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Abstract

Extragalactic jets launched from the supermassive black holes play a fundamental role

in the evolution of galaxy clusters because the jet provides a large amount of energy

to the intracluster (ICM) through shocks and turbulence. Because of weak Coulomb

collisions under high-temperature and low-density plasma, the jets and surrounding ICM

are expected to have different temperatures between protons and electrons, called ’two-

temperature’ plasma. In this thesis, we study the energy budgets of jets by a series of

single fluid/two-temperature magnetohydrodynamics simulations that the jets interact

with ICM.

In the first part, we presented the results for axisymmetric simulations of sub-relativistic

jets that propagate and interact with the ICM. We examined the effect of the instanta-

neous electron heating on electron temperature distributions. The jet plasma crossing the

shocks forms a hot, two-temperature plasma in which the proton temperature is higher

than electron temperature. It was found that the protons stored in the cocoons maintain

1010−11 K longer than the normal active age, although 20 percents of the energy released

by the shock wave are used to heat the electrons. Meanwhile, electrons are continuously

heated by protons through Coulomb collisions.

Next, we simulated with three-dimensional models, including electron instantaneous

heating at shock waves and turbulence. Strongly magnetized jet suffered from the devel-

opment of non-axisymmetric, current-driven kink mode. Meanwhile, weakly magnetized

jets were decelerated by the high-mixing ratio between the jet beam and cocoon gas,

which were induced by Rayleigh-Taylor and Kelvin-Helmholtz instability. Also, jet mag-

netization affected the distribution of magnetic fields. The turbulent scale of the weakly

magnetized jet was shorter than that of the strongly magnetized jets since the magnetic

tension suppressed the turbulence motion. Through the three-dimensional studies, we

found that there are two steps for the thermodynamics of electron and proton in the

evolution of jet: First, most of the bulk kinetic energy of the jet is converted into ther-

mal energy of proton through shocks, which are formed in the jet beam. Second, while

magnetic fields are relatively strong, shocked-electrons stored in the cocoon evolve toward

energy equipartition with magnetic energy through turbulent dissipation. As a result,



Up ≫ U e ∼ Umag in the cocoon, where Up, U e, and Umag are proton thermal energy,

electron thermal energy, and magnetic energy, respectively.

In the final part, we calculated observational quarantines from our three-dimensional

models. Radio power was obtained by solving liner-polarization synchrotron transport

equations, and mechanical power was estimated in the same manner as X-ray observa-

tions. We compared our models and observations for the relationship between radio power

and mechanical power. As a result, our models quantitatively explained the radiative in-

efficient jets, which are frequently observed at the cluster center, for the first time.
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1 Introduction

Astrophysical jet, which is well-collimated supersonic flows, is a ubiquitous phenomenon

observed in various layers of the universe. In particular, extra-galactic jet (hereafter

’jet’) launched from the vicinity of a supermassive black hole (MSMBH ∼ 106−10M⊙ ;

Kormendy & Richstone, 1995) emits over a wide range of energies from the radio to the

γ-ray wavelength. The mechanical power of jets is estimated in the range of 1042−48 erg

(Celotti & Fabian, 1993), and thus the jet heats intracluster and intragalactic medium

(ICM/IGM) over the spatial scale of the host galaxy. Specifically, the jet interacts with

the surrounding ICM, and the kinetic energy of the jet is transformed into thermal and

turbulent energies of the ICM. A part of the jet kinetic energy is given to utilized for high

energy non-thermal particles.

Jet plays a key role in the structure formation of the universe. Firstly, the jet is a

promising candidate as ionization sources in the re-ionization epoch occurring at high

redshift, z ∼ 6 − 8 (Bosch-Ramon, 2018). Secondly, the jet-driven (kinetic) feedback

process affects the evolution of galaxy clusters (Fabian, 2012). Because the radiation

time scale without a heating source is much shorter than 10 Gyr in the central region of

the cluster, the gas pressure in the central region rapidly decreases, and thus a cooling

flow, which towards the cluster center, develops. Meanwhile, X-ray observations of many

clusters show that the gas is not cooling to low temperatures, which was expected in the

cooling flow model (Fabian, 1994). One of the plausible candidates for heating sources is

jets from the host galaxy located in the cluster center. Therefore, the jet may prevent the

cooling flow, fueling onto the central brightest cluster galaxy. This leads to suppress the

growth of luminous galaxy. Finally, the astrophysical jet is an ideal particle acceleration

site. The characteristic maximum energy of cosmic-ray particles with charge Ze is given

by the Hillas energy (Hillas, 1984); E = ZeuBR, where u, B, and R are flow velocity,

magnetic field strength, and source size, respectively. The affected area by the jet reaches

10 − 1000 kpc, and the strong magnetic field is maintained at that region, Therefore,
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the jet considered to be the leading candidate acceleration site for the ultra high energy

cosmic-rays whose energy extends beyond 1020 eV (Matthews et al., 2020).

When the jet interacts with ICM, a low-density and high-temperature inflated bubble

are formed. This bubble is called the ’radio lobe’ because of seen in radio observation,

which suggests that there are a large amount of magnetic and electron (and positron)

energies. Meanwhile, X-ray images showing the gas emitting thermal bremsstrahlung

radiation have represented the bubble as an X-ray cavity (e.g., Fabian et al., 2003; B̂ırzan

et al., 2020).

The combination between radio power and mechanical power provides us useful infor-

mation of our understanding of the energetic and plasma composition in the lobes (B̂ırzan

et al., 2004, 2008). The energy of magnetic fields and relativistic electrons stored in the

lobe can be estimated through synchrotron radio power P radio. X-ray cavity provides us

a lower limit to the jet mechanical energy as cavity power P cavity based on PdV works,

i.e., the work done by the jets against the surrounding ICM. The ratio of radio power

to cavity power, P radio/P cavity, (cavity-radio relation) is known as the radiative efficiency.

The median ratio of P radio to P cavity for the radio lobes at the center of clusters is about

10−2, i.e. most radio lobes are radiative inefficient. On the other hand, some sources

such as Cygnus A are in radiative efficient lobes and hence there is a large scatter in this

relationship. Therefore, measuring the energy budgets of jets has proven to be a very

difficult problem.

To investigate the energy budgets of the jet-ICM system, several works based on

magnetohydrodynamical (MHD) and hydrodynamical simulations have been conducted

(e.g., Omma et al., 2004; Mendygral et al., 2012; Hardcastle & Krause, 2013, 2014; En-

glish et al., 2016; Bourne & Sijacki, 2017). Meanwhile, these works ignore the physics

of ’two-temperature plasma’. Whenever the high-density and low-temperature plasma

is efficiently Coulomb coupling, the electron and proton temperatures become equal in-

stantly. Thus, the large-scale plasma dynamics can be treated as a single-temperature

fluid. In contrary to this, when the plasma temperature is reached electron relativistic

temperature (kT e = mec
2) in high energy phenomena such as jets and hot accretion flow,

this picture changes. The Coulomb coupling becomes inefficient, and the electrons and

protons can have a different temperature, i.e. plasma has ’two-temperature’ (Braginskii,

1965; Shapiro et al., 1976). Thus, we should solve the thermodynamics equations for both
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electrons and protons to deal with two-temperature plasma. In particular, the fraction of

heating into electrons should be treated as a realistic model, which is constructed from

studies that investigate the microscopic properties of a collisionless plasma (Kawazura

et al., 2019, 2020).

The physics of ’two-temperature plasma’ would be important to investigate the energy

budgets of the jet-ICM system. Actually, radio-emitting electrons are non-thermal compo-

nents, which cannot be treated as fluids. Non-thermal electrons, however, are accelerated

from thermal electrons via the micro-scale plasma process. Hence the non-thermal energy

of electrons is naively proportional to the thermal one, the radio power depends on the

electron temperature. Furthermore, treating two-temperature plasma could significantly

affect the cavity-radio relation.

As we mentioned above, the nonequilibrium thermodynamics between electrons and

protons is an interesting open question for the jet-ICM interaction. However, none of the

numerical simulations have studied the thermal evolution of electrons in jets as a whole.

We, therefore, investigate the energy budgets of jets by conducting a series of single

fluid/two-temperature MHD simulations that the jets interact with ICM. In this thesis,

we also need to mention that the words protons and ions are used interchangeably. The

organization of this thesis as follows. Chapter 2 describes the observational feature and

previous theoretical studies of the jet. In chapter 3, we review the two-temperature plasma

from both theoretical and observational point of view. In chapter 4, we present the results

of the axisymmetric simulations of sub-relativistic, inflated, magnetized jets that interact

with homogeneous ICM. Chapter 5 present results of fully three-dimensional simulations

including electron irreversible heating at shock waves and MHD turbulence. Also, we

discuss radio signature and compare our models and observations for the relationship

between radio power and mechanical power. A conclusion and future prospects are given

in chapter 6. In Appendix A, we show the result of the one-dimensional test simulations,

the shock-finding algorithm in our calculations, and the post-processing method for solving

the synchrotron radiative transfer equations.
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2 Review

In the 100 years since the first discovery of jets from active galactic nuclei (AGNs) (Cur-

tis, 1918), various studies have been conducted to explore the physical properties of jets.

Radio bright AGNs are currently understood that the energy released as electromagnetic

radiation by the accretion process onto a supermassive black hole (MSMBH ∼ 105−10M⊙).

A part of AGNs activities is the jet. It forms when the gravitational energy of supermassive

black hole converts to the kinetic energy of jet by MHD process and/or Blandford-Znajeck

process (Blandford & Znajek, 1977; Shibata & Uchida, 1986; Koide et al., 2002). Struc-

tures driven by AGN jets occur a very wide range in apparent source size (Hardcastle &

Croston, 2020). For example, blazars are a compact and luminous time-variable source

because a jet is oriented at a small angle to the line of site. On the other hand, kpc-scale

radio structures are frequently observed in massive elliptical galaxies, called ’radio galax-

ies’. In this thesis, we focus on radio galaxies because the information of radio morphology

provides us understandings of jet dynamics.

2.1 Radio galaxies and Fanaroff-Riley dichotomy

Typical radio structures as observed in radio galaxies are radio core, jet beam, lobe, and

hotspot. Figure 2.1 shows the radio image of Cygnus A , which is one of the most popular

and powerful radio galaxies (Carilli & Barthel, 1996). We can see typical radio structures

in Fig. 2.1. The radio core spatially corresponds to the host galaxy observed at optical

wavelengths, and usually radio component of the core is the flat spectrum (Kimball &

Ivezić, 2008). The jet beam is a well-collimated flow from the radio core. Lobe is an

extended diffuse radio structure, and it stores a large amount of energy transported along

the beam. Hotspot (knot) is a compact and prominent spot formed at the jet terminate

and/or in the beam flow. It is identified in-situ particle acceleration site i.e., shock or

magnetic reconnection point.
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Fig. 2.1: The radio image of the image of Cygnus A (gray scale) at 5 GHz with 0.4” resolutions

observed by the Very Large Array data (courtesy R.Perley).
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X-ray images of radio galaxies have different features from those of radio images.

Intracluster medium (ICM) radiates mainly by thermal free-free emission in the X-ray

band. Surrounding ICM is, therefore, able to detect unlike the case of radio observation.

Meanwhile, X-ray surface brightness where spatially corresponded to radio lobe is 20-

40 percent bellow than that from its surrounding ICM. Thus, these regions call ’X-ray

cavity’. We display the X-ray cavity system of MS 0735+7421 and schematic drawing

of this system in Fig. 2.2. Supersonic jets drive shocks into the ICM, these shocks are

sometimes called ’cocoon shock’. The compressed ICM by cocoon shock emit enhanced

thermal X-ray emission, and therefore these emissions are detected in some radio galaxies.

However, detailed analysis for Cygnus A, one of the most powerful jets, suggests a Mach

number of cocoon shock is low, M = 1.18 - 1.66 (Snios et al., 2018). Other analyses

done by Ineson et al. (2017) suggest a median value of Mach number for various cocoon

shocks M ∼ 2. We can see that the hotspots and beams radiate in the X-ray band.

These emissions are non-thermal component due to inverse Compton process (Harris &

Grindlay, 1979; Hardcastle et al., 2004).

X-ray cavities have been qualitatively divided into two categories, namely radio-filled

and radio-ghost cavities (B̂ırzan et al., 2004). A radio-filled cavity is defined as the cavity

is filled in 1400 MHz or higher frequency radio emission, and therefore it is stored in young

electrons. In contrast, a radio-ghost cavity has lacks significant emission at 1400 MHz.

Radio-ghost cavities are thought to have been formed by past AGN activities (McNamara

et al., 2001).

Large-scale radio jets have exhibit different types of morphology. Fanaroff & Riley

(1974) categorize radio galaxies based on their morphology into two class as follows:

• Fanaroff-Riley type I (FR I): Low brightness regions further from the galaxy than

the high brightness regions.

• Fanaroff-Riley type II (FR II): High brightness regions further from the galaxy than

the Low brightness regions.

FR I type jets have complex radio morphology. Some sources show large-scale plumes

and wiggles like radio emissions (see Fig. 2.2), but other sources show bending feature.

It is generally regarded that the jet is already subsonic flow during propagation, and it

gradually dissipates its energy. On the other hand, FR II type jets show nearly straight
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Fig. 2.2: (a) The radio at 327 MHz (green) overlays on the smoothed Chandra X-ray images

of MS 0735+7421 (adopted from Laura B̂ırzan’s PhD thesis; Rafferty, 2007). (b) Schematic

drawing of the X-ray cavity system.

beams and bright hotspots in radio lobes (see Fig. 2.1). FR II type jets are thought to

have supersonic flows propagating to their termination.

FR distinction does not only link to jet dynamics but also link to radio luminosity.

Fanaroff & Riley (1974) pointed out that most of radio luminosity for FR I type jets below

2 × 1032 erg s−1 Hz−1 Ω−1 at 178 MHz with a Hubble constant of 50 km Mpc−1 s−1, and

that FR II type jets were brighter than that. Recent radio survey of the Low-Frequency

Array Two-Meter Sky Survey (LoTSS; Shimwell et al., 2017), however, indicated that

there is a very large overlap in luminosity for FR I and FR II type jets (Mingo et al.,

2019). Cross-matching method using LoTSS and the Sloan Digital Sky Survey (SDSS)

cluster catalogs revealed that FR I type jets inhibit systematically richer environments

than FR II type jets (Croston et al., 2019). Moreover, some sources showed that FR

I type structure on one side of the source and FR II type structure on the other (e.g.,

Gopal-Krishna & Wiita, 2000). These results indicate that the origin of the FR dichotomy

does not seem from properties of the central engine, but rather than the interplay of jet

power and environment.
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2.2 Radiation mechanism

2.2.1 Thermal and non-thermal particle distributions

In the context of astrophysics, radiations are divided into two types: a thermal one

and a non-thermal one. Thermal and non-thermal radiation are deeply linked to electron

distributions. Thus, we firstly describe commonly used functions for electron distributions.

The thermal and a power-law electron distributions are an important assumption for

the radiation spectrum. In this section, the velocity and Lorentz factor denote v and

Γ = {1 − (v/c)2}−1/2
, respectively. The thermal distribution function of electrons is

N(v) = N th

(
me

2πkT e

)3/2

exp

(
−mev

2

2kT e

)
, (2.1)

where N th , k, T e, and me are the electron number density of thermal component, the

Boltzmann constant, electron temperature, and electron mass, respectively. When the

electron temperature exceeds the rest mass energy (kT e > mec
2), the thermal distribution

is modified by the effects of special relativity. For a gas of relativistic electrons, the thermal

distribution function is:

N(Γ) = N th
Γ2β

θeK2(1/θe)
exp

(
− Γ

θe

)
, (2.2)

where the dimensionless electron temperature θe ≡ kT e/mec
2, and Kn is the modified

Bessel function of the n-th kind. The internal energy density of thermal electrons uth is

given by:

uth = a(θe)N thmec
2θe =

pe
γe − 1

(2.3)

where

a(θe) =
1

θe

[
3K3(1/θe) + K1(1/θe)

4K2(1/θe)

]
, (2.4)

and pe is the pressure of electrons, and γe is the adiabatic index.

In contrast to the thermal distribution, the non-thermal one means that particles

do not obey the thermal Maxwell distribution. A commonly non-thermal component is

described as a power-law distribution function in energy space:

N(Γ) =
NNT(p− 1)

Γmin
1−p − Γmax

1−p
Γ−p, for Γmin < Γ < Γmax, (2.5)
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and zero other wise. Here, NNT is the number density of non-thermal component, Γmin,max

are the minimum and maximum Lorentz factor, and p is the spectral index, respectively.

Therefore, the energy density of a non-thermal component is

uNT =
NNT(p− 1)

Γmin
1−p − Γmax

1−p
mec

2

∫ Γmax

Γmin

Γ1−pdΓ = NNTmec
2p− 1

p− 2

Γ2−p
max − Γ2−p

min

Γ1−p
max − Γ1−p

min

. (2.6)

One of the motivations for adopting the power-law distributions is that observations

directly imply the existence of power-law components. These power-law components are

produced by particle acceleration in collisionless shocks and magnetic reconnections. To

model for a more complex observational spectrum signature, several electron distributions,

such as broken power-law distributions and kappa distributions, are proposed.

2.2.2 Synchrotron radiation

Charged particles moving through a magnetized plasma have a spiral motion. Since this

motion is an accelerated motion, radiation is emitted as a consequence. In particular, in

the case of relativistic particles, this radiation is so-called ’Synchrotron radiation’ (for a

detailed, see Rybicki & Lightman, 1986).

The synchrotron power Pν from a single radiation electron is give by

Pν =

√
3e3B

mec2
sin ΨF (x), (2.7)

where Ψ is a pitch angle with respect to an ordered magnetic field, x = ν/νc with the crit-

ical frequency of synchrotron radiation νc = 3eB
4πmc

Γ2 sin Ψ, and F (x) = x
∫∞
x

K5/3(x
′)dx′.

Here, K5/3 is the modified Bessel function of the second kind of order 5/3. The function

of F (x) has a peak value at ν = νc and rapidly decreases when ν > νc. The energy loss

rate for a electron due to synchrotron radiation is:

−due

dt
=

3e

4πm3
ec5

(B sin Ψ)2ue
2, (2.8)

where ue is the energy density of electron. The high-frequency synchrotron radiation is

required for high-energy electrons. For example, the radio frequencies (∼ GHz) in 10 µG

magnetic field require Γ ∼ 104 electrons.

Next, we consider the synchrotron radiation from non-thermal (power-law) distribu-

tion of electrons. Using the single-particle radiative power and an particle distribution
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N(Γ), we obtain the synchrotron emissivity jν as

jν =
1

4π

∫ ∞

1

N(Γ)PνdΓ. (2.9)

In the case of a power law model (Eq. (2.5)), this integration has been done and yields

jν = NNT

(
e2νc
c

)
3p/2(p− 1) sin Ψ

2(p + 1)(Γ1−p
min − Γ1−p

max)
Γs

(
3p− 1

12

)
Γs

(
3p + 19

12

)(
ν

νc sin Ψ

)−(p−1)/2

,

(2.10)

where Γs(x) is the gamma function of argument x. Note that this expression are obtained

in the ultra-relativistic limits and are valid for ν ≫ νc Therefore, the emissivity have a

power-law relation for frequency, i.e., jν ∝ B1+αν−ν , where α = (p− 1)/2 is the spectral

index. Typical spectrum index for radio lobes is α ∼ 0.5 − 0.8, and thus power-law

spectrum is corresponded to p ∼ 2 − 2.6 (e.g., Hardcastle & Croston, 2020).

2.2.3 Bremsstrahlung radiation and line emission

The X-ray telescopes are sensitive to photons with energies spanning the range of 0.1-10

keV. In this range, the dominant radiation process is thermal Bremsstrahlung radiation

and line emission. These emissions come from the ICM whose temperature and density

are respectively around keV and 10−4 to 10−1 cm−3.

Charged particles are accelerated by the Coulomb force and emit electromagnetic

waves, which is called ’Bremsstrahlung’ or ’free-free’ radiation. Bremsstrahlung emissivity

from the thermal electrons is given by

jffν = 6.8 × 10−38Z2neni

√
T e exp (−hν/kT e)gff (ν, T e), (2.11)

where gff , ne, ni and Z are a velocity averaged Gaunt factor, the number density of

electron and ion, and charge number, respectively. At a temperature higher than 3 keV,

X-ray emission is dominant for thermal Bremsstrahlung radiation. On the other hand, at

a temperature below 3 keV, the X-ray emission by recombination lines of iron, oxygen,

silicon, and so on become dominant. In general, the total radiation power combining with

Bremsstrahlung radiation and line emission per unit volume is described as n2Λ(T e, Z),

where Λ is the cooling function depends on the electron temperature and gas composition

Z.

14



The X-ray observation provides us two-important quantities of ICM; the volume in-

tegrating gas density and spectroscopic gas temperature. The emissivity of an optically

thin intracluster gas almost depends on the number density in the Chandra broadband

energy range. Thus, X-ray surface brightness is simply an integral of the number density

squared along the line of sight, SX ∝
∫

LoSn
2dl. On the other hand, the ICM temperature

is measured by X-ray Spectroscopy. The most prominent spectral signature of tempera-

ture is the exponential cut-off of the spectrum at high energies (see Eq. (2.11)). For an

optically thin plasma at temperatures around keV, this cut-off is seen in the X-ray range.

Therefore, we can obtain the electron temperature to fit the X-ray spectrum, and it is a

useful method for temperature measurement. Recent studies are conducting X-ray spec-

troscopic with a model fit that includes realistic physics, such as ionization equilibration

(Gu et al., 2016).

2.3 Jets energetics

It is difficult to measure directly the physical quantities of the jet, namely density, tem-

perature, magnetic field, plasma composition, and the outburst age. Thus, indirect mea-

surements, based on some assumptions, have been done. In this section, we summarize

the theory and observational result of indirect measurements using radio and X-ray ob-

servation.

2.3.1 Energy estimation from radio lobe

For optically thin emission, the total radio luminosity L are estimated as follows:

L =

∫ νmax

νmin

Lνdν = V

∫ ue,max

ue,min

(
−due

dt

)
N(ue)due, (2.12)

where Lν and V are the radio luminosity at frequency ν and the volume of the source,

respectively. In the case of synchrotron radiation, the emissivity is content in the infor-

mation of the magnetic and electrons energy. However, these energies are not individual.

The usual way to estimate the magnetic field and the electrons energy is to minimize

its total energy U tot (Pacholczyk, 1970). The total energy of a synchrotron source is a

sum of the magnetic energy (UB), the relativistic electron energy (U e), and non-radiating
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proton energy (Up): U tot = UB + U e + Up. The idea of minimum energy estimation is

based that non-thermal electrons and magnetic fields are strongly coupled and exchange

energy until equilibrium is reached. Note that the minimum-energy and equipartition

arguments give similar results and are often used without distinction in the context of

radio astronomy. Here, equipartition argument is similar method to estimate the magnetic

field that is to be equipartition with cosmic-ray particle energy (U e + Up = Umag).

To estimate the magnetic field using the minimum energy argument, we assume that

the radio lobe filled radiating particles and magnetic fields homogeneously, and the com-

pletely random fields. The magnetic energy is calculated as:

Umag =
B2

8π
ϕV, (2.13)

where ϕ is the volume filling factor. The energy of synchrotron emitting electrons that

obey the power-law distribution is calculated as Eq. (2.5). By eliminate NNT and V to

use Eq. (2.12), Eq. (2.8), Eq. (2.10) and Eq. (2.12), we obtain the electron energy as:

U e = B−3/2LC12(p, νmin, νmax). (2.14)

Here, C12 is a function as defined by (Pacholczyk, 1970).

We assume that the proton energy Up is proportional to the electron energy U e:

Up = kU e. Thus, k is a parameter to determine the field strength. The total energy

densities is obtained as a function of the magnetic field:

U tot = U e + Up + Umag = (1 + k)LB− p+1
2 +

B2

8π
ϕV, (2.15)

From dU tot/dB = 0 we get minimum magnetic fields as follows:

Bmin =

[
6πC12(1 + k)L

ϕV

]7/2
. (2.16)

The minimum magnetic energy is 75% of the particles energy,

Umag =
3

4
(Up + U e) =

3

4
(1 + k)U e. (2.17)

Thus, minimum field strength is
{

1 − (3/4)2/7
}

times smaller than equipartition field

strength.

Minimum energy conditions provide us individual magnetic fields, relativistic electron

energy, and total energy interpreted as a lower limit. This method is easy to use because
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only the radio intensity is required. It, therefore, is often used to estimate the strength of

the magnetic field for a long time. Although the minimum energy condition is useful, we

must assume the total energy of protons, i.e., determination of k. Because the protons

do not radiate, it is difficult to determine the k value through observations. We usually

used to assume k ≫ 1 since k is determined by the particle acceleration mechanism, and

protons usually have more energy than electrons (Beck & Krause, 2005). And of course,

when the protons are absent in plasma (pair-plasma), k is zero.

In the context of radio jets, it was assumed that protons are absent (k = 0) or that

protons and electrons are in the energy equipartition (k = 1). Under this assumptions,

the equipartition magnetic field strength are several tens of µG in the radio lobes, and

over a hundred µG in the hot spots (e.g., Carilli & Barthel, 1996; de Gasperin et al., 2012;

Harwood et al., 2016). However, the plasma composition of jets is still under debate.

2.3.2 Energy estimation from X-ray cavity

One of the useful indirect methods for measurements of the jet mechanical power is using

’the PdV work’ i.e., the work done by the jets against the surrounding ICM (e.g., B̂ırzan

et al., 2004; Cavagnolo et al., 2010; McNamara & Nulsen, 2007; Reynolds et al., 2001). Jets

inflate the cavities (bubbles) observed in the thermal X-ray-emitting of their atmosphere.

The total energy needed to form a cavity is the sum of the work pV and its thermal energy

U th:

E = U th + pV =
γgas

γgas − 1
pV =

2.5pV (γgas = 5/3)

4pV (γgas = 4/3)

, (2.18)

where p, V , and γgas are the gas pressure, the size of X-ray cavity, and the specific

heat ratio, respectively. Thanks to the characteristic of thermal X-ray, we are known the

thermal electron density and temperature. Thus, the gas pressure is obtained by the ideal

equation of state. Assuming the lobe and the atmosphere are in pressure equilibrium, the

(lifetime-averaged) jet mechanical power estimated from the pdV-work is calculated by

using the pressure of surrounding gas as follows: P cav = Etage
−1, where tage it the time

required to form the cavity. The estimation for tage is detailed below. Note that the total

energy E does not include energy transported into shocks, and therefore the cavity system

provides only a lower limit to the total outburst energy.
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Some assumptions are needed to estimate the ages of jets. Straight forward evalua-

tion is a direct estimate using the current lobe expansion velocity. However, we need the

assumption of constant velocity. It is, furthermore, difficult to measure the expansion

velocity because this velocity of kpc-scale lobes already decelerates into non-relativistic

velocity. Young (small) jets whose lobe size of < kpc has sub-relativistic expansion veloc-

ity. The apparent expansion velocity, therefore, could be directly measured (e.g., Asada

et al., 2009). In contrast to young (small) jets, the age of the cavity is estimated as a lobe

traveling at approximately the sound speed of ICM. In other words, the age is estimated

by the sound crossing time,

tc = R/cs, (2.19)

where R is the projected distance from the center of the cavity to the radio core, cs =√
γkT/µmp is the sound speed of ICM, where µ is the mean molecular weight. Also,

B̂ırzan et al. (2004) discussed the ”buoyant rise” time tbuoy, or the ”refilling time” tr

to estimate the lobe age. The buoyant rise time and the refill time are taken for a

lobe to rise buoyantly against with the cluster potential (see detailed in McNamara &

Nulsen, 2007). These time scales appropriately are for the subsonic expansion. Generally,

tc < tbuoy < tr. Hardcastle & Croston (2020), meanwhile, pointed out that these three

time scales are likely to be significant overestimates for typical powerful jets on the grounds

of hydrodynamic simulations.

Alternative approach is to estimate ages from synchrotron radio spectrum tsync (My-

ers & Spangler, 1985; Eilek & Arendt, 1996; Harwood et al., 2013). According to energy

loss rates for synchrotron radiation in Eq. (2.8), electrons with higher energy lose their

energy faster. If no particle acceleration event occurs in the lobe, the spectrum steepens

at high frequencies i.e., spectrum shape becomes a broken power-law. Therefore, one can

estimate the age of electrons stored in lobes by a spectrum fit. However, this estima-

tion is also model-dependent. We have to consider the dynamical effect, such as particle

acceleration in lobes and/or the mixing of old and young electrons populations. To over-

come these problems, recently a more realistic model, which is combined with numerical

hydrodynamic simulations, has been proposed by (Mahatma et al., 2020). B̂ırzan et al.

(2008) compared the two estimates of age, one is the synchrotron age and the other is the

age estimated from sound speed. For the ghost cavities, two ages are roughly consistent,
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tsync ∼ tc. Meanwhile, the synchrotron age of radio-filled lobes is 5 to 10 times shorter

than the age estimated by sound speed.

The projected cavity sizes are in the range 1 - 200 kpc, but typically within 40 kpc

(Rafferty et al., 2006). Cavity ages estimated by sound speed are typically a several tens

Myr, and also the work required to form the cavity is in pV ∼ 1055−61 erg. Thus, jet

mechanical power, P cavEt−1
age, lie in the range 1041−46 erg s−1.

2.3.3 Energy estimation from combination analysis with radio

and X-ray data

Combined with radio and X-ray analysis, we can further enhance physical insight, such

as plasma composition, for jets. A simple method with few assumptions is to examine

the relationship between the mechanical power estimated from the X-ray cavity and radio

luminosity. B̂ırzan et al. (2008, 2004) found that the mechanical power estimated from

X-ray cavity seem to have the correlation with the radio luminosity (sum of core an

lobes), and that mechanical power increases with radio luminosity, P cav ∝ P β
radio where

0.35 ≤ β ≤ 0.70. In Fig. 2.3, the median ratio of mechanical power to radio luminosity

(radiative efficiency) is P cav/P Ladio ∼ 100, but there is a large scatters in this plots. For

example, Cygnus A is the most radiative efficient system, P cav/P Ladio ∼ 1 in Fig. 2.3.

There are several physical factors of these scatters such as electron cooling, estimation of

ages, plasma composition, and variable activity of AGNs. However, the contribution of

these factors to create this scatter is not understood.

Another way is that the lobe pressure compares with surrounding gas pressure. The

particles in the lobe would support it against collapse, and therefore internal pressure

should be equal to or greater than the gas pressure surrounding the lobe. We can esti-

mate the equipartition (non-thermal) electron pressure, peq, from radio observation (see

details in Sect. 2.3.1). In the case of some powerful FR II jets, observations of non-

thermal inverse-Compton X-ray emission and radio synchrotron emission from the lobes

and hotspots measure individually the non-thermal electron pressure, pIC, without using

minimum energy conditions (e.g., Harris & Grindlay, 1979; Hardcastle et al., 2004; Cros-

ton et al., 2005; Ineson et al., 2017). On the other hand, thermal X-ray emission measures

the pressure surrounding lobe, pICM.
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Several studies have shown that the non-thermal equipartition electron pressures of

lobes are an order of magnitude smaller than the pressure of surrounding gas , i.e.,

peq/pICM ∼ 0.1 (Hardcastle & Worrall, 2000; De Young, 2006). Since the condition,

peq > pICM, should be satisfied necessarily, these results indicate that contribution of gas

pressure from non-radiating protons and thermal electrons dominate the total pressure.

However, the pressures from inverse-Compton emission, pIC, are a factor 2.5 - 5 higher

than the equipartition value (Ineson et al., 2017; Mahatma et al., 2020). Pressures of

some lobes tend to be higher than the pressure of surrounding gas, pIC/pICM > 1. Note

that it does not rule out the existence of protons. In particular, a jet in a high-density

cluster should have a large number of protons (Hardcastle & Croston, 2010). Finally, we

mentioned that there is a trend that FR-I jets require the contribution of proton pressure

to total pressure than FR-II jets to support their own lobes.

2.4 On the history of dynamical models

In this section, we summarize the findings of the theoretical studies about the dynamical

models of the jet.

Analytical models

The standard picture of FR-II radio source has been proposed as ’the beam model’ in the

1970s (Blandford & Rees, 1974; Scheuer, 1974). In this model, high-entropy gas is carried

from a nucleus to the radio lobe by a relativistic beam, and the models qualitatively

explain the lobe structure of typical FR-II, such as jet hotspot formed by shocks at beam

termination and cocoons formed by the shocked jet plasma. Begelman & Cioffi (1989)

constructed well-accepted models of FR-II type jets. They assumed that the kinetic-

energy of jets is dominated and that the cocoon pressure is higher than that of the

surrounding gas. Therefore, the cocoons expand with supersonic velocity. Firstly, the jet

propagation velocity, vh, is determined by the momentum balance between the jet thrust,

∼ Lj/vj, and the ram pressure of surrounding medium, ∼ ρICMv
2
hAh:

vh =

(
Lj

ρICMvj3Ah

)1/2

vj, (2.20)
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Fig. 2.3: Total radio luminosity Lradio (10 MHz-10 GHz) vs. jet power estimated from X-

ray cavity system P cav = 4pV t−1
age (adopted from Laura B̂ırzan’s PhD thesis Rafferty (2007)

and McNamara & Nulsen (2007)). Open symbols show ghost cavities, and filled black symbols

show radio-filled cavities (which including the intermediate cases). The symbols and wide error

bars denote the values of the mechanical power calculated using the buoyancy timescale. The

short and medium-width error bars denote upper and lower limits of the mechanical power

calculated using the sound speed and refill timescales, respectively. The diagonal lines (dashed

lines) represent ratios of constant mechanical power to radio luminosity.
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where ρICM, Lj, vj, and ρICM are the density of ICM, the jet luminosity, the jet velocity,

and the head area, respectively. For sideways expansion, the pressure inside the cocoon

drives into surrounding medium at velocity vc. The equation of sideways expansion can

be written by pc ∼ ρICMv
2
c, where pc is the cocoon pressure. Assume that the jet kinetic

energy is converted into thermal energy, and shocked plasma fills in the cocoon instanta-

neously. The order of cocoon pressure describe the total injected kinetic energy per the jet

volume, pc ∼ 2
∫
Ljdt/V c, where t and V c are the source age and the volume of cocoon,

respectively. Although both Lj and vh are time dependent variables, this model approxi-

mate the constant values.These approximation leads to V c ∼ 2Ac(t)vht ∼ 2v2cvht
3, where

Ac is the mean cross section of the cocoon (see Fig.1 in Begelman & Cioffi, 1989). Under

this assumptions, we can obtain vc as follows:

vc =

(
Lj

ρICMvh

)1/2

t−1/2. (2.21)

Thus, we can get the jet length and width from Eq. (2.20) and Eq. (2.21) when ρICM,

Ah, vj, Lj, and t are known. ρICM and Ah can be determined through observations, and

commonly the jets assume relativistic, vj = c. Therefore, the model parameters are vj,

Lj, and t, Obeying the analytic models, we restrict the jet age and the jet kinetic energy

from observed source size. By improving this model, recent analytical modeling tries to

be more precise. For instance, the models implement the effect of the radial profile of

ICM and time dependence of vh and Ah (e.g., Kino & Kawakatu, 2005).

Meanwhile, there is no full agreement on the deceleration mechanism to model an FR-I

type jet. But, some studies proposed ideas explaining the observed deceleration of FR-I

type jets (Porth & Komissarov, 2015; Fujita et al., 2016; Massaglia et al., 2016; Perucho,

2020).

Hydrodynamical simulations

The hydrodynamic jet is Kelvin-Helmholtz (KH) unstable since they are typically super-

sonic and present a velocity shear. Therefore, many studies exist on numerical modeling

of large-scale jet propagation to motivate a wide variety of purposes such as parameter

studies for jets dynamics and investigate ICM heating by jet activity. Norman et al. (1982)

performed a two-dimensional axisymmetric simulation of supersonic jets propagating into

a homogeneous surrounding gas for the first time. They probed that powerful jets whose
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density is lighter than surrounding gas formed the basic structure, which is suggested by

the beam model. Furthermore, they found that internal shocks∗) were present in the beam

and that KH instabilities developed at the contact discontinuity between the cocoon gas

and surrounding gas. While jets propagate at a large distance, back flow generates a large

vortex at the head of the jet. These vortexes interact with beams and form the strong

oblique shocks (Mizuta et al., 2004, 2010).

The large-scale morphology of jets depends on three parameters: The density ratio of

jet to surrounding gas η, the beam internal Mach number Mjet, and the pressure ratio

of jet to surrounding gas K. Since the jet becomes ballistic when η > 1, the extended

cocoon is identified with the light jet (η ≪ 1). The Mach number affect the development

of HD instabilities, and high Mach number jets typically are stable (Bodo et al., 1994;

Perucho et al., 2005). Conventionally, the condition that K = 1 is widely adopted.

A one-dimensional analysis provide us the propagation velocity vjet for a high Mach

number jet (Mjet ∼ 10) as:

vjet =

√
Aη√

Aη + 1
vbeam, (2.22)

where A is the cross section ratio between beam and jet head, and vbeam is the injection

velocity. When the jet propagates at a short distance, the velocity estimated of Eq. (2.22)

is in good agreement with axisymmetric simulations. However, the propagation velocity

is no longer constant, and the jet is decelerating gradually (e.g., Krause, 2003; Mizuta

et al., 2004). One of the deceleration mechanism is increasing the jet head size due to

the generation of a large vortex. Meanwhile, some three-dimensional simulations show

that jet propagation can be faster than axisymmetric models because the tip of the jet

becomes a drill-like shape i.e., the head size is decreasing (Massaglia et al., 2016; Perucho

et al., 2019).

The supersonic beam flow undergoes expansion and recollimation. The radial force

arising from these motion induce the development of Rayleight-Taylor (RT) instability

(Matsumoto & Masada, 2013; Matsumoto et al., 2017; Toma et al., 2017; Matsumoto &

Masada, 2019). Matsumoto & Masada (2013) introduce the onset condition of RT model

as ρjet > ρcocoon for the non-relativistic jet, where ρjet and ρcocoon are the gas density of

jet and cocoon, respectively. It is expected that this onset condition is satisfied when

∗)sometimes called ’oblique shocks’, and ’recollimation shocks’.
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the light supersonic jet propagates into the surrounding heavy ICM. A small-scale non-

axisymmetric mode is a growth in RT instability and the gas mixing between the beam

and the cocoon by RT mode cause jet deceleration.

Magnetohydrodynamical simulations

In the case of MHD jets, the flow dynamics become more complex than HD jets because

of the Lorentz force. The outstanding effect for jet dynamics is the development of the

current-driven kink mode, which leads to a displacement of the mass centre in the jet

cross-section. Linear stability analysis has shown that cylindrical MHD jets are generi-

cally unstable for the kink mode (Appl et al., 2000), and therefore several works of 3D

MHD simulations have been conducted to deal with the non-linear evolution of jets (e.g.,

Mignone et al., 2013; Tchekhovskoy & Bromberg, 2016; Mukherjee et al., 2020). The

kink mode evolves on a time-scale at that Alfvén waves travel around the unstable region,

called the Alfvén crossing time. The Alfvén crossing time for a cylindrical jet is given by

(Moll et al., 2008)

τkink =
2πR

vA,ϕ − 2πvr
, (2.23)

where, vA,ϕ is the azimuthal Alfvén speed, vR is the expansion velocity, and R is the jet

radius, respectively. The magnetic field, in some cases, plays a significant role for jet

stabilization and collimation since the magnetic tension suppresses the development of

RT and KH instability (Mukherjee et al., 2020; Komissarov et al., 2019). Finally, We

mention that the magnetic pinching sometimes disrupts the jet (Massaglia et al., 2019).

Therefore, the magnetic field cannot ignore for the dynamical modeling of jets.
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3 Two-temperature plasma

In this chapter, we summarize the two-temperature plasma from both an observational

and theoretical point of view. We then derive the single-fluid/two-temperature MHD

equations and discuss the applicability of the two-temperature approximation for the jet.

3.1 Fundamental physics

Astrophysical plasma such as jets, galaxy clusters, and supernova remnants (SNRs) are

almost collisionless; i.e., the collisional mean free path is longer than their size. In the

absence of collisions that would enforce thermal equilibrium, electrons and ions do not

always have the same temperature. Therefore, the time scale of the Coulomb coupling is

the most important indicator for discussing two-temperature plasma.

3.1.1 Coulomb coupling

The rate of energy transfer, qie, from ions to electrons per unit volume through Coulomb

collisions is determined as follows (Stepney & Guilbert, 1983; Dermer et al., 1991);

qie =


3
2
me

mi
n2σTc

ln Λ(kTi−kTe)
K2(1/θe)K2(1/θi)

[
2(θe+θi)

2+1
θi+θe

K1

(
1
θm

)
+ 2K0

(
1
θm

)]
(θi > 0.2)

3
2
me

mi
n2σTc ln Λ(kTi − kTe)

√
2
π
+
√
θi+θe

(θi+θe)3/2
(θi < 0.2),

(3.1)

where θm = θiθe/(θi + θe). The quantities

θi ≡
kBTi

mic2
and θe ≡

kBTe

mec2
(3.2)

are the dimensionless ion and electron temperatures, respectively. The parameters σT,

and c are the Thomson scattering cross section, and the speed of light, respectively. ln Λ
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is the Coulomb logarithm and approximated to be

ln Λ ≈ 37.8 + ln

(
Tgas

108 K

)
− 0.5 ln

( n

10−3 cm−3

)
(3.3)

for T > 4 × 105 K (Spitzer, 1962). Functions K0, K1, and K2 are respectively modified

Bessel functions of the second kind of order 0, 1, and 2.

3.1.2 Time scales

There are three important time scales to consider in two-temperature plasma: The time

required to reach a Maxwell distribution of electron temperature, tee, and ion temperature,

tii. The relaxation tame scales for electron and ion are given by Spitzer (1962) as follows:

tii =

√
2π

niσTc ln Λ

(
mi

me

)2

θ
3/2
i , (3.4)

tee =

√
2π

2neσTc ln Λ
θe

3/2. (3.5)

The time required to electrons and ions to reach thermal equilibrium, tei, is :

tei =

√
2π

2neσTc ln Λ

mi

me

(θe + θi)
3/2 . (3.6)

These time scales indicate that the electrons are thermalized by self-collisions first, then

the ions, and finally electrons and ions reach thermal equilibrium, i.e., tee < tii ≪ tei.

Also, the tenuous and hot plasma takes longer to reach thermal equilibrium for electrons

and ions.

3.2 Observational evidence of two-temperature plasma

It is difficult to clue evidence of two-temperature plasma in astrophysical phenomena

because ions do not emit radiation enough to observe. Thus, observational evidences

of two-temperature plasma have been obtained for only a few objects, such as the bow

shocks of the Earth and Saturn (Schwartz et al., 1988; Masters et al., 2011), the forward

shock of SNRs (Ghavamian et al., 2013), and galaxy cluster shocks (Russell et al., 2012).
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Note that the three shocks listed above are formed under different plasma conditions (see

Tab. 3.1). Therefore, these observational results cannot be simply compared.

Figure 3.1 shows that the temperature ratio between electrons and ions at post-shock

gas is plotted versus magneto-sonic Mach number measured at the bowshocks of the

Earth and the Saturn and the forward shocks of SNRs. In the case of celestial bowshocks,

the ISEE spacecraft observation could directly measure ion and electron temperature

at the post-shock plasma. Electrons were heated much less than protons, but electron

temperatures were slightly higher than adiabatic compression temperature. The results

indicated that the ratio of the electron temperature to ion temperature Te/Ti is unity

when M < 2, where M is the magneto-sonic Mach number, and Te/Ti ∝ M−2 otherwise.

On the other hand, electron and ion temperatures were measured at the post-shock gas

of SNR shocks by optical spectroscopy. The spectroscopic analysis of 5 SNRs sample by

Ghavamian et al. (2007) has shown that Te/Ti is close to unity when the shock velocity

below 400 km s−1, and Te/Ti declines sharply proportional to the inverse square of the

shock velocity above 400 km s−1. Thus, two different shocks of celestial objects and SNRs

have a similar relation, Te/Ti ∝ M−2(∝ v2shock), where vshock is the shock velocity.

There is indirect evidence of two-temperature plasma in X-ray observation of the bow

shock of merging galaxy clusters. Russell et al. (2012) showed that for the galaxy cluster

Abell 2146, the post-shock electron temperature is lower than the ion temperature, as

predicted from Rankine–Hugoniot jump conditions. Meanwhile, Markevitch (2006) has

shown that post-shock electrons are in electron-proton equilibration at the shock in cluster

1E 0657-56, but it still remains some uncertainties. This measurement suggests that we

have to consider some efficient ways to energy exchange between electrons and ions.

Finally, we mention the shock in the system of jet-ICM. As we mentioned in Chap. 2,

we cannot measure the temperature of jets. Meanwhile, the cocoon shock propagating into

the ICM is observed by X-ray observation, and we can measure the electron temperature

of the shock. Measured Mach number of the cocoon shock of Cygnus A from 20 Msec of

Chandra observations is a range of 1.18-1.66 (Snios et al., 2018). The post-shock electron

temperature should be higher than the pre-shock electron temperature. However, the

projected temperature in the pre-shock region is lower than that in the post-shock region.

This result implies that electrons are cooler than protons in the post-shock region, i.e.,

’two-temperature plasma’, but further verification is needed to make this clear.
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Table 3.1: Typical properties of various astrophysical shocks

Objects Celestial objects SNR* Cluster shock Cocoon shock

Density [cm−3] ∼ 10 1 10−2 − 10−4 10−2 − 10−3

Temperature [K] 104 − 105 104 107 − 108 107 − 108

Plasma-β 1 - 5 1 - 5 > 100 > 100

Shock velocity [km s−1] 300 - 900 400 - 4000 ∼ 2000 ∼2000

Mach number ≤ 10 ≫ 100 1.5 - 5 ∼ 2

Shock length ∼ AU ∼ pc ∼ 500 - 1000 kpc ∼ 10-100 kpc

* Assuming a B = 3 µG for interstellar medium.

3.3 Theory of two-temperature plasma from kinetic

to MHD scales

The plasma heating and its energy partition mechanism in collisionless plasma have been

investigated by numerical simulations such as the particle-in-cell (PIC) method and gy-

rokinetic model. These simulations are interested in the physical range of plasma kinetic-

scale, and therefore it is difficult to connect their result to observations directly. Overcome

this problem, several studies apply the two-temperature model to (M)HD scales. In this

section, we first report the electron and proton heating mechanism in various dissipa-

tion processes, and then summarize results of the context of two-temperature (M)HD

simulation.

3.3.1 Dissipation process in collisionless plasma

In this subsection, we focus on the dissipative processes that are considered to be dominant

in jets: shock waves, MHD turbulence, and magnetic reconnection. Although there are

various theoretical studies, little is know about the exact mechanism of plasma heating

in each dissipation process.
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Fig. 3.1: The temperature ratio between electrons and ions at post-shock gas is plotted versus

magneto-sonic Mach number. The data points show data measured behind the Earth bowshock

(Green cicle Schwartz et al., 1988), Saturn’s bowshock (X-shaped symbols , Masters et al., 2011)

and SNRs (red squares, van Adelsberg et al., 2008). Here, van Adelsberg et al. (2008) assumed

that Alfvén velocity is 9 km s−1, and that the sound speed is 11 km s−1. Electron-proton

temperature ratio calculated for minimum electron temperature (solid black line), for the case

of electron adiabatic heating (dashed black line), and for magnetized plasma with plasma β =

0.01, 0.1, 1 (blue dashed line). Magenta dashed line shows that ion–electron temperature ratio

assuming adiabatic heating of electrons and heat exchange between electrons and ions using the

exchange factor ζ = 5 %, which is defined as the fraction of the enthalpy-flux difference between

ions and electrons.
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Astrophysical shock

Plasma bulk kinetic energy is converted to heating energy at a shock. Since plasma mo-

mentum represent by ions, the Rankine-Hugoniot conditions for a strong shock imply that

postshock temperature ratio between electron and ion is calculated as (T e/T i) = (me/mi).

And then, electrons and ions exchange energy towards the same temperature via Coulomb

collisions. This physical picture, however, does not apply to the collisionless shocks. En-

ergy partition between electrons and ions are wholly dependent on the development of

plasma instability occurring at the shock transition layer.

Vink et al. (2015) investigated electron heating at shock by phenomenological ap-

proach. They derived the equation for the post-shock ion-electron temperature ratio

assuming adiabatic heating of electrons and heat exchange between electrons and ions

using the exchange factor ζ, which is defined as the fraction of the enthalpy-flux differ-

ence between ions and electrons whereas ζ = 50 % corresponds to equal ion and electron

temperature. To explains the observational results, ζ should be at least higher than 5 %

(see magenta line in Fig. 3.1). More details about electron heating at astrophysical shocks

will be given in Sect. 4.5.1.

MHD turbulence

Supersonic turbulence is developed by hydrodynamic instabilities in the jet. Turbulence

is often described as a process in which large-scale eddies cascade to smaller-scale eddies,

and then finally the kinetic and magnetic energy of eddies is converted into thermal energy

of electrons and ions via microscale dissipation process.

This plasma heating process is well studied in the context of the hot accretion flow.

Sharma et al. (2007) have been investigated electron heating in hot accretion flows by

local sharing box simulations of the non-linear evolution of the turbulence driven by mag-

netorotational instability (Balbus & Hawley, 1998), incorporating the pressure anisotropy.

They found that the dissipation energy heats the electrons as Qi/Qe ∝
√

T i/T e, where

Qi,e are the dissipation energy that heats electrons and ions, respectively. Note that this

calculation is in the range that the thermal pressure is larger than the magnetic pressure.

Recently, energy partition between electrons and ions in collisionless turbulence is

investigated by non-linear hybrid gyrokinetic simulations (Howes, 2010; Kawazura et al.,
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2019, 2020). We display their results in the case of purely Alfvénic turbulence in Fig.

3.2. Their simulations covered in wide parameter range for ion plasma βi(≡ 8πnkT i/B
2)

and temperature ratio between electron and ion. They propose a simple fitting formula

to apply two-temperature MHD simulation for Qi/Qe:

Qi

Qe

=
35

1 + (βi/15)−1.4e−0.1T e/T i
+

P compr

PAW

, (3.7)

where P compr and PAW are the compressive and the Alfvénic energy injection. The com-

pressive driving power is converted into ion thermal energy. Therfore, Qi/Qe is an in-

creasing function of P compr/PAW. In particular, Qi/Qe ∼ P compr/PAW for P compr > PAW.

Meanwhile, in the purely Alfvénic turbulence (P compr/PAW → 0), electrons are heated

more than ions at βi < 1 (see the left panel of Fig. 3.2). The ion thermal velocity is much

smaller than the Alfvén velocity, and ions cannot interact with Alfvénic waves. Thus,

injection energy is not diverted into ions thermal energy.

Other approach to investigate electron heating in collisionless turbulence is PIC sim-

ulations (Zhdankin et al., 2019, 2020). Their results also support that electrons and ions

evolve toward the two-temperature state in which ions are hotter than electrons. This

result is consistent with the previous gyrokinetic model. However, we caution that their

simulations are difficult to deal with low-beta plasma.

Magnetic reconnection

In high-energy astrophysical phenomena, magnetic reconnection can be the important

energy conversion process. During the magnetic reconnection, the magnetic energy is

converted into the heating energy and the bulk kinetic energy. Electron heating via

magnetic reconnection are investigated by using PIC simulations (e.g., Rowan et al.,

2017; Hoshino, 2018; Rowan et al., 2019). Hoshino (2018) found that there are two stages

for plasma heating during two-dimensional antiparallel magnetic reconnection in the non-

relativistic plasma regime: one is an adiabatic heating stage in which the plasma entropy

along the plasma flow is conserved. Another is a non-adiabatic heating stage in which the

energy gain process of electrons and ions is likely ohmic diffusion. They also found that

the increment of ion and electron temperature ratio is proportional to (mi/me)
1/4, i.e, ions

are more heated than electrons during reconnection. Meanwhile, electrons receive heating

energy more than ions for a strong guide field, which is perpendicular to the reversing
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Howes 2010

Fig. 3.2: The heating ratio of ion to electron Qi/Qe is plotted versus ion plasma-βi (left) and

temperature ratio of ion to electron T i/T e from nonlinear hybrid gyrokinetic simulations in the

case of P compr/PAW = 0. The dotted lines in the right panel show the fitting formula Eq. (3.7)

at P compr/PAW = 0. The inset figure in the left panel is same plot of the left panel, but the

model proposed in Howes (2010). (credit: Kawazura et al., 2019)
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field in the trans-relativistic plasma regime (Rowan et al., 2019).

3.3.2 Application for two-temperature MHD model

Two-temperature MHD simulations have been carried out for the context of galaxy clus-

ters and hot accretion flow around compact objects. Therefore, we summarize these works

in this subsection. Also, we report the result of our previous work that two-temperature

MHD simulations for the jet from the stellar black hole.

Galaxy cluster

The outskirts of galaxy cluster may have a two-temperature structure because the ions are

expected to be heated by shocks (e.g., Takizawa, 1998). Then, the thermal equilibration

in merging clusters has been studied by hydrodynamic N-body/smoothed particle hy-

drodynamics(SPH) simulations (e.g., Takizawa, 1999; Akahori & Yoshikawa, 2008, 2010,

2012). Since the Coulomb coupling is inefficient, the electron temperature is significantly

lower than that the mean temperature of ICM at shock layers. In addition, Yoshida

et al. (2005) have investigated the two-temperature structure of the intergalactic medium

using a large cosmological N-body/SPH simulation. They also found that the electron

temperature in post-shock regions remains smaller than the ion temperature. Komarov

et al. (2020) have been performed two-temperature MHD simulations including thermal

conduction for a weak shock observed in the core of a galaxy cluster. They found that

electrons and ions have a different temperature at post-shock regions, but that the elec-

tron temperature of the two-temperature model behaves the same as the gas temperature

in the one-temperature model including thermal conduction. However, these numerical

simulations did not implement the effect of instantaneous electron heating at shocks.

Hot accretion flow

Jets of low-luminosity AGNs are launched from radiatively inefficient accretion flows.

In such hot accretion flows, the collision time scale is much longer than the accretion

time scale, and the electron temperature is thus lower than the ion temperature (e.g.,

Shapiro et al., 1976; Narayan & Yi, 1995; Nakamura et al., 1996). Manmoto et al. (1997)
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calculated the global structure of an advection-dominated accretion flow constituting two-

temperature plasma and obtained a model that explains the spectrum of Sagittarius A*,

where the temperature profile of the electron is the vital factor. Ressler et al. (2015)

reported the results of simulations of a two-temperature accretion disk carried out by

combining the electron energy equation with ideal general-relativistic MHD equations.

The two-temperature MHD approach has been applied in recent simulations of the jet

formation in M87 (Ryan et al., 2018; Chael et al., 2019).

A key factor of the two-temperature MHD is the fraction of the electron heating

to the dissipative energy. The ratio of electron heating to ion heating depends on the

microscopic properties of the collisionless plasma on a scale much smaller than the cell size

in the MHD simulation. Previous studies assumed two different physical mechanisms in

estimating the fraction of electron heating (Chael et al., 2018, 2019). The first mechanism

is MHD turbulent heating in collisionless plasma while the second is heating by magnetic

reconnection. Results of gyrokinetic simulations for turbulent heating indicate that the

heating rate strongly depends on the ratio of the ion pressure to the magnetic pressure βi

(Howes, 2010). Recall that electrons are heated more than ions at β
i
< 1 in this model.

In the disk region for the hot accretion flow, the averaged plasma βi is higher than unity,

and hence the ion temperature exceeds electron temperature. Meanwhile, the electron

temperature becomes one order of magnitude higher than the ion temperature in the

funnel region of the jets where βi < 1.

When the electron is heated by fast magnetic reconnection, the fraction of the electron

heating does not exceed 0.5. This means that the electron always obtains less dissipated

energy than the ion. This tendency has been observed in PIC simulations of fast magnetic

reconnection (Rowan et al., 2017). The electron temperature is therefore equal to or less

than the ion temperature in the funnel region of the jets. These simulation results indicate

the existence of a two-temperature plasma in jets. However, it is not obvious whether

electrons and ions have different temperatures during the propagation of large-scale jets.

Jets from X-ray binary

In our previous work (Ohmura et al., 2019), we investigated the propagation of sub-

relativistic jets in X-ray binaries by conducting two-temperature MHD simulations. Fig-

ure 3.3 shows the distribution of the electron temperature and ion temperature. We
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showed that the ion temperature downstream of the jet terminal shock (hot spot) be-

comes 10 times the electron temperature because ions are heated by energy dissipation

at shocks. Meanwhile, electrons are not heated at the shock front because the instanta-

neous electron heating at shock fronts was ignored. In the cocoon, electrons are heated by

Coulomb collisions with ions. Around the interface between the cocoon and the ambient

medium, the electron temperature decreases owing to gas mixing between the hot cocoon

plasma and the low-temperature ambient plasma via Kelvin–Helmholtz (KH) instability.

3.4 Single-fluid/two-temperature equations

Considering large-scale fluid dynamics, it is reasonable to assume that the ions represent

fluid-momentum because electrons inertia can be neglected. However, it is necessary

to follow the energy content of both electrons and ions. We also assume fully ionized

hydrogen plasma and charge neutrality n = ni = ne, where ni and ne are respectively the

ion number density and electron number density. Under this assumption, the single-fluid

two-temperature MHD equations are written by (e.g., Braginskii, 1965; Oda et al., 2010)

∂n

∂t
+ ∇ · (nv) = 0, (3.8)

min

[
∂v

∂t
+ (v · ∇)v

]
= −∇pgas −∇

(
B2

8π

)
+

1

4π
(B · ∇)B, (3.9)

∂B

∂t
= ∇× (v ×B), (3.10)

∂ϵi
∂t

+ ∇ · [(ϵi + pi)v] − (v · ∇)pi = −qie + (1 − fe)q
heat, (3.11)

∂ϵe
∂t

+ ∇ · [(ϵe + pe)v] − (v · ∇)pe = +qie + feq
heat − qrad, (3.12)

where v is the velocity, B is the magnetic field, mi is the ion mass, pgas = pi + pe is the

gas pressure, and pi and pe are respectively the ion and electron gas pressures. We assume

35



Fig. 3.3: (a): The distribution of the electron temperature (top) and ion temperature (bottom)

for model TWC, including Coulomb coupling. (b): Same as (a), but for model TWOC, not

including Coulomb coupling. (credit: Ohmura et al., 2019)
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an ideal gas, and the internal energies of ions and electrons are thus

ϵi =
pi

γi − 1
, ϵe =

pe
γe − 1

, (3.13)

where γi and γe are respectively the specific-heat ratios for ions and electrons. We consider

two types of heating source in the energy equation of the electron. One is qie, which is

the rate of energy transfer from ions to electrons through Coulomb coupling. qheat is

a dissipative heating rate. Here fe is the fraction of electron heating, and depends on

the microscopic properties of a collsionless plasma in various dissipation process. qrad is

energy loss rate via radiation.

The pressure and internal energy of each species are thus given by the ideal equation

of state (Chandrasekhar, 1939),

ps = nksTs, (3.14)

ϵs = ρsc
2

(
[3K3(1/θs) + K1(1/θs)]

4K2(1/θs)
− 1

)
≡ ps

γs(θs) − 1
, (3.15)

where subscripts s ∈ {i, e} denote electrons and ions, respectively. γs = 5/3 in the non-

relativistic limit (θs → 0), and γs = 4/3 in the ultra-relativistic limit (θs → ∞). The

effective temperature of the electron and ion mixed gas is

pgas = pi + pe = (γgas − 1)ϵgas = 2nkBTgas, (3.16)

where ϵgas is the gas internal energy.

3.4.1 Numerical code

We modified the MHD code CANS+ (Matsumoto et al., 2019) to include the energy

equation for electrons. CANS+ solves the Newtonian–MHD equations in conservation

form as follows:

1. Reconstruction adopts a fifth-order monotonicity-preserving interpolation scheme

(Suresh & Huynh, 1997).

2. The time integral is performed with third-order total-variation-diminishing preserv-

ing Runge–Kutta methods.
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3. The numerical flux across cell interfaces is computed using the HLLD Riemann

solver (Miyoshi & Kusano, 2005).

4. The hyperbolic divergence cleaning method is adopted for a magnetic field (Dedner

et al., 2002).

3.5 Application of astrophysical jets

This work is completely based on the assumption that the plasma dynamics are described

by the theory of magnetohydrodynamics. This assumption is verified when the character-

istic scale length of jet propagation (∼ kpc) is large compared to the mean free path. The

hydrodynamic mean free path is significantly larger than the characteristic scale because

the jet and ICM plasma are collisionless. Meanwhile, the magnetic field interacts with

the particles and hence MHD mean free path regard as typically gyro-radius:

rg =
mivc

eB
∼ 1010 ×

(
T i

108 K

)1/2(
B

µG

)−1

cm ≪ kpc. (3.17)

Therefore, MHD approximation is valid.

Typical value of density and temperature of ICM are n ∼ 10−2 − 10−4 g cm−3, T ∼
107 − 108 K, respectively. Therefore, the relaxation time-scale via Coulomb coupling is

estimated by Eq. (3.6) as

tie = 2.0 × 102 Myr

(
ln Λ

40

)−1 ( n

10−3 cm−3

)(
Te

108 K

)3/2

. (3.18)

Note that this value is a lower limit because the jets have higher temperature and lower

density than that of ICM. The typical outburst age of jets are within 100 Myr (McNamara

& Nulsen, 2007). In particular, the outburst age for Cygnus A, which is the most typical

FR-II type radio source, is estimated at 20 Myr (Snios et al., 2018). Therefore, shocked-

ICM and jets are expected to be in two-temperature states.
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4 The effect on the fraction of

electron heating in two-temperature

jets

4.1 Short introduction

As we discussed in Sect. 3.5, electrons and ions should be decoupled in extragalactic jet.

Although our previous work in Ohmura et al. (2019) have been conducted two-temperature

simulations for X-ray binary jets, they ignored the effect of instantaneous heating at

shock fronts. However, this effect are supported by theoretical and observational studies

(see Sect. 3.3). Moreover, previous work assumed that the jet temperature of ions and

electrons are equal, but it is not certain. Therefore, we should examine the effect of

instantaneous heating on the electron temperature distribution and the dependence of

electron and ion temperatures on injection conditions.

In this chapter, we report the results of two-temperature MHD simulations of a sub-

relativistic AGN jet that propagates and interacts with the ICM, including Coulomb

coupling and instantaneous electron heating at shocks for the first time. The remainder

of the chapter is organized as follows. Section 4.2 describes basic equations for the two-

temperature and single-fluid MHD simulation and the numerical setup for two-dimensional

simulations. Sections 4.4 and Sect. 4.5 respectively present and discuss our results.

Section 4.6 presents conclusions.
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4.2 Numerical method

4.2.1 Basic equation

Our numerical code solves the equations in conservation form. We therefore arrange the

two-temperature MHD equations in conservation form:

∂U

∂t
+ ∇ · F = S, (4.1)

U =



n

minv

B

e

nκe


, (4.2)

F =



nv

minvv + pTI − 1
4π
BB

vB −Bv

(e + pT)v − 1
4π
B(v ·B)

nκev


, (4.3)

S =



0

0

0

0

(γe − 1)n1−γe(qie + feq
heat)


, (4.4)

where U and F respectively denote the conserved quantities and flux vectors, I is a unit

matrix, S is the source term, and the total energy, e, is given by

e = ϵi + ϵe +
1

2
ρv2 +

1

8π
B2. (4.5)
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pT = pi + pe + pmag is total pressure. We have here used the electron pseudo-entropy

κe ≡ pen
−γe . The electron gas entropy per particle is given by

se = kB(γe − 1)−1 log (pen
−γe) = kB(γe − 1)−1 log κe. (4.6)

The source term is updated implicitly by adopting the Newton–Raphson iteration.

4.2.2 Calculation of dissipation heating

To calculate the dissipation heating rate ∗) qheat, we adopt an approach similar to that

followed by Ressler et al. (2015) and Sadowski et al. (2017). We adopt the following to

evaluate the dissipated energy at each time step.

1. We solve the conserved equations (Eq. (5.1)), and obtain the gas specific internal

energy ϵgas at time step n + 1:

ϵn+1
gas =

pn+1
gas

γgas − 1
. (4.7)

2. To compute the purely adiabatic evolution, we use the gas entropy conservation

equation:

∂

∂t
(nκgas) + ∇ · (nκgasv) = 0, (4.8)

where κgas is the gas pseudo-entropy. To solve the above equation, we solve the finite

difference equation between the n-th and (n+ 1)-th time step for each cell and adopt the

fifth-order monotonicity-preserving method. The gas specific thermal energy that evolves

under the adiabatic process is then calculated as

ϵn+1
gas,ad =

(κgasn
γe)n+1

γe − 1
. (4.9)

3. The dissipation heating rate is therefore estimated as

qheat =
ϵn+1
gas − ϵn+1

gas,ad

∆t
. (4.10)

∗)In our simulations, we solve ideal MHD equations, and numerical viscosity is the origin of dissipation.
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4.3 Numerical setup

We present the results of 10 models used to investigate the effect of electron heating on the

electron temperature distribution and the dependence of electron and ion temperatures

on the initial conditions. We perform axisymmetric simulations of the large-scale jet

evolution when the jet is injected into a medium having constant density.

Parameters common to all models are summarized in Tab. 4.1. The computational

domain is 0 < r/rjet < 40, 0 < z/rjet < 80 and the number of numerical cells is (Nr, Nz) =

(1024, 2048). The initial radius of the jet is 1 kpc, resolved by 24 numerical cells. The

initial Mach number of jets Mjet is 14, and the ratio of the thermal pressure of the jet

to the ICM is 10. The speed of the injected jet is 0.2c. The components of the injected

magnetic field are

Bϕ =

Bin sin4 (2πr/rjet) (r < rjet)

0 (otherwise)

Br = Bz = 0, (4.11)

where Bin is given by the plasma beta as Bin = (8πpgas/β)1/2, with β = pgas/pmag. The

temperature of the injected gas is Tgas = 0.5(Te + Ti) = 1.0 × 109 K. The initial ICM is

unmagnetized, and the density ratio of the jet beam to the ICM (η ≡ ρjet/ρICM) is 10−2.

Table 4.2 presents our numerical models. We adopt three values of the fraction of

electron heating, fe = 0.0, 0.05, 0.2, in studying the effect of electron heating. The ratio

of injected electron and ion temperatures is set at m ≡ Te,inj/Tgas,inj = 1.9, 1.0, 0.1 to

examine the dependence on the injection temperatures. Moreover, we switch on and off

Coulomb coupling.

4.4 Results

In Appendix A.1, we show the result of the one-dimensional Riemann problem for our

jet model to examine the electron temperature dependence on the fraction of the electron

heating fe at shock fronts. We find that the post-shock temperature ratio of the electron to

ion is simply described by Eq. (A.3). In this section, we investigate the multidimensional

effects and the dependence on the temperatures of the injected electrons and ions. In
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Table 4.1: Common simulation setup parameters

Jet speed vjet 0.2c

Jet gas temperature Tg,jet 1.0 × 109 K

Jet plasma β β 10

Jet Mach Number Mjet 14

Ambient gas density ρICM 0.835 × 10−24α

Ambient gas temperature TICM 1.0 × 106 K

Density ratio ρjet/ρICM) 10−2

Gas pressure ratio pjet/pICM 10

Table 4.2: Simulation models. The columns give the model name, ratio of the injection

electron temperature to the gas temperature, the fraction of the electron heating, Coulomb

coupling, and normalized density parameter.

Model m ≡ Te,inj/Tgas,inj fe Coulomb coupling α

f00m1 1 0.0 - 1

f00m1C 1 0.0 ON 1

f005m1 1 0.05 - 1

f005m1C 1 0.05 ON 1

f02m1 1 0.2 - 1

f02m1C 1 0.2 ON 1

f02m0.1C 0.1 0.2 ON 1

f02m1.9C 1.9 0.2 ON 1

f005m1Cα-1 1 0.05 ON 10−1

f005m1Cα-2 1 0.05 ON 10−2
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addition, we present the time evolution to clarify when and where Coulomb coupling is

effective.

4.4.1 Morphology and temperature distribution

This subsection presents the results of a fiducial model of jet propagation. The fiducial

model is the model f005m1C. Figure 4.1 shows snapshots of (a) the number density, (b)

the gas pressure, (c) the toroidal magnetic field component, (d) the vorticity squared, and

(e) the absolute velocity at t = 20.0 Myr. When the jet propagates into the ICM, several

types of shock front form; e.g., internal shocks (i.e., recollimation shocks), the terminal

shock (i.e., reverse shock), and the bow shock (i.e., forward shock). In addition, the

shocked matter of the terminal shock forms a backflow called a cocoon. The bow shock

compresses the ICM and forms a high-density shell called the shocked-ICM between the

contact discontinuity and bow shock. The kinetic energy dissipates and convert to thermal

energy at shocks, and the pressure of the post-shock gas thus becomes 10 to a 100 times

that of the pre-shocked gas.

In our jet model, the magnetic energy is much less than the kinetic and thermal

energy. Therefore, the Lorentz force does not have a practical effect on the dynamics and

morphology. When the plasma reaches the terminal shock, the kinetic energy is converted

into magnetic energy and gas internal energy. The backflow generates the vortex motion

in the cocoon, and the intensity of the magnetic field increases to about twice that of the

injection field. The toroidal component is not converted into a poloidal component because

of axisymmetry and the absence of jet angular motion. However, Gaibler et al. (2009)

showed that toroidal fields are dominant in a cocoon under an axisymmetric condition

when the jet has angular momentum. Note that the poloidal and toroidal fields might

easily convert into one another in three-dimensional simulations.

The beam structure depends on the ratio of the jet pressure to the ICM pressure

(Norman et al., 1982). Because we choose the pressure ratio to be greater than unity

(i.e., the jet beam is under-expanded), the beam has shock diamonds and a sequential

structure of compression and expansion. The beam accelerates to 0.22c, which is 110%

of the injection velocity, through the expanding motion. The beam velocity decelerates

through the terminal shock, and the bulk velocity of backflowing plasma is about 0.1c.
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KH instabilities develop and form the vortex motion by interaction with the backflowing

plasma and shocked-ICM in the cocoon. The vortex motions drive pressure waves that

convert the kinetic energy into the thermal energy in the shocked-ICM through dissipation

(Bambic & Reynolds, 2019). Furthermore, the vortices create high-temperature and low-

density spots.

The remaining panels of Fig. 4.1 show snapshots of (f) the energy transfer ratio from

ions to electrons through Coulomb coupling, (g) the ion temperature, (h) the electron

temperature, and (i) the temperature ratio of electrons to ions at t = 20.0 Myr. The

electron temperature and ion temperature are decoupled due to the heating at the bow

shock. In the shocked ICM, however, ions and electrons are in thermal equilibrium because

the relaxation time of Coulomb coupling, which is proportional to the square of the number

density, is shorter than the hydrodynamical time scale. Meanwhile, ion and electron

temperatures are separated through internal shocks in the beam. The post-shock ion and

electron temperatures at the terminal shock are about 1011 and 1010 K, respectively. These

values are in good agreement with values obtained in the one-dimensional simulation

(see Fig. A.2). The collision time scale is longer than the dynamical time scale in

the low-density cocoon, and the electron temperature thus remains lower than the ion

temperature. Around the interface between the cocoon and the shocked ICM, the ion and

electron temperatures decrease to 108 K owing to turbulent mixing.

4.4.2 Dependence on the fraction of electron heating

We studied the dependence on the fraction of electron heating fe by carrying out sim-

ulations for fe = 0 (model f00m1C), 0.05 (model f005m1C), and 0.2 (model f02m1C).

Other parameters are the same in these three models. Figure 4.2 shows snapshots of the

temperature ratio of electrons to ions for models f00m1C (left), f005m1C (center), and

f02m1C (right). Figure 4.3 shows the ratio of the electron temperature to the ion tem-

perature along the jet beam (r = 0.25 kpc) for models f00m1C (blue), f005m1C (black),

and f02m1C (red). The red dashed line and black dashed line respectively show the tem-

perature ratio of the electron to ion for fe = 0.2 and 0.05 predicted using Eq. (A.3). The

blue dashed line shows the post–shock temperature ratio when fe = 0 obtained using Eq.

(A.2). The ion and electron temperatures separate at the first oblique shock for all mod-
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Fig. 4.1: Snapshots of (a) the number density, (b) the gas pressure, (c) the toroidal magnetic

field, (d) the vorticity squared (∇ × v)2, (e) the flow absolute velocity, (f) the energy transfer

rate from ions to electrons through Coulomb coupling, (g) the ion temperature, (h) the electron

temperature, and (i) the temperature ratio of electrons to ions for model f005m1C (fe = 0.05)

at t = 20.0 Myr.
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fe=0 fe=0.05 fe=0.2

Fig. 4.2: Snapshots of the temperature ratio of electrons to ions in the beam for models f00m1C

(left), f005m1C (center), and f02m1C (right).

els. The post-shock temperature ratios of electrons and ions at the first oblique shocks are

about 0.5 because there remains the effect of electron adiabatic heating. The temperature

ratio approaches the temperature ratio predicted using Eq. (A.3) when fe ̸= 0 for each

shock (see Sect. A.1). The post-shock temperature ratios are close to the predicted values

at the terminal shock in the cases that fe = 0.05 and 0.2 as gas flows through the beams.

In contrast, the post-shock temperature ratio at the terminal shock is lower than 0.01

for the model f00mC. This value is smaller than that of the one-dimensional Riemann

problem because the electron temperature is reduced by the gas expansion at the hotspot

(Fig. 4.3 (blue)). This result indicates that multidimensional effects become important

when fe is small.
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fe=0

fe=0.05

fe=0.2

Fig. 4.3: Profiles of the temperature ratio of electrons to ions along the jet beam (r = 0.25

kpc) for models f00m1C (blue), f005m1C (black), and f02m1C (red). The red dashed line and

black dashed line respectively show temperature ratios of electrons to ions for fe = 0.2 and 0.05

predicted using eq. (A.3). The blue dashed line shows the post-shock temperature ratio when

fe = 0 obtained from eq. (A.2).
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4.4.3 Dependence on temperatures of injected ions and elec-

trons

This section compares results for models f02m1C, f02m0.1C, and f02m1.9C to examine

the dependence on the temperatures of injected electrons and ions. These models are

the same in that they have fe = 0.2 with Coulomb coupling but they differ in terms of

the temperatures of injected electrons and ions. Note that the Mach numbers for the

plasma are the same in the three models. Figure 4.4 shows the temperature profiles of

electron (left) and ion (right) along the jet beam at r = 0.25 kpc for models f02m1C

(black), f02m1.9C (red), and f02m0.1C (blue). Both electron and ion temperatures in-

crease through the internal shocks. The electron temperatures of three models are almost

the same in the post-shock region of the terminal shock, even though the injection tem-

peratures are different. This is because the energy dissipated at the terminal shock is

much greater than the initial thermal energy. Therefore, if we know the Mach number of

internal jet, we can easily estimate the electron temperature at the hotspot using eq. (Fig.

A.3). Note that the fraction of electron heating fe could be a function of the temperature

ratio. Meanwhile, when the temperature jump is smaller than the difference between the

electron and ion temperatures at a shock (i.e., the Mach number is low or fe is small),

the effect of injection must be considered. The electron temperature at the hotspot and

in the cocoon thus depends strongly on the temperature ratio of injected plasma when

fe = 0.

4.4.4 Temperature time evolution and the effect of Coulomb

coupling

This section presents the temperature evolution. We investigate the time evolution of

the energy of electrons and ions. We divide the whole system of the jet–ICM interaction

into four areas that correspond to different physical conditions, namely the beam, the

cocoon, the shocked ICM, and the unperturbed ICM. Figure 4.5 presents an example

of such division at t = 20.0 Myr for model f005m1C. The beam region is identified by

a high bulk flow speed. We define the threshold vz > 0.9vz,inj to distinguish the beam

from the cocoon. The growth of instabilities makes it difficult to distinguish between the
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Fig. 4.4: Temperature profiles of the electron (left) and ion (right) along the jet beam at

r = 0.25 kpc for models f02m1C (black), f02m1.9C (red), and f02m0.1C (blue). The dashed

gray lines show the post-shock electron (left) and ion (right) temperatures predicted using eq.

Eq. (A.3).

cocoon and the shocked ICM. However, we assume that the initial ICM is not magnetized.

Therefore, the toroidal field can be used to trace the cocoon, i.e., |Bϕ| > 0 for the cocoon.

Finally, the shocked-ICM and unperturbed-ICM regions are distinguished according to

whether the gas pressure is higher than its initial value. Figure 4.6 shows the evolution

of the volume-weighted density,

ρ̄ =

∫∫
2πrρdrdz∫∫
2πrdrdz

, (4.12)

in the cocoon (dashed), the shocked ISM (dotted), and the beam (solid) for the model

f005m1C. Initially (< 0.3 Myr), the backflowing gas directly interacts with the boundary

at z = 0. However, we only consider the period after 0.5 Myr. The volume-weighted

density of the shocked ICM is twice that of the initial ICM density, 20ρ0, owing to the

shock compression and does not change with time. Additionally, the volume-weighted

density of the beam mostly remains at its initial level, 0.1ρ0. Meanwhile, the volume-

weighted density decreases in the cocoon because of the volume expansion. A low-density

(ρ ∼ 10−3ρ0) cavity forms around the hotspots (see Fig. 4.1 (a)). However, the volume of

the cavity is small compared with the volume of the cocoon. The mixing region beside the

contact discontinuity has a high density and large radius. In the mixing region beside the

contact discontinuity, the density is low and radius of that is large. The volume-weighted

density of the cocoon thus remains higher than that of the beam gas.
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Cocoon

Beam

ICM

Shocked-ICM

Fig. 4.5: Example of divided areas at t = 20.0 Myr for model f005m1C. We define that the

beam (blue) is the region where vz > 0.9vz,inj and the cocoon (green) is the region where there is

a toroidal magnetic field except for the beam region. The shocked ICM (white) has gas pressure

higher than its initial value.
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Figure 4.7 and Fig. 4.8 show the evolution of the volume-weighted average electron

and ion temperatures,

T̄i =

∫∫
2πrTidrdz∫∫
2πrdrdz

, T̄e =

∫∫
2πrTedrdz∫∫
2πrdrdz

, (4.13)

in the cocoon and the shocked ICM as a function of time for f002m1C, f005m1C, f00m1C,

and f00m1. The electron temperature of the cocoon strongly depends on fe because

the shocked gas heated at the terminal shock forms the cocoon. Meanwhile, the ion

temperature is not sensitive to fe in the range fe < 0.2. The heating time scale of

electrons, theat ≡ nkBTe/q
ie, is about 102−3 Myr in the cocoon. Thus, electrons and

ions are not in thermal equilibrium in the cocoon. The volume-weighted temperature

in the cocoon decreases because the gas in the mixing region, where r is large, makes

a large contribution to the volume-weighted temperature. Coulomb coupling does not

make a large contribution to electron heating in the case of the models with fe = 0.05

and simulation time of 0.2 Myr. If we carry out longer simulations, we expect that the

temperatures become low and Coulomb coupling becomes dominant. In contrast, electrons

warm appreciably through Coulomb coupling in the case that fe = 0 (f00m1 and f00m1C

in Fig. 4.7). For all models, ions are hardly affected by Coulomb coupling and, the ion

temperature remains high. Coulomb coupling dominates in the gas mixing region, and

the electron temperature remains high even in the case that fe > 0 after t > 10 Myr.

In the shocked ICM, the three models with Coulomb coupling reach thermal equilib-

rium between ions and electrons within 1–2 Myr. Coulomb coupling affects electrons and

ions regardless of fe because the shocked ICM is denser than the cocoon gas. We thus

see that the heating time scale in the shocked ICM is shorter than 1 Myr. The model

f00m1, which does not have Coulomb coupling, is still in a two-temperature state at the

end of the simulation. The electron temperature decreases but does not fall below the

temperature of the initial ICM.

Figure 4.9 is the same as Fig. 4.8 but for models f005m1C (black), f005m1Cα-1

(pink), f00m1Cα-2 (gray), and f005m1 (cyan) in the shocked-ICM. Here, f005m1Cα-1

and f005m1Cα-2 are respectively the models for which the density parameters are set

10−1 and 10−2 times lower than the density for the model f005m1C. Coulomb coupling

weakens as we reduce the normalized density. Note that the dynamics do not depend

on the normalized density because the dynamics of non-relativistic jets are determined
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by the density ratio of the jet beam to the ICM and the magnetosonic Mach number.

Moreover, Coulomb coupling does not affect the total thermal energy. We clearly see that

the relaxation time between electrons and ions is longer when the density parameter α is

small. We expect that the relaxation times for the models f005m1Cα-1 and f005m1Cα-2

are respectively 102 and 1002 times the relaxation time for the model f005m1C because

Coulomb coupling is proportional to the normalized density. However, electrons and ions

reach an equilibrium within 10 Myr for the model f00m1Cα-2. This is because the heating

time scale of electrons strongly depends on the electron temperature†) , and the heating

time scale is shortened by decreasing both temperatures in the shocked ICM.

In the beam area, the electron and ion temperatures are decoupled by internal shocks.

The volume-weighted ion temperature is about 5 times that of electrons for the model

f02m1C. We estimate that the heating time scale of electrons is about 10 Myr. This value

is within our simulation time. In practice, it is difficult to reach thermal equilibrium

between electrons and ions because the gas flows into the cocoon continuously within a

short time. Furthermore, ions are primarily heated by the internal shocks.

4.5 Discussion

4.5.1 Electron heating at shocks

This section discusses an appropriate fe value for AGN jets, focusing on the bow shock

and the terminal shock. The Mach number of the bow shock is greater than 5 because

the temperature of the shocked ICM is 10 times the initial temperature, and the Mach

number of the terminal shock is about 14.

Observations of bow shocks of the Earth and Saturn and a supernova remnant in-

dicate that the post-shock temperature ratio of ions to electrons is proportional to the

magnetosonic Mach number. Vink et al. (2015) derived the equation for the post-shock

ion–electron temperature ratio assuming adiabatic heating of electrons and heat exchange

†) The ratio of energy transfer through Coulomb coupling is written as qie ∝ (Ti − Te)(
√

π/2 +
√
θi + θe)(θi + θe)

−3/2. We here assume Te = 108K and Ti = 109K and hence θe ∼ 10−2 and θi ∼ 10−4

for the shocked ICM. The equation can be approximated as qie ∝ (Ti − Te)θ
−3/2
e . Thus, the heating time

scale of electrons is easily estimated as tieheat = nkBTe/q
ie ∝ Teθ

3/2
e (Ti − Te)

−1.
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Fig. 4.6: Time evolution of the volume-weighted density in the cocoon (dashed), shocked ISM

(dotted), and beam (solid) for model f005m1C.
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f .2   w/ coupling
f .05 w/ coupling
f      w/ coupling
f      w/o coupling

Fig. 4.7: Time evolution of the volume-weighted electron (solid) and ion (dashed) temperatures

in the cocoon for models f02m1C (blue), f005m1C (black), f00m1C (yellow), and f00m1 (green).
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fe=0.2   w/ co li

fe=0.05 w/ co

fe=0      w/ cou
fe=0      w/o c

Fig. 4.8: Same as Fig. (4.7) but in the shocked ICM.
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fe=0.05 α=1. ng
fe=0.05 α=1. g
fe=0.05 α=0. g
fe=0.05 α=0. ng

Fig. 4.9: Same as Fig. (4.8) but in the shocked ICM for models f005m1C (black), f005m1Cα-1

(pink), f005m1Cα-2 (gray), and f005m1 (cyan).
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between electrons and ions using the exchange factor ζ, which is defined as the fraction

of the enthalpy-flux difference between ions and electrons. An appropriate value that

explains the observational results is ζ = 5%. The parameter ζ corresponds to the fraction

of the electron heating fe in our work, assuming thermal equilibrium between electrons

and ions in the pre-shock region.

The energy exchange ratio in collisionless shocks strongly depends on the develop-

ment of microscale instabilities, which is affected by the Mach number, the plasma β,

the pre-shock temperature ratio, the shock angle, and other factors. Therefore, the the-

oretical derivation of the fraction of electron heating in collisionless shocks still has large

uncertainties. However, some theoretical studies of collisionless shocks showed that shocks

primarily heat ions (Crumley et al., 2019; Tran & Sironi, 2020,?). Guo et al. (2018) car-

ried out two-dimensional kinetic particle-in-cell simulations of low-Mach-number shocks,

assuming galactic shocks, and showed Te/Ti ∼ 0.24 at M = 5, independent of the plasma

beta ranging 4 < β < 32. In addition, Matsukiyo (2010) found that the post-shock tem-

perature ratio is proportional to the magnetosonic Mach number and Te/Ti = 0.01 when

the shock parameters are β = 10 and M = 14.

The above results indicate that the models for which fe = 0.2 overestimate the post-

shock electron temperature. Meanwhile, the model for which fe = 0 (i.e., electrons are

heated only by shock compression) is reasonable for low-Mach-number shocks. However,

this model is not appropriate for high-Mach-number shocks because some instantaneous

electron heating mechanism is needed. It is noted that instantaneous heating occurs on a

time scale shorter than the time scale of Coulomb collision. We therefore argue that the

value 0.05 for fe is slightly high but most reasonable in this work.

4.5.2 Cooling and heating time scale

The distribution of radiative intensity and the cooling time scale for two-temperature

plasma are different from those for one-temperature plasma. In this subsection, we con-

sider bremsstrahlung radiation for a thermal distribution of electrons as radiative cooling

(Rybicki & Lightman, 1986):

qff ∼ T 1/2
e n2(1 + 4.4 × 10−10Te). (4.14)
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In this work, we assumed that the electron temperature does not exceed the ion temper-

ature anywhere except model f03m1.9C in which the injection temperature of electron

is higher than that of ion. Thus, the cooling time scale for two-temperature plasma is

much longer than that for one-temperature plasma. The results also indicate that the

bremsstrahlung cooling for one-temperature plasma is much stronger than that for two-

temperature plasma. It is difficult to observe thermal radiation from a cocoon of an

AGN jet because the density is low there. However, Kino et al. (2007, 2009) showed the

possibility of a young radio-loud AGN emitting thermal MeV–GeV γ-ray bremsstrahlung

radiation. The detection limit is sensitive to the thermalization of electrons and ions in

the cocoon.

We next estimate the cooling and heating time scale for plasma, ions, and electrons:

tffcool,gas = nkBTgas/q
ff(n2, Te), (4.15)

tiecool,i = nkBTi/q
ie(n2, Te, Ti), (4.16)

t
ff/ie
cool/heat,e = nkBTe/(qff(n2, Te) − qie(n2, Te, Ti)). (4.17)

Note that the ratio of the cooling and heating time scale does not depend on density

because both bremsstrahlung radiation and Coulomb coupling are proportional to the

square of density. In addition, electrons are heated by Coulomb coupling if qie > qff . If

the ion temperature is much higher than the electron temperature and electrons are in a

transrelativistic regime, the energy transfer rate via Coulomb coupling is proportional to

the ion temperature, qie ∝ Ti −Te ∼ Ti (see Eq. (3.1)). The cooling time scale for ion gas

therefore depends on only the gas density, tiecool,i ∼ 28n−1 Myr.

When the ion temperature is higher than the electron temperature, Ti ∼ 10Te, the

energy transfer rate qie for Coulomb coupling is larger than the bremsstrahlung-energy loss

rate qff . This means that the electrons continue to be heated by ions. The heating time

scale of electrons decreases in proportion to the temperature difference between electrons

and ions (∼ plasma). At this time, ions act as a heat bath for electrons because the cooling

time scale for ions is much longer than the heating time for electrons. In particular, when
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Tgas = 1010 K and Ti > 0.3Te, the cooling time scale of ions is 10 times the heating time

for electrons.

In this section, we considered only bremsstrahlung radiation and Coulomb coupling.

However, viscous heating may affect the temperature evolution in the cocoon where KH

instability is developing. (We discuss viscous heating in the next section.) Moreover,

other cooling processes, namely thermal synchrotron cooling and Compton cooling, may

become dominant. These emission processes are more complicated than the process of

bremsstrahlung emission. Simulations including these processes and viscous heating are

therefore the next step of our study.

4.5.3 Viscous heating due to turbulence in the cocoon

Vortex motions develop around the surface between the cocoon and the shocked ICM.

Our simulations, however, have no explicit means of dissipating sound waves because we

use ideal MHD equations. Viscosity induces effective energy diffusion because kinematic

viscosity becomes remarkably high in high-temperature plasma, such as the ICM and

jets (Braginskii, 1965). The exact value of the heating rate in MHD wave damping

is still under debate. Previous two-temperature MHD works on accreting flow used a

simple fitting formula based on theoretical models of the dissipation of MHD turbulence

in weakly collisionless plasmas developed by Howes (2010). Kawazura et al. (2019) carried

out numerical simulations using a hybrid fluid–gyrokinetic model and updated the results

of Howes (2010). The fitting formula of Kawazura et al. (2019) (hereafter K19) is

Qi

Qe

=
35

1 + (βi/15)−1.4 exp (−0.1Te/Ti)
, (4.18)

fe,turb =
1

1 + Qi/Qe

, (4.19)

where Qi, Qe, and βi ≡ nkBTi/8πB2 are respectively the heating rates of ions and electrons

and the ratio of ion thermal energy to magnetic energy. fe,turb is almost insensitive to Ti/Te

but depends on βi strongly. When thermal energy is dominant (βi > 1), the turbulence

heats primarily ions; i.e., Qi/Qe > 1. In contrast, electrons receive most of the heat at

low βi.
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To estimate the effect of turbulence heating, we calculate fe,turb from Eq. (4.18) and

Eq. (4.19) for model f005m1C at t = 20 Myr (Fig. 4.10). Note that K19 is not a

suitable model for shocks because the electron heating in shocks is more complicated,

which depends on pre-shock physical quantities. Figure 4.10 shows that most of the

dissipated energy goes to ions. While magnetic energy accumulates along the contact

discontinuity, the pressure of ions still dominates. Therefore, fe,turb is lower than 0.2;

i.e., turbulent heating is inefficient for electrons. Of course, if we consider Poynting-

flux-dominated jets, electrons could be heated more efficiently than ions. However, it is

expected that most magnetic energy is converted to the kinetic energy of bulk motion

at sub–parsec scales. Moreover, a three-dimensional magnetic kink instability develops,

and the magnetic energy of the jet is converted to internal energy rapidly (Porth &

Komissarov, 2015).

Guo (2015) carried out hydrodynamical simulations of the formation and evolution of

X-ray cavities in the ICM formed by jets taking into account the kinetic viscosity. They

showed that viscosity affects the shape of cavity and suppresses KH instability between

the cocoon and the shocked ICM. Therefore, the viscosity provides an efficient energy

dissipation mechanism. However, the anisotropic Braginskii viscosity, which transports

momentum along the orientation of the magnetic field, cannot suppress KH instability

because the toroidal magnetic field is dominated in the cocoon and the effect of viscosity

on the velocity shear across the magnetic field lines is inefficient (Suzuki et al., 2013).

4.5.4 Equation of state

Our simulations use the non-relativistic ideal equation of state for both electrons and

ions. However, the specific heat ratio changes from 5/3 for a non–relativistic (cold)

plasma to 4/3 for a relativistic (hot) plasma. In particular, the relativistic temperature of

electrons is about 3.0×109 K. Electrons in the jet have therefore reached their relativistic

temperature, and the specific heat ratio of electrons becomes 4/3. Meanwhile, ions are

non-relativistic in our simulation because the relativistic temperature of ions is about 1013

K. The effective adiabatic index for the gas can be calculated as (Ressler et al., 2015)

γgas − 1 =
pi + pe
ϵi + ϵe

= (γe − 1)(γi − 1)
1 + Ti/Te

(γi − 1) + (γe − 1)Ti/Te

. (4.20)

Thus, γgas becomes 13/9 if electrons are relativistic.
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Fig. 4.10: Snapshot of the fraction of electron heating fe,turb estimated for model f005m1C at

t = 20 Myr using Eq. (4.18) and Eq. (4.19).
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A small value of the specific heat ratio leads to large internal energy. Therefore, a

high value of internal energy accelerates the propagation to increase momentum flux in

the relativistic regime, pgas ∼ ρc2 (Mignone & McKinney, 2007). In the non-relativistic

regime, however, the momentum flux is almost unaffected by an increase in internal energy.

The variation in the specific heat ratio is therefore negligible in terms of jet dynamics in

our simulations. Of course, we note that a softer equation of state leads to a lower sound

speed and increases the interval of internal shocks. If the knots of AGN jets correspond

to internal shocks, then the positions of the knots depend on the specific heat ratio.

A variation in the specific heat ratio is negligible in terms of dynamics, but the low

specific heat ratio may decrease the electron temperature. The first reason is that the

temperature jump condition depends on the specific heat ratio (see Eq. (A.1). The

second reason is that more energy is required to heat electrons through Coulomb coupling

when the specific heat ratio is small. Therefore, electrons and ions will more readily have

different temperatures when we adopt the relativistic equation of state for electrons.

4.5.5 Observational implications

In radio galaxies such as Cygnus A, X-ray cavities are observed in the radio lobe around

the jet (Wilson et al., 2006). These cavities can be explained by the low density, hot

plasma in the cocoon (see Fig. 1(a)). Meanwhile, X-ray emission is enhanced in the

shocked ICM surrounding the cocoon (see Fig. 4.1(h) and Fig. 4.5). Diffuse soft X-rays

observed around the core of the AGN can be emitted from the cocoon plasma mixed

with the ICM through Kelvin-Helmholtz instability. Our numerical results (Fig. 4.1(h))

indicate that the electron temperature in this region is around Te = 108 − 109K. This

region can therefore enhance X-ray emission.

Observations of radio lobes indicate that the cocoon expands as the cocoon plasma

flows back toward the galactic center. Therefore, the cocoon pressure should be higher

than the ICM pressure. In a single temperature plasma, it is not consistent with the

observations of both FRI/II jets which show that the electron pressure in the lobe is

lower than the external pressure, i.e., the lobe is under-pressured (e.g., Belsole et al.,

2007). Our numerical results resolve this problem because the ion pressure much exceeds

the electron pressure in sub-relativistic AGN jets.
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Electrons are in a relativistic regime in our simulations. Non-thermal particle acceler-

ation for electrons is therefore efficient in both Fermi/diffusive shock acceleration and tur-

bulent dissipation (Zhdankin et al., 2019; Sironi & Spitkovsky, 2011). The lobes are most

prominently observed by the synchrotron emission of non-thermal electrons. It is thus not

possible to directly obtain the thermal temperatures of both electrons and ions in radio

observations. However, the efficiency of particle acceleration theoretically depends on the

thermal energy of electrons and ions. Therefore, the population of non-thermal electrons

depends on that of the thermal electrons. Groups have developed post-processing code

for calculating non-thermal electron spectra from the results of MHD simulations (Vaidya

et al., 2018; Winner et al., 2019). In order to obtain the realistic non-thermal electron

spectra of AGN jets, it is necessary it use the thermal electron temperature obtained from

two-temperature MHD simulations.

Diffuse thermal X-ray emissions have been detected in the radio lobes of a few sources,

such as Fornax A and Centaurus A (Seta et al., 2013; Stawarz et al., 2013). The thermal

emission comes from the mixing region between the radio lobe and the shocked ICM.

In our work, two temperature plasma still exists in the mixing region (see Fig. 4.1(i)

z < 20 kpc, 10 < r < 20 kpc). Since the thermal Doppler broadening of spectral lines

gives information about each the ions thermal velocity, future X-ray observations with

high-resolution spectroscopy(e.g., the X-ray Imaging and Spectroscopy Mission, XRISM)

will reveal the presence of the two-temperature plasma in cocoons of AGN jets.

4.6 Summary and conclusions

We performed two-dimensional and axisymmetric simulations of AGN jet propagation

into a constant-density ICM to study the fraction of electron heating, which affects the

electron temperature distribution.

• In axisymmetric jets, the energies of electrons and ions are decoupled at internal

shocks. In particular, ions have about twice the internal energy of electrons in

the downstream of the first internal shock. As in the one-dimensional case, the

temperature ratio is described by Eq. (A.3) in the downstream of the terminal

shock. However, post-shock electrons lose energy through adiabatic expansion in

the multidimensional case and the temperature ratio may therefore fall below the
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value predicted using Eq. (A.3) at low values of fe. Furthermore, we found that the

temperature of the injected jet does not affect the temperature in terminal regions

when fe is constant.

• The volume-weighted temperature of the cocoon decreases as the region expands.

Coulomb coupling is weak in the cocoon because the electrons have reached rela-

tivistic temperatures, and the density is low. The time scale of energy transfer due

to Coulomb collision is therefore about 102−3 Myr at the end of simulations, and

the electrons continue to be heated by ions in the cocoon. These results indicate the

existence of two-temperature plasma in the X-ray cavity. In the shocked ICM, the

ion thermal energy is converted to electron thermal energy efficiently, and ions and

electrons achieve thermal equilibrium in 1 Myr. Moreover, mixing of the jet plasma

and shocked ICM through KH instability at the interface could enhance soft X-ray

emissions around the contact discontinuity between the cocoon and shocked ICM.

• We investigated the density dependence of the volume-weighted temperature evo-

lution in the shocked ICM. The time scale of relaxation between electrons and ions

is certainly extended for a lower-density model. However, the electron heating time

scale strongly depends on the electron temperature, with a lower electron tempera-

ture resulting in a shorter heating time scale. Therefore, the lowest-density model,

which has a density 100 times lower than that of the fiducial model, achieves thermal

equilibrium by 10 Myr.

Our work indicates that two-temperature plasma exists in the X-ray cavity, and elec-

trons and ions probably reach thermal equilibrium in the shocked ICM. However, the

determination of the ion temperature is a challenge. XRISM observations could provide

useful information on ion thermal energies from a line profile.

65



5 Three-dimensional structure of

the two-temperature jets

5.1 Short introduction

We discussed the results of axisymmetric simulations with a constant fraction model for

electron and proton heating in Chap. 4. These results proved us physical insight into the

two-temperature jets. Meanwhile shocked-intracluster medium (ICM) reaches thermal

equilibrium within a few Myr, the thermal protons, whose temperature is higher several

ten times than electron temperature, support the expansion of cocoon. However, we have

to deal with two key-physics to conduct realistic simulations.

Firstly, it is necessary to carry out three-dimensional simulations. As we summa-

rized in Sect. 2.4, major magnetohydrodynamical (MHD) instabilities develop non-

axisymmetric modes, namely Kelvin-Helmholtz modes, Rayleigh-Taylor modes, and current-

driven kink modes. Thus, the non-linear evolution of these instabilities plays a significant

role in the jet dynamics and large-scale morphology (e.g., Tchekhovskoy & Bromberg,

2016). In particular, the development of instabilities, cause the jet deceleration and/or

the jet disruption, could directly link to the physical reasons of the Fanaroff-Riley (FR)

distinction (see Sect. 2.1).

Secondly, we should implement the variable model for electron heating, instead of the

constant model. The supersonic nature of jets triggers shocks and turbulence. However,

our previous simulation in Chap. 4, we did not focus on the electron heating in turbulence.

As we reported in Sect. 3.3, recent theoretical studies clarified the physical picture of

electron heating in the collisonless turbulence (Kawazura et al., 2019, 2020). They provide

us the variable model that describes the partition of heating energy between protons and

electrons for the dissipation at the plasma kinetic scale. The heating fraction between
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electron and proton in this model is not constant and is an increasing function of proton

plasma-β, βp ≡ 8πnkT p/B
2. Our previous results indicated that the magnetic fields

are accumulated, and the proton plasma-β decreased in the cocoon. In addition to this,

the magnetic field can be amplified locally by non-axisymmetric motions. Therefore, the

turbulence would be the dominant heating source for thermal electrons, compared with

shock heating.

Jet magnetization parameters, namely jet Alfvén Mach number MA and plasma-β

βgas, are important for both electron heating and dynamical evolution. However, none of

the studies have considered two-temperature plasma, and explore the effect of different jet

magnetization on the electron heating with the development of MHD instabilities. Thus,

the purpose of this chapter is to examine the effect of the variable model for electron

heating in turbulence on the distribution of electron temperature in a varying range of

the jet magnetization parameters. Also, we clarify whether shocks or turbulence are the

dominant heating source for electrons. Finally, the aim of our simulations is to explore that

the jet magnetization parameters impart the development of various MHD instabilities.

To achieve these purposes, we perform a series of three-dimensional two-temperature

MHD simulations of the propagation of a sub-relativistic jet.

5.2 Numerical Method

5.2.1 Numerical integration

In Chap. 4, we assume that electron entropy obey a non-relativistic entropy formula,

s = k ln pγρ−1, for simplicity. However, when the plasma temperature beyond a relativistic

temperature (kT ≫ mc2), this simplification is incorrect. In the context of jet, electrons

are widely distributed from non-relativistic to relativistic temperature. However, we find

that some numerical noise are contaminated in the previous integration method. Thus,

we modify the numerical integration method to implement a relativistic thermodynamics

phenomena.

We follow the energy evolution for electrons in addition the total energy in the previous

integration method. In the modified method, following Sadowski et al. (2017), we follow

the energy evolution for electrons and protons independently. The total gas (summed
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electrons and protons) are evolved by the MHD equations in conservation form:

∂U

∂t
+ ∇ · F = S, (5.1)

U =


n

mpnv

B

E

 , (5.2)

F =


nv

minvv + pTI − 1
4π
BB

vB −Bv

(E + pT)v − 1
4π
B(v ·B)

 , (5.3)

S =


0

0

0

−qrad

 , (5.4)

where qrad is the radiative energy loss rate. In this work, we assume the radiation process

as bremsstrahlung emission. The total energy E and total pressure pT are respectively

E =
pp

γp − 1
+

pe
γe − 1

+
ρv2

2
+

B2

2
=

pgas
γgas(T e, T i) − 1

+
ρv2

2
+

B2

2
, (5.5)

pT = pp + pe +
B2

2
= pgas +

B2

2
, (5.6)

where pgas = pp + pe is the gas pressure, which is summed the proton pressure pp and

electron pressure pe. Note that a adiabatic index of gas γgas and the radiative energy loss

rate qrad are functions of electron and proton temperature. In addition to solving MHD

equations, we solve the entropy equations of the two species to obtain each temperatures.
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The entropy equations of electrons and protons can be written by:

T e
d(nese)

dt
= f eqheat + qie − qrad, (5.7)

T p
d(npsp)

dt
= (1 − f e)qheat − qie, , (5.8)

where qie, f e, and qheat are the energy transfer ratio via the Coulomb coupling, the fraction

of the electron heating, and the dissipation heating rate, respectively.

We concern trans-relativistic regime for electrons, and use the following approximate

entropy formula derived by Sadowski et al. (2017) in Appendix A:

se = k ln

[
θe

3/2(θe + 2
5
)3/2

ρe

]
, (5.9)

where θe is the dimensionless temperature. The adiabatic index for electrons is calculated

as follows:

γe(θe) =
10 + 20θe
6 + 15θe

. (5.10)

On the other hand, protons are non-relativistic in this simulation. Thus, we use the

non-relativistic entropy formula for protons:

sp = k ln ppρp
−γp , (5.11)

where γp = 5/3. The thermal energy of protons, electron, and gas are as follows:

up =
pp

γp − 1
, ue =

pe
γe(T e) − 1

, ugas = up + ue =
pgas

γgas(T p, T e) − 1
. (5.12)

From the relationship between gas pressure and gas thermal energy, the effective adiabatic

index for the gas can be calculated as (Ressler et al., 2015)

γgas(T p, T e) = 1 + (γe − 1)(γp − 1)
1 + T p/T e

(γp − 1) + (γe − 1)T p/T e

. (5.13)

In this simulation, we numerically solve Eq. (5.1). Steps of numerical interaction are

as follows:

1. Calculate conservation variables from principle variables at the end of the previous

time step, and the effective adiabatic index γgas is calculated by Eq. (5.13).

2. Adopt an operator split method (S = 0 in Eq. (5.1)), and solve the conservative

equation (see Matsumoto et al. (2019) for details).
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3. Recalculate conservation variables, except for the gas thermal energy ugas, from prin-

ciple variables. Note that updated electron and proton temperature are unknown,

and thus we cannot calculate ugas and γgas at this step.

4. Solve the entropy equations for electrons and protons (Eq. (5.7) and Eq. (5.8)).

The detail procedure is described in the following section. Then, we calculate ugas

and γgas using updated electron and proton temperature.

5.2.2 Solve entropy equations

We describe the procedure of numerical integration for the entropy formula of electrons

and protons. For simplicity, we describe method for the one-dimensional coordinate x.

Firstly, to compute adiabatically evolution, we set the right-hand side of Eq. (5.7) and

Eq. (5.8). Solve these equations by the finite-difference method. Let xi be the cell center

of a uniform grid, ∆x is the cell width. Also, time describes tn = n∆t, where ∆t is the

time step. We adopt 3rd order TVD-Runge–kutta schemes, and then the finite-difference

equations are as follows:

(ρs)
(1)
i = (ρs)ni −

∆t

∆x
[(ρsvx)ni+1/2 − (ρsvx)ni−1/2], (5.14)

(ρs)
(2)
i =

3

4
(ρs)ni +

1

4

[
(ρs)

(1)
i − ∆t

∆x
[(ρsvx)

(1)
i+1/2 − (ρsvx)

(1)
i−1/2]

]
, (5.15)

(ρs)n+1
i =

1

3
(ρs)ni +

2

3

[
(ρs)

(2)
i − ∆t

∆x
[(ρsvx)

(2)
i+1/2 − (ρsvx)

(2)
i−1/2]

]
, (5.16)

where (1) and (2) denote each number of sub-time steps of TVD-Runge–kutta scheme.

Note that the entropy formulas for electrons and protons are the same form, and we do

not distinguish between them.

Following Sadowski et al. (2017), we arrange Eq. (5.14) - Eq. (5.16) as follows:

s
(1)
i =

ρni

ρ
(1)
i

sni −
∆t
∆x

(ρvx)ni+1/2

ρ
(1)
i

sni+1/2 +
∆t
∆x

(ρvx)ni−1/2

ρ
(1)
i

sni−1/2 (5.17)

= f
(1)
i sni + f

(1)
i+1/2s

n
i+1/2 + f

(1)
i−1/2s

n
i−1/2. (5.18)

s
(2)
i =

3

4

ρni

ρ
(2)
i

sni +
1

4

ρ
(1)
i

ρ
(2)
i

s
(1)
i −

1
4
∆t
∆x

(ρvx)
(1)
i+1/2

ρ
(2)
i

s
(1)
i+1/2 +

1
4
∆t
∆x

(ρvx)
(1)
i−1/2

ρ
(2)
i

s
(1)
i−1/2 (5.19)

= f
′(2)
i sni + f

(2)
i s

(1)
i + f

(2)
i+1/2s

(1)
i+1/2 + f

(2)
i−1/2s

(1)
i−1/2. (5.20)
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s
(n+1)
i =

1

3

ρni
ρn+1
i

sni +
2

3

ρ
(2)
i

ρn+1
i

s
(2)
i −

2
3
∆t
∆x

(ρvx)
(2)
i+1/2

ρn+1
i

s
(2)
i+1/2 +

2
3
∆t
∆x

(ρvx)
(2)
i−1/2

ρn+1
i

s
(2)
i−1/2 (5.21)

= f ′n+1
i sni + fn+1

i s
(2)
i + fn+1

i+1/2s
(2)
i+1/2 + fn+1

i−1/2s
(2)
i−1/2, (5.22)

where f and f ′ are the fractions of the final state represented by the three contributing

grids of gas. When two individual gases are mixed a constant volume, the total energy to

be the sum of the initial energies of the gases. In contrast, the total entropy is not to be

that. In other words, the finite-volume methods in Eq. (5.17) - Eq. (5.21) are incorrect.

But, to overcome this problem, we must treat the dynamics of each gas individually. In

this work, following Sadowski et al. (2017), we solve Eq. (5.17) - Eq. (5.21) by replace the

entropy with the thermal energy. The relationship between entropy and internal energy

are known in Eq. (5.17), Eq. (5.21), Eq. (5.10), and Eq. (5.12). Thus, the thermal

energy is a function of density and entropy:

un
i,i±1/2 = u(sni,i±1/2, ρ

(1)
i ), u

(1)
i,i±1/2 = u(s

(1)
i,i±1/2, ρ

(2)
i ), u

(2)
i,i±1/2 = u(s

(2)
i,i±1/2, ρ

n+1
i ). (5.23)

Here, to safe, we use upwind values of the entropy, sni+1/2 = Upwindow
(
sni, s

n
i+1

)
and

sni−1/2 = Upwindow (sni−1, s
n
i ). From the above calculation, we can obtain the thermal

energy of electron and proton that evolve under the adiabatic process, ue,ad and up,ad.

Then, we calculate the dissipation heating at each grids as:

Q
(1),(2),n+1
heat = u(1),(2),n+1

gas − (u
(1),(2),n+1
e,ad + u

(1),(2),n+1
i,ad ), (5.24)

where dQheat/dt = qheat. Also, if necessary, the fraction of the electron heating, f e,

is calculated by using MHD quantities. Finally, dividing the dissipation heating into

electrons and protons, the thermal energies of electron and proton are updated as follows:

u(1),(2),n+1
e = u

(1),(2),n+1
e,ad + f (1),(2),n+1

e Q
(1),(2),n+1
heat , (5.25)

u(1),(2),n+1
p = u

(1),(2),n+1
p,ad + (1 − fe)Q

(1),(2),n+1
heat . (5.26)

The source term, namely energy transfer via Coulomb coupling and radiative cooling,

is updated implicitly by adopting the Newton–Raphson iteration at last sub-step of the

TVD-Runge–kutta scheme.

5.2.3 Electron heating model

We consider two sub-grids models for the fraction of electron heating f e. One model

represents the turbulence heating f e,turb, and another model represents the shock heating
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f e,shock. Therefore, f e is determined by plasma properties at each simulation grid. First of

all, we identify a shock zone by shock-finding method which is based on Ryu et al. (2003)

and Schaal & Springel (2015) (see detail in Sect. A.2). The fraction of shock heating

are adopted only in shock zone, and other region is adopted by the fraction of turbulence

heating ,i.e.,

f e(x, y, z) =

f e,shock (for shock zone)

f e,turb (for otherwise)

(5.27)

Note that an amount of dissipation energy is small in the region of laminar flow and hence

the heating fraction of turbulence heating spontaneously works in turbulence zone.

Shock heating

We use a constant model of electron heating fraction for shock zone, f e,shock = 0.05.

This parameter value is well described the observation data in the solar system and

supernova remnants shocks (Vink et al., 2015). Furthermore, some theoretical simulations,

based on PIC simulation, indicate that electrons irreversible heat up but proton are

primarily heated at collisionless shocks.

Turbulence heating

We use the fitting function for electron-to-proton heating rates of MHD turbulence

(Kawazura et al., 2020):

Qp

Qe

=
35

1 + (βi/15)−1.4e−0.1T e/T i
+

P compr

PAW

, (5.28)

where P compr and PAW are the compressive energy injection and the Alfvénic energy

injection, respectively. Therefore, the fraction of electron heating f e is defined by:

f e,turb =
Qe

Qp + Qe

. (5.29)

We assume purely Alfvénic turbulence (i.e., P compr/PAW → 0). Note that this assumption

overestimates the amount of electron heating. This heating model is a weak dependence

of the temperature ratio T e/T p but a strong dependence of proton plasma beta βp. In

the case of βp < 1, the turbulent heating goes to electrons, and vice versa.
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5.2.4 Bremsstrahlung radiation cooling

Bremsstrahlung cooling rate per unit volume for relativistic plasma is (Svensson, 1982)

qbrems(θe, n) = n2σTcαfmec
2[F ei(θe) + F ee(θe)], (5.30)

where αf and σT are fine-structure constant, Thomson cross section, respectively. In

above equation, F ei, and F ee are the dimensionless radiation rate due to proton-electron

collisions and electron-electron collisions, respectively. The approximation formula of F ei,

and F ee are respectively

F ei(θe) =

4.0
(

2
π3

)1/2
θe

1/2(1 + 1.78θe
1.34) for (θe < 1)

9.0θe
2π

[
ln (2ηEθe + 0.42) + 3

2

]
for (θe > 1)

, (5.31)

F ee(θe) =


20

9π1/2 (44 − 3π2)θe
2 (1 + 1.1θe + θe

2 − 1.25θe
2.5) for (θe < 1)

24θe
[
ln 2ηEθe + 5

4

]
for (θe < 1)

. (5.32)

Here, ηE = exp (−γE) and γE ≈ 0.5772 is Euler’s number.

5.3 Simulation setup

We carried out the two-temperature 3D MHD simulations on Cartesian coordinate with

the z-axis pointing along the jet direction. The computational domain is x ∈ (−Lx/2, Lx/2),

y ∈ (−Ly/2, Ly/2), and z ∈ (0, Lz), where Lx, Ly, and Lz are the length of computational

domain. The computational domain is covered by Nx × Ny × Nz uniform mesh grids

whose size is ∆x = ∆y = ∆z = 0.1 kpc. Grids number and the length of computational

domain are given in Tab. 5.1. We permit the backflow to escape from the boundary at

z = 0. Thus, the absorbing boundary condition is applied at xy−plane of z = 0. Other

boundaries are imposed on the free-boundary condition.

5.3.1 Initial condition

To study the interaction between jets and the ICM, we set up initial surrounding ICM

in the form of β profile (King, 1962). Our cluster model is roughly consistent with the
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environment of Cygnus A from Chandra X-ray data (Wilson et al., 2006). The density

profile of ICM is

n(r) =
n0

[1 + (r/rc)2]
3β′/2

, (5.33)

where r =
√
x2 + y2 + z2, n0, rc and β′ are the radius, the core density, the core radius,

and the parameter for the ratio of the specific energy in the galaxies to the specific

thermal energy in the ICM, respectively. We set β′ = 0.5, rc = 20 kpc, and n0 =

0.05 cm−3. We also assume our atmosphere is initially isothermal with temperature

kT p = kT e = 5 keV. We employ the uniform magnetic field BICM that is parallel to the

z-axis and BICM = 0.44 µG. The blue lines of Fig. 5.1 show the initial density (the top

panel) and pressure (the bottom panel), respectively.

5.3.2 Jet model

Focusing on the effect of jet magnetization on electron heating and jet stability, we carried

out simulations with different magnetic field strength. We model magnetized supersonic

sub-relativistic flows to consistent with the outburst energy of Cygnus A jets, 0.6− 0.8×
1046 erg s−1 (B̂ırzan et al., 2004; Snios et al., 2018). The injected jet power can be written

as follows:

Ljet = Lkin + Lth + Lmag = πrjet
2vjet

(
1

2
mpnjetvjet +

njetkT p,jet

γp − 1
+

njetkT e,jet

γe − 1
+

B2
jet

8π

)
.

(5.34)

We set the kinetic power Lkin = 5.5×1045 erg s−1 and the thermal power Lth = 4.4×1044

erg s−1, respectively.

To generate the jet beams, we injected supersonic and magnetized flows inside a con-

stant cylindrical nozzle at the origin. The radius and length of the nozzle are 1 kpc

and 1.2 kpc, respectively. Although it is hard to determine the real flow radius of jets

by observations, radio observation indicates that the radio full width at half maximum

radius of Cygnus A is 0.1 to 1.0 kpc at 1 kpc from the central engine (Nakahara et al.,

2019). We assume that the jet temperature and the velocity are T p = T e = 1010 K and

vjet = 0.3c, respectively. Thus, the internal sonic Mach number is M = 6.2. Our jet

models satisfy a condition that the thermal pressure ratio between the jet and the ICM in
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Table 5.1: Numerical Models

Model βgas,jet MA Bjet [µG] Lx × Ly × Lz [kpc] Nx ×Ny ×Nz

A 1 4.9 138 64 × 65 × 96 640 × 650 × 960

B 5 11 62 64 × 64 × 96 640 × 640 × 960

C 100 49 14 64 × 65 × 96 640 × 650 × 960

Table 5.2: Jets and ICM common setup parameters

Jet speed vjet 0.3c

Jet gas temperature Tg,jet 1010 [K]

Jet Kinetic energy Lkin 5.0 × 1045 [erg s−1]

Jet thermal energy Lth 4.4 × 1044 [erg s−1]

Jet radius rjet 1 [kpc]

Jet Sonic Mach Number Mjet 6.2

ICM temperature TICM 5 [KeV]

Core density n0 5 × 10−2 cm−3

Core radius rc 20 [kpc]

Core parameter β′ 0.5

ICM magnetic field Bz,ICM 0.44 [µG]

the launching region is unity. In Fig. 5.1, the blue dots denote the density and pressure

in the jet injection region, respectively. A small-amplitude (1 percent) random pressure

perturbation for the injection flow is adapted to model non-axisymmetric features. We

list common parameters for ICM and jets in Tab. 5.2.

The jets have a purely toroidal magnetic field Bϕ = Bjet sin4 (2πr/rjet). As shown in

Tab. 5.1, Models A, B, and C have different values of gas plasma βgas equal to 1, 5, 100,

respectively. That’s plasma βgas values are respectively corresponded to Bjet = 138, 62, 14

µG for models A, B, and C. Our models are matter-dominated jets, thus in all models,

the kinetic energy of jets exceeds the Poynting flux energy.
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Fig. 5.1: Top: Number density profile of initial ICM as a function of radius. The blue dot

represents the jets number density. Bottom: Same as the top panel, but for gas pressure. The

initial gas temperature of the ICM is 5 KeV over the entire simulation domain.
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5.4 Results

We have conducted simulations with the different magnetic energy to investigate the

effect of jet dynamics and electron heating. We focus on the effect of the magnetic

field strength on the dynamics of jets. The strength of the magnetic field affects the

development of instability such as kink, Kelvin-Helmholtz, and Rayleigh-Taylor modes.

Thus, we especially study to understand the relationship between the turbulent field in

the cocoon and the development of instability in the beam. The electron heating model

for turbulence is the function of plasma-βp, and hence magnetization strong affect the

electron temperature distributions.

5.4.1 Overall morphology

We show the density slices for model A, B, and C at the end of the simulation time

(t = 9.52, 9.94, and 13.02 Myr) in Fig. 5.2. The basic structures of jets for three-

dimensional simulations are the same as that of asymmetric simulations (see Chap. 4).

The shocked-ICM, which is compressed by the bowshock, and the low-density cavity

(cocoon) are formed. We can see that the number density of the cocoons is ∼ 10−4

cm−3 (0.001n0). The jet beam reaches a tip of jet in spite of suffering MHD instabilities

(see red contours in Fig. 5.2), and a terminate shock is formed at the end of jet for all

models. The shapes of bowshock are affected by the bending motion of the jets for model

A and B. Strong pressure waves are generated at the termination of the beam, and thus

these waves push up the bowshock. We clearly find that although the bowshock of model

A is non-axisymmetric although that of model C is axisymmetric, that of model A is

non-axisymmetric.

Figure 5.3 shows slice (in the x − z plane) of the distribution of the gas pressure

for model B at t = 9.94 Myr. The Kelvin-Helmholtz instability is developed at the

contact discontinuity between the cocoon and the shocked-ICM. Supersonic turbulent

motions developed this Kelvin-Helmholtz instability drive sound waves into shocked-

ICM. These powerful sound waves carry jet energy from the cocoon into shocked-ICM

(Bambic & Reynolds, 2019). Higher-magnetized model form longer-wavelength mode of

Kelvin-Helmholtz instability and hence drive powerful, long-wavelength sound waves into

shocked-ICM.
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Fig. 5.2: Slices (in the y − z plane) of the distribution of the number density for model A, B,

and C at t = 9.52, 9.94, and 13.02 Myr, respectively. The red lines represent contours of the

z-component of velocity vz = 0.5vjet (0.15c).

78



Fig. 5.3: Slice (in the x− z plane) of the distribution of the gas pressure for model B at t = 9.94

Myr. The solid cyan contour denotes the jet boundary where T e = 108 K. Supersonic turbulent

motions of the cocoon (jet gas) drive sound waves into shocked-ICM.
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5.4.2 Beam stability

In the top and middle panels of in Fig. 5.4, we plot the time evolution of the bowshock tip

position and the propagation speed of bowshock for model A, B, and C. The propagation

speed given by one-dimensional analysis is obtained by Eq. (2.22). Here, we extend this

equation to adopt for the case of the ICM of β−model case,

vhead(z) =

√
Anjet/nICM(z)

1 +
√

Anjet/nICM(z)
vjet, (5.35)

where A is the cross section ratio between beam and jet head. We obtain analytic solution

by solving above equation while A = 1 and vjet = 0.3c. We plot analytic solutions in the

top and middle panels of Fig. 5.4 (gray solid). The propagation velocity for analytic

solutions have a constant value while jets propagate within the core (r < rc). After the

jet passes through the core, the decreasing of ICM density triggers the acceleration of the

jet because the ram pressure drops rapidly. We can see that the propagation velocity of

all models has a similar tendency to the analytic solution, i.e., the jets accelerate after

passing through the core. Meanwhile, the jets are slowing down while it propagates over

long distances. In particular, the jet of model B is suffered strong deceleration after 7.5

Myr.

The propagation speed is related to the head size A because the large cross section of

the head is exposed to a large amount of ram pressure. Thus, we investigated the time

evolution of the head size (see the bottom panel of Fig. 5.4). The head size are defined

as πrhead
2 where rhead = 0.5(∆xbow + ∆ybow) is the bowshock radius. We measure ∆ybow

and ∆xbow at 1 kpc below the tip of the jet. There is an anti-correlation between the

propagation speeds and the head size. A high-magnetized jet has a small head because

the magnetic hoop stress, B2
ϕ/r, suppress the radial expansion motion of the backflow.

The jet of model B are suffered strong deceleration after t = 7.5 Myr, and we clearly find

that the head size drastically increases at the same time. The trigger that increases the

head size is the development of non-axisymmetric, kink mode.

The characteristic timescale of development of external kink mode is corresponded to

the Alfvén crossing time in the beam (Moll et al., 2008; Mizuno et al., 2009),

τkink ∼
2πrjet
vA,ϕ

, (5.36)
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Fig. 5.4: Time evolution of the bowshock tip position (top), the propagation speed of bowshock

(middle), and the jet head area (bottom). Red lines, blue lines, and green lines are respectively

for model A, B, and C. The gray solid lines are analytic solution of Eq. (5.35). The gray dotted

line of top panel indicates core radius (rc = 20 kpc).
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where vA,ϕ is the azimuthal Alfvén velocity. A fluid element in the beam has roughly a

constant velocity, vjet. We verify that the bulk beam velocity slightly changes but roughly

keep an injection velocity. Therefore, the kink mode develop after the jets propagate to

the distance lkink ∼ vjetτkink. For model A and B, the distance lkink ∼ 40, 70 kpc are

respectively within the simulation domain. In particular, the jet of model A has precession

after t ∼ 5 Myr. Meanwhile, lkink is larger than the length of the simulation domain and

hence the model C jet is not expected to develop kink mode in simulation time.

Fig. 5.5 shows two-dimensional distribution maps of the beam barycenter R
G

, which

is described as distance from origin, as function of time for each model. We compute the

beam barycenter as follows:

RG(t, z) =

∫
x

∫
y
rvz(x, y, z, t)dxdydz∫

x

∫
y
vz(x, y, z, t)dxdydz

for vz > 0.8vjet. (5.37)

The large value of the barycenter indicates development of non-axisymmetric mode. We

can see that lkink is a good indicator of kink instability for both model A and B. After

the jet propagates to the distance lkink, the barycenter is larger than 3 kpc for model

A and B. For model B, the time at which the jet propagates to the distance lkink is 7.5

Myr. This time corresponds to the time when the jet begins to decelerate. Thus, the non-

axisymmetric mode developed by kink instability induces deceleration by increasing the

size of the jet head. Meanwhile, since the jet does not suffer the kink mode the barycenter

for model C is within 1 kpc in simulation time, i.e., the jet propagates straight.

Magnetic fields also play an important role in the suppression of Rayleigh-Taylor

instability. In Fig. 5.6, we present the cross-section of the z-component velocity in the

x-y plane at 70 kpc for model A, B, and C. We can see that kink instability for model

A and B bend the jet away from its initial launch axis (x = y = 0). Also, for model A

and B, the jets clearly separate between beam flow and cocoon gas (backflow), i.e., the

low mixing ratio between the beam and cocoon gas. Meanwhile, the low-magnetized jet

of model C is not in the development of kink instability but also is in the development

of Rayleigh-Taylor instability and Kelvin-Helmholtz instability. The onset condition of

the Rayleigh-Taylor instability is given analytically by ρjet > ρcocoon in hydrodynamic

case. Note that Komissarov et al. (2019) found analytically that jets are stable for the

Rayleigh-Taylor instability instability mode when MA < 40. Thus, the jet is in unstable

mode of the Rayleigh-Taylor instability for model C (see Fig. 5.2 and Tab. 5.1). The
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Rayleigh-Taylor mode forms a large cross-section, ∼ 10 kpc, of positive velocity field and

finger-like structures. Owing to the high-mixing ratio between the beam and cocoon gas,

the jet of model C is decelerated.

5.4.3 Magnetic fields in the cocoon

Figure 5.7 shows the slices of the x-direction component of the magnetic field for model

A, B, and C, respectively. Since we inject purely toroidal fields in the beam, the toroidal

fields are distributed in the cocoons. But, one can see that reversing fields exist in the

cocoons. Also, reversing fields are dissipated in the cocoons of models A and B at z < 40

kpc. We will describe that the field structures in the beams in Sect. 5.5.1.

Since the magnetic tension suppresses the turbulence motions, the filaments in the

cocoon of model A at z > 40 kpc, whose length is several kpc, are more stretched than

that of model B. Due to shock compression, filaments are formed around the jet head,

which have stronger magnetic fields than the injected magnetic fields. On the other hand,

for the cocoon of model C, the small-scale turbulence is excited, and the typical size of

the vortex is ∼ 1 kpc.

To provide quantitative analysis, we show the probability distribution functions (PDFs)

of an individual component of the field in Fig. 5.8. For model A, |Bz| give large con-

tributions for magnetic energy because the higher-magnetized filaments flow back to the

downstream. Meanwhile, the PDF of model C shows a nearly isotropic distribution. This

result seems to reflect the development of small-scale turbulence in the cocoon. We also

can see that |Br| is energetically sub-dominant.

When individual components of field have a Gaussian distribution with zero mean,

the field strength obey a Maxwell-Boltzmann function (MB) (Hardcastle, 2013):

PMB(B) =

√
54

π

B2

BMaxwell
3

exp

[
−
(

3

2

)(
B

BMaxwell

)2
]
. (5.38)

Here B2
Maxwell/8π is a parameter meaning the mean magnetic field energy density. To

compare with our results, B2
Maxwell/8π is calculated by

B2
Maxwell =

∫ ∞

0

B2P (B)dB, (5.39)

where P (B) is the PDFs of our simulation results. BMaxwell are calculated as 21.59, 13.92,

and 6.48 µG for model A, B, and C, respectively. Three plots of PDFs is border than their
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Fig. 5.5: Two-dimensional distribution maps of the beam barycenter RG as a function of time

for model A (top), B (middle), and C (bottom), respectively. The horizontal gray dashed

lines are the distance lkink for the development of the external kink model, and the vertical gray

dashed lines are the time at which the jets propagate to the distance lkink.

84



Fig. 5.6: Slices (in the x−y plane at z = 80 kpc) of the distribution of the z-direction component

of velocity for model A, B, and C, respectively.
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Fig. 5.7: Slices (in the y− z plane) of the distribution of the x-direction component of magnetic

field for model A, B, and C, respectively.

MBs. Notice that the strength of injected fields is 138, 62, and 14 µG for models A, B,

and C, respectively. For all models, Bmaxwell is lower than the injected fields because the

fields value decrease with the adiabatic expansion and magnetic dissipation. In particular,

a large amount of magnetic energy is dissipated for model A in the beam.

5.4.4 Temperature distribution

Figure 5.9 and Fig. 5.10 show the distributions of electron entropy and that of ratio

between proton temperature and electron temperature, respectively. The electron heating

fraction for turbulence is proportional to inverse plasma beta βp
−1. Therefore, a jet with

a strong magnetic field has a higher electron temperature i.e., the ratio between proton
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Fig. 5.8: Probability distribution functions of magnetic field strength in the cocoon for model A,

B, and C at the end of the simulations. Red, green, blue, and black lines plot respectively |Bϕ|,

|Br|, |Bz|, and |B|. Gray lines plot the Maxwell-Boltzmann function for mean field strength

BMaxwell given in Eq. (5.38).

temperature and electron temperature is small.

Thermal electrons propagating the beam cannot the heating energy of the internal

shocks, but electrons heat up at the jet termination region (Fig. 5.9). Hot electrons,

therefore, are stored in the cocoon. Although this physical picture is similar to the result

of the two-dimensional case (see chap Sect. 4.4.2), the difference between them is that

dissipation of the magnetic energy play role of electron heating source as that of the bulk

kinetic energy of jets. In particular, the electrons are significantly heated locally in the

beam for models A and B.

In contrary to electrons, protons receive most of the shock heating because we set

f e = 0.05. Thus, proton temperatures are several ten times higher than electron temper-

atures in the cocoons for all models (Fig. 5.10). Electrons are in relativistic temperature

in range of T e ∼ 109 − 1010 K. Hotter electrons are located along magnetized filamentary

structures formed by shock compression for models A and B. In particular, electron tem-

peratures are higher than protons temperature in some filaments of model A. Meanwhile,

for model C, the distribution of ratio between proton temperature to electron temperature

are monochromatic, kT p/kT e ∼ 40, in the cocoon.
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Fig. 5.9: Slices (in the y− z plane) of the distribution of the electron specific entropy for model

A, B, and C, respectively.

88



Fig. 5.10: Slices (in the y− z plane) of the distribution of the ratio between proton temperature

to electron temperature for model A, B, and C, respectively.
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5.4.5 Thermodynamics of intracluster medium

In this subsection, we clarify the time evolution of the ICM, especially thermodynamics

balance. Electrons and protons are heated by bowshocks. Note that protons are hotter

than electrons in the shocked-ICM because the shocks primarily heats protons in our

simulations. Shocked-ICM of all models still have a different temperature between electron

and proton in the region of z > 40 kpc when jets reached z ∼ 90 kpc (see Fig. 5.10). To

analyze more details for ICM thermodynamics, we define shocked-ICM as the grids where

T e < 108 K and n(t = t′) − n(t = 0) > 0.05n0 , where t′ is the current time. In the first

criterion, we divide the cocoon or not, and the second criterion divide the shocked-ICM

or non-perturbed ICM. Figure 5.11 shows the averaged density of shocked-ICM (top) and

the averaged ratio of proton to electron temperature of shocked-ICM (bottom) along z-

axis for model B at t = 2.8, 4.2, 5.6, 8.4,and 9.8 Myr, respectively. Here, the averaged

quantities q of shocked-ICM along the z-axis is calculated in the form,

< q(z) >=

∫ ∫
qdxdy∫ ∫
dxdy

for T e < 108 K and n(t = t′) − n(t = 0) > 0.05n0. (5.40)

The initial density profile is β-model, and thus the averaged density profiles of shocked-

ICM along with z-axis have a lower value as it is father from the core (see in the top

panel of Fig. 5.11). One can see that the density has the highest value at the tips of

the bowshock. In particular, shock compression is effective in early time. The averaged

density of shocked-ICM is also decreased in time because of adiabatic expansion. Electrons

and protons are decoupled in shocked-ICM during simulation time (see the bottom panel

of Fig. 5.11). Around the tips of the bowshock, the temperature ratios between protons

and electrons are about 6 for all plots. In contrast, electrons and protons reached thermal

equilibrium in the area close to the core because Coulomb coupling is effective due to high

density and shocked plasma has passed for a long time.

Since the shocked-ICM is high plasma-βp value βp > 100, the electron cannot receive

heating energy by turbulence, i.e. f e → 0 (see Eq. (5.28)). Thus, the electron thermo-

dynamics is simply described by sum of energy gain process by Coulomb interaction and

energy loss process by radiation. In the case of single-temperature plasma, electrons lose

energy by radiation. Meanwhile, for two-temperature plasma, we verify that firstly elec-

trons are heated by Coulomb coupling i.e., the heating ratio through Coulomb collisions is

higher than cooling ratio through bremsstrahlung radiation. Then, electrons lose energy
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through radiation after that protons and electrons are in thermal equilibrium.

In contrast to electrons, the sound wave is another important heating source of protons

for shocked-ICM. The origin of sound wave production is the supersonic turbulence motion

of cocoon plasma (see Fig. 5.3). Sound waves selectively heat protons because f e → 0

in shocked-ICM. In Fig. 5.12, we plot radial profile for electron (blue) and proton (red)

temperature for model B at t = 8.4, (top) 9.1 (middle) 9.8 (bottom) Myr, respectively.

All panels plot along x-axis at z = 60 kpc and y = 0 kpc. One can see that a strong sound

wave propagates in shocked-ICM from the cocoon to the bowshock in the top panel of Fig.

5.12 at z =4, 5, and 6 kpc. Thus, proton temperature at shocked-ICM decreases with

radial direction. Meanwhile, electrons could not receive heating energy through the sound

wave. Electron temperature increase with r direction because of adiabatic expansion, i.e.,

electron temperature of shocked-ICM is maximum at the shock front. Since the post-shock

electron temperatures of the shocked-ICM are less than the temperatures estimated by the

shock jump condition from X-ray observation of Cygnus A, the two-temperature plasma

may play role to give a physical explanation of this phenomena (Snios et al., 2018).

5.4.6 Lobe energetics

The left panel of Fig. 5.13 displays the time evolution of different energy components of

the cocoon for all the models. Proton thermal energy is the dominant energy component

of the cocoon (Up ≫ U e), i.e., cocoons are supported by the proton pressure (see red

lines and blue lines in the left panel of Fig. 5.13). We confirm that the kinetic energy is

comparable to the proton thermal energy and that 20 percent of total injected energy is

converted to the ICM at t = 10 Myr. Since the electron heating fraction of turbulence

is an increasing function of βp
−1, there is a positive correlation between electron thermal

energy and field strength. (see dashed lines, solid lines, and dotted lines for magnetic

energy and electron thermal energy in the left panel of Fig. 5.13).

In the right of Fig. 5.13, we plot the time evolution of the ratio between the magnetic

field and the electron thermal energy in the cocoon. The energy ratio for model A and

B saturates at ∼ 0.7. The electron pressure is described by pe = (γe − 1)ue = 2/3ue for

γe = 5/3, and hence it is in pressure equilibrium with the magnetic field. Meanwhile, in

the case of model C, the electron pressure is slightly larger than the magnetic pressure.
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Fig. 5.11: top: The averaged density profile of shocked-ICM along z-axis for model B at t =

2.8, 4.2, 5.6, 8.4,and 9.8 Myr. bottom: Same as top panel, but plot the averaged ratio of

proton to electron temperature.
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Fig. 5.12: Radial profile for electron (blue) and proton (red) temperature for model B at t = 8.4

(top), 9.1 (middle), and 9.8 (bottom) Myr, respectively. All panels plot along x-axis at z = 60

kpc and y = 0 kpc.
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Thermal electrons evolve while being received a large amount of dissipation energy

via shocks and turbulence. If the gas is reached in an turbulence equilibrium discussed in

Sadowski et al. (2017), the final temperature ratio is determined by the electron heating

model, and is given by

T p

T e

∣∣∣∣ eq = f e,turb(T e, T p, βp), (5.41)

where we adopt γp = γe = 5/3. A quasi steady state of MHD turbulence can be seen in

the T e/T p − βp histogram of the left panel of Fig. 5.14. This histogram plots the gas

stored in the cocoons for model B at t = 9.94 Myr. We can see that the gas distribution

along with the dashed line, which is plotted as Eq. (5.41). This means that energy

components (Up, U e, and Umag) evolve following to the electron heating model of MHD

turbulence. Therefore, the electron heating model of turbulence plays a significant role in

the determination of the gas thermal evolution in our models. Heating ratio of protons

to electrons, Qp/Qe in the turbulence heating model saturates at ∼ 30 for βp > 10, and

therefore the minimum temperature ratio is located at (T e/T p) = 1/30 (see Eq. (5.28)).

Another view on an turbulence equilibrium is the relationship between U e and Umag,

shown in the right panel of Fig. 5.14. One can see that the gas distributes along the

line, shown U e = Umag, in this histogram. Thus, we find that the electrons evolve toward

energy equipartition (pressure equilibrium) with the magnetic energy when βp < 10 in

the cocoon for model A and B.

For model C, proton plasma-βp is higher than 10 in the whole region of the cocoon.

Therefore, the electron are received heating energy as a constant fraction at turbulence,

f e ∼ 1/30. We verify that U e/Up ∼ 1/30 in the cocoon for model C after 5 Myr. The gas

does not distribute along the line that U e = Umag in a U e − Umag histogram. Also, the

magnetic energy is subdominant compared with the electron thermal energy. One may

see that U e/Umag saturates at ∼ 0.4 for model C in the right panel of Fig. 5.14. However,

there is no relationship between U e and Umag when βp ≫ 10 in a cocoon.
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Fig. 5.13: Left: Time evolution of different energy components of the cocoon for model A

(Dotted lines), B (Solid lines), and C (Dashed lines), respectively. We define the cocoon as the

grids that have a electron temperature higher than 108 K. Right: Time evolution of the ratio

between the magnetic field and the electron energy (Black) for model A (Dotted lines), B (Solid

lines), and C (Dashed lines) respectively.

5.5 Discussion

5.5.1 Small-scale dissipation in jet beam

As we reported in Sect. 5.4.2, beams suffer MHD instabilities. The growth of instabilities

leads to the formation of current sheets, where magnetic reconnection takes place. Mag-

netic reconnection is a dissipation mechanism and able to energize non-thermal particles.

Notice that although we do not explicitly deal with resistivity, magnetic reconnection

arises due to the numerical dissipation. The magnetic energy dissipation rate is given

by ηj2, where η is the resistivity and j is the current density. However, it is difficult

to measure the numerical resistivity in ideal MHD simulations. Thus, following Zhang

et al. (2017), we quantify dissipation to be proportional to the strength of j · E, where

E = −v ×B is the electric field.

Fig. 5.15 display the volume-renders of a physical quantity j · E at times that jets

reach 60 kpc. Note that the color bar scale of the panel (c) is 0.2 times narrower than

that of the panel (a) and (b). Peaks of dissipation take place around the jet head for all

models because of the shock compression at the termination shocks. This feature can be
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Fig. 5.14: Left: T e/T p − βp histogram for regions in the cocoon for model B at t = 9.94 Myr.

The dashed line show electron to proton temperature ratio corresponding to the equilibrium

state for give plasma βp as implied by the turbulence heating in Eq. (5.41). Right: Same as

left panel, but display U e − Umag histogram. The dashed line plots U e = Umag.
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seen as a typical powerful FR-II type jets. For model A entered the non-linear phase for

the kink mode, the beam core is fragmented, which are shown in the beam at 30 < z < 50

kpc in the left panel of Fig. 5.7. This fragmented structure identifies as a dissipation

region, which shows a small-scale periodic structure at 30 < z < 50 kpc for model A.

Meanwhile, the value of j · E is high at the shear layer between beam and cocoon for

model B. The growth of Rayleigh-Taylor mode drive gas mixing between the beam and

the cocoon and magnetic fields accumulate in the shear layer. Therefore, the beam radius

of model C in Fig. 5.15 looks larger than that of model A and B.

After jets propagate at 95 kpc, the dissipative structures of the three models are

significantly different (Fig. 5.15). We can see the fragmentation structures at 30 < z < 60

kpc for model A at this time. Magnetic energy is dissipated in this region, and hence

the flow is laminar downstream of this region (60 < z < 70 kpc). Dissipative spots are

formed by shock, in particular, the shock is induced by magnetic pinching at z = 70 kpc.

For model B, we can see the abrupt change of flow direction by the development of a

beam kink at z = 60, 70, 80 kpc. Hence these localized spots, where the flow is shocked

and bent, could be reconnection layers, efficient particle acceleration would take place.

Such beam disruption can explain the formation mechanism of the double hotspots in the

western lobe of Cygnus A (Carilli & Barthel, 1996) and of the multiple knots observed

3C273 (Uchiyama et al., 2006). Meanwhile, the model C jet cannot expect the formation

of multiple hotspots. Although the model C jet has the dissipative spot at the jet head,

the dissipative ratio for magnetic energy is distributed with uniformity. Therefore, the

jet at the later phase of model C has a feature of FR-I type jets such as M84, having an

extended diffusive radio lobe without hotspot (Laing et al., 2011). Jet deceleration by

the development of Rayleigh-Taylor instabilities would be a possible explanation of FR

dichotomy, being consistent with previous simulations (Massaglia et al., 2016; Rossi et al.,

2020).

5.5.2 Comparison with post-processing method

Our works derive the electron temperature with self-consistent electron heating. Mean-

while, in the previous work for two-temperature MHD simulations for the context of hot

accretion flows, the electron temperature is calculated by the post process from the simple
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Fig. 5.15: The three panels represent the magnetic dissipative structures at early stages fol all

models. In each panel we show volume-renders of the strength of J ·E.
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Fig. 5.16: Same as Figure 5.15 but at later phase.
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formula using snapshot MHD quantities because of low-computational costs (e.g., Drap-

peau et al., 2013; Mościbrodzka et al., 2016). Also, as we reported in Sect. 5.4.6, our

result suggests that electrons and protons are almost reached in turbulence equilibrium

states. Therefore, we compare the electron distribution of our model with that obtained

by post-processing methods and turbulence equilibrium conditions.

The formulation of temperature relation between ion and electron (Mościbrodzka et al.,

2016), which is widely accepted, gives us the ion-electron temperature ratio in the form,

R ≡ T p/T e =
Rlow + Rhighβ

2
p

1 + β2
p

, (5.42)

where Rlow and Rhigh are parameters for minimum and maximum temperature ratio. In

this work, we adopt Rlow = 1 and Rhigh = 15 to normalize electron temperature in

the cocoon. Then, the electron temperature (hereafter T e,M16) is calculated using gas

temperature as:

T e,M16 = T gas/R. (5.43)

Note that this formulation assumes that proton temperature and gas temperature are

equal (T gas = T p), but this assumption is broken when the electron temperature is much

higher than the proton temperature. Therefore, Rlow ≥ 1 necessarily. Another way to

calculate electron temperature by post process is to use the electron heating model in

turbulence given in Eq. (5.28). Thus, we estimate the electron temperature (hereafter

T e,K18) using gas temperature as:

T e,K18 = T gas/f e,turb. (5.44)

We compare the three electron temperature for model B: T e,B which is obtained by

the two-temperature MHD simulation, T e,K18, and T e,M16. As one can see in Fig. 5.17,

the distribution of T e,K18/T e,B shows large fluctuations. Note that the electron heating

model in turbulence only gives the fraction of heating going into electrons and ions.

Hence the heating is not spatially uniform, and it takes some time to reach turbulence

equilibrium, T e,B need not to T e,K18. Meanwhile, the distribution of T e,R16/T e,B shows

smaller fluctuations than that of T e,K18/T e,B (see the right panel of Fig. 5.17). We

mentioned again that we determine the value of Rhigh to satisfy T e,R16/T e,B ∼ 1 in the

cocoons. T e,R16 is lower than T e,B in magnetized filaments. Also, post processing method
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Fig. 5.17: Left: The slices (x− z plane) of electron temperature distribution T e,B for model B

at t = 9.94 Myr. Middle: The slices (x− z plane) of T e,K18/T e,B for model B at t = 9.94 Myr,

where T e,K18 is the electron temperature assumed in turbulence equilibrium. Right: Same of

the middle panel, but display T e,M16/T e,B, where T e,M16 is the electron temperature calculated

by post-processing method using Eq. (5.43)

of Mościbrodzka et al. (2016) may under estimates the electron temperature near the

core, z < 30 kpc. Dissipation energy is, in fact, converted into electron thermal energy

but also non-thermal electron energy. The low-frequency radio emission, which traces

low-energy non-thermal electrons, extends around a core (McKean et al., 2016), and

hence the turbulence heating around the core might play a significant energy source for

low-energy non-thermal electrons. For both post-processing method, T e,B is higher than

those electron temperatures. Note that the artificial effect of the injection temperature

condition includes the beams. The effect of the injection condition is discussed in Sect.

4.4.3.
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5.5.3 Comparison with observations

We discuss that our two-temperature MHD models connect to observational result. In

particular, we focus on the relationship between jet mechanical power and radio power.

Observational data sets of X-ray and radio properties are taken from Laura B̂ırzan’s PhD

thesis (Rafferty, 2007) and Rafferty et al. (2006).

Radio synchrotron emission

The radio maps are obtained by solving the radiative transport equations for the syn-

chrotron emission. The details for this equations see Sect. A.3. To calculate the syn-

chrotron emissivity, the population of non-thermal electrons, which are injected and/or

accelerated in microscopic physics such as collisionless shocks and magnetic reconnection,

is needed. Meanwhile, the two-temperature MHD simulations account only for the evo-

lution of the thermal electrons. Following previous works, non-thermal electron energy

is propositional to thermal gas energy or magnetic energy as a first-order approximation

(e.g., Gomez et al., 1995). This work follows this approximation. We adopt the two-type

model for approximation of non-thermal electrons as case 1T and case 2T. Case 1T is

N0 = C0up, and case 2T is N0 = C0ue. Here C0 = η(p− 2)(mec
2)p−1/(mec

2) and η = 0.2

is a parameter, which is a ratio of the non-thermal electron energy density to the electron

thermal energy density. This would underestimate the value of η since PIC simulations

have revealed that η ∼ 0.7 in turbulence (Zhdankin et al., 2019). Case 1T is corresponded

to the single-temperature model, i.e., T e = T p. We assume that an electron energy in-

dex, p = 2. For all calculations, the viewing angle, which is respect to the z−axis, is

80 degrees, and the observed frequency is 144 MHz. Note that the observed frequency

affects the polarization signature, but the discussion of radio morphology and polarization

signature is out of scope in this thesis.

The radio power is calculated by the sum of the radio intensity of all grids. We list

the calculated radio powers in Tab. 5.3 (see also Fig. 5.19). The radio power of model

A-1T, which is most prominent model, is two order of magnitude higher than that of

model C-2T. The 1T models have same order of non-thermal electron energy because the

proton temperatures have the roughly same value in lobes (see the left panel of Fig. 5.13).

Note that 1T models assume that non-thermal electron energy is proportional to proton
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Table 5.3: Radio power and the amount of PdV-work for the simulation results

Model P radio pV

[1042 erg s−1] [1058 erg]

A-1T 63.2 5.95

A-2T 7.23 -

B-1T 52.2 6.58

B-2T 2.83 -

C-1T 24.0 9.22

C-2T 0.62 -

temperature. Meanwhile, electron temperatures are varying for three simulation models,

and they are proportional to inverse injection fields. Thus, there are a large scatter in the

radio powers of 2T models, than that of 1T models. This means that the radio power of

two-temperature models is sensitive to fields energy.

X-ray cavity and the jet mechanical power

Our model injects constant jet energy during simulation time, i.e., jets are in an active

phase, and hence true mechanical power in units erg s−1 are known. Meanwhile, we can

obtain snapshots quantities and the gas pressure of surrounding ICM through the actual

observations. A similar manner for observations, therefore, is adopted in this work. In

X-ray observation, the method for measurement of the mechanical power is using PdV

work as follows:

P cav = 4pgasV tage
−1, (5.45)

where tage is the outburst age of jets. Lobes and ICM are approximately in the pres-

sure equilibrium state. Thus, we use the initial ICM pressure around middle of lobe

pgas ∼ 2.0 × 10−10erg cm−3 to calculate cavity power (see Fig. 5.1). Three estimations

are commonly used for the outburst age: the buoyancy time tbuoy, the refill time tr, and

the sound crossing time tc, generally tc < tbuoy < tr. It is appropriate to use the sound

crossing time in our model because jets are in an active phase. The cavity volume V is
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calculated by integrating the numerical grids with an electron temperature exceeding 108

K. We confirm that the region whose electron temperature exceeding 108 K have a lower

density than ICM.

We first mention the morphological properties of the X-ray cavity. In Fig. 5.18, we

compare our simulation of model B with observations about the relationship between the

projected distance from the core to the cavity center R and the projected semi-minor axis

of the cavity b. Note that since R and b for model A and model C have the similar value

of that for model B, we only show the result of model B in Fig. 5.18. The cavity of model

B is narrow compared with observed radio-fill cavities. This long and narrow structure

is characteristic of powerful (kinetic-dominated) jet seen in many previous studies (e.g.,

Massaglia et al., 2016; Perucho et al., 2019; Mukherjee et al., 2020). To create a broad

cavity, the jet should propagate slowly to have enough time to expand. Thus, a simple

solution forming a broad cavity is to model a low-density jet. Or, long-periodic precession

may play an important role in forming observed broadening cavities (Horton et al., 2020).

We reported that jets for model B decelerate and have precession due to the development

of large-scale kink modes (see Fig. 5.4). Thus, if we enable longer-time and larger-scale

simulation of model B, the cavity tends to be the spherical shape.

Next, we discuss energy and age by the observational method. The cavity energies are

calculated as Ecav = 4pV = 2.4× 1059, 2.6× 1059, and 3.7× 1059 erg for model A, B, and

C, respectively. Also, the sound crossing time tc = R/cs,ICM is 51.6 Myr, where we adopt

that R = 45 kpc and cs = 830 km/s (corresponding to ICM temperature T = 5 KeV).

We, therefore, estimate the mechanical power P cav = 1.5× 1044, 1.6× 1044, and 2.3× 1044

erg s−1 for model A, B, and C, respectively. Hence actual age from our simulations is

∼ 10 Myr for all models, the sound crossing time underestimates the mechanical power

by a factor ∼ 5. Even if we estimate the mechanical power using the simulation time, the

injection energy of the jet is ∼ 5 times higher than it. This reason is that the jet energy is

converted to the thermal energy of ICM through shocks and sound waves. Furthermore,

although the cocoon pressure, including the turbulence pressure, is higher than ICM

pressure, we know only the information of ICM pressure through observations.
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Fig. 5.18: The projected distance from the core to the cavity center R vs. Projected semi-minor

axis of the cavity b. The black circles show the radio-filled cavities taken from Rafferty et al.

(2006). The blue square show our result for model B at t = 9.94 Myr. Since R and b for model

A and model C have similar value of that for model B, we do not show them.
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Relationship between radio power and mechanical power

The plot of jet mechanical power P cav versus synchrotron radio power P radio is shown

in Fig. 5.19. This plot provides us the physical insights for jet energetics, including

non-radiating proton thermal energy. At a native notion, protons can be energetically

dominant over in radiative inefficient lobes (P cav ≫ P radio) because the pressure of non-

radio emitting protons supports the expansion of cocoon. Our jets are active during

simulation time. Therefore, we compare our results with radio-filled cavities, except for

radio-ghost cavities. Although we plot the radio-filled cavities including the intermediate

cases in Fig. 5.19, the samples have large scatter in the relationship, P cav/P radio ∼
1 − 1000.

We find that our two-temperatures model naturally explains the radiative inefficient

lobes. In case 2T of all models, the lobes tend to be the radiative inefficient than that

of case 1T. Since the electrons lack thermal energy compared with case 1T, radio powers

are weak. Meanwhile, protons have a large contribution for cavity power P cav. Thus,

radiative efficiencies, P cav/P radio, for case 2T are 10-30 higher than that for 1T case. One

can see that the ratio of radio power between model A and model C for 2T case is higher

than that for 1T case. The reason for this difference is that electron heating is coupled

with the strength of magnetic fields (see Sect. 5.4.6).

This result indicates that pure protons-electrons jet is difficult to form the radiative

efficient lobes, such as Cygnus A which is located at P cav/P radio = 1 in Fig. 5.19, without

exotic processes. One of the exotic processes, herein, is ultimately efficient acceleration

for electrons. To produce the radiative efficient lobes, we need the acceleration mechanism

that non-thermal electron energy is more than order of magnitude than thermal electron

energy, η ≫ 10. Or, thermal electrons are dominant than protons due to the occurrence

of an efficient electron heating process at shocks and turbulence. However, these processes

do not support theoretically (e.g., Bell, 1978; Crumley et al., 2019; Zhdankin et al., 2020).

Another possibility to form radiative efficient lobes is that jets have a strong magnetic

field, βp ≪ 0.1. But, this possibility is not favored for some observations (Croston et al.,

2005; Isobe & Koyama, 2015).

The existence of a large number of positrons could explain the radiative efficient lobes.

Recall that our simulations model the pure electron-proton jet. To achieve P cav/P radio = 1

in our simulations of model A and B (case 2T), the number density of leptons is, at least,
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a hundred times larger than that of protons because P radio is proportional to the number

density of leptons. Note that the plasma momentum would be represent by protons under

this assumption because the protons mass is a thousand magnitude greater than lepton

mass. Thus, it is expected that there is no difference in the electron heating process.

Meanwhile, in the case of model C, significant population of pair-plasma is need because

P cav/P rad ∼ 1000. In this condition, the electron (and positron) heating process would

be change. Furthermore, the MHD approximation would not be guaranteed. Finally,

we mention that analytical models of electron-positron-proton mixture jets also achieve

consistent results with observed FR-II radio lobes by Kawakatu et al. (2016) and Kino

et al. (2012). However, these models do not consider the electron heating process at

turbulence and shocks. Therefore, the construction of the new model for the mixture jet

based on two-temperature simulations are necessary.

5.6 Summary

We carried out simulations for the three models whose jet have different values of the

magnetic field. To list some key results:

1. Strongly magnetized jet suffered from a developing of non-axisymmetric, current-

driven kink mode. Meanwhile, weakly magnetized jets were decelerated by the

high-mixing ratio between the jet beam and cocoon gas, which were induced by

Rayleigh-Taylor and Kelvin-Helmholtz instability.

2. Electrons heat up at jet termination region, and hot electrons are stored in the co-

coon. The electron heating fraction for turbulence is proportional to inverse plasma

beta βp
−1. Therefore, a jet with a strong magnetic field has a higher electron tem-

perature in the cocoon.

3. The small-scale turbulence is developed in the weakly magnetized jets. In contrary

to this, the strongly magnetized jets have magnetized filaments since the magnetic

tension suppresses the turbulence motion.

4. The magnetic field distribution in the cocoon is nearly isotropic for the weakly

magnetized case. Meanwhile, strongly magnetized jets show a strong deviation
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Fig. 5.19: radio synchrotron power P radio vs. jet mechanical power estimated from X-ray cavity

system P cav = 4pV tc
−1 (adopted from Laura B̂ırzan’s PhD thesis Rafferty, 2007). Filled black

symbols show radio-filled cavities (which including the intermediate cases). The symbols and

wide error bars denote the values of the mechanical power calculated using the the sound speed.

Open squares and filled squares show our results of case 1T and case 2T for model A (red),

model B (blue), and model C (green), respectively. The diagonal dotted lines (dashed lines)

represent ratios of constant mechanical power to radio luminosity. Blue dashed lines is total

injection energy of our jet model given by Eq. (5.34).
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from a Maxwell-Boltzmann function.

5. In the shocked-ICM, electron temperature is still lower than proton temperature

near the tip of the jets. Electrons and protons are exchange energy by Coulomb

collisions. Only electrons look like cool down by adiabatic expansion due to expan-

sion of bowshock because ions can be received heating energy through MHD waves

driven by the turbulence motion of the cocoon.

6. The dominant heating source for protons is shock waves in jets. In contrast, electron

evolved towards energy equilibrium to magnetic fields in turbulence developed at

the cocoon.

7. The strong current is induced by the kink instability. Therefore, the high-temperature

and high-magnetization hotspots are formed in the beam.

8. The electron thermal energy is much lower than the proton temperature in our

model. Therefore, radio powers estimated from electron thermal energy are ten

times lower than that from proton thermal energy, which is corresponded to the

one-temperature approximation. our models quantitatively explained the radiative

inefficient lobes.
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6 Conclusion and future prospects

6.1 Conclusion

Since the first discovery of an extra-galactic jet (Curtis, 1918), a vast body of theoretical

and observational studies have been done to explore its physical nature. Nowadays, thanks

to the development of high-quality numerical technique and increasing computer power,

magnetohydrodynamical (MHD) simulation has become one of the major tools for the

dynamical modeling of the large-scale structure of jets. In this thesis, we developed

dynamical models of the jet by conducting a series of MHD simulations.

Through the studies in this thesis, we succeeded for the first time in developing a two-

temperature jet model that evolves the entropy equations of electrons and protons in a self-

consistent manner. Our main result is that the protons are energetically dominant over the

electrons in the cocoon. Firstly, most of the bulk kinetic energy of the jet is converted into

thermal energy of proton through shocks. Secondly, while magnetic fields are relatively

strong, shocked-electrons stored in the cocoon evolve toward energy equipartition with

magnetic energy through turbulent dissipation. As a result, we find that Up ≫ U e ∼ Umag

in the cocoon. We mentioned that our results are model-dependent for electron heating.

This physical feature, however, has been verified by the parameter study. Also, we have

discussed the interpretation of our results in comparison with observations. Previous

works have not studied the contribution of electron pressure and proton pressure for the

cocoon expansion. Contrary to this, we have revealed that the thermal proton pressure

plays the dominant role in the cocoon expansion, compared with the thermal electron

pressure. This feature is one of the quantitative and physical explanations of the radiative

inefficient lobes, which are frequently observed at the cluster center.
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6.2 Future prospects

In this thesis, we ignore some physics, such as relativistic effect, plasma composition, heat

conduction, viscosity, and resistivity. These physics might play a vital role in jet dynamics

and electron heating. Another key issue is that we do not consider non-thermal particles

in the jet. Observed radiations come from non-thermal particles, and we need for the dis-

tribution of non-thermal particles to calculate the radio to γ-ray emission. Thus, we have

to deal with them to develop a more precise dynamical model. However, there are some

issues modeling for non-thermal particle transport. The transport and acceleration pro-

cesses for non-thermal particles are still unknown. In particular, there is an open question

of how and where the particles are accelerated in jets. Furthermore, the physical scales of

the particle acceleration are many orders of magnitude than that of the fluid. To capture

small-scale kinetic physics in MHD simulations, various approaches are developed. One

famous approach is a hybrid MHD-PIC method (Bai et al., 2015; Mignone et al., 2018).

While non-thermal protons are treated as tracer particles, the thermal plasma is treated

as a fluid. They consider feedback from non-thermal particles to the thermal plasma.

Although this method can study on length scales typically of the order of a few thousand

proton gyro-scales in reasonable computational cost, it is difficult to extend the physical

domain to observable scales. Another approach is following the evolution of non-thermal

electrons in the fluid scale with thermal plasma (e.g., Jones et al., 1999; Mimica et al.,

2009; Vaidya et al., 2018; Winner et al., 2019). In this approach, diffusion approxima-

tion is applied to construct the dynamical model of non-thermal electrons. Further, the

small-scale acceleration process is treated in a sub-grid model. Therefore, we can get

the population of non-thermal electrons in kpc-scale jets. However, the population of

non-thermal electrons is highly model-dependent. In addition, two-temperature plasma is

ignored in these studies. A non-thermal component and a thermal component should have

been deeply connected, and we find that the electron temperature is usually much lower

than the ion temperature in jets. Therefore, it is necessary employing two-temperature

MHD to follow the population of non-thermal electrons.
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A Appendix

A.1 One-dimensional jet simulations

Numerical setup

We assume two separate zones in simulating the propagation of jets. The left side is a jet

beam having a low number density (n = 0.005 cm−3), high temperature (Ti = Te = 109

K), and bulk velocity of 0.2c. The right side is assumed to be an ICM having high

density (n = 0.5 cm−3) and low temperature (Ti = Te = 106 K). We make calculations

for four models with different fractions of electron heating fe = 0, 0.05, 0.2, 0.5. In the

one-dimensional simulation, we neglect the magnetic field and energy exchange through

Coulomb coupling. The computational domain is x/rjet ∈ [0, 10] and the number of grid

points is 1024.

Results of one-dimensional simulations

Figure A.1 shows the density (black) and velocity (red) profiles at t = 0.1 Myr. The

forward shock (bow shock), contact discontinuity, and reverse shock (terminal shock) are

easily identified. Because the bow shock compresses the ICM, a high-density shocked

ICM forms between the contact discontinuity and bow shock. Figure A.2 shows the

temperature distribution at the same time as for the results in Fig. A.1. Solid and

dashed lines respectively denote ion and electron temperatures. Colors represent fractions

of electron heating of fe = 0.0 (red), 0.05 (green), 0.2 (blue), and 0.5 (black). Because

most kinetic energy of the jet dissipates around the reverse shock, a high-temperature

region called a hotspot forms between the contact discontinuity and reverse shock. The

gas temperature of the hotspot is obtained by applying the Rankine–Hugoniot jump
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condition at the reverse shock:

Tpost

Tpre

= 1 +
2(γgas − 1)(γgasM

2
pre + 1)(M2

pre − 1)

(γgas + 1)2M2
pre

, (A.1)

where Tpre = 109 K is the pre-shock temperature, Tpost is the post-shock temperature,

and M = 14 is the Mach number. We thus derive the hotspot temperature Tpost =

6.2 × 1010 K. In the case that fe = 0.5, the dissipative energy is divided to electrons and

ions equally. The post-shock temperatures of the gas, electron, and ion are thus equal

(Tgas,pos = Te,pos = Ti,pos) because of the same initial temperatures. Numerical values

of the post-shock temperatures of ions and electrons are 6.14 × 109 K and are in good

agreement with the theoretical values.

In the case that fe = 0, electrons purely evolve adiabatically; i.e., the entropy of elec-

trons is conserved through shocks. The post-shock electron temperature is thus expressed

as

Te,post

Te,pre

= ηγ−1 = 42/3 ∼ 2.5Te,post = 2.5 × 109 K. (A.2)

Here, η is the shock compression ratio, whose value is 4 at a strong shock when the specific

heat ratio is 5/3. Meanwhile, when fe does not equal zero, electrons receive dissipative

energy from the shock. We therefore obtain the post-shock electron temperature as

Te,post = ηγ−1Te,pre + 2.0fe(Tgas,post − ηγ−1Tgas,pre). (A.3)

The post-shock temperature ratio of the electron to ion predicted using Eq. (A.3) is

0.073 and 0.269 at fe =0.05 and 0.2, respectively. The post-shock temperature ratio of

the electron to ion is actually 0.0735 and 0.269 at fe =0.05 and 0.2, respectively, in our

simulation.

A.2 Shock-finding algorithm

To identify that the MHD gird inside the shock zone or not, we implement shock-finder

in MHD code CANS+, and we adopt an approach similar to that followed by Ryu et al.

(2003) and Schaal & Springel (2015). Although our method is based on the theory for

hydrodynamic shock, the influence of ignoring magnetic field is small for shock finding.

Note that The inclusions of magnetic field complicates the system to add two types of
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Fig. A.1: Velocity (red) and density (black) profiles for one-dimensional simulation of the prop-

agation of a supersonic jet at t = 0.1 Myr. We capture the reverse shock (i.e., terminal shock),

contact discontinuity, and forward shock (i.e., bow shock).
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fe=0.05

fe=0

fe=0.2

fe=0.5

Fig. A.2: Same as Fig. A.1 but showing ion (solid) and electron (dashed) temperatures. The

line colors represent the fraction of electron heating (red: fe = 0, green: fe = 0.05, blue:

fe = 0.2, black: fe = 0.5). Ions and electrons heat up at both shocks, and the fraction of

electron heating affects the electron temperature appreciably.
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compressible shocks, and the measurement of Mach number for a MHD shock is hard

task.

Here, we use the Cartesian coordinate (x, y, z), and subscript i ∈ (x, y, z) denotes the

directions of each coordinates. We divide each gird into the shock zone or not to use the

following criteria

∇ · v < 0, (A.4)

∇Tgas · ∇ρ > 0, (A.5)

M > Mmin, (A.6)

where, M ≡
√

M2
x + M2

y + M2
z and Mmin are estimated Mach number and a minimum

Mach number. In the simulations, the divergence operator replace central differences, and

we adopt Mmin = 1.3. The Mach number of each grid is estimated from the Rankine-

Hugoniot condition across shocks, which is given by (Pfrommer et al., 2017)

Mi =
1

γgas,1

(y − 1)C
C − [(γgas,1 + 1) + (γgas,1 − 1)y](γgas,2 − 1)

, (A.7)

where y ≡ pgas,2/pgas,1 and C = [(γgas,2 + 1)y + γgas,2 − 1]. Up and downstream quantities

are denoted by subscripts 1 and 2, respectively. We determine the direction of shock

propagation, ds, in each girds using the temperature gradient:

ds = − ∇T gas

|∇T gas|
. (A.8)

A.3 Synchrotron polarized radiation

Relativistic charged particles such as non-thermal electrons are emitting polarized syn-

chrotron radiation when they are acclerated radially by a magnetic fields, and the charac-

teristic radio emission of radio lobes is synchrotron emission. The signature of polarized

emission is written by the Stokes parameters (I,Q, U, V ) or the parameters of linear po-

larization (Ia, Ib, U, V ) These parameters are related as I = Ia + Ib and Q = Ia + Ib.

Here, (a,b) corresponds to the observer’s frame, and χe is the angle between the magnetic

fields direction in plane of the sky and (a). We assume V = 0 because the circular polar-

ization in radio lobe is weak in the context of this study. The transport equations in the
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observer’s frame is (Pacholczyk, 1970)

d

dl


Ia

Ib

U

 =


A11 0 A13

0 A22 A23

2A23 2A13 A33




Ia

Ib

U

 +


ϵ1 cos2 χe + ϵ2 sin2 χe

ϵ1 sin2 χe + ϵ2 cos2 χe

−(ϵ1 − ϵ2) sin 2χe

 , (A.9)

A11 = −κ1 cos4 χe −
1

2
κ sin2 2χe (A.10)

A13 =
1

4
(κ1 − κ2) sin 2χe +

dχF

dl
(A.11)

A22 = −κ1 sin4 χe −
1

2
κ cos2 2χe (A.12)

A23 =
1

4
(κ1 − κ2) sin 2χe −

dχF

dl
(A.13)

A33 = −κ, (A.14)

where l is the length along the line of sight, κ = 0.5(κ1 +κ2) is the absorption coefficient,

ϵ = 0.5(ϵ1 + ϵ2) is the emission coefficient, and χF is Faraday rotation measure.

Assuming a single power-law distribution for relativistic electrons N(γ)dE = N0γ
−pdE,

the emission and absorption coefficients are given by

ϵ(1,2) =
1

2
c5(p)N0(B sin θB)(p+1)/2 ·

(
ν

2c1

)(1−p)/2 [
(−1)(1,2)+1 p + 1

p + 3/7
+ 1

]
, (A.15)

κ(1,2) = c6(p)N0(B sin θB)(p+2)/2 ·
(

ν

2c1

)−(p+4)/2 [
(−1)(1,2)+1 p + 2

p + 10/3
+ 1

]
, (A.16)

where θB, ν are the angle between the magnetic field and the line of sight and observing

frequency, respectively. Other physical coefficients are

c1 =
3e

4πm3
ec5

, (A.17)

c5(p) =

√
3

16π

e3

mec2
p + 7/3

p + 1
Γ

(
p + 7

12

)
Γ

(
3p + 7

12

)
, (A.18)

c6(p) =

√
3

32
eme

5c10
(
p +

10

3

)
Γ

(
3p + 2

12

)
Γ

(
3p + 10

12

)
, (A.19)

where Γ denotes the Gamma-function. The polarization angle of the magnetic vectors χB

and the polarization degree p are given by

χB =
1

2
arctan

(
U

Q

)
+

π

2
, p =

√
U2 + Q2

I
. (A.20)

117



A.4 Lobe and Cavity properties

Table A.1 lists radio and X-ray properties of radio galaxies taken from Laura B̂ırzan’s

PhD thesis (Rafferty, 2007) and Rafferty et al. (2006).

Table A.1: Lobe and Cavity Properties

Name Lradio pV tc a b R

[1042 erg s−1] [1058 erg] [10 Myr] [kpc] [kpc] [kpc]

A133 7.6 ± 1.2 24+11
−1 3.8 41 21 32

Perseus 1.1+1.2
−0.6 3.7+4.7

−1.7 1.0 9.1 7.3 9.4

1.6+1.0
−0.1 0.7 8.2 4.7 6.5

A478 0.02 ± 0.01 0.74+0.57
−0.18 1.0 5.5 3.4 9.0

0.76+0.55
−0.17 1.0 5.6 3.4 9.0

MS 0735.6+7421 130 ± 40 770+960
−360 13 110 87 160

830+770
−220 15 130 89 180

Hydra A 29 ± 5 8.1+7
−1.6 3.0 18 12 29

8.6+6
−0.3 3.2 20 12 31

M84 0.0106 ± 0.0012 0.002+0.004
−0.0015 0.5 1.6 1.6 2.3

0.001+0.0015
−0.0005 0.6 2.1 1.2 2.5

M87 0.63 ± 0.05 0.016+0.012
−0.003 0.4 2.3 1.4 2.8

0.004+0.001
−0.001 0.4 1.6 0.8 2.2

Centaurus 0.063 ± 0.013 0.038+0.039
−0.012 1.0 3.3 2.4 6.0

0.022+0.012
−0.002 0.6 3.3 1.6 3.5

A2052 1.80 ± 0.13 1.2+14
−0.4 1.8 11 7.9 11

0.53+0.88
−0.32 1.2 6.5 6.2 6.7

A2199 1.34 ± 0.12 3.7+3.7
−1.1 2.1 15 10 19

3.8+2.9
−0.4 2.3 16 10 21

Cyguns A 710 ± 70 28+18
−1 3.4 29 17 43

56+52
−13 3.6 34 23 45
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