nuclear reactions can
complementarily explore the parameter space of coupling constants using a differ-
ent method than nEDM as shown in Fig. 1.4.

Figure 1.4: Relationship between nEDM and compound state in ḡ
(0)
π -ḡ

(2)
π plane.

The red and blue bands are based on the limits obtained from experiments on
nEDM and using the compound state, respectively
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Chapter 2

Discrete symmetry violation in a
compound nucleus

In this chapter, enhancement mechanisms of P-violation and T-violation in the
compound nuclear reactions are explained. Moreover, an experimental approach
to T-violating interaction is introduced.

2.1 Parity violation

2.1.1 P-violation in proton-proton scattering

The strong interaction is a dominant process in the nucleon-nucleon interactions.
The parity non-conserving (PNC) effect which is caused by the weak interaction is
very small. The relative magnitude of the weak interaction to the strong interaction
on the MeV scale is approximately estimated to be αw/αs ∼ 10−7, where αw and αs

are the strength parameters for the weak and the strong interactions, respectively.
Proton-proton scattering is a fundamental process in nucleon-nucleon interactions.
The PNC effect in the proton-proton scattering has been observed by measuring
the helicity dependence of the total cross section using a polarized proton beam
and an unpolarized proton target. The magnitude of the PNC effect is described
as the longitudinal asymmetry AL,pp as

AL,pp =
σ+
pp − σ−

pp

σ+
pp + σ−

pp

, (2.1)

where σ+
pp and σ−

pp are the total cross sections for positive- and negative-helicity
protons on the target, respectively. The value of the longitudinal asymmetry AL,pp

is the ratio of the PNC component to the parity-conserving (PC) component. It has
been measured at several incident proton energies and the results are summarized
in Table 2.1.

This P-violating effect is theoretically explained as follows. The total amplitude
f consists of PC part (fPC) and PNC part (fPNC) as

f = fPC + fPNC. (2.2)
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Table 2.1: Previous results of P-violation in p-p scattering.

Proton energy [MeV] AL,pp Reference
15 −(1.7± 0.8)× 10−7 [32]
45 −(2.3± 0.89)× 10−7 [33]
45 −(1.3± 2.3)× 10−7 [34]
221 (0.84± 0.29± 0.17)× 10−7 [35]
800 (2.4± 1.1± 0.1)× 10−7 [36]

2× 105 (5± 17± 20)× 10−6 [37]

The absolute square of f is to be observed in an experiment as

|f |2 = |fPC + fPNC|2

= |fPC|2
(
1 +

fPCf
∗
PNC + f ∗

PCfPNC

|fPC|2
+

|fPNC|2

|fPC|2

)
. (2.3)

The longitudinal asymmetry AL,pp corresponds to the second term in Eq. (2.3)
and the size of fPNC to that of fPC is roughly given by the ratio of PC and PNC
light-meson-exchange potentials (VPC and VPNC):

AL,pp ≈ fPCf
∗
PNC + f ∗

PCfPNC

|fPC|2
≈ |fPNC|

|fPC|

∼ VPNC

VPC
∼ GFm

2
π ∼ 2× 10−7, (2.4)

where GF and mπ are the Fermi coupling constant and the pion mass, respectively.
This theoretical estimation is consistent with the experimental results measured on
the MeV scale. However, the order of AL,pp on the GeV scale is larger than that on
the MeV scale, as αs is smaller due to the nature of running coupling. G. Nardulli
et al. estimated that the order of AL,pp is O(10−6) on the GeV scale [38, 39].

2.1.2 Enhancement of P-violation in a compound nucleus

In several neutron-induced compound nuclei, P-violation has been observed by
measuring the helicity dependence of the neutron-capture cross section using a
polarized neutron beam and an unpolarized target. The P-violation was evaluated
as a longitudinal asymmetry AL as

AL =
σ+
cap − σ−

cap

σ+
cap + σ−

cap

, (2.5)

where σ+
cap and σ−

cap are the neutron-capture cross sections of the target nucleus
for positive- and negative-helicity neutrons, respectively. Figure 2.1 shows the
experimental results of the longitudinal asymmetry AL in various nuclei. These
results imply that the P-violation in nucleon-nucleon interactions is enhanced by
up to 106 times in neutron-induced compound nuclei. This large-enhanced P-
violation has been observed only in p-wave resonances located at the tail of s-wave
resonances as shown in Fig. 2.2.
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Figure 2.2: Illustration of a p-wave resonance located at the tail of an s-wave
resonance. The large enhanced P-violation has been observed at such p-wave
resonances.
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The enhancement phenomena can be theoretically explained by interference
between amplitudes of the p-wave resonance and a neighboring s-wave resonance
(s-p mixing) as follows. The angular momentum of the incident neutron j is given
as

j = l + s, (2.6)

where l is the orbital angular momentum of the incident neutrons and s is its spin.
The angular momentum in a p-wave resonance is either j = 1/2 or j = 3/2, while
the angular momentum in an s-wave resonance is only allowed for j = 1/2. The
neutron width of an s-wave resonance Γn

s and that of a p-wave resonance Γn
p can

be written as

Γn
s = Γn

s,j=1/2 and Γn
p = Γn

p,j=1/2 + Γn
p,j=3/2, (2.7)

where Γn
s,j=1/2 is the component of j = 1/2 in an s-wave resonance, and Γn

p,j=1/2

and Γn
p,j=3/2 are the components of j = 1/2 and j = 3/2in a p-wave resonance,

respectively. When the total angular momentum of the compound state J is
the same in an s-wave and a p-wave resonance, the two opposite parity states of
the incident neutrons, the s-wave state and j = 1/2 part of the p-wave state, can
interfere with each other via the weak interaction. Since nucleons in the compound
states have a much longer time to interfere with each other than in a direct process,
the interference effect between two opposite-parity states can be much larger in
the compound states in a direct process.

In the s-p mixing model, the longitudinal asymmetry AL at the p-wave reso-
nance can be described as

AL ≃ − 2xW

Ep − Es

√
Γn
s

Γn
p

, (2.8)

where Es and Ep are the resonance energies of the s- and p-wave resonances,
respectively. The individual matrix element of the weak P-violating interaction
between the s- and p-wave states is denoted as W . Here, x is given as

x =

√
Γn
p,j=1/2

Γn
p

. (2.9)

On the other hand, the ratio of the j = 3/2 part to the neutron width of the

p-wave resonance can be written as y =
√

Γn
p,j=3/2/Γ

n
p, and x and y satisfy

x2 + y2 = 1, (2.10)

because of the relation of Γn
p = Γn

p,j=1/2 + Γn
p,j=3/2. Then a mixing angle ϕ can be

defined, and x and y can be written as

x = cosϕ and y = sinϕ. (2.11)
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Two types of enhancement mechanisms which are considered to contribute to
the large magnitude of AL. One of them is “dynamical enhancement” and the
other is “structural enhancement”.

The “dynamical enhancement” originates from the statistical nature of the
compound states. The wave functions of s- and p-wave states can be described as
the sum of many single particle-hole states in the nuclear shell model calculated
by the following equations:

|s⟩ =
N∑
i

ai|i⟩ and |p⟩ =
N∑
j

bj|j⟩, (2.12)

where |i⟩ and |j⟩ are the wave functions of the single particle-hole states. The
magnitude of coefficients ai and bj are on the order of ∼ 1/

√
N as a result of

the normalization of the wave functions |s⟩ and |p⟩. The number of states N is
estimated as

N ∼ ∆E

D
, (2.13)

where ∆E is the energy required for one nucleus to excite from the ground state,
and D is the average distance between compound states. The typical values of
∆E ∼ 106 eV and D ∼ 10 eV make N to be the order of 105. Therefore, the size
of the weak matrix element can be estimated as

|W | = |⟨s|HPNC|p⟩|

=

∣∣∣∣∣
N∑
i,j

aibj⟨i|HPNC|j⟩

∣∣∣∣∣
∼ ⟨i|HPNC|j⟩

N
×
√
N. (2.14)

Thus, the factor 2W/(Ep − Es) in Eq. (2.8) can be written as

2W

Ep − Es

∼ |W |
D

∼ ⟨i|HPNC|j⟩
∆E

×
√
N, (2.15)

where ⟨i|HPNC|j⟩/∆E is the magnitude of the P-violating effect in the single-
particle state and its order is ∼ 10−7. Equation (2.15) shows that the P-violating
effect in the compound states is enhanced compared to that in the single-particle
state by

√
N = 102 ∼ 103.

The other enhancement factor, “structural enhancement”, comes from the ratio
of the neutron widths of two compound states. The neutron width is proportional
to a factor of the centrifugal potential, so that the neutron widths of s- and p-wave
resonances are described as

Γn
s ∝ kR and Γn

p ∝ (kR)3, (2.16)
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where k is the neutron momentum, and R is the radius of the nucleus. Therefore,
the “structural enhancement” is given as√

Γn
s

Γn
p

∼ 1

kR
. (2.17)

Typical values of k ∼ 2 × 10−4 fm and R ∼ 10 fm makes the value of 1/kR to
be the order of 103. When x is the order of 1, the longitudinal asymmetry AL

can become ∼ 10−1. However, x has not been experimentally determined yet for
various nuclei.

2.2 Enhancement of T-violation in a compound

nucleus

The enhancement mechanism of P-violation described in the previous section can
be generalized to other discrete symmetry for the case that two states, having
opposite polarities under the symmetry operation, are connected on the entrance
channel into the compound states. V. P. Gudkov predicted that T-violation could
be also enhanced through the similar mechanism as the enhancement of the P-
violation in the compound states [41, 42]. The total angular momentum of the
compound state denoted by J is given as

J = l + s+ I, (2.18)

where I is the target nuclear spin. The wave function of the compound state is
described as |lsI⟩ and is transformed by the P transformation as

P̂ |lsI⟩ → (−1)l|lsI⟩. (2.19)

Equation (2.19) indicates that the eigenvalue for the P transformation is deter-
mined by the orbital angular momentum l. This indicates that the P-violating
effect is caused by interference between the two states which have different orbital
angular momentum. On the other hand, the wave function |lsI⟩ is transformed by
the time-reversal operation as

T̂ |lsI⟩ → (−1)iπSyK̂|lsI⟩, (2.20)

where K̂ is the complex conjugate matrix, and Sy is the y component of the channel
spin S described as S = s+ I 1. Equation (2.20) indicates the eigenvalue for the
time-reversal transformation is determined by the channel spin. The T-violating
effect in the compound states is caused by interference between two states which
have different channel spins. Therefore, the enhancement of T-violation can be

1The Sy is the imaginary part of the channel spin S. This notation follows that of the Pauli
matrix.
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calculated by recombining angular momenta as

|J(l, S(sI))⟩ =
∑
j

⟨⟨J(j(ls), I)|J(l, S(sI))⟩|J(j(ls), I)⟩

=
∑
j

(−1)l+s+I+J
√

(2j + 1)(2S + 1)

{
I s l
I S j

}
|J(j(ls), I)⟩.

(2.21)

Here, the partial widths of the channel spin are defined as

xS ≡

√
Γn
p(S = I − 1/2)

Γn
p

and yS ≡

√
Γn
p(S = I + 1/2)

Γn
p

, (2.22)

and they can be described as the result of the recombination as

(
xS
yS

)
=


1√

3(2I+1)

(
−
√
2I − 1 2

√
I + 1

2
√
I + 1

√
2I − 1

)(
x

y

)
(J = I − 1

2
)

1√
3(2I+1)

(
−
√
2I

√
2I + 3√

2I + 3 2
√
2I

)(
x

y

)
(J = I + 1

2
).

(2.23)

The large-enhanced P-violation at the p-wave resonance is proportional to xW ,
while the magnitude of T-violation is considered to be proportional to xSWT,
where WT is the matrix element of the T-violating interactions. The size of the
T-violating matrix element WT can be represented by converting the mixing of
different channel spins into s-p mixing and the relative size of T-violating cross
section ∆σT to the P-violating cross section ∆σP can be described as

∆σT
∆σP

=
⟨Sy|HTRIV|S ′

y⟩
⟨s|HPNC|p⟩

= κ(J)
⟨s|HTRIV|p⟩
⟨s|HPNC|p⟩

= κ(J)
WT

W
, (2.24)

where HTRIV is a Hamiltonian of time-reversal invariance violating (TRIV) inter-
actions, and κ(J) is a spin factor which can be given as a function of x and y as
follows:

κ(J) =

(−1)2I
(
1 + 1

2

√
2I−1
I+1

y
x

)
(J = I − 1

2
)

(−1)2I+1 I
I+1

(
1− 1

2

√
2I+3
I

y
x

)
(J = I + 1

2
).

(2.25)

Here, κ(J) can be rewritten as a function of the mixing angle ϕ using Eq. (2.11).
Equation (2.24) indicates that the sensitivity of the T-violating effect in the com-
pound states strongly depends on the value of ϕ. Figure 2.3 shows the ϕ dependen-
cies of the absolute values of κ(J) for 81Br, 117Sn, 131Xe, and 139La. The method
to determine the value of ϕ is explained in Chapter 3.

26



150− 100− 50− 0 50 100 150
 [deg]φ

3−10

2−10

1−10

1

10

210

310
(J

)|
κ|

Br I=3/2, J=281 

Sn I=1/2 J=1117 

Xe I=3/2 J=1131 

La I=7/2 J=4139 

Figure 2.3: Comparison of the ϕ dependence of the absolute value of κ(J) for
several nuclei.

2.3 NOPTREX project

Neutron Optics for Time Reversal Experiment (NOPTREX) collaboration aims
to realize a sensitive search for T-violation using polarized neutrons and polarized
nuclear targets which possess p-wave resonances. In this section, a measurement
principle and candidate nuclei for T-violation search are explained.

2.3.1 Measurement principle of the T-violation search

A search for the T-violating effect obtained by measuring the neutron transmission
has the advantage that T-odd effects in the final-state interaction are expected to
be negligibly small. This is because neutron propagation does not change in the
process of neutrons passing through the target.

When the polarization of the target nucleus is a pure vector polarization, the
forward scattering amplitude f can be written as

f = A′ +B′(σn · Î) + C ′(σn · kn) +D′(σn · (kn × Î)), (2.26)

where σn, kn, and Î denote the spin of incident neutrons, momentum of incident
neutrons, and spin of the target nucleus, respectively. In the case of the nucleus
with I = 1/2 and J = 1, the neutron-energy-dependent coefficient of each term in
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Eq. (2.26) is given as

A′ = − 3

8k

(
Γn
s

En − Es + iΓs/2
+

Γn
p

En − Ep + iΓp/2

)
+

3

4
as, (2.27a)

B′ =
M

4k

(
− Γn

s

En − Es + iΓs/2
+ 3

x2SΓ
n
p

En − Ep + iΓp/2

)
+
M

2
as, (2.27b)

C ′ =

√
3

4k

√
Γn
sW
√

Γn
p

(En − Ep + iΓp/2)(En − Es + iΓs/2)
(xS −

√
2yS), (2.27c)

D′ = −
√
3M

4k
xS

√
Γn
sWT

√
Γn
p

(En − Ep + iΓp/2)(En − Es + iΓs/2)
, (2.27d)

where Γs and Γp are the resonance widths of s- and p-wave resonances, respec-
tively [43]. The variable as is the potential scattering length2. The variable M is
the spin projection, and it satisfies M = ±1/2. The P-odd correlation term C ′

and the P-odd T-odd correlation term D′ can be related as

D′

C ′ ∝ κ(J)
WT

W
. (2.28)

Under the optical description for the behavior of the neutron spin in the po-
larized target, the spinors of the initial and final states denoted by Ui and Uf are
related via a density matrix S as

Uf = SUi,

S = ei(n−1)kz,

n = 1 +
2πρ

k2
f, (2.29)

where z is the thickness of the target, ρ is the number density of the material, and
k is the neutron wave number [44]. Here, S is described as

S = A+B(σn · Î) + C(σn · kn) +D(σn · (kn × Î)), (2.30)

where the coefficients can be written as

A = eiZA′
cos b,

B = eiZA′ sin b

b
ZB′,

C = eiZA′ sin b

b
ZC ′,

D = eiZA′ sin b

b
ZD′,

Z =
2πρz

k
,

b = Z
√
B′2 + C ′2 +D′2. (2.31)

2The scattering length can be calculated using the cross sections of coherent scattering and
incoherent scattering, which is described in Appendix A
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The coefficient A is the spin-independent (P-even, T-even) term corresponding to
the neutron capture cross section, and |A|2 represents the transmission of neu-
trons passing through the target. The coefficient B is the spin-dependent (P-even,
T-even) term corresponding to a neutron-spin rotation effect inside the polar-
ized target, which is called the “pseudo-magnetic effect”. The coefficient C is a
P-violating (P-odd, T-even) term which is enhanced for various nuclei. The coeffi-
cient D is a T-violating (P-odd, T-odd) term which can be enhanced in proportion
to the C term. Note that Eq. (2.30) is the formalism for the case of I = 1/2, and
tensor terms need to be added for the case of I > 1/2. The non-zero value of D
implies the discovery of T-violation in the compound states. However, the con-
tribution of the tensor terms is expected to be smaller than the term described
in Eq. (2.30). In this dissertation, the tensor terms do not be considered because
the case of 117Sn with I = 1/2 is discussed. Figure 2.4 shows a schematic view of
the measurement principle of the D term with polarized neutrons and the polar-
ized target. A coordinate system defines the beam axis as the z-axis, the vertical
direction as the y-axis, and the direction perpendicular to them as the x-axis.

Figure 2.4: Measurement principle of D term with polarized neutrons and a
polarized target.

Here, some spin-dependent observables to extract the D term are proposed.
The D term can be searched with high sensitivity by measuring the analyzing
power A and the polarization P . They are defined as

A ≡ Tr(S†σS)

Tr(S†S)
and P ≡ Tr(σS†S)

Tr(S†S)
, (2.32)

where σ is the neutron spin. When the target spin polarization is parallel to
the y axis, the observables are obtained for each direction of the neutron spin
polarization as follows.

Ax = 4(ReA∗D + ImB∗C)/|A|2, Px = 4(ReA∗D − ImB∗C)/|A|2,
Ay = 4(ReA∗B + ImC∗D)/|A|2, Py = 4(ReA∗B − ImC∗D)/|A|2,
Az = 4(ReA∗C + ImD∗B)/|A|2, Pz = 4(ReA∗C − ImD∗B)/|A|2.
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Figure 2.5 shows a simple illustration of the experimental setups for the measure-
ment of the analyzing powers and polarizations. The sum of the analyzing power
along the x-axis (Ax) and the polarization along x-axis (Px) is the most sensitive
observable, and it is given as

Ax + Px =
8ReA∗D

|A|2
. (2.33)

Since the value of D is proportional to κ(J), the value of κ(J) needs to be deter-
mined for estimating the experimental sensitivity of T-violation in the compound
states.

Figure 2.5: Combinations of observables proportional to the D term.

2.3.2 Candidate nuclei for the T-violation search

The experimental sensitivity of T-violation depends on nuclides. Therefore, suit-
able nuclei need to be selected with high sensitivity, for which the guiding principles
are as follows.

1. Large longitudinal asymmetry AL.

2. Large value of |κ(J)|.

3. Low p-wave resonance energy at which P-violation occurs.
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4. Large natural abundance ratio.

5. Spin polarization is possible.

The 3rd condition is derived from the fact that the neutron beam intensity is higher
at lower energies in the epithermal region. Generally, it is likely to be polarized
with the smaller spin. Table 2.2 summarizes the candidate nuclei for T-violation
search. The nuclei whose spin is zero are not listed in this table because they cannot
be polarized. The value of κ(J) was determined for only 139La by T. Okudaira
et al. [45]. Moreover, there is a report that polarization can be achieved using
LaAlO3 crystal with dynamic nuclear polarization (DNP) [46]. Thus, 139La is the
first candidate nucleus for T-violation search.

Table 2.2: Candidate nuclei for T-violation search. The nuclei whose P-violation
was observed with over 2σ, resonance energy is less than 10 eV, and nuclear spin
I is non-zero are listed.

Ep [eV] AL [%] I Abundance [%] Polarization method
139La 0.758 9.8± 0.2 7/2 99.91 DNP [46]
81Br 0.88 0.77± 0.33 3/2 49.31 -
117Sn 1.327 0.79± 0.04 1/2 7.68 -
131Xe 3.2 4.3± 0.2 3/2 21.2 SEOP
115In 6.853 −1.45± 0.11 9/2 95.72 DNP [47]
113Cd 7.00 −0.80± 0.33 3/2 12.22 -
133Cs 9.50 0.24± 0.02 7/2 100 -

2.3.3 Properties of 117Sn

The nuclide 117Sn is focused as the next candidate nucleus. The nuclide 117Sn
is expected to be able to polarize due to its spin I = 1/2. The cross sections
of 117Sn with neutrons are described by elastic scattering and capture reaction
in the epithermal neutron energy region as shown in Fig. 2.6. The resonance
parameters of neutron capture are listed in Table 2.3. When a neutron is captured
by 117Sn, the neutron-induced compound state of 118Sn has an energy of 9327 keV
which corresponds to the neutron-separation energy. Subsequently, the compound
state decays to the ground state by γ-ray emission. The level scheme related to
117Sn(n, γ)118Sn reaction is schematically shown in Fig. 2.7.
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Figure 2.6: Cross sections of 117Sn with neutron [48].

Table 2.3: Resonance parameters of 117Sn. The values with the index (a) and (b)
are taken from Refs. [49] and [50], respectively. Others are taken from Refs. [49]
and [50].

E0 [eV] J l Γγ [meV] gΓn [meV] gΓnl [meV]

−29.2(a) 1(b) 0 (91)(a) - 5.55(a)

1.327± 0.001 1 1 148± 10 (1.38± 0.07)× 10−4

15.385± 0.016 - 1 136± 18 (0.92± 0.05)× 10−4

21.390± 0.025 - 1 113± 16 (2.06± 0.11)× 10−4

26.215± 0.034 - 1 129± 8 (2.07± 0.10)× 10−3

34.044± 0.017 - 1 119± 9(a) (1.87± 0.09)× 10−2

38.80± 0.05 1 0 100± 15(a) 3.10± 0.15
74.39± 0.05 - 1 - (3.4± 0.2)× 10−2

120.54± 0.06 1 0 107± 12 4.95± 0.25
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Figure 2.7: Transitions from 117Sn+n to 118Sn.
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Chapter 3

Angular correlation in (n, γ)
reaction

In this chapter, a formalism which describes the angular dependence of (n, γ) re-
action based on interference between s-wave resonance amplitudes and a p-wave
resonance amplitude is explained. This formalism includes the mixing angle ϕ
which is the parameter to determine the κ(J) value. In a previous study, the an-
gular correlation was measured and the value of ϕ was determined. The difference
between the previous study and this study is explained.

3.1 Formalism of cross section of (n, γ) reaction

The Feynman diagrams of the amplitudes of the (n, γ) reaction via compound
states can be represented as shown in Fig. 3.1. Diagrams (1) and (2) in Fig. 3.1
correspond to the processes without P-violation. In these processes, a neutron is
captured as an s-wave or a p-wave states as an entrance channel, the neutron and a
nucleus form a compound state. After that, a γ ray is emitted from the compound
state as an exit channel. Diagrams (3) and (4) in Fig. 3.1 correspond to the
processes with P-violation. In these P-violating processes, the parity changes by
the weak interaction after neutron capture. The amplitudes corresponding to these
processes (f1 to f4) are written as

f1 = − 1

2k

∑
s

⟨f, γ|HEM|s⟩⟨s|Hs|n⟩
En − Es + iΓs/2

,

f2 = − 1

2k

∑
p

⟨f, γ|HEM|p⟩⟨p|Hs|n⟩
En − Ep + iΓp/2

,

f3 = − 1

2k

∑
s,p

⟨f, γ|HEM|p⟩⟨p|Hw|s⟩⟨s|Hs|n⟩
(En − Ep + iΓp/2)(En − Es + iΓs/2)

,

f4 = − 1

2k

∑
s,p

⟨f, γ|HEM|s⟩⟨s|Hw|p⟩⟨p|Hs|n⟩
(En − Es + iΓs/2)(En − Ep + iΓp/2)

, (3.1)

where HEM and Hw are the Hamiltonians of the electromagnetic interaction and
the weak interaction, respectively. Hs is the Hamiltonian of the residual interaction
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which is responsible for the neutron capture. The wave function |n⟩ is the initial
neutron state and the wave function |f, γ⟩ is the final state of the nucleus and
γ-quantum.
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Figure 3.1: Feynman diagrams for amplitudes in (n,γ) reaction.

The amplitudes V1 to V4, which are invariant for three-dimensional rotations
corresponding to the amplitudes f1 to f4, are given as

V1(En, Js) = − 1

2k

∑
s

√
gsΓn

sΓ
γ
s,f

En − Es + iΓs/2
,

V2(En, Jp) = − 1

2k

∑
p

√
gpΓn

pΓ
γ
p,f

En − Ep + iΓp/2
,

V3(En, Js = Jp) = − 1

2k

∑
s,p

√
gsΓn

sW
√
Γγ
p,f

(En − Ep + iΓp/2)(En − Es + iΓs/2)
,

V4(En, Jp = Js) = − 1

2k

∑
s,p

√
gpΓn

pW
√

Γγ
s,f

(En − Es + iΓs/2)(En − Ep + iΓp/2)
, (3.2)

where k is the momentum of the neutron, En is the kinetic energy of the neutron,
Er is the resonance energy of a neutron resonance r, Γn

r is the neutron width, Γγ
r,f

is the partial γ width of the transition to a final state f , andW is the weak matrix
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element. The γ width is given by the sum of the partial γ widths (Γγ
r,f ) as

Γγ
r =

∑
f

Γγ
r,f . (3.3)

The partial γ width can be described using a transition ratio to a certain final
state Bf as

Γγ
r,f = BfΓ

γ
r ,where

∑
f Bf = 1 . (3.4)

The resonance width Γr can be described as the sum of the neutron width Γn
r and

the γ width of its resonance Γγ
r as

Γr = Γn
r + Γγ

r . (3.5)

Here, the statistical factor gr is described as

gr =
2Jr + 1

2(2I + 1)
, (3.6)

where I is the nuclear spin and Jr is the total spin of the compound state of the
resonance r.

When the interference between an s-wave and a p-wave amplitude is considered,
the amplitudes V1 to V4 are given by

V1(En, Js) = − 1

2k

√
gsΓn

sΓ
γ
s,f (1 + α)

En − Es + iΓs/2
,

V2(En, Jp) = − 1

2k

√
gpΓn

pΓ
γ
p,f

En − Ep + iΓp/2
,

V3(En, Js = Jp) = − 1

2k

√
gsΓn

sW
√
Γγ
p,f (1 + β)

(En − Ep + iΓp/2)(En − Es + iΓs/2)
,

V4(En, Jp = Js) = − 1

2k

√
gpΓn

pW
√

Γγ
s,f (1 + γ)

(En − Es + iΓs/2)(En − Ep + iΓp/2)
, (3.7)

where α is the contribution term of other far s-wave resonances, and β and γ are
the correction terms taken into account the contributions of the other far s-wave
resonances. Here, these amplitudes using the transition ratios can be described as

V1(2)(En, Js(p)) =
√
Bs(p),f V

′
1(2)(En, Js(p)),

V3(4)(En, Js(p) = Jp(s)) =
√
Bs(p),f V

′
3(4)(En, Js(p)), (3.8)
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where

V ′
1(En, Js) = − 1

2k

√
gsΓn

sΓ
γ
s (1 + α)

En − Es + iΓs/2
,

V ′
2(En, Jp) = − 1

2k

√
gpΓn

pΓ
γ
p

En − Ep + iΓp/2
,

V ′
3(En, Js = Jp) = − 1

2k

√
gsΓn

sW
√

Γγ
p(1 + β)

(En − Ep + iΓp/2)(En − Es + iΓs/2)
,

V ′
4(En, Jp = Js) = − 1

2k

√
gpΓn

pW
√
Γγ
s (1 + γ)

(En − Es + iΓs/2)(En − Ep + iΓp/2)
. (3.9)

The differential cross section of (n, γ) reaction for polarized and unpolarized
neutrons can be written as

dσ

dΩ
=

1

2

[
a0 + a1kn · kγ + a2σn · (kn × kγ) + a3

(
(kn · kγ)

2 − 1

3

)
+ a4(kn · kγ)(σn · (kn × kγ)) + a5(σγ · kγ)(σn · kγ)

+ a6(σγ · kγ)(σn · kn) + a7(σγ · kγ)

(
(σn · kγ)(kγ · kn)−

1

3
(σn · kn)

)
+ a8(σγ · kγ)

(
(σn · kn)(kn · kγ)−

1

3
(σn · kγ)

)
+ a9σn · kγ + a10σn · kn + a11

(
(σn · kγ)(kγ · kn)−

1

3
(σn · kn)

)
+ a12(σn · kn)

(
(kn · kγ)−

1

3
(σn · kγ)

)
+ a13σγ · kγ + a14(σγ · kγ)(kn · kγ)

+ a15(σγ · kγ)σn · (kn × kγ) + a16(σγ · kγ)

(
(kn · kγ)

2 − 1

3

)
+ a17(σγ · kγ)(kn · kγ)(kn · (kn × kγ)) ] (3.10)

where kn, kγ, σn, and σγ are unit vectors parallel to the incident neutron momen-
tum, the emitted γ-ray momentum, the incident neutron spin, and the emitted
γ-ray spin, respectively Expressions for the coefficients a0 to a17 described by the
products of amplitudes V1 to V4 are given in Appendix B.
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3.2 Angular correlation of cross section for un-

polarized neutrons

When γ-ray polarization is not measured, the observable differential cross section
for unpolarized neutrons is written as

dσ

dΩ
=

1

2

(
a0 + a1kn · kγ + a3

(
(kn · kγ)

2 − 1

3

))
=

1

2

(
a0 + a1 cos θγ + a3

(
cos2 θγ −

1

3

))
, (3.11)

where θγ is the polar angle of the emitted γ-ray direction with respect to the
incident neutron momentum. The expressions of the coefficients a0, a1, and a3 are
written as

a0 =
∑
Js

|V1(En, Js)|2 +
∑
Jp

|V2(En, Jp)|2, (3.12a)

a1 = 2Re
∑

Js,Jp,j

V1(En, Js)V
∗
2 (En, Jp)P (JsJp

1

2
j1IF )zj, (3.12b)

a3 = 3
√
10Re

∑
Jp,j,J ′

p,j
′

V2(En, Jp)V
∗
2 (En, J

′
p)P (JpJ

′
pjj

′2IF )


2 1 1
0 1

2
1
2

2 j j′

 zjz
′
j,

(3.12c)

where

P (JJ ′jj′kIF ) = (−1)J+J ′+j′+I+F 3

2

√
(2J + 1)(2J ′ + 1)(2j + 1)(2j′ + 1)

×
{
k j j′

I J ′ J

}{
k 1 1
F J J ′

}
, (3.13)

where J , j, I, and F are the spin of the compound state, the total angular mo-
mentum of the neutron, the spin of target nuclei, and the spin of a final state,
respectively. The ratios of partial neutron widths to a neutron width of a p-wave
resonance are defined in Eq. (2.11) and are given as

zj =

{
x = cosϕ (j = 1

2
)

y = sinϕ (j = 3
2
).

(3.14)

The mixing angle ϕ can be extracted from the coefficients a1 and a3 in the angu-
lar correlation terms because these are both functions of x and y. The coefficients
a1 and a3 are written as

a1 = a1xx+ a1yy

a3 = a3xyxy + a3yyy
2 (3.15)
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where

a1x = 2Re
∑
Js,Jp

V1(En, Js)V
∗
2 (En, Jp)P (JsJp

1

2

1

2
1IF ),

a1y = 2Re
∑
Js,Jp

V1(En, Js)V
∗
2 (En, Jp)P (JsJp

1

2

3

2
1IF ),

a3xy = 3
√
10Re

∑
Jp,Jp′

V2(En, Jp)V
∗
2 (En, J

′
p)P (JpJ

′
p

1

2

3

2
2IF )


2 1 1
0 1

2
1
2

2 1
2

3
2

 ,

a3yy = 3
√
10Re

∑
Jp,Jp′

V2(En, Jp)V
∗
2 (En, J

′
p)P (JpJ

′
p

3

2

3

2
2IF )


2 1 1
0 1

2
1
2

2 3
2

3
2

 .

(3.16)

The coefficient a3xx is not written in the above formula because the value of P
coefficient is zero. These terms can be calculated when the values of I, J , and F
are known.

In the case that an s-wave and a p-wave resonance of 117Sn with J = 1 and
F = 0 are considered, the coefficients a0, a1, and a3 terms can be written as

a0 = |V1(En)|2 + |V2(En)|2

= Bs,f |V ′
1(En)|2 +Bp,f |V ′

2(En)|2

= Bs,f a
′
0,s +Bp,f a

′
0,p, (3.17a)

a1 = Re(V1(En)V
∗
2 (En))(−2x+

√
2y)

=
√
Bs,fBp,f Re(V ′

1(En)V
′∗
2 (En))(−2x+

√
2y)

=
√
Bs,fBp,f a

′
1, (3.17b)

a3 = −3|V2(En)|2
(
xy√
2
+
y2

4

)
= −3Bp,f |V ′

2(En)|2
(
xy√
2
+
y2

4

)
= Bp,f a

′
3, (3.17c)

where a′0,s and a
′
0,p are the angular-independent differential cross sections calculated

by the amplitudes without transition ratios for an s-wave and a p-wave resonance.
The coefficients a′1 and a′3 are for the angular correlation terms calculated by
the amplitudes without transition ratios. Figure 3.2 shows the neutron energy
dependence of each term calculated by Eqs. (3.17a), (3.17b), and (3.17c). These
calculation results indicate that the a1 terms and the a3 terms are odd and even
functions centered on the p-wave resonance energy Ep, respectively.

The observable differential cross section for unpolarized neutrons depends on
both the polar angle θγ and the mixing angle ϕ. Figure 3.3 shows the calcula-
tion results of observable differential cross section around the p-wave resonance
in various cases. These calculation results indicate that the mixing angle ϕ can
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be determined by measuring the shape of the p-wave resonance with a certain
transition at several polar angles.
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Figure 3.2: Neutron energy dependencies of angular-correlated terms in (n,γ)
reaction.
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Figure 3.3: Variables ϕ and θγ dependencies of the p-wave resonance.

To evaluate the angular dependence of the peak shape of the p-wave resonance,
the asymmetry ALH is defined as

ALH ≡ IL − IH
IL + IH

, (3.18)

where IL and IH are the integrated values in lower- and higher-energy regions,
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respectively. They are defined as

IL ≡
∫ Ep

Ep−2Γp

dEn
dσ

dΩ

=
1

2

∫ Ep

Ep−2Γp

dEn

(
a0 + a1 cos θγ + a3

(
cos2 θγ −

1

3

))
= IL,a0 + IL,a1 cos θγ + IL,a3

(
cos2 θγ −

1

3

)
, (3.19a)

IH ≡
∫ Ep+2Γp

Ep

dEn
dσ

dΩ

=
1

2

∫ Ep+2Γp

Ep

dEn

(
a0 + a1 cos θγ + a3

(
cos2 θγ −

1

3

))
= IH,a0 + IH,a1 cos θγ + IH,a3

(
cos2 θγ −

1

3

)
, (3.19b)

where

IL,ai =
1

2

∫ Ep

Ep−2Γp

ai dEn, (3.20a)

IH,ai =
1

2

∫ Ep+2Γp

Ep

ai dEn. (3.20b)

Here, the sum and the difference between IL,ai and IH,ai are described as ILH,ai and
∆ILH,ai , respectively. Then, the asymmetry ALH can be described using a relative
transition ratio Bsp,f = Bs,f/Bp,f as

ALH =
∆ILH,a0 +∆ILH,a1 cos θγ +∆ILH,a3

(
cos2 θγ − 1

3

)
ILH,a0 + ILH,a1 cos θγ + ILH,a3

(
cos2 θγ − 1

3

)
=

∆ILH,a0,s +∆ILH,a1 cos θγ

ILH,a0 + ILH,a3

(
cos2 θγ − 1

3

)
=

Bs,f∆ILH,a′0,s
+
√
Bs,fBp,f∆ILH,a′1

cos θγ

Bs,fILH,a′0,s
+Bp,fILH,a′0,p

+Bp,fILH,a′3

(
cos2 θγ − 1

3

)
=

Bsp,f∆ILH,a′0,s
+
√
Bsp,f∆ILH,a′1

cos θγ

Bsp,fILH,a′0,s
+ ILH,a′0,p

+ ILH,a′3

(
cos2 θγ − 1

3

) . (3.21)

When the a3 term is small enough compared to the a0 term, Eq. (3.21) can be
written as

ALH =
Bsp,f∆ILH,a′0,s

+
√
Bsp,f∆ILH,a′1

cos θγ

Bsp,fILH,a′0,s
+ ILH,a′0,p

. (3.22)

Thus, the relative branching ratio Bsp,f need to be measured to calculate the
theoretical asymmetry value. When the a3 term is large, the differential cross
section around the p-wave resonance has angular dependence as shown in Fig. 3.4.
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Figure 3.4: Angular dependence of differential cross section caused by the a3
term. This is normalized to be unity at cos θγ = 90◦.

3.3 Previous study for determining the ϕ value

In 1985, the angular correlation terms in (n, γ) reactions were measured using
polarized and unpolarized neutron beams by V. P. Alfimenkov et al. [51,52]. They
assumed the differential cross section as

σ(θ, ξ, En) = a0 + a1 cos θ + a2fn sin θ cos ξ + a3

(
cos2 θ − 1

3

)
, (3.23)

where fn is the polarization of the neutron beam, θ is the angle between the
directions of the neutron beam and γ rays, and ξ is the angle between the directions
of neutron polarization and the γ-ray emission. The angular-indepndent term a0
can be written as a0 = (σs(En) + σp(En))/4π, where σs(p)(En) is the cross section
of s(p)-wave capture integrated with the solid angle for the single transition of
9327 keV γ-ray emission. Three types of asymmetries, left-right asymmetry ϵL.R.,
forward-backward asymmetry ϵF.B., and angular asymmetry ϵa were measured and
can be described as

ϵL.R.(En) =
σ(90◦, 0◦, En)− σ(90◦, 180◦, En)

σ(90◦, 0◦, En) + σ(90◦, 180◦, En)

= fn
a2

a0 − a3/3
, (3.24)

ϵF.B.(En, θ = 45◦) =
σ(θ = 45◦, En)− σ(θ = 135◦, En)

σ(θ = 45◦, En) + σ(θ = 135◦, En)

=
1√
2

a1
a0 + a3/6

, (3.25)

42



ϵa(θ = 45◦) =
2(σ(90◦, Ep)− σs(Ep)/4π))

σ(θ = 45◦, Ep) + σ(θ = 135◦, Ep)− σs(Ep)/2π

=
a0(Ep)− a3/3− σs(Ep)/4π

a0(Ep) + a3/6− σs(Ep)/4π
. (3.26)

All asymmetries were measured using the time-of-flight (TOF) method at the
IBR-30 pulsed reactor. The TOF method is explained in the following section. The
γ-ray detectors were NaI(Tl) crystals with a diameter of 200 mm and thickness of
200 mm. The threshold of registration of γ rays was set at 8.5 MeV to suppress
γ rays from other transitions except for 9.3 MeV. The background events were
measured when the neutron beam was blocked by a boron filter. The target was
a metallic tin with enrichment of 90% of 117Sn isotope. The weight of the target
was between 80 and 400 g, and its area is 20-60 cm2. In the measurement of ϵL.R.,
the neutron beam was polarized by passing through a polarized proton target.
However, they did not measure the polarization of the neutron beam, and they
assumed fn = 1. Figure 3.5 shows solutions of the mixing angle ϕ which were
obtained from the intersection points of the unit circle and three asymmetries.
There is no common solution that three lines intersect at a single point on the
unit circle. They insist that there may be a common solution at x ≃ 0.2 if the
sign of the a1 term is opposite.

Figure 3.5: Previous result by Alfimenkov et al. [52]. Line 1, 2, and 3 correspond
to the left-right asymmetry ϵL.R., the forward-backward asymmetry ϵF.B., and the
angular asymmetry ϵa, respectively.
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There are some obscure points in this previous study. First, the result of ϵL.R.

can be changed by measuring the polarization of the neutron beam. The resonance
width can be wider than the true width due to the Doppler broadening effect and
energy resolution of the neutron beam, which is described in Chapter 6. These
effects must be considered in the analysis because they can sufficiently change the
value of asymmetries. In this study, the energy resolution of the neutron beam
was not taken into account, while the Doppler broadening effect is not mentioned.
Moreover, the error of each line in Fig. 3.5 is not drawn.

The measurement in this study was performed with a pulsed neutron beam.
The γ-ray detectors were germanium crystals with the energy resolution much
better than that of NaI crystals. The number of γ-ray detection angles is larger
than that in the previous study, so that the angular dependence of the p-wave
resonance can be studied further in detail. The Doppler broadening effect and
energy resolution of neutron beam were considered in this study. Therefore, it is
considered that the result of this study is more reliable compared to the previous
study. Table 3.1 summarizes the difference between this study and the previous
study.

Table 3.1: Comparison with previous study.

Previous study This study
Experimental facility Reactor (IBR-30) J-PARC MLF
Neutron flight length 35 m or 58 m 21.5 m

Nuclear target 90% 117Sn natSn
γ-ray detector NaI crystals Ge crystals

Number of γ-ray detection angle 3 angles 7 angles
Doppler broadening effect Not mentioned Concerned

Energy resolution of neutron beam Not concerned Concerned

44



Chapter 4

Experimental setup

In this chapter, a facility and an experimental setup established to measure the an-
gular dependence of γ rays from neutron-induced compound states are explained.
A high-intensity neutron beam and γ-ray detectors with a high energy resolution
are required for this measurement.

4.1 J-PARC facility

Japan Proton Accelerator Research Complex (J-PARC) is a high-intensity pro-
ton accelerator facility in Tokai Village, Ibaraki Prefecture, Japan. This joint
project between the High Energy Accelerator Research Organization (KEK) and
the Japan Atomic Energy Agency (JAEA) aims to promote a wide variety of ex-
periments using various secondary beams including neutrons, muons, neutrinos,
and kaons. Figure 4.1 shows a bird’s-eye view of J-PARC. The pulsed proton
beam is accelerated to 400 MeV by a linear accelerator (LINAC). It is transported
to Rapid Cycle Synchrotron (RCS), and further reaccelerated to 3 GeV. A part of
the proton beam bunches with a repetition rate of 25 Hz is transported to Main
Ring (MR), and the remaining are injected into the targets at Materials and Life
science experimental Facility (MLF).

The neutrons are generated in a liquid mercury target, which is located at
the center of MLF, through the nuclear spallation process caused by injecting a
3 GeV proton beam. The high-energy neutrons are cooled in a liquid-hydrogen
moderator at 20 K and 1.5 MPa by colliding with hydrogen molecules, and guided
to 23 neutron beam ports in MLF as shown in Fig. 4.2. The neutron beam energy
ranges mainly from cold to epithermal energies. The three types of moderators
are: coupled, decoupled, and poisoned. The characteristics of these moderators
are summarized in Table 4.1. The coupled moderator provides the most intense
neutron beam among the three types, and this type was used for the experiment
in this study.
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Figure 4.1: Bird’s eye view of J-PARC [53].

Figure 4.2: Beamlines in MLF [54].
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Table 4.1: Characteristics of moderators in MLF [55].

Moderator
type

Number of
beam ports

Time-integrated
thermal neutron
flux [n/s · cm2]

Peak neutron
flux at 10 meV
[n/eV · s · cm2]

Pulse width in
FWHM at
10 meV [µs]

Coupled 11 4.6× 108 6.0× 1012 92
Decoupled 6 0.95× 108 3.0× 1012 33
Poisoned

(Thicker side)
3 0.65× 108 2.4× 1012 22

Poisoned
(Thinner side)

3 0.38× 108 1.4× 1012 12

4.2 Beamline 04 ANNRI

4.2.1 Beamline setup

A schematic view of Accurate Neutron-Nucleus Reaction measurement Instrument
(ANNRI) installed in beamline 04 (BL04) of MLF is shown in Fig. 4.3. The z-axis
is defined as the neutron beam direction, the y-axis is the vertical upward axis,
and the x-axis is perpendicular to them.

Figure 4.3: Side view (upper) and top view (bottom) of ANNRI installed at the
beamline 04 [56].

The neutron beam from the moderator passes through a T0 chopper, neutron
filters, double disk chopper, and a rotary collimator, typically used for the adjust-
ment of the experimental conditions. The neutron beam is stopped by a beam
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stopper made of iron. The materials of the neutron filters can be selected from
manganese, cobalt, aluminum, silver, indium, lead, and cadmium. Particularly,
there are six lead filters: two with thicknesses of 12.5 mm and 25 mm, and four
with a thickness of 50 mm each. The total thickness can be adjusted by selecting
these lead filters. These neutron filters are used to suppress the neutron flux in
uninterested energy regions because the energy dependence of the neutron absorp-
tion cross section is different in each nucleus. The lead filters can also play a role
to suppress the γ-ray background from the upstream. In our measurements, only
the lead filters with a thickness of 37.5 mm in total were used. The double disk
chopper consists of two semicircular plates whose surfaces are coated by 95 wt%
10B-enriched boron carbide. These two plates rotate synchronously with the pro-
ton injection at 25 Hz, so that the neutron beam in any energy region is shielded
by adjusting a relative phase between the two plates. The double disk chopper is
used mainly to suppress the slow neutrons (less than 3 meV) to avoid the frame
overlap that these slow neutrons from a given pulse overlap with fast neutrons
from the subsequent pulses. The collimators consist of an upper-stream and a
down-stream collimator, and are used for the adjustment of the intensity and the
size of the neutron beam. The down-stream collimator is called a rotary collima-
tor, and its hole size can be selected from four sizes of 6 mm, 7 mm, 15 mm, and
22 mm. A germanium detector assembly is installed at ANNRI which is described
in Sec. 4.3. The nuclear target is placed at the center of the detector assembly and
the distance from the moderator surface to the target is 21.5 m.

4.2.2 Energy resolution of the neutron beam

The information of neutron energy needs to analyze the angular dependence of
the p-wave resonance shape. The neutron energy can be calculated from the TOF
method which uses the detection time of γ rays. The emission time of prompt γ
rays from neutron capture is about 10−14 s. This is sufficiently short and negligible
compared to the flight time of neutrons from the moderator surface to the target.
The neutron energy in measured data (Em

n ) was therefore calculated as

Em
n =

1

2
mn

(
L

tm

)2

, (4.1)

where mn, L, and tm are the neutron mass, the flight length of neutrons from
the moderator surface to the target, and the flight time of neutrons which travel
the length L, respectively. The energy resolution due to the time structure of
the pulsed neutron beam must be considered in analysis of the experimental data.
There are two factors that cause time structures of the pulsed neutron beam. One
is the moderation process of neutrons, and the other is the time structure of the
incident proton beam. In thermal and cold energy regions, the time structure can
be negligible. However, it cannot be ignored in the epithermal region which is used
for the measurement of neutron resonances.

Some functions describing the pulse structure of neutron beams were proposed.
Typically, Ikeda-Carpenter function [57], Cole-Windsor function [58], Gunsing
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function [59], and Gauss function [60, 61] are used. The pulse structure of the
neutron beam at BL04 has already been studied by K. Kino et al. [62]. They
adopted the Ikeda-Carpenter function ψ which can be described as a function of
neutron energy En and the arrival time of neutrons from the primary proton beam
injection t using the following equations:

ψ(En, t) =
αC

2

{
(1−R)(αt)2e−αt + 2R

α2β

(α− β)3

×
[
e−βt − e−αt

(
1 + (α− β)t+

1

2
(α− β)2t2

)]}
, (4.2)

where parameters α, β, and R depend on En, and C is an En-independent scaling
factor for normalization. Time was modified as t− t0, where t0 is the flight time of
neutrons after emission from the moderator. Therefore, the time difference t− t0
means the moderation and storage time inside the moderator. A simulation of the
neutron source using a Monte-Carlo simulation was performed to obtain the time
structure of the neutron beam. Figure 4.4 shows the examples of the simulated
time structure of the neutron beam and the fitting results via Eq. (4.2). The
neutron energy dependences of the fitting parameters t0, α, β, and R in the Ikeda-
Carpenter function were obtained by applying polynomial functions as shown in
Fig. 4.5. The fitting results are as follows;

log10 t0 = 0.124− 0.475y + (2.42× 10−3)y2 + (1.59× 10−3)y3

log10 α =

{
−0.0719 + 0.478y + (1.59× 10−3)y2 − (2.65× 10−3)y3 (y < 8.0, y ≥ −1.5)

6.51 + 8.98y + 3.45y2 + 4.66y3 (y < −1.5)

log10 β =

{
−1.05 + 0.581y − 0.0406y2 + (3.57× 10−3)y3 (y < 8.0, y ≥ −1.5)

1.81 + 4.17y + 2.27y2 + 3.24y3 (y < −1.5)

log10R =

{
−1.05− 0.0911y + 0.0959y2 − 0.0108y3 (y < 8.0, y ≥ −0.8)

−4.39− 8.25y − 6.61y2 − 2.38y3 − 0.311y4 (y < −0.8)

y = log10En.
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Figure 4.4: Examples of the simulated time structure of the neutron beam and
fitting results [62].

Figure 4.5: Energy dependence of parameters in Ikeda-Carpenter function [62].

There are two types of the time structures of the incident proton beam at
J-PARC. One is a single-bunch mode in which the pulsed protons consist of a
bunch of about 100 ns. The other is a double-bunch mode in which the time
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interval between the two proton bunches is about 600 ns. The proton beam is
normally delivered in the double-bunch mode. The measurements in this study
were performed with both the single- and double-bunch modes. Figure 4.6 shows
the two-dimensional energy-time plots of the time and energy of neutrons for both
modes. In the double-bunch mode, the time structure splits into two peaks above
about 10 eV. This phenomenon makes the energy resolution worse.

Figure 4.6: Two-dimensional plots of the time and energy of neutrons at the
moderator surface. Left (a) and right (b) are for the single- and double-bunch
modes, respectively [62].

The neutron energy resolution at the target position was calculated using the
width of the time structure. In the case where the time structure splits into two
peaks, the time width was defined as the time between the leading edge of the
first peak and the trailing edge of the second peak. Figure 4.7 shows the energy
resolutions of the neutron beam for both modes and the effect of the double bunch
can be seen above about 5 eV as a function of neutron energy.

The time structures of the neutron beam were measured in the thermal neutron
energy region using a mica sample with dimensions of 50×50 mm2 and a thickness
of 5 mm. Mica is a silicate mineral and has a layered crystal structure with an
interval of 10.4 Å. The time structure of the neutron beam was obtained by
measuring Bragg’s peaks. When the neutron beam goes through a crystal, the
neutrons which adhere to Bragg’s law are scattered. Since scattered neutrons have
that monochromatic energy, the diffraction peaks in the TOF spectra reflect the
time structure of the neutron beam. In the epithermal energy region, the time
structure was obtained from the resonances of the neutron capture reaction for
181Ta. A 181Ta foil with an area of 100 × 100 mm2 and a thickness of 0.1 or
0.01 mm was used. The time structure of the neutron beam can be extracted from
the measured TOF spectra for well-known neutron capture resonances. Figure 4.8
shows the neutron energy dependence of the FWHM of the time structure for the
single-bunch mode in simulation and measurements. The simulation reproduces
the measurements.
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Figure 4.7: Energy resolution of the neutron beam at ANNRI based on simula-
tion [62].

Figure 4.8: Comparison of energy resolution between simulation and measure-
ments for single-bunch mode [62].
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4.3 Germanium detector assembly

In this section, the geometry of a germanium detector assembly used in this study
is explained. In addition, a response function is calculated using a Monte-Carlo
simulation, which is also explained.

4.3.1 Geometry of germanium detector assembly

The germanium spectrometer at ANNRI is a γ-ray detector assembly which has
a high resolution and a large solid angle. It was originally developed to measure
neutron-absorption cross sections of minor actinides and long-lived-fission products
with the TOF method. The configuration of the germanium detector assembly is
shown in Fig. 4.9. The polar and azimuthal angles in the spherical coordinates are
denoted as θ and φ, respectively.

The assembly consists of two types of detector units; cluster-type and coaxial-
type. The shapes of cluster-type and coaxial-type crystals are shown in Fig. 4.10.
The front-end of the cluster-type crystal has a hexagonal shape, and the back-
end has a hole for the insertion of the electrode. The cluster-type unit has seven
germanium crystals as shown in Fig. 4.11. The central crystal is directed toward
the center of the target position, while the surrounding six crystals are directed
farther beyond the target position. Therefore, they have different solid angles of
0.010 × 4π sr (central) and 0.0091 × 4π sr (one of the surrounding six crystals),
respectively. There are two cluster-type detector units which are located above
and below the target. The central detector of the upper (lower) cluster-type unit
is denoted by d1 (d8), and the other surrounding six detectors are denoted by
d2–d7 (d9–d14). The germanium crystals are protected by neutron shields against
damages stemmed from scattered neutrons. Neutron shield-1 and shield-3 are
plates made by sintering LiH powder with a thickness of 22.3 mm and 17.3 mm,
respectively. Neutron shield-2 is a plate made by sintering LiF powder with a
thickness of 5 mm. The side and back of the cluster-type units are surrounded by
bismuth germanate (BGO) scintillators which can veto Compton scattering events
and cosmic rays.
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Figure 4.9: Configuration of the germanium detector assembly.

Figure 4.10: Crystal shapes of cluster-type (left) and coaxial-type detector (right).
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Figure 4.11: Cut view of the upper cluster-type detector unit. (A) Electrode,
(B) Germanium crystal, (C) Aluminum case, (D) BGO crystal, (E) γ-ray shield
(Pb collimator), (F) Neutron shield-1 (22.3 mm LiH), (G) Neutron shield-2 (5 mm
LiF), (H) Neutron shield-3 (17.3 mm LiH), and (I) Photomultiplier tube for BGO
crystal.

Eight coaxial-type detectors are assembled as shown in Fig. 4.12. The detectors
are denoted by d15 - d22. The front-end of the coaxial-type crystal is a circular, and
its edge is rounded as shown in Fig. 4.10. This rounded shape prevents the crystal
from destroying and improves the uniformity of the electric field in the crystal. The
back-end has a hole for the insertion of the electrode. Notably, the germanium
crystal of d16 is smaller than that of the other crystals of coaxial-type detectors.
All coaxial-type crystals are directed toward the center of the target position.
Therefore, except for d16, they all have the same solid angle of 0.0072 × 4π sr.
The solid angle of d16 is 0.0048×4π sr. Each coaxial-type crystal is surrounded by
a BGO scintillator as shown in Fig. 4.13. A conical-shape γ-ray collimator made by
lead is located between each coaxial-type detector and the target position. These
collimator holes are filled with LiF powder which is encapsulated in aluminum cases
for shielding the scattered neutrons. Table 4.2 summarizes the setting angle of each
germanium detector. The germanium crystals were kept at a temperature of 77 K
during the measurements. The cluster-type and coaxial-type detectors are cooled
by liquid nitrogen and refrigerators X-COOLER II of ORTEC, respectively. In the
measurements, d17 and d20 were not used because they did not cool sufficiently.

The beam duct consists of two layers. The outer layer is made from 3 mm-thick
aluminum with cross-sectional dimensions of 86 mm× 96 mm. The inner layer is
made from 10.5 mm-thick LiF plates as a shield for the scattered neutrons. The
nuclear target can be placed inside the beam duct and can be drawn out from the
beam duct using an automatic target changer.
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Figure 4.12: Schematic view of the coaxial-type detector unit. (A) Ge crystal,
(B) Pb collimator, (C) Carbon board, (D) Neutron shield (LiH powder), and
(E) Holes of collimator.

Figure 4.13: Schematic of a coaxial detector. (A) BGO crystal, (B) Germanium
crystal, (C) Electrode, (D) and (E) Aluminum cases.
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Table 4.2: Setting angle of each germanium detector. Variables θ and φ are the
angles at the center of the front-end of each detector.

detector ID θ [deg] φ [deg]
d1 90.0 90.0
d2 90.0 66.3
d3 70.9 78.2
d4 70.9 101.8
d5 90.0 113.7
d6 109.1 101.8
d7 109.1 78.2
d8 90.0 270.0
d9 90.0 293.7
d10 70.9 281.8
d11 70.9 258.2
d12 90.0 246.3
d13 109.1 258.2
d14 109.1 281.8
d15 144.0 180.0
d16 108.0 180.0
d17 72.0 180.0
d18 36.0 180.0
d19 36.0 0.0
d20 72.0 0.0
d21 108.0 0.0
d22 144.0 0.0
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4.3.2 Simulation of germanium detectors

The pulse heights of output signals from the germanium detectors are not com-
pletely true γ-ray energies. In some cases, γ rays cannot deposit their energies
into the germanium crystals because of the escape of photons due to the Compton
scattering and trapping by lattice defects. Therefore, the observed energies of γ
rays shift to lower values.

The geometry of the germanium detector assembly was implemented by a sim-
ulation toolkit of GEANT4 [63], and this simulation enabled us to calculate the
response function of each germanium detector by emitting γ rays from the target
position. The experimental data of γ-ray spectra from radioactive sources of 137Cs
and 152Eu placed at the target position were obtained in each detector. Figure 4.14
shows the measured spectra (black dots) and the simulated spectra (red-shaded
histogram) for d8 and d22 detectors. It was verified that this simulation can
reproduce the γ-ray spectrum for the low-energy region.
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Figure 4.14: Comparison of γ-ray energy spectrum between simulation (red-
shaded histogram) and measurement (black dots) with a radioactive source
137Cs [64].

The prompt γ rays from (n, γ) reactions have γ-ray energies of approximately
5 – 9 MeV. Therefore, γ rays from 14N(n, γ) reactions with energies of up to
11 MeV were used to verify the reproducibility of this simulation in the high-
energy region. The γ-ray energy spectrum of 14N(n, γ) reactions was obtained by
using a melamine (C3H6N6) target. Figure 4.15 shows comparisons of the spectra
measured with the melamine target and the simulated spectra for d8 and d22
detectors. These spectra were reproduced by summing up the simulated spectra
of monochromatic γ-ray energy which were scaled to confirm the intensity of the
measured spectrum. Here, the background γ rays from Li(n, γ), F(n, γ), Al(n, γ),
Fe(n, γ), and Ni(n, γ) reactions existed, and these were also taken into account.
It was verified that this simulation can also reproduce the measured spectrum
for the high-energy region. The results show that this simulation reproduces the
characteristics of the cluster-type and coaxial-type detectors sufficiently well.

Figure 4.16 shows the distribution of the γ-ray detection angle in full-absorption
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Figure 4.15: Comparison of γ-ray energy spectrum between simulation (red-
shaded histogram) and measurement (black dots) with a melamine target [64].

events, which was calculated by the simulation. The dip structures of the peaks are
caused by the hole on the back germanium crystal where the electrode is inserted.
The dotted lines represent the polar angle of the detector center described in
Table 4.2. In the left figure of Fig. 4.16, deviations can be seen between the dotted
lines for θ = 70.9◦ and θ = 109.1◦ and at the center of each front-face. The origin
of these deviations is that the d2 - d7 (d9 - d14) detectors are directed farther
beyond the target position. This effect is more visible as the γ-ray energy becomes
higher. This must be corrected in the analysis of the angular distribution of γ rays.
In the right figure of Fig. 4.16, there are no such deviations because the surface of
each detector is directed toward the center of the target position.
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Figure 4.16: Distribution of γ-ray detection angle [64].

4.4 Data acquisition system

The output signals are processed using four CAEN V1724 modules [65]. These
four modules are operated synchronizing each other. The output signal from each
germanium detector is firstly amplified by the preamplifier, and the information
of the pulse height and the timing of its signal is extracted by changing the signal
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shape by CAEN V1724 modules as shown in Fig. 4.17. The signal fed into CAEN
V1724 is divided into two branches: one is for the timing and triggering, and the
other is for the pulse height. Figure 4.18 shows the simplified signal scheme on
signal processing. In the branch of timing and triggering, the signal is converted
into a bipolar signal with a trigger and timing filter. A signal over a threshold
triggers a measurement of the timing of zero-crossing. In the measurements, the
threshold corresponds to about 100 keV. The information of the trigger timing is
fed to the counter. This counter measures a time interval between the reset signal
and the trigger timing using an internal clock with a frequency of 10 ns. This time
interval is recorded as a detection time of a γ ray.

In the branch of the pulse height, the signal is converted into a trapezoidal
signal, and the pulse height of its signal is determined from the averaged value
of the height of its trapezoid from a baseline in its flat-top region. The CAEN
V1724 module has a sampling rate of 100 MS/s and a resolution of 14 bit which
corresponds to about 137 µV due to the maximum input voltage of 2.5 V peak-
to-peak.
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Figure 4.17: Block diagram of V1724 module. A signal from the germanium
detector is divided into two branches: one is for the timing and triggering, and the
other is for the pulse height. [66].

When the time interval between two signals is small due to the high counting
rate, their pulse heights cannot be determined because of the overlapping of their
flat-top regions. When the flat-top region is no longer flat due to the overlapping,
the pulse height of its signal are recorded as zero. The CAEN V1724 module has
four patterns to process signals as shown in Fig. 4.19, which depends on the time
interval between the two signals. The four patterns for the i-th signal with its
pulse height as Ei and the time information as Ti are classified using t0, t1, and t2
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Figure 4.18: Simplified signal scheme on signal processing. The input signal is
converted to a bipolar and a trapezoidal signal [66].

as follows.

• Pattern 1 (Ti+1 − Ti > t0)
Since the time interval between two signals is sufficiently large, their trape-
zoidal signals do not overlap with each other. Therefore, their pulse heights
Ei and Ei+1 can be determined correctly. Their time information Ti and Ti+1

can also be recorded correctly.

• Pattern 2 (t1 < Ti+1 − Ti < t0)
The second trapezoid starts on the trailing edge of the first one. The first
pulse height of Ei can be recorded correctly. The second pulse height Ei+1

cannot be recorded correctly because the flat-top region of the second trape-
zoid is not flat. In such cases, Ei+1 is recorded as zero. On the other hand,
Ti and Ti+1 can be recorded correctly.

• Pattern 3 (t2 < Ti+1 − Ti < t1)
The second trapezoid starts on the leading edge of the first one. Both pulse
heights Ei and Ei+1 are recorded as zero because the flat regions of two
trapezoids overlap with each other. Their time information can be recorded
correctly because their trigger timing can be distinguished.

• Pattern 4 (Ti+1 − Ti < t2)
The two input pulses pile-up in the input rise time. In this case, their two
signals are regarded as one. The pulse height Ei is recoded as the sum value
of two pulse heights, and the time information Ti is recorded as the trigger
timing of the first signal.
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In the measurements, the values of t0, t1, and t2 are 3.17 µs, 2.47 µs, and
0.42 µs, respectively. These values were confirmed to be independent of their pulse
heights. The CAEN V1724 transfers the stored data to the computer when 1024
events data are accumulated in the local buffer. When the speed of accumulating
the data in the local buffer exceeds the speed at which to write are recorded to
the computer, whose counting rate is around 300 kcount/s, there is a possibility
that CAEN V1724 modules stop. If the accelerator is stopped for a long time, the
timing can be reset in each 10.7374 seconds because the data recording range of
the time information is 32 bit.

Figure 4.19: Effect of trapezoid overlapping in the four main cases. (1) The two
trapezoids are well separated (top left). (2) The second trapezoid starts on the
falling edge of the first one (top right). (3) The second trapezoid starts on the
rising edge on the first one (bottom left). (4) The two input pulses pile-up in the
input rise time (bottom right) [66].
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Chapter 5

Measurements

In this chapter, the details of the measurements and targets used for the experiment
are described.

5.1 Experimental condition

In this study, three measurements were conducted to determine the mixing angle
ϕ and the κ(J) value of 117Sn. The measurement of the angular dependence of the
differential cross section at the p-wave resonance is the main purpose for this study,
while resonance parameters and relative transition ratios of the 9327 keV γ-ray
emission for each resonance are input parameters for the calculation of the Flam-
baum formalism. Table 5.1 summarizes the experimental condition and the target
used for each measurement. In addition to these measurements, an experiment
was conducted to obtain neutron-energy dependence of the beam intensity, which
is described in Sec. 5.3. The properties of the targets are described in Sec. 5.2.

Table 5.1: Summary of experimental condition.

May 2017 June 2018 April 2019

Purpose
Angular

dependence
Relative

transition ratios
Resonance
parameters

Target
(size)

natSn
(40×40×4 mm3)

natSn
(40×40×1 mm3)

117Sn 87% enriched
(ϕ5 mm×6 mm)

Self-filter
(size)

-
natSn

(40×40×10 mm3)
-

Collimator
size [mm]

22 15 22

Proton beam
power [kW]

150 525 525

Measurement
time [h]

65 100 6
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5.2 Nuclear targets

In this study, three targets were used: tin with natural abundance, 117Sn-enriched
tin, and boron targets. These targets were sealed by polytetrafluoroethylene with
a thickness of 10 µm due to the regulation at MLF.

5.2.1 Tin target with natural abundance

The natSn targets were used in this experiment to measure the angular dependence
of differential cross section at the p-wave resonance as well as the relative transition
ratio of each resonance. The targets in these measurements did not have to be an
enriched target because events of the single transition from the compound state
to the ground state of 118Sn can be selected by gating with γ-ray peaks. These
targets were purchased from The Nilaco Corporation, and the chemical purity was
99.9%. Table 5.2 shows the properties of Tin isotopes.

Table 5.2: Properties of tin isotopes [67].

Mass number Abundance [%] Cross section [barn] Number of energy state
115 0.34± 0.1 30± 7 395
116 14.54± 0.09 0.14± 0.03 9
117 7.68± 0.07 1.32± 0.18 19
118 24.22± 0.09 0.23± 0.05 9
119 8.59± 0.04 2.2± 0.5 9
120 32.58± 0.09 0.14± 0.03 10
122 4.63± 0.03 0.139± 0.015 9
124 5.79± 0.05 0.134± 0.005 25

5.2.2 117Sn-enriched tin target

A 117Sn-enriched tin target was used to measure the resonance parameters in
117Sn(n, γ) reaction. The composition of this target is described in Table 5.3. The
enriched target was used for this measurement to suppress γ rays from other iso-
topes and elements because all transitions were used to determine the resonance
parameters. Especially, when the resonance parameters of the negative s-wave
resonance are determined, prompt γ rays from capture reactions by other nuclei
become irreducible background events because most nuclei have no resonance at
less than 1.0 eV.

5.2.3 Boron carbide target

The boron carbide target was used to measure the energy dependence of the neu-
tron beam intensity by detecting γ rays from 10B(n, αγ)7Li reactions. The chemical
formula is B4C, and boron carbide powder made from 95% enriched 10B and carbon
powder was pressed into a tablet with dimensions of ϕ5.08 mm × 0.59 mm. The
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Table 5.3: Composition of 117Sn-enriched tin target.

Isotope Fraction [%] Element Contamination [ppm]
112Sn < 0.01 Fe 40
114Sn < 0.01 Al 50
115Sn 0.2 Si 60
116Sn 9.3 Cr 30
117Sn 87 Ni < 10
118Sn 3 Cu 100
119Sn 0.4 Pb 20
120Sn < 0.05 Sb 100
122Sn < 0.01 Ga < 10
124Sn < 0.01 In < 10

Zn 120
Mg < 10

γ rays from 10B(n, αγ)7Li reactions are used to measure the energy dependence of
the neutron beam intensity because its cross section is very large (3837 barns for
thermal neutrons as shown in Fig. 5.1), and it is easy to separate background γ
rays from other nuclei because the γ-ray energy emitted in this reaction is only
477.6 keV. Moreover, there is no resonance in the epithermal region (O(1) eV) in
10B(n, αγ)7Li reaction. Therefore, the number of lost events does not increase only
in certain energy regions.

5.3 Collected data

5.3.1 Measurement of spectrum for 117Sn(n, γ) reactions

Angular dependence

The measurement of the angular dependence of the p-wave resonance was per-
formed using the natSn target for 65 hours with the collimator size of 22 mm.
Figure 5.2 shows the TOF spectrum obtained by detecting γ rays from natSn(n, γ)
reactions. The blue-open histogram shows all the events without event selection
for all detectors. The red-hatched histogram depicts the events whose pulse heights
were recorded as zero for all detectors. The peaks around 1360 µs are the 1.33 eV
p-wave resonance by 117Sn(n, γ) reaction and the 1.45 eV s-wave resonance by
115In(n, γ) reaction. According to the JENDL database [48], the cross section of
the 1.33 eV p-wave resonance is about 1.8 barn, while that of the 1.45 eV s-wave
resonance is approximately 2.9×104 barn. Thus, their count rates become compa-
rable if the target is contaminated by 0.01% of 115In. The s-wave resonance caused
by 115In(n, γ) reaction is eliminated by gating with events of γ rays via 117Sn(n, γ)
reactions, which are described in Sec. 6.2. The peak at 630 µs is the 6.2 eV p-wave
resonance by 119Sn(n, γ) reaction. The amount of events with their pulse heights
as zero around the p-wave resonance is approximately 2% for all events, which
implies that the amount of lost events is estimated to be about 0.3% around the
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Figure 5.1: Cross sections of 10B [48]. There is no resonance around epithermal
energy region in 10B(n, αγ)7Li reaction.

p-wave resonance. Therefore, the contribution by lost events is negligible because
the number of lost events is estimated to be smaller than the statistical error.

Figure 5.3 shows the spectrum of the energy deposit of γ rays in all germanium
detectors (blue-open histogram) and the spectrum gated with a TOF range corre-
sponding to 1.0 – 1.6 eV (red-hatched histogram). The γ-transition in the nucleus
118Sn with the energy of 9327 keV and its single- and double-escape peaks can be
observed clearly in both spectra, which indicates that the compound state in the
p-wave resonance decays to the ground state of 118Sn.

Relative transition ratios

The measurement of relative transition ratios was performed using the natSn target
and the natSn self-filter for 100 hours with the collimator size of 15 mm. In order
to determine the relative transition ratios of the 9327 keV γ-ray emission for both
the s-wave and the p-wave resonances, sufficient statistics is required for both
resonances. However, the cross section of the s-wave resonance is much larger than
that of the p-wave resonance. Because the data acquisition rate was limited by
the s-wave resonance, the statistics of γ rays from the p-wave resonance might not
be enough. To resolve this problem, the measurement with the self-filter upstream
from the target position was conducted. This measurement method enabled to
reduce the neutron flux in an energy region around the s-wave resonance because
neutrons with energies around the s-wave resonance were captured by the self-
filter. On the other hand, most of the neutrons with energies around the p-wave
resonance were not captured by the self-filter because of the small cross section.

66



310 410
s]µTOF [

410

510

610

sµ
C

ou
nt

 / 

Figure 5.2: TOF spectrum of γ rays from the natSn(n, γ) reactions. The blue-open
histogram shows all the data, while the red-hatched histogram depicts spectrum
in which the pulse heights were recorded as zero. The small peaks around 1350 µs
are the p-wave resonance of 117Sn and the s-wave resonance of 115In.
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Figure 5.3: Pulse height spectrum of γ rays from the natSn(n, γ) reactions. The
blue-open spectrum is all the data, while the red-hatched spectrum is gated with
a TOF range corresponding to 1.0 – 1.6 eV.
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Figure 5.4 shows the TOF spectrum measured with the self-filter. The large peaks
at 235 µs and at 250 µs are the 45.7 eV s-wave resonance by 124Sn(n, γ) reaction
and the 38.8 eV s-wave resonance by 117Sn(n, γ) reaction, respectively. The ratios
of events with their pulse heights as zero were 0.31% around the p-wave resonance
and 23% around the 38.8 eV s-wave resonance, respectively. This implies the
amounts of lost events around the p-wave and the s-wave resonance are estimated
to be approximately 0.03% and 3%, respectively. They are negligible compared to
the statistical error.

Figure 5.4: TOF spectrum of γ rays from the natSn(n, γ) reactions with the
self filter. The blue-open histogram shows all the data, while the red-hatched
histogram depicts the spectrum in which the pulse heights were recorded as zero.

Resonance parameters

The measurement of resonance parameters was performed using the 117Sn-enriched
tin target for 6 hours with a collimator size of 22 mm in diameter. The resonance
parameters can be determined from events corresponding to all transitions from the
compound state. Thus, prompt γ rays with a wide range from low to high energy
are used in the analysis. However, the measured spectrum includes background
events. The background events are caused by cosmic rays and γ rays emitted from
the materials which consist of the detector assembly. The background spectrum
was measured for 2 hours without the target and a collimator size of 22 mm.
Figure 5.5 shows the TOF spectrum measured with and without the 117Sn-enriched
tin target. Resonances caused by isotopes are smaller than those in the spectrum
measured with the natSn target (See Fig. 5.4).
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Figure 5.5: TOF spectra measured with and without 117Sn-enriched target. The
blue-open spectrum was measured with the target. The black-hatched spectrum
was measured without the target.

5.3.2 Measurement of the beam intensity spectrum

The neutron-energy dependence of the beam intensity was obtained by measuring
γ rays from 10B(n, αγ)7Li reactions with the boron carbide target placed at the
center of the germanium detector assembly. The measurement was performed
for 2.4 hours with the collimator size of 22 mm in diameter. Figure 5.6 shows
a γ-ray energy spectrum. The peak at 477.6 keV is a full absorption peak from
10B(n, αγ)7Li reactions.

The number of detected γ rays with an energy of 477.6 keV, Nγ(En), is de-
scribed as

Nγ(En) = I(En)TSϵ(Eγ)(1− exp(−ρtσ(En)))

≈ I(En)TSϵ(Eγ)ρtσ(En), (5.1)

where I(En) is the beam intensity, T is the measurement time, S is the area
ratio of the target size to the beam size, ϵ(Eγ) is the detection efficiency of the
germanium detector assembly for the 477.6 keV γ rays, ρ is the number density of
10B in the target, t is the thickness of the target, and σ(En) is the cross section of
10B(n, αγ)7Li reaction.

The neutron-energy-dependent beam intensity was obtained by dividingNγ(En)
by σ(En). The values of σ(En) are referred from JENDL-4.0 [48]. In the epithermal
energy region, the beam intensity increases for lower neutron energies as shown in
Fig. 5.7.

69



200 300 400 500 600 700

 [keV]γ
mE

410

510

610

C
ou

nt
 / 

ke
V

Figure 5.6: Spectrum of γ-ray energy with the boron carbide target. The peak
at 477 keV is a full absorption peak from 10B(n, αγ)7Li reactions.
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Figure 5.7: Energy dependence of the neutron beam intensity.
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Chapter 6

Analysis

In this chapter, the analysis method to obtain the angular dependence of the p-
wave resonance shape is explained. The resonance parameters and the relative
transition ratio for each resonance of 117Sn(n, γ) reaction are determined. Finally,
the values of the mixing angle ϕ and κ(J) are determined.

6.1 Overview of analysis

Three measurements were performed to determine the mixing angle ϕ and the
κ(J) value of 117Sn. Firstly, the collected data are independently analyzed. For
each data, the following procedures are conducted: the definition of signal regions
(Section 6.2), and correction and normalization of neutron-energy spectrum (Sec-
tion 6.3). This correction and normalization include the subtraction of background
events, correction of pile-up events, and normalization of the neutron beam inten-
sity. The resonance parameters and the relative transition ratio for each resonance
are determined by fitting using the Breit-Wigner function convoluted some effects
(Sections 6.4 and 6.5). These results are used to calculate the angular dependence
of the p-wave resonance shape based on theoretical formalism described in Chap-
ter 3. On the other hand, from the obtained data, the angular dependence of the
p-wave resonance shape is evaluated quantitatively (Section 6.6), and its system-
atic errors are estimated (Section 6.7). Finally, the mixing angle ϕ and the κ(J)
value are determined using the experimental result and the calculation result from
theoretical formalism (Section 6.8). Figure 6.1 shows the analysis flow chart.
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Angular dependence Relative transition ratios Resonance parameters

Definition of signal region
(γ-ray peak at 9327 keV)

Definition of signal region
(γ-ray peak at 9327 keV)

Definition of signal region
(γ-ray energy ≥ 2 MeV)

Background subtraction
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higher-energy γ rays )
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(environmental background)

Correction for pile-up events Correction for pile-up events Correction for pile-up events

Normalization of 
beam intensity
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Determination of 
relative transition ratios

Determination of 
resonance parameters

Determination of 
angular dependence

Calculation of angular dependence
based on theoretical formalism

Determination of values of % and κ(J)

Figure 6.1: Analysis flow chart. Firstly, three collected data are independently
analyzed. For each data, the neutron-energy spectrum is corrected and normalized.
The calculated value of the angular dependence of the p-wave resonance shape is
obtained using the theoretical formalism. The experimental value of the angular
dependence is obtained from data. The mixing angle ϕ and the κ(J) value are
determined using the experimental result and the calculation result of the angular
dependence of the p-wave resonance shape.

6.2 Definition of signal regions

The Flambaum formalism insists that the γ rays emitted from the compound
states can lead to the angular dependence of the shape of a p-wave resonance, and
the behavior of the angular dependence is different for the spin of the final state.
The observed events include γ rays emitted from excited states except for the
compound states. Therefore, signal regions should be defined using γ-ray peaks
caused by the compound states. The 9327 keV γ-ray peak was adopted as the
signal region because γ rays in this peak are obtained via the transitions from
the compound state of 118Sn to the ground state. Its single- and double-escape
peaks were added as the signal regions because their events have the same angular
dependence.

The ranges of the signal regions are defined as the full width at quarter maxi-
mum (FWQM). This is the range in which the height h′ excluding the background
events at a given energy satisfies the following equation;

h′ ≥ 1

4
(hpk − hbg) . (6.1)
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Here, hpk and hbg are the heights of peak and background, respectively. Figure 6.2
shows an illustration of FWQM. The horizontal axis is γ-ray energy, and the
vertical axis is the number of events. The range between the green-vertical lines
is defined as a signal region which satisfies the condition of Eq. (6.1). The signal
regions for the d8 detector are shown in Fig. 6.3. The three green bands represents
the signal regions for full-absorption, its single-escape, and double-escape peaks.
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Figure 6.2: Definition of signal region for γ-ray peaks. The horizontal axis is
γ-ray energy and the vertical axis is the number of events. The range between
the green-vertical lines is defined as a signal region which satisfies the condition of
Eq. (6.1).

Figure 6.4 shows the neutron-energy spectrum gated the signal regions for all
detectors. In Section 5.3.1, it is mentioned that the 1.46 eV s-wave resonance by
115In(n, γ) reactions was observed. This s-wave resonance was eliminated by gating
with the signal regions because the highest γ-ray energy emitted by 115In(n, γ)
reaction is 6561 keV.
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Figure 6.3: Signal regions for γ-ray peaks in measurement data. The three
green bands represent the signal regions for full-absorption, its single-escape, and
double-escape peaks.
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Figure 6.4: Neutron-energy spectrum gated with the signal regions for all detec-
tors. The 1.46 eV s-wave resonance from the 115In(n, γ) reactions was eliminated.

6.3 Spectrum correction and normalization

The obtained neutron-energy spectrum includes the background events and the
energy dependence of beam intensity. The spectrum should be corrected to exclude
these effects. In this section, the correction methods and their results are explained.
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6.3.1 Background subtraction

The neutron-energy spectrum of signal events was obtained by subtracting the
spectrum of background sources. There are two kinds of background sources. One
is caused by the Compton scattering of γ rays with 9563 keV which were emitted
by 115Sn(n, γ) reactions. The amount of these background events contaminating
in the signal regions was estimated using the GEANT4 simulation. In this simu-
lation, the spectrum by γ rays with the monochromatic energy of 9563 keV was
obtained by emitting isotopically γ rays with this energy from the target position.
The amount of contamination in the signal regions was obtained by scaling the
simulated spectrum so that the intensity of the full-absorption peak of 9563 keV
matched between data and simulation. The blue-open spectrum in Fig. 6.5 shows
the collected γ-ray energy spectrum without event selection. The red-hatched
spectrum in Fig. 6.5 shows the simulated spectrum after scaling.

The other background source is caused by simultaneous detections of multi
γ rays. Some of the energies obtained by such events are greater than 10 MeV.
This background spectrum is continuous because γ rays with various energies are
simultaneously detected in random combinations. This background spectrum was
obtained by subtracting the two simulated spectra by monochromatic energies of
9563 keV and 9327 keV from the measured spectrum. The black-striped spectrum
in Fig. 6.5 shows this continuous background spectrum.
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Figure 6.5: Spectrum of γ-ray energy of each background component. The blue-
open spectrum is the γ-ray energy spectrum without event selection. The red-
hatched spectrum shows the background events stemmed from the 9563 keV γ
rays. The black-striped spectrum shows the background events stemmed from
simultaneous detections of multi γ rays.

The amount of these background events can be estimated by counting the
number of events contaminating the signal regions for the red-hatched and black-
striped spectra in Fig. 6.5. The neutron-energy spectra of these background events
were obtained by gating the ranges of the full-absorption peak of 9563 keV and
greater than 9600 keV. Figure 6.6 shows the neutron energy spectra before and
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after background subtraction. The average amount of background events in all
detectors was estimated to be approximately 13% for all obtained events.
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Figure 6.6: Comparison of neutron-energy spectrum before and after subtraction.
The blue and red spectra represented by closed and open circles are before and
after subtraction, respectively.

6.3.2 Pile-up events correction

As mentioned in Chapter 4, the DAQ system records the pulse heights as zero
or regards two signals as one signal when the time difference between signals is
too short. In the measurements, the number of lost events by being regarded as
one signal can be ignored because it is smaller than the statistical error. Some
of the γ rays with 9327 keV were recorded with their pulse heights as zero. The
neutron-energy spectrum gated with the signal regions loses these events, so the
number of events needs to be corrected. The ratio of the number of events with
pulse heights of zero to that of total events is denoted by R. The number of events
whose energies were observed as 9327 keV (N9327keV) can be written using the
actual number of signal events (Ntrue) as

N9327keV = Ntrue(1−R). (6.2)

The correction ratio 1/(1 − R) can be obtained using the number of total events
Ntot and the number of events with non-zero pulse height Nnonzero as

Ntot

Nnonzero

=
Ntot

Ntot(1−R)
=

1

1−R
. (6.3)

Figure 6.7 shows the correction ratio around the p-wave resonance. The vertical
axis is the correction ratio 1/(1 − R). The amount of correction is about 2% at
the vicinity of the p-wave resonance.
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Figure 6.7: Correction ratio of pile-up events for neutron-energy spectrum. The
vertical axis is the correction ratio 1/(1− R). The amount of correction is about
2% at the vicinity of the p-wave resonance.

Figure 6.8 shows the spectra before and after pile-up events correction. It is
confirmed that the number of events hardly change before and after the correction
around the p-wave resonance.

6.3.3 Normalization of energy dependence of neutron beam
intensity

The measured spectrum includes the energy dependence of neutron beam intensity,
which is described as Eq. (5.1). The energy dependence of neutron beam inten-
sity can be canceled out in all neutron energy regions by dividing the spectrum
measured with Sn target by the beam intensity spectrum as shown in Fig. 5.7.
Figure 6.9 shows the neutron energy spectra before and after the beam intensity
normalization. The number of events in the low-energy region (less than 1 eV)
after normalization is smaller than that before normalization. This is because the
neutron beam intensity at BL04 increases for lower neutron energies.
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Figure 6.8: Comparison of neutron energy-spectrum between before and after
pile-up events correction. The blue and red spectra represented by closed and
open circles are before and after correction, respectively. It is confirmed that the
number of events hardly changes before and after the correction around the p-wave
resonance.

1−10 1
 [eV]n

mE
1

10

210

310

410

C
ou

nt
 [A

.U
.]

Before correction

After correction

Figure 6.9: Comparison of neutron-energy spectrum between before and after
the beam intensity normalization. The blue and red spectra represented by closed
and open circles are before and after normalization, respectively. The number of
events in the low-energy region (less than 1 eV) after normalization is smaller than
that before normalization.

78



6.4 Determination of resonance parameters

The resonance parameters of each resonance can be determined by fitting the spec-
trum measured with the 117Sn-enriched target by the Breit-Wigner function. Some
effects to be considered are the Doppler broadening effect, the energy resolution of
the pulsed neutron beam, and the self-shielding effect, which cannot be removed
using the corrections described in the previous sections. Therefore, the fitting
function must include these effects. In this section, these effects and the method
to introduce them into the fitting function are explained.

6.4.1 Doppler broadening effect

The cross sections of 117Sn with neutrons are described using the center-of-mass
energy Ecm between a neutron and a target nucleus. When the target nucleus
vibrates thermally with a velocity of u, the Ecm can be written as

Ecm =
1

2
mn(v ± u)2 ≈ En ± u

√
2mnEn. (6.4)

This implies that the energy range which causes neutron capture can be wide
depending on the velocity of the thermal vibration of the target nuclei. The
increase of observed resonance width is called the Doppler broadening effect. The
calculation of the cross section taken into account the Doppler broadening effect
is explained as follows.

Here, an ideal gas model is used [68,69]. The Doppler-broadened cross section
σ̄ with energy E and temperature T can be described using an energy transfer
function S(E,Ecm) and the original cross section σ as

σ̄(E) =

∫
dEcmS(E,Ecm)σ(Ecm). (6.5)

The velocity of nuclei of the ideal gas follows the Maxwell-Boltzmann distribution,
so that the S(E,Ecm) is given as [70]

S(E,Ecm) =
1

∆
√
π
exp

[
−
(
Ecm − E

∆

)2
]
, (6.6)

∆ ≡

√
4EkBT

M/mn

, (6.7)

where kB is the Boltzmann constant and M is the mass of the target nucleus.
Variable ∆ is called the Doppler width. For E ≫ ∆, the σ̄(E) is approximated as
follows [71].

σ̄(E) =
1

∆
√
π

∫
dEcm exp

[
−
(
Ecm − E

∆

)2
]√

Ecm

E
σ(Ecm). (6.8)

Figure 6.10 shows an example of a calculation result of the Doppler broadening
effect using Eq. (6.8) for the cross section of the p-wave resonance of 117Sn. It
is confirmed that the resonance width depends on temperature, while the center
energy of the resonance is considered to be independent of the temperature.
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Figure 6.10: Doppler broadening effect. The observed resonance width becomes
broader depending on the temperature.

6.4.2 Convolution of neutron energy resolution

As already explained, the neutron energies were calculated from the TOF values.
However, the TOF value recorded by the DAQ system was not the true flight
time of neutrons from the moderator surface to the target position. The time it
takes for neutrons to pass through the moderator must be considered. This time
is different for each neutron even if the energy after passing the moderator is the
same. This is because the path that each neutron takes inside the moderator is
different. The time structure caused by this process affects the energy resolution
of the neutron beam, as explained in Chapter 4.

The true energy distribution of neutrons measured at a given TOF value can
be calculated using Eqs. (4.2) and (4.3). The true neutron energies are necessarily
higher than energies calculated from their TOF values. Therefore, the cross section
convoluted with the Ikeda-Carpenter function, σ̃(Em

n ), can be described as

σ̃(Em
n ) =

∫
dEnψ(En, t

m)σ(En)E
− 3

2
n

=

∫
dẼψ(Em

n + Ẽ, tm)(Em
n + Ẽ)−

3
2 (Ẽ ≥ 0), (6.9)

where Ẽ is the difference between the true neutron energy and the observed one.
The cross section convoluted with the Doppler broadening effect and the Ikeda-
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Carpenter function, σ′(Em
n ), can be described as follows;

σ′(Em
n ) =

∫
dẼψ(Em

n + Ẽ, tm)(Em
n + Ẽ)−

3
2

1

∆
√
π

×
∫
dEcm exp

−(Ecm − (Em
n + Ẽ)

∆

)2
√ Ecm

Em
n + Ẽ

σ(Ecm),

∆ =

√
4(Em

n + Ẽ)kBT

M/mn

. (6.10)

Figure 6.11 shows an example of a calculation result using Eq. (6.10) for the cross
section of the p-wave resonance of 117Sn. The center of the resonance shifts to
lower energy by convoluting the Ikeda-Carpenter function.
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Figure 6.11: Breit-Wigner function convoluted the Doppler broadening effect and
neutron energy resolution. The center of the resonance shifts to lower energy by
convoluting the Ikeda-Carpenter function.

6.4.3 Self-shielding effect

When the cross section is very large such as an s-wave resonance, the neutron
beam cannot reach deeply inside the target. Figure 6.12 shows the distribution of
neutron flux inside the target. The horizontal axis is the target thickness and the
vertical axis is the energy of incident neutrons. This is a calculation result of the
number of neutrons which can pass through a 117Sn target without interactions
when 105 neutrons with energies around the s-wave resonance are injected. In this
calculation, the resonance parameters of the s-wave resonance were used the values
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described in Table. 2.3 and the number density of the target as 3.79× 1023 n/cm3.
The neutron flux inside the target is very small at the resonance energy due to
the small transmission. Figure 6.13 shows the distribution of the number of (n,γ)
reactions inside the target. The horizontal axis is the target thickness and the
vertical axis is the energy of incident neutrons. At the resonance energy, the front
surface (target thickness ∼ 0.1 mm) is the dominant location where the reaction
occurred. On the other hand, the number of reactions is constant entirely inside
the target at far energies from the resonance. This indicates that the effective
thickness is different between at the center and at the tail of the resonance, which
can cause a wider resonance width than the original resonance width as shown in
Fig. 6.14.
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Figure 6.12: Distribution of neutron
flux inside the target. The horizontal
axis is the target thickness and the ver-
tical axis is the energy of incident neu-
trons.
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Figure 6.14: Self-shielding effect for the s-wave resonance. The blue-open his-
togram is the projection as a function of neutron energy of distribution in Fig. 6.13
with the range of the target thickness from 0 to 0.6 mm. The red-shaded histogram
is the projection with the range of the target thickness from 0 to 0.01 mm. This
red-shaded histogram was scaled so that the maximum heights of both histograms
matched. The observed resonance which corresponds to the blue-open histogram
has a wider resonance width than the true resonance width due to the self-shielding
effect.

The cross-section dependence of the shielding power for the target nucleus must
be known. Here, a self-shielding factor f(σ) is defined as a function of the cross
section σ as

f(σ) ≡ Nentire

Nfront(d/δd)
=

Nincident{1− exp(−nσd)}
Nincident{1− exp(−nσδd)}(d/δd)

, (6.11)

where Nentire and Nfront are the numbers of reactions occurring in the entire target
with a thickness of d and on its front surface with a thickness of δd, respectively.
The Nincident is the number of incident neutrons and n is the number density of
the target. Figure 6.15 shows the self-shielding factor f(σ) calculated using the
following parameters: Nincident = 105, n = 3.79 × 1023 n/cm3, d = 0.6 mm, and
δd = 0.006 mm. Equation (6.10) is modified as

σobs(E
m
n ) =

∫
dẼψ(Em

n + Ẽ, tm)(Em
n + Ẽ)−

3
2

1

∆
√
π

×
∫
dEcm exp

−(Ecm − (Em
n + Ẽ)

∆

)2
√ Ecm

Em
n + Ẽ

σ(Ecm)f(σ(Ecm)).

(6.12)

In the next section, Eq. (6.12) is used as the fitting function.
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Figure 6.15: Cross-section dependence of self-shielding factor with a 117Sn target
thickness as 0.6 mm.

6.4.4 Determination of resonance parameters

The resonance parameters can be determined by fitting the neutron energy spec-
trum measured with the 117Sn-enriched target. The neutron energy spectrum was
gated with Em

γ ≥ 2 MeV in order to exclude γ rays emitted by the transitions
from the low-excited state and low-energy background events such as an electric
noise. There are background events for Em

γ ≥ 2 MeV, which are caused by the
cosmic rays and prompt γ rays emitted by the materials consisting of the detector
assembly: aluminum, iron, lithium, and so on. Therefore, the spectrum caused by
purely 117Sn(n, γ) reactions can be obtained by subtracting the spectrum measured
without the target from one measured with the target. The neutron-energy spec-
trum after subtraction was corrected and normalized with the methods described
in Section 6.3.

The resonance parameters can be obtained by fitting the neutron-energy spec-
trum which is merged for all detectors using Eq. (6.12). In the vicinity of the
p-wave resonance, the cross section σ(Ecm) can be described as

σ(Ecm) = C(σs0(Ecm) + σp(Ecm))

= C

(√∣∣∣∣ Es0

Ecm

∣∣∣∣ gΓn
s0Γ

γ
s0

(Ecm − Es0)2 + (Γs0/2)2
+

√
Ecm

Ep

gΓn
pΓ

γ
p

(Ecm − Ep)2 + (Γp/2)2

)
,

(6.13)

where the index of s0 indicates the negative s-wave resonance and C is a scaling
factor. The resonance parameters for the negative s-wave and p-wave resonances
were obtained as

Γγ
s0 = 77.0± 2.0 meV, Ep = 1.331± 0.002 eV, and Γγ

p = 133± 5 meV, (6.14)

as shown in Fig. 6.16. Here the negative s-wave resonance energy and both neutron
widths were fixed as the central values of previous studies described in Table 2.3.
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Figure 6.16: Fitting result of the p-wave resonance for determining resonance
parameters.

On the other hand, the cross section σ(Ecm) in the vicinity of the s-wave
resonance can be described as

σ(Ecm) = Cσs1(Ecm)

= C

√
Es1

Ecm

gΓn
s1Γ

γ
s1

(Ecm − Es1)2 + (Γs1/2)2
, (6.15)

where the index of s1 indicates the s-wave resonance. The resonance parameters
for the s-wave and p-wave resonances were obtained as

Es1 = 39.054± 0.005 eV and Γγ
s1 = 31.5± 2.5 meV, (6.16)

as shown in Fig. 6.17. Here the neutron width Γn
s1 was fixed as the central value

of previous studies described in Table 2.3.

6.5 Determination of relative transition ratios

The transition ratio from the compound state to the ground state is different for
each resonance. This implies that the relative intensities of the s-wave resonances
to the p-wave resonance are different for the neutron energy spectrum of the single
transition by the 9327 keV γ-ray emission and the spectrum of all transitions.
The relative transition ratios for the single transition can be determined by fitting
the neutron-energy spectrum of the single transition The neutron-energy spectrum
measured with the self-filter was gated with the signal regions (the 9327 keV γ-
ray peaks and its single- and double-escape peaks). The spectrum was corrected
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Figure 6.17: Fitting result of the s-wave resonance for determining resonance
parameters.

and normalized with the methods described in Section 6.3. The relative transition
ratios can be obtained by fitting the neutron-energy spectrum which is merged for
all detectors. The cross section with the single transition of the 9327 keV γ-ray
emission can be written using the cross section with all transitions as

σ(Ecm) = Bs0σs0(Ecm) +Bpσp(Ecm) + Bs1σs1(Ecm), (6.17)

where Bs0, Bp, and Bs1 are the transition ratios of the negative s-wave, the p-
wave, and the s-wave resonances, respectively. Cross sections σs0(Ecm), σp(Ecm),
and σs1(Ecm) are calculated using the resonance parameters which were deter-
mined in Section 6.4.4. The relative transition ratios were obtained by fitting
using Eq. (6.12). Here, the cross section σ(Ecm) is calculated using Eq. (6.17).
Figures 6.18 and 6.19 show the fitting results around the p-wave and the s-wave
resonances, respectively. The relative transition ratios were obtained as

Bs0 : Bp : Bs1 = 2.0± 0.1 : (5.1± 0.2)× 10−1 : (2.6± 0.1)× 10−2

= 4.0± 0.2 : 1 : (5.1± 0.3)× 10−2. (6.18)

Table 6.1 summarizes the resonance parameters and relative transition ratios of
117Sn in this work.
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Figure 6.18: Fitting result for determining the relative transition ratios of the
negative and the p-wave resonances.
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Figure 6.19: Fitting result for determining the relative transition ratio of the
s-wave resonance.
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Table 6.1: Resonance parameters and relative transition ratios of 117Sn in this
work.

E0 [eV] J l Γγ [meV] gΓn [meV] Relative transition ratio
−29.2 1 0 77.0± 2.0 29.9 4.0± 0.2

1.331± 0.002 1 1 133± 5 1.38× 10−4 1 (unity)
39.054± 0.005 1 0 31.5± 2.5 3.10 (5.1± 0.3)× 10−2

6.6 Angular dependence of p-wave resonance shape

After the correction and the normalization described in Section 6.3, the neutron
energy spectra were summed up at the same polar angle θγ. Figure 6.20 shows
the neutron energy spectra at the vicinity of the p-wave resonance. The angular
dependence of the shape of the p-wave resonance was observed clearly.
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Figure 6.20: Neutron-energy spectrum at the vicinity p-wave resonance of each
angle. The central figure represents the setting polar angle θ of each detector. The
cross sign indicates the detectors which were not used in this measurement. The
angular dependence of the shape of the p-wave resonance was observed clearly.

The asymmetry ALH is calculated based on the definition of Eq. (3.18). The
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asymmetry ALH for measurement data is defined as

ALH =
NL −NH

NL +NH

,

NL ≡
∫ Ep

Ep−2Γp

dEm
n N(Em

n ),

NH ≡
∫ Ep+2Γp

Ep

dEm
n N(Em

n ), (6.19)

whereN(Em
n ) is the number of events at a given neutron energy Em

n in the measured
spectrum. Figure 6.21 shows the integral ranges for NL and NH, respectively.
Here the resonance parameters described in Table. 6.1 were used. The angular
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Figure 6.21: Definition of the integral ranges for the asymmetry ALH. The green
and red bands represent the integral ranges for lower and higher energy regions,
respectively.

dependence of ALH is shown in Fig. 6.22. The asymmetry of ALH has a correlation
with cos θγ as

ALH = A cos θγ +B, (6.20)

where

A = 0.473± 0.051 and B = 0.091± 0.019, (6.21)

which is a fitting result as shown in Fig. 6.22 and the statistical error of A is 10.8%.
According to Eq. (3.21), the angular dependence cannot be fit by a linear function
when the contribution of the a3 term is large. Therefore this fitting result implies
the a3 term is negligible.
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Figure 6.22: Angular dependence of the ALH value. The red solid line is the
fitting result with the linear function.

6.7 Estimation of systematic errors

In this section, the origins of systematic errors and estimation of their values are
explained.

6.7.1 Range of signal region

Firstly, the uncertainty of the angular dependence of ALH for the ranges of the
signal regions was estimated. The range of the signal regions was defined as FWQM
which satisfies Eq. (6.1). However, this is arbitrary, and there is no basis for
absolute correctness. Therefore, it is confirmed that the uncertainty of the angular
dependence of ALH for various ranges of signal regions is defined as

h′ ≥ 1

N
(hpk − hbg) , (6.22)

where N is an integer from 2 to 7. Figure 6.23 shows the value of the slope of ALH

for each signal region. The systematic error is estimated to be 0.02 (4.3%) which
is the difference between the slopes at N = 4 and N = 6.

6.7.2 Neutron scattering effect inside the nuclear target

The momentum of neutrons captured by the target nuclei is not necessarily parallel
to the beam direction because some of them are captured after scattering inside
the target. Therefore, the amount of neutrons captured after scattering needs
to be estimated. The amount of neutrons captured after backscattering needs to
be only estimated because the amounts of neutrons scattered between to φ and
to φ + π directions are the same, and the effect is canceled out when the beam
direction is the z direction.
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Figure 6.23: Change of angular dependence for ranges of signal regions. The
vertical axis is the range limit parameter N . The vertical axis is the slope of ALH.

The amount of neutrons captured after backscattering is estimated using a
Monte-Carlo simulation. In this simulation, the scattering cross section for natSn in
the epithermal energy region was set to be 4.6 barn which was the sum of the cross
sections listed in the JENDL database [48], weighted by the natural abundance of
each isotope. The blue-striped histogram in Fig. 6.24 shows the neutron-energy
dependence of the ratio of the amount of the capture events after backscattering to
all capture events. This asymmetric shape is caused that the relative value of the
capture cross section to the scattering cross section changes due to the scattering.
Even if the neutron energy changes by the scattering, the change of the TOF
value will be negligibly small because the time, until the neutron is captured after
backscattering, is at most 2.5 µs. The averaged values of the backscattering ratio
in the integral regions for NL and NH are 2.7% and 3.8%, respectively. Thus, the
asymmetry A′

LH considereing the backscattering is calculated as

A′
LH =

N ′
L −N ′

H

N ′
L +N ′

H

=
(1− 0.027)NL − (1− 0.038)NH

(1− 0.027)NL + (1− 0.038)NH

. (6.23)

The difference between slopes of ALH and A′
LH is estimated to be 0.001 (0.2%),

which is much smaller than the statistical error.

6.7.3 Precision of the nuclear target position

The precision of the nuclear target position affects directly the polar angle θγ.
Figure 6.25 shows the side view of the target and its holder. The maximum
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Figure 6.24: Neutron-energy dependence of backscattering ratio. The horizontal
axis is the initial neutron energy. The black-hatched histogram is the possibility
that a neutron capture reaction occurs. The blue-striped histogram is the ratio of
the amount of the capture events after backscattering to all capture events.

deviation of the target position from the center of the detector assembly is ∆z =
±1 mm under the assumption that the target is set inside the holder. The deviation
of ∆z = ±1 mm causes the deviation of polar angle ∆θγ = ∓0.3◦ for θγ = 72.7◦.
The difference of ALH between with and without the deviation is estimated to
be 0.003 (0.6%), which is also much smaller than the statistical error. Table 6.2
summarizes the statistical error and systematic errors for the slope of ALH. Finally,
the slope of ALH was obtained as

A = 0.473± 0.051(stat.)± 0.025(sys.). (6.24)

Table 6.2: Summary of errors for the slope of ALH.

Error Error [%]

Statistics 0.051 10.8
Range of signal region 0.025 5.3
Back-scattering events 0.001 0.2

Precision of target position 0.003 0.6
Systematic error 0.025 5.3

Total 0.057 12.1
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Figure 6.25: Side view of the target and holder.

6.8 Determination of the mixing angle ϕ and the

κ(J)

The slope of the asymmetry ALH can be described as a function of the mixing
angle ϕ from Eq. (3.22) using the resonance parameters and the relative transition
ratios listed in Table 6.1. The calculated slope Acal is given as

Acal = (0.548± 0.003)x− (0.387± 0.002)y

= (0.548± 0.003) cosϕ− (0.387± 0.002) sinϕ. (6.25)

Two solutions were obtained from Eqs. (6.24) and (6.25) as

ϕ = (10.3+6.4
−7.2)

◦ and ϕ = (−80.8+7.1
−6.4)

◦. (6.26)

Figure 6.26 shows the visualization of these solutions on the xy-plane. The values
of x can be obtained as

x = 0.98+0.01
−0.02 and x = 0.16+0.12

−0.11. (6.27)

The value of W is also obtained from Eq. (2.8) as

W = −0.57+0.01
−0.01 meV and W = −3.5+1.5

−7.7 meV. (6.28)

In this calculation, the value of AL = 0.79×10−2 and other parameters in Table 6.1
were used. The absolute value of κ(J) was obtained with the error of 1σ as

|κ(J)| = 0.42+0.05
−0.06 and |κ(J)| = 2.6+6.8

−1.3, (6.29)

and these are shown in Fig. 6.27.
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Figure 6.26: Visualization of the ϕ on the xy-plane. The solid line, shaded area,
dashed line, and dotted line represents the cental value, 1σ error, 2σ error, and 3σ
error, respectively.
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Figure 6.27: The absolute value of κ(J) for 117Sn. The solid line, shaded area,
dashed line, and dotted line represents the cental value, 1σ error, 2σ error, and 3σ
error, respectively.
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Chapter 7

Discussion

The value of the mixing angle ϕ was determined in the previous chapter. In this
chapter, this result is compared with the previous study. The measurement time to
improve the current upper limit for T-violation by the nEDM search is estimated
using the result obtained in this study. In addition, future prospects is introduced.

7.1 Comparison with previous study

The angular dependence of the asymmetry ALH is dominated by the contribution of
the a1 term. This result can be compared with the forward-backward asymmetry
ϵF.B. in the previous study. Figure 7.1 is a drawing of the result of this study
(Fig. 6.26) superimposed on the previous result (Fig. 3.5). If ϵF.B. was measured
with the same precision as this study, they are consistent with each other within
2σ error. These results imply the κ(J) is a non-zero value obtained from the a1
term. In this study, the a3 term was considered to be negligible. The precise
measurement of the a3 term will allow for a more detailed discussion.

Figure 7.1: Comparison of the value of ϕ with the previous study.
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7.2 Estimation of the sensitivity for the T-violation

search

The sensitivity of T-violating interaction with 117Sn can be estimated using the
formalism described in Chapter 2 because the value of κ(J) was determined.

7.2.1 Estimation of the upper limit of WT/W

The upper limit of the ratio of the T-violating matrix element (WT) to P-violating
weak matrix element (W ) in the compound nuclear interaction can be estimated
using the current upper limit of the nEDM. The ratio of the T-violating cross
section (∆σT) to the P-violating cross section (∆σP) in the compound nuclear
reaction was calculated using the meson-exchange model of EFT by Y. H. Song et
al. [30]. Assume that the ratio WT/W is equal to ∆σT/∆σP as

WT

W
=

∆σT
∆σP

≃ (−0.47)

(
ḡ
(0)
π

h1π
+ (0.26)

ḡ
(1)
π

h1π

)
, (7.1)

where h1π is a P-violating coupling constant of meson exchange interaction. The up-

per limits of ḡ
(0)
π and ḡ

(1)
π are estimated from the current upper limits of nEDM [28]

and 199Hg-EDM [72] as

ḡ(0)π < 1.6× 10−10 and ḡ(1)π < 1.7× 10−13. (7.2)

The value of h1π was obtained from the measurement of the P-violation in n+p →
d + γ reactions [73] as

h1π = [2.6± 1.2(stat)± 0.2(syst)]× 10−7. (7.3)

Therefore, the value of WT/W is calculated using Eqs. (7.1), (7.2), and (7.3) as∣∣∣∣WT

W

∣∣∣∣ < 2.9× 10−4. (7.4)

The value of WT in Eq. (2.27d) is calculated using Eqs. (6.28) and (7.4).

7.2.2 Estimation of the measurement time using polarized
neutrons and polarized target

The most sensitive observable for T-odd observable using polarized neutrons and
polarized target can be estimated using Eq. (2.33). The pseudo-magnetic effect
caused by the B term in Eq. (2.30) decreases the experimental sensitivity to T-
violation. Therefore, it is assumed that this spin rotation is canceled out by
applying an external magnetic field, which means ReB = 0. In order to improve
the current upper limit of the T-violation by the nEDM search, the errors of Ax

and Px should satisfy the following condition.√
(∆Ax)2 + (∆Px)2 <

8ReA∗D

|A|2
=

8ReA∗D

e−nσtard
, (7.5)
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where n, σtar, and d are the number density, the total cross section, and the
thickness of the target, respectively. The number of incident neutrons is defined
asN . The numbers of the transmitted neutrons for plus (minus) polarized neutron-
spin polarizer and for plus (minus) polarized analyzer are defined as NA+ (NA−)
and NP+ (NP−), respectively. Then, Ax and ∆Ax can be written as

Ax =
NA+ −NA−

NA+ +NA−
,

∆Ax =
2
√
N2

A+NA− +NA+N2
A−

(NA+ +NA−)2
, (7.6)

and Px and ∆Px can be written as

Px =
NP+ −NP−

NP+ +NP−

Tn√
T 2
n − T 2

00

,

∆Px =
2
√
N2

P+NP− +NP+N2
P−

(NP+ +NP−)2
Tn√

T 2
n − T 2

00

, (7.7)

where T00 and Tn are transmission for the unpolarized and polarized analyzer,
respectively. When the neutron polarization is 100%, the value of Tn is equal to
1/2. In the case of NA+ = NA− = NP+ = NP− = NTn exp(−nσtard), the error of
Ax + Px is given as

√
(∆Ax)2 + (∆Px)2 =

√
2

Ne−nσtard
. (7.8)

The number of incident neutrons to improve the upper limit for T-violation can
be described using Eqs. (7.5) and (7.8) as

N > 4× e−nσtard

32ReA∗D
. (7.9)

For ϕ = 10.3◦ and−80.8◦, N was obtained under the assumption that the thickness
of a 100% 117Sn-enriched target is 5 cm as

N = 1.3× 1013 and N = 1.9× 1011. (7.10)

NOPTREX collaboration plans to construct a new beamline at BL07 in J-
PARCMLF. The intensity of the neutron beam at BL07 with a proton beam power
of 1 MWwas estimated using Monte-Carlo simulation as 1.7×1011 [n/s/cm2/sr/eV]
at 1.26 eV [55]. Assume the following conditions. The distance from the moderator
surface to the target position is 15 m. Neutrons emitted from the surface with
dimensions of 10 × 10 cm2 can reach the target position, which means that the
solid angle is about 4.4 × 10−5 sr. The target size is 4 × 4 cm2, and the neutron
beam at 1.33 ± 0.05 eV is used. The intensity of the neutron beam at 1.33 eV
is equal to at 1.26 eV. Therefore, the neutron flux is calculated as 1.2 × 107 n/s.

97



The measurement time to improve the current upper limit is estimated to be
approximately 13 days for ϕ = 10.3◦ and 4.4 hours for ϕ = −80.8◦, respectively.

The above estimation of the measurement time does not consider the polariza-
tion of the neutron beam and the target nuclei. The neutron beam is polarized by
a neutron-spin polarizer that is a device to polarize the spin of the neutron beam.
A 3He spin filter and proton spin filter can polarize epithermal neutrons. Both
spin filters make use of a spin-dependent cross section with neutrons. Therefore,
an unpolarized neutron beam is polarized as it passes through these spin filters.

The 3He spin filter is composed of 3He gas enclosed into a special glass cell which
is made from GE180 or quartz. These materials do not include boron. The 3He
nucleus has a very large absorption cross section (10666 barn) when the spin of the
neutron is antiparallel to that of 3He nucleus. On the other hand, the cross section
for neutrons whose spin is parallel to the spin of 3He nucleus is approximately
zero. High-energy neutrons are difficult to polarize because the absorption cross
section decreases according to the 1/v law. The 3He spin is polarized by Spin-
Exchange-Optical-Pumping (SEOP) technique. The electrons of Rb atoms, which
are enclosed into the cell, are polarized by the circular polarized light, and the
polarization of electrons is transferred into 3He nuclei by the hyperfine interaction.
The performance level of the 3He spin filter is evaluated by the polarization and
the quantity of 3He gas. The quantity is described by the product of length and
pressure. The transmission is written as

Tn = e−ρσ(En)PL cosh(σ(En)ρPLPHe), (7.11)

where ρ is the number density of 3He gas at the standard temperature and pressure,
σ(En) is the absorption cross section of 3He gas, P is the pressure, L is the length,
and PHe is the polarization of 3He gas. The polarization of the transmitted neutrons
is written as

Pn = tanh(σ(En)ρPLPHe). (7.12)

The figure of merit (FOM) can be defined to optimize the quantity of 3He gas as

FOM ≡ P 2
nTn. (7.13)

Figure 7.2 shows the FOM value of the 3He spin filter at 1.33 eV. The FOM value
is at the maximum at the quantity of 3He gas of 100 atm · cm for any polarization.

The best performance of 3He spin filter at present was achieved by Z. Salhi et
al. [74]. In their study, the polarization of 78.5% at the quantity of 41 atm · cm
was obtained. Figure 7.3 shows the gas-quantity dependence of Pn, Tn, and FOM
at 1.33 eV with the polarization of 3He gas of 78.5%. The FOM value can be
almost maximized if the quantity of 3He gas of 82 atm · cm is achieved by placing
two spin filters developed by Z. Salhi et al. in the direction of the neutron beam.

When the polarizations of the neutron beam and the target are not 100%,
Eq. (7.5) is modified as√

(∆Ax)2 + (∆Px)2 <
8PnPIReA

∗D

|A|2
=

8PnPIReA
∗D

e−nσtard
, (7.14)
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Figure 7.2: FOM of 3He spin filter at neutron energy of 1.33 eV.
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polarization of 3He for neutrons with the energy of 1.33 eV. The red-dashed line
corresponds to the polarization. The blue-dotted line corresponds to the transmis-
sion. The black-solid line corresponds to FOM.
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where PI is the polarization of the target nuclei. In addition, ∆Ax and ∆Px are
modified under the assumption ofNA+ = NA− = NP+ = NP− = N ′Tn exp(−nσtard)
as

∆Ax =
1√

2N ′e−nσtardTn
and ∆Px =

1√
2N ′e−nσtardTn

Tn√
T 2
n − T 2

00

. (7.15)

The relationship between N and N ′ can be written using Eqs. (7.9), (7.14), and
(7.15) as

N ′

N
=

f

P 2
I

,

f =
1

4TnP 2
n

(
1 +

T 2
n

T 2
n − T 2

00

)
, (7.16)

where f is a factor which depends on the performance of the spin filter. The value
of f is about 2.1 for the quantity of 82 atm · cm at the polarization of 3He gas of
78.5%. This indicates that the measurement time doubles due to the performance
of the spin filter. Figure 7.4 shows the measurement time to improve the current
upper limit for T-violation. The polarization of 117Sn nuclei is expected to be
achieved approximately 20% with the Brute-Force method. This is a method of
forcefully polarizing spins in an ultra-high magnetic field (∼ 10 T) and cryogenic
environment (∼mK). For PI = 20%, the measurement time is approximately 10
days if ϕ = −80.8◦. From the point of view of statistics, the T-violation search
using compound nuclear reactions is feasible.
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Figure 7.4: Measurement time for polarization of 117Sn target with ϕ = −80.8◦.
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7.3 Future prospects

In this study, two values of ϕ were obtained by measuring the angular dependence
of the p-wave resonance shape using the unpolarized neutron beam. Since the
measurement time to improve the upper limit for T-violation is very different
between for the two values, the ϕ value must be uniquely determined. There is
a possibility that the measurement of the a2 term leads to the determination of
the unique solution of ϕ. Figure 7.5 shows a calculation result of the a2 term for
both ϕ values which were obtained in this study. The sign of cross section of the
a2 term is different between them. This indicates that the sign of the left-right
asymmetry ϵL.R. can be determined using the ϕ value.
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Figure 7.5: Difference of a2 term between the values of ϕ.

In the previous study, the common solution was not obtained from the mea-
surements of ϵL.R. and ϵF.B.. One of the reasons is considered that the polarization
of the neutron beam was not evaluated. Therefore, the ϵL.R. must be measured
with monitoring the polarization of the neutron beam. For 139La, the measurement
of ϵL.R. was performed at BL04 in J-PARC MLF by T. Yamamoto et al. [75]. The
ϕ value can be uniquely determined by measuring the ϵL.R. at BL04.
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Chapter 8

Conclusion

There is a theoretical prediction that neutron-induced compound nuclei are highly
sensitive to T-violation due to the enhancement mechanism. However, the mix-
ing angle ϕ, which is necessary to estimate the sensitivity to T-violation, has not
yet been determined in most nuclei. In order to determine the ϕ value for 117Sn,
which is a candidate nucleus for T-violation search, the experiment was performed
to measure the angular distribution of prompt γ rays from the 1.33 eV p-wave
resonance at BL04 in J-PARC MLF with the pulsed neutron beam and the germa-
nium detector assembly. For the transition from the compound state of 117Sn + n
to the ground state of 118Sn, the angular distribution was observed as the angular
dependence of the p-wave resonance shape. The angular dependence of the asym-
metry ALH was obtained to be A = 0.473± 0.051(stat.)± 0.025(sys.). In addition,
the relative transition ratios of the s-wave resonances to the p-wave resonance were
determined by the measurement with the self-filter.

The angular dependence of the p-wave resonance shape was analyzed using
the theoretical formalism based on interference between the s-wave and the p-
wave resonance taken into account the Doppler broadening effect and the energy
resolution of the neutron beam. Consequently, the two results were obtained as
|κ(J)| = 0.42+0.05

−0.06 for ϕ = (10.3+6.4
−7.2)

◦, 2.6+6.8
−1.3 for ϕ = (−80.8+7.1

−6.4)
◦. The measure-

ment time to improve the current upper limit by the nEDM search was estimated
to be approximately 10 days with the 20% polarization of 117Sn in the case of
ϕ = −80.8◦. We thus concluded that the nucleus 117Sn is expected to be highly
sensitive to T-violation in the compound nuclear reaction.
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Appendix A

Spin-dependent scattering length
of nucleus

In this appendix, the potential scattering length described in Section 2.3.1 is ex-
pressed.

The cross sections of coherent scattering (σcoh) and incoherent scattering (σinc)
can be described using a scattering length b as

σcoh = 4π
(
b̄
)2

and σinc = 4π{b̄2 −
(
b̄
)2}, (A.1)

where b̄ and b̄2 is the average values of b and b2, respectively. Suppose the system
consists of a single isotope with nuclear spin I. The spin of the nucleus-neutron
system has the values of I + 1/2 or I − 1/2. The scattering lengths for the two
spin states are denoted by b+ and b−. The values of b̄ and b̄2 can be described
using b+ and b− as

b̄ =
1

2I + 1

{
(I + 1)b+ + Ib−

}
and b̄2 =

1

2I + 1

{
(I + 1)

(
b+
)2

+ I
(
b−
)2}

.(A.2)

The spin-dependent scattering lengths (b+ and b−) can be calculated using Eqs. (A.1)
and (A.2) as

(
b+, b−

)
=

(√
σcoh
4π

±
√

I

I + 1

σinc
4π

,

√
σcoh
4π

∓
√

I

I + 1

σinc
4π

)
. (A.3)

In the case of 117Sn, the values of σcoh and σinc are 5.28 barn and 0.3 barn, re-
spectively [76]. Therefore, the values of b+ and b− can be obtained using Eq. (A.4)
as (

b+, b−
)
= (7.37 fm, 3.81 fm) or (5.59 fm, 9.16 fm) . (A.4)

The value of potential scattering length as in Eqs. (2.27a) and (2.27b) corresponds
to that of b+ in Eq. (A.4).
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Appendix B

Differential cross section in (n, γ)
reaction

According to the Flambaum formalism, the differential cross section of (n, γ) re-
action for polarized and unpolarized neutrons can be written as

dσ

dΩ
=

1

2

[
a0 + a1kn · kγ + a2σn · (kn × kγ) + a3

(
(kn · kγ)

2 − 1

3

)
+ a4(kn · kγ)(σn · (kn × kγ)) + a5(σγ · kγ)(σn · kγ)

+ a6(σγ · kγ)(σn · kn) + a7(σγ · kγ)

(
(σn · kγ)(kγ · kn)−

1

3
(σn · kn)

)
+ a8(σγ · kγ)

(
(σn · kn)(kn · kγ)−

1

3
(σn · kγ)

)
+ a9σn · kγ + a10σn · kn + a11

(
(σn · kγ)(kγ · kn)−

1

3
(σn · kn)

)
+ a12(σn · kn)

(
(kn · kγ)−

1

3
(σn · kγ)

)
+ a13σγ · kγ + a14(σγ · kγ)(kn · kγ)

+ a15(σγ · kγ)σn · (kn × kγ) + a16(σγ · kγ)

(
(kn · kγ)

2 − 1

3

)
+ a17(σγ · kγ)(kn · kγ)(kn · (kn × kγ)) ] , (B.1)

where kn is a unit vector parallel to the incident neutron momentum, kγ is a unit
vector parallel to the emitted γ-ray momentum, σn is a unit vector parallel to the
incident neutron spin, and σγ is a unit vector parallel to the emitted γ-ray spin.

The angular correlation terms (a0 to a17) can be described using amplitudes of
(n, γ) reaction (V1 to V4) as

a0 =
∑
Js

|V1(En, Js)|2 +
∑
Jp,j

|V2(En, Jp)|2,

a1 = 2Re
∑

Js,Jp,j

V1(En, Js)V
∗
2 (En, Jp)P (JsJp

1

2
j1IF )zj,
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a2 = −2 Im
∑

Js,Jp,j

V1(En, Js)V
∗
2 (En, Jp)βjP (JsJp

1

2
j1IF )zj,

a3 = 3
√
10Re

∑
Jp,j,J ′

p,j
′

V2(En, Jp)V
∗
2 (En, J

′
p)P (JpJ

′
pjj

′2IF )zjzj′


2 1 1
0 1

2
1
2

2 j j′

 ,

a4 = −6
√
5 Im

∑
Jp,j,J ′

p,j
′

V2(En, Jp)V
∗
2 (En, J

′
p)P (JpJ

′
pjj

′2IF )zjzj′


2 1 1
1 1

2
1
2

2 j j′

 ,

a5 = −Re
∑
Js,J ′

s

V1(En, Js)V
∗
1 (En, J

′
s)P (JsJ

′
s

1

2

1

2
1IF )

−6Re
∑

Jp,j,J ′
p,j

′

V2(En, Jp)V
∗
2 (En, J

′
p)P (JpJ

′
pjj

′1IF )zjzj′


0 1 1
1 1

2
1
2

1 j j′

 ,

a6 = −2Re
∑
Js,Jp

V1(En, Js)V
∗
2 (En, Jp,

1

2
)δJsJp ,

a7 =
√
3Re

∑
Js,Jp

V1(En, Js)V
∗
2 (En, Jp,

3

2
)P (JsJp

1

2

3

2
2IF ),

a8 = −18Re
∑

Jp,j,J ′
p,j

′

V2(En, Jp)V
∗
2 (En, J

′
p)P (JpJ

′
pjj

′1IF )zjzj′


2 1 1
1 1

2
1
2

2 j j′

 ,

a9 = −2Re
∑
Js,J ′

s

V1(En, Js)V
∗
3 (En, J

′
s)P (JsJ

′
s

1

2

1

2
1IF )

−12Re
∑

Jp,j,J ′
p,j

′

V2(En, Jp)V
∗
4 (En, J

′
p)P (JpJ

′
pjj

′1IF )zjzj′


0 1 1
1 1

2
1
2

1 j j′

 ,

a10 = −2Re
∑
Js

[V2(En, Jp,
1

2
)V ∗

3 (En, Js) + V1(En, Js)V
∗
4 (En, Jp,

1

2
)]δJsJp ,

a11 =
√
3Re

∑
Js,Jp

[V2(En, Jp,
3

2
)V ∗

3 (En, Js) + V1(En, Js)V
∗
4 (En, Jp,

3

2
)]P (JsJp

1

2

3

2
2IF ),

a12 = −36 Im
∑

Jp,J ′
p,j,j

′

V2(En, Jp)V
∗
4 (En, J

′
p)P (JpJ

′
pjj

′1IF )zjzj′


2 1 1
1 1

2
1
2

1 j j′

 ,

a13 = 2Re
∑
Js

V1(En, Js)V
∗
3 (En, Js) + 2Re

∑
Jp

V2(En, Jp)V
∗
4 (En, Jp)zjzj,

a14 = 2Re
∑

Js,Jp,j

[V2(En, Jp)V
∗
3 (En, Js)zj + V1(En, Js)V

∗
4 (En, Jp)zj]P (JsJp

1

2
j1IF ),

a15 = 2 Im
∑

Js,Jp,j

V2(En, Jp)V
∗
3 (En, Js)zj − V1(En, Js)V

∗
4 (En, Jp)zj]βjP (JsJp

1

2
j1IF ),
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a16 = 6
√
10Re

∑
Jp,j,J ′

p,j
′

V2(En, Jp)V
∗
4 (En, J

′
p)P (JpJ

′
pjj

′2IF )zjzj′


2 1 1
0 1

2
1
2

1 j j′

 ,

a17 = −12
√
5 Im

∑
Jp,j,J ′

p,j
′

V2(En, Jp)V
∗
4 (En, J

′
p)P (JpJ

′
pjj

′2IF )zjzj′


2 1 1
1 1

2
1
2

1 j j′

 .

(B.2)

Here the amplitudes V1 to V4 are given as

V1(En, Js) = − 1

2k

∑
s

√
gsΓn

sΓ
γ
s,f

En − Es + iΓs/2
,

V2(En, Jp) = − 1

2k

∑
p

√
gpΓn

pΓ
γ
p,f

En − Ep + iΓp/2
,

V3(En, Js = Jp) = − 1

2k

∑
s,p

√
gsΓn

sW
√
Γγ
p,f

(En − Ep + iΓp/2)(En − Es + iΓs/2)
,

V4(En, Jp = Js) = − 1

2k

∑
s,p

√
gpΓn

pW
√

Γγ
s,f

(En − Es + iΓs/2)(En − Ep + iΓp/2)
, (B.3)

where k is the momentum of the neutron, En is the kinetic energy of the neutron,
Er is the resonance energy of a neutron resonance r, Γn

r is the neutron width, Γγ
r,f

is the partial γ width of the transition to a final state f , andW is the weak matrix
element. Here, the statistical factor gr is described as

gr =
2Jr + 1

2(2I + 1)
, (B.4)

where I is the nuclear spin and Jr is the total spin of the compound state of the
resonance r. The factor P is given as

P (JJ ′jj′kIF ) = (−1)J+J ′+j′+I+F 3

2

√
(2J + 1)(2J ′ + 1)(2j + 1)(2j′ + 1)

×
{
k j j′

I J ′ J

}{
k 1 1
F J J ′

}
, (B.5)

where J , j, I, and F are the spin of the compound state, the total angular mo-
mentum of the neutron, the spin of target nuclei, and the spin of a final state,
respectively. The coefficient zj is given as

zj =

{
x = cosϕ (j = 1

2
)

y = sinϕ (j = 3
2
).

(B.6)
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The a10 term in Eq. (B.2) corresponds to the helicity dependence of the neutron-
capture cross section, and the longitudinal asymmetry AL of Eq. (2.5) is derived
from the a10 term. When the interference between an s-wave and a p-wave am-
plitudes is considered, the ratio of the P-violating cross section a10 to the p-wave
cross section a0,p is given as

a10
a0,p

=
−2xRe(V2(En, Jp)V

∗
3 (En, Js = Jp) + V1(En, Js)V

∗
4 (En, Jp = Js))

|V2(En, Jp)|2

=
−2xW

(En − Es)2 + (Γs/2)2

√
Γn
s

Γn
p

{
(En − Es) +

Γγ
s,f

Γγ
p,f

}
. (B.7)

For En = Ep and Ep − Es ≫ Γs, Eq. (B.7) can be written as

a10
a0,p

≃ − 2xW

Ep − Es

√
Γn
s

Γn
p

= AL. (B.8)
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