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Abstract
The present paper proposes a new analytical model for predicting the effective
stiffness of composite laminates with fiber breaks and transverse cracks. The model
is based on continuum damage mechanics and the classical laminate theory. We
derived damage variables describing stiffness reduction due to fiber breaks and its
maximum value during ultimate tensile failure from the global load-sharing model.
Furthermore, a simplified analytical model is presented for obtaining two damage
variables for a cracked ply subjected to transverse tensile loading or in-plane
shear loading. This model was developed assuming that the displacement field of
the longitudinal direction can be expressed in the form of a quadric function by
loosening the boundary condition for the governing differential equation. For verifying
the developed model, the elastic constants of damaged composite laminates were
predicted for cross-ply and angle-ply laminates and compared with finite element
analysis results. As for the appropriate expression of the effective elastic stiffness
matrix of the damaged ply, we verified four types of effective compliance/stiffness
matrices including the Murakami, Yoshimura, Li and Maimı́ models. We found the
Maimı́ model to be the most appropriate among these four models. Moreover, we
successfully simplified the expressions for damage variables in the complicated
infinite series obtained in our previous study. We also proved that this could contribute
toward improving the accuracy of our analysis. After verifying the present model,
the stress-strain response and failure strength of carbon- or glass- fiber-reinforced
plastic cross-ply laminates were predicted using Maimı́’s compliance model and the
simplified damage variables.
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Introduction
The application scope of advanced composite materials is increasing due to their superior
mechanical properties like high specific modulus and strength. The specific modulus
plays an important role in real structures, but the specific strength of these materials
has not been effectively utilized in real applications owing to the incapability of failure
analysis. The reason why effective designs considering the high specific strength are not
yet developed is that structural designs are developed using the strain criterion based
on initial ply failure. When load is applied to composite structures, matrix cracks are
generated in the transverse ply. However, if the applied strain level is low, these cracks
do not cause secondary damage and affect the reduction of stiffness. Furthermore, if the
applied strain reaches a certain level, the damage migrates from the ply cracks, leading to
catastrophic damage phenomena like delamination and fiber breakage. Thus, similar to
metals, if designers consider the initial damage and users can predict the progress of the
damage, the structural weight can be reduced. Therefore, damage tolerance designing is
the next step for expanding the application scope of composite structures.

Designers need to analyze the stiffness reduction in composite structures owing to
transverse cracks accurately. Transverse cracks occurring in cross-ply laminates have
been studied since the 1970s.1–6 Initially, there were many stress analysis studies
performed using the shear-lag model, which was developed to analyze the stress profile
around discontinuous fibers.7 Using the shear-lag model, the damage progress could be
predicted using the stress criterion and/or energy criterion. Specifically, the onset of
transverse cracks from the viewpoint of micromechanics was analyzed. In the 1980s,
the shear-lag model was improved.8,9 Finite element analysis (FEA)10 and the minimum
energy principle model11–13 utilizing variation methods were proposed to analyze the
stress field around the transverse cracks. These models enable us to calculate the stress
field around the transverse cracks in cross-ply laminates very accurately.

In addition to the above approaches, continuous damage mechanics (CDM)
models14–16 were developed simultaneously. CDM models are divided into the following
two types: the first one involves the effective elastic stiffness or compliance matrix
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utilizing the damage tensor derived from the thermomechanical relationship; while the
other one calculates the inelastic strain with internal state variables so that the average
stress of the laminate can be estimated. Both models are fitted with the classical laminate
theory (CLT) because the detailed stress distribution in the laminate is unnecessary and
the damaged ply is homogenized. Therefore, arbitrary laminates other than cross-ply
laminates can be analyzed easily. On the contrary, problems regarding the objective
determination of damage tensor and internal state variables must be addressed.

In the 1990s, McCartney17 presented an accurate anisotropic elastic solution for
cross-ply laminates, satisfying both the equilibrium and compatible equation. Pagano
et al.18 proposed an accurate solution based on cylindrical bending. Moreover, several
researchers analyzed the delamination migrating from the matrix crack from the view
point of energy balance.19,20 Xia et al.21 used the McCartney model to analyze damage
progress in ceramic-matrix cross-ply laminates. Furthermore, using CDM, Gudmundson
and Zang22 extended the two-dimensional model of Dvorak et al.23,24 which is applicable
to an isotropic body, to obtain a three dimensional model with the generalized laminate
theory for analyzing three-dimensional laminates. As stated above, CDM can be applied
to angle-ply laminates. Gudmundson and Zang applied the model to study stiffness
reduction in angle-ply laminates. Kobayashi et al.25 used the Gudmundson and Zang
model to predict the damage progress in quasi-isotropic carbon-fiber-reinforced plastic
(CFRP) laminates. After the 2000s, several researchers26–28 continued to develop models
for analyzing arbitrary laminates other than cross-ply laminates. However, the derived
formulations are extremely complicated for ordinary people to use them easily.

Recently, we derived the analytical form of the damage tensor with transverse crack
density by solving the Laplace equation for the displacement fields under the generalized
plane strain condition.29 The laminate stiffness can be estimated with the obtained
damage tensor through the CLT and CDM model proposed by Murakami and his
colleagues.30,31 We have also proved that the estimated stiffness agrees with the finite
element calculations and experimental results.14 This approach is extended to a three-
dimensional model32 using a sophisticated model proposed by Li et al.33 However, the
effective compliance matrix proposed by Murakami and his colleagues is asymmetric.
This asymmetry of the compliance matrix was also observed in the study done by Lee et
al.13 Furthermore, because the damage tensor is derived by solving the Laplace equation,
it is written as a complicated infinite series.29

The fiber breakage generally causes nonlinearity in the stress-strain curves when
the applied strain is large. It is well known that Rosen34 originally studied the stress
transfer length around fiber breaks as well as the unidirectional composite failure strength
and applied to glass-epoxy monolayer specimens. Analytical models considering fiber
breakage have been mainly developed in the field of ceramic matrix composites (CMCs)
since the late 1980’s. This is because a stress concentration due to a fiber break can
almost be neglected, so that the global load sharing model (GLS), wherein the load
shed by a broken fiber is shared by all intact fibers, can be directly applied to the
experiments. Curtin35 presents a famous theory to predict the ultimate tensile strength
of the unidirectional composites assuming the GLS model. Neumeister36 developed
an approximate solution of the stress-strain curve and strength of the composite, and
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compared to a numerical result based on the fiber fragmentation theory formulated by
Curtin.37 Hui et al.38 derived an explicit closed form solution of the evolution of fiber
fragments and applied to estimate the strength of unidirectional composite materials. In
general, the GLS models give a larger strength than the local load-sharing (LLS) model
that considers local stress concentrations caused by fiber breaks.39 However, the GLS
models are theoretically easy to handle. Therefore, it is suitable to utilize the GLS models
to analytically formulate the damage tensor.

This study developed an appropriate expression for the effective stiffness matrix of
damaged composite laminates and derived simplified expressions for the damage tensor
with the fiber breakage and transverse crack density. Damage variable for fiber breakage
was formulated using the GLS model for unidirectional fiber-reinforced composites. An
approximate simplified expression for the damage tensor with transverse crack density
was obtained from the Laplace equation, assuming the quadratic function. For validating
the present model, the obtained damage tensor was substituted into CDM and CLT
models, and the elastic constants of damaged composite laminates were then predicted
for cross-ply and angle-ply laminates. As for the appropriate expression for the effective
compliance/stiffness matrix of a damaged ply, we verified four types of damage matrices
including the Murakami30,31, Yoshimura40, Li33 and Maimı́ models.41 We determined
that the Maimı́ model was the most appropriate among these four models. Moreover, we
succeeded in simplifying the expression for damage variables with complicated infinite
series obtained in our previous study. We also proved that this could contribute toward
the improving the analysis accuracy. Further, we determined the nonlinear stress-strain
response and ultimate tensile strength of CFRP and glass-fiber-reinforced-plastic (GFRP)
cross-ply laminates. We employed the Maimı́ model and simplified damage variables
proposed in this study when calculating the stress-strain response. The ultimate tensile
strength of CFRP cross-ply laminates was predicted based on a strain-based fiber failure
criterion27 because fiber fracture in CFRP laminates often occurs at the point of laminate
failure. For GFRP laminates, the stiffness reduction due to multiple-fiber fragmentation
in 0◦ plies and the subsequent final laminate failure were determined using the GLS
model.

Model formulation

Effective elastic compliance/stiffness matrix of damaged ply

Four models for the elastic compliance matrix of a damaged composite ply under the
plane stress condition are introduced here and their characteristics are explained.

Model 1: Murakami model Murakami published a sophisticated book30 introducing
CDM and proposed a compliance matrix for damaged composite plies with his
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colleagues.31 They used the strain equivalent principle to obtain the following stress-
strain relationship: ε11

ε22
2ε12

 =


1

(1−d11)E1
− ν12

(1−d22)E1
0

− ν12

(1−d11)E1

1
(1−d22)E2

0

0 0 1
2

(
1

1−d11
+ 1

1−d22

) 1

G12


σ11

σ22

σ12

 . (1)

Ei is the Young’s modulus, Gij is the shear modulus, νij is the Poisson’s ratio, εij is the
strain tensor, σij is the stress tensor, and dij is the damage variable. In Eq. (1), subscripts
1 and 2 denote the fiber direction and the in-plane transverse direction respectively. In our
previous study, we found that this matrix is effective for obtaining the elastic constants
of damaged composite laminates if the appropriate damage tensor is used. However, the
compliance matrix in Eq. (1) is obviously asymmetric and this violates the existence
of the strain energy function. Moreover, this form cannot be directly entered into the
numerical simulation code as in FEA. As stated above, this asymmetry of the compliance
matrix was also observed in the work of Lee.13

Model 2: Yoshimura model Yoshimura et al.40 proposed the concept of the stress
equivalent principle to overcome the difficulty of the asymmetry of the compliance
matrix. The stress-strain relation can be written as:σ11

σ22

σ12

 =

B11 B12 0
B22 0

sym. B33

 ε11
ε22
2ε12

 , (2)

where

B11 =
(1− d11)E1

1− ν12ν21
− d211

4

ν12ν21(1 + ν23)E1

∆(1− ν12ν21)
, (3)

B12 =

(
1− d11 + d22

2

)
ν12E2

1− ν12ν21
− d11d22

4

ν12(ν23 + ν12ν21)E2

∆(1− ν12ν21)
, (4)

B22 =
(1− d22)E2

1− ν12ν21
− d222

4

(ν23 + ν12ν21)
2E2

∆(1 + ν23)(1− ν12ν21)
, (5)

B33 =

(
1− d11 + d22

2

)
G12, (6)

∆ = 1− ν23 − 2ν12ν21. (7)

In this case, the stiffness matrix is obviously symmetric. This effective stiffness matrix
has already been inserted into the ABAQUS user subroutine to simulate the high-
velocity impact problem. The simulation results roughly reproduced the damage progress
observed experimentally, but the simulation underestimated the extent of damage
compared to the experiments. Moreover, the degradation coefficient of shear modulus
does not have any physical meaning. These points are discussed later when comparing
the four models explained in this section.
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Model 3: Li model Li et al.33 formulated the three-dimensional effective stiffness matrix
for a ply with transverse cracking assuming a small damage. The two-dimensional
effective stiffness matrix can be written as:σ11

σ22

σ12

 =

C11 − C2
13

C33
C12 − C13C23

C33
0

C22 − C2
23

C33
0

sym. C66


 ε11

ε22
2ε12

 , (8)

where

C11 =
1− ν23

∆
E1 − ω

E1ν12ν21
∆2

, (9)

C12 =
ν12
∆

E2 − ω
E2ν12(1− ν12ν21)

(1 + ν23)∆2
, (10)

C13 =
ν12
∆

E2 − ω
E2ν12(ν23 + ν12ν21)

(1 + ν23)∆2
, (11)

C22 =
1− ν12ν21
(1 + ν23)∆

E2 − ω
E2(1− ν12ν21)

2

(1 + ν23)2∆2
, (12)

C23 =
ν23 + ν12ν21
(1 + ν23)∆

E2 − ω
E2(1− ν12ν21)(ν23 + ν12ν21)

(1 + ν23)2∆2
, (13)

C33 =
1− ν12ν21
(1 + ν23)∆

E2 − ω
E2(ν23 + ν12ν21)

2

(1 + ν23)2∆2
, (14)

C66 = G12 − ξωG12. (15)

Here, ω is the damage parameter related to tensile damage and ξ is the constant damage
parameter related to shear damage. ω and ξ can be expressed as follows:32

ω = 1− Ed
2

E2
= d22, (16)

ξ =
1

ω

(
1− Gd

12

G12

)
≈ 1

λ
. (17)

Here, superscript d denotes the property of the damaged ply and λ is the material constant
described later. Onodera and Okabe32 utilized this effective stiffness for predicting
the stiffness reduction and steady-state cracking of laminates with ply cracking. The
proposed CDM model agrees with the experimental and numerical results.32 However,
the damage parameter ω and transverse crack density have upper limits because a small
damage was assumed.

Model 4: Maimı́ model Maimı́ et al.41 proposed the complementary free energy function
and thermodynamically derived the effective compliance matrix as follows: ε11

ε22
2ε12

 =


1

(1−d11)E1
−ν12

E1
0

1
(1−d22)E2

0

sym. 1
(1−d12)G12


σ11

σ22

σ12

 . (18)
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The effective compliance matrix in this case is also explicitly symmetric. However, this
case needs an additional damage variable d12 for evaluating the shear stiffness reduction
due to transverse cracks or fiber breaks. For the ply with transverse cracks, this parameter
is derived from the displacement field of the damaged ply in this study. For the ply with
fiber breaks, d12 can be approximated as follows:30

1

1− d12
=

1

2

(
1

1− d11
+ 1

)
. (19)

The approximate relation of Eq. (19) was used when considering the ply with fiber
breaks.

Damage variables
Damage variable d11 for multi-fiber fragmentation An analytical expression for d11
was developed by employing Curtin’s GLS model35 considering the ultimate tensile
strength of unidirectional fiber-reinforced composites. Now, we consider the mechanical
equilibrium on an arbitrary cross section in a unidirectional fiber-reinforced composite
with broken fibers. Utilizing the shear-lag model, the slip length lf can be described as

lf =
rT

2τ
, (20)

where T is the far-field axial fiber stress, τ is the fiber/matrix interfacial sliding stress,
and r is the fiber radius. If fiber breaks occur equally within the range ±lf , then the
average stress carried by the broken fibers in the selected plane is half of that carried by
the unbroken fibers. The stress carried by the broken and unbroken fibers in the selected
plane can be described as

σf = T{1− Pf (T, 2lf )}+
T

2
Pf (T, 2lf ). (21)

Here, the first term on the right-hand side represents the load carried by the unbroken
fiber with the fraction 1− Pf (T, 2lf ) and the second term is the average load carried
by the broken fibers, whose fraction is Pf (T, 2lf ). It is well known that the probability
Pf (T, 2lf ) of the fiber failure with applied stress T and length 2lf can be simplified as

Pf (T, 2lf ) ≈
2lf
L0

(
T

σ0

)m

=

(
T

σc

)m+1

if
2lf
L0

(
T

σ0

)m

≪ 1, (22)

where m is the Weibull modulus and σ0 is the mean strength at gauge length L0. σc is
the characteristic strength defined as follows:

σc =

(
σ0τL0

r

)1/(m+1)

. (23)
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In the selected cross section, the following mechanical equilibrium condition must be
satisfied:

σ1 = fσf , (24)

σ1 is the stress applied on the unidirectional composite along the fiber direction and
f is the fiber volume fraction. Using the Voigt model for representing the Young’s
modulus of composite, the unidirectional axial composite stress σ1, axial fiber stress
T , and unidirectional Yong’s modulus E1 are expressed as

σ1 = (1− d11)E1ε1, (25)
T = Efε1, (26)

E1 = fEf + (1− f)Em ≈ fEf . (27)

Here, ε1 is the unidirectional composite strain, Ef is the fiber axial modulus, and Em is
the matrix modulus. We neglected the term (1− f)Em in Eq. (27) because Ef ≫ Em is
approximately satisfied in the case of polymer matrix composites. Using Eqs. (21), (22)
and (25) - (27) in Eq. (24), the damage variable was simply derived as

d11 =
1

2

(
T

σc

)m+1

. (28)

The remaining unknown variable is the far-field fiber axial stress T . Substituting Eqs.
(21) and (22) into Eq. (24), the following nonlinear equation for T was obtained.

σ1 = fT

(
1− 1

2

(
T

σc

)m+1
)

(29)

Stress T at applied load σ1 was numerically obtained by solving the above nonlinear
equation. When a cross-ply laminate having 0◦ plies with volume fraction V1 and the
90◦ plies with volume fraction V2 is considered, the applied axial laminate stress σL can
be described using the rule of mixture as follows:

σL = V1σ1 + V2σ2 ≈ V1σ1, (30)

σ1 is the 0◦ ply stress and σ2 is the 90◦ ply stress. We decided to neglect the second term
on the right-hand side in Eq. (30). This is because fiber breaks in the 0◦ ply may start
after the saturation of transverse cracks and the 90◦ plies have very small load-bearing
capacity during saturation of transverse cracks. Using Eq. (30) in Eq. (29), the nonlinear
expression for stress T is rewritten as

σL

V1
= fT

(
1− 1

2

(
T

σc

)m+1
)
. (31)
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The ultimate tensile strength of cross-ply laminates can be derived using Eq. (31). The
ultimate failure condition of composite laminates is described by the following equation:

dσL

dT
= 0. (32)

The maximum far-field fiber stress Tmax and ultimate tensile strength σULT
L of cross-ply

laminates were simply obtained by substituting Eq. (31) into Eq. (32).

Tmax =

(
2

m+ 2

)1/(m+1)

σc (33)

σULT
L = V1fσc

(
2

m+ 2

)1/(m+1)
m+ 1

m+ 2
(34)

The maximum value of damage variable d11 was obtained using Eq. (33) in Eq. (28).

dmax
11 =

1

m+ 2
(35)

d11 increased to its maximum value in Eq. (35) under the ultimate tensile failure
condition. In this study, the far-field stress T was calculated using the Newton method
to solve the nonlinear equation (Eq.(31)) at a given laminate tensile stress σL until the
ultimate tensile failure condition in Eq. (32) was satisfied. d11 was obtained using the
calculated stress T in Eq. (28).

Damage variable d22 associated with transverse cracking In any of the
effective stiffness/compliance models stated above, d22 is necessary to evaluate the
compliance/stiffness matrix of the damaged ply. The governing equation (i.e., Laplace
equation) of the corresponding problem was derived. The simplified solution of the
equation obtained assuming that the displacement field in the longitudinal direction can
be expressed as a quadric function. Further, the boundary condition for the governing
equation was loosened.

As shown in Fig. 1, the solved problem is the displacement field for the damaged
transverse ply including periodic matrix cracks having an interval of 2l. These matrix
cracks fully propagate in the z direction and reach the interface. The longitudinal strain of
the neighboring ply is assumed to be uniform and unaffected by these cracks. Considering
the symmetry of the problem, only the first quadrant in the xy plane was addressed. The
plane strain condition was assumed, and the constitutive relations are given by

εxx(x, y) =
∂u(x, y)

∂x
= C1σxx(x, y)− C2σyy(x, y), (36)

εyy(x, y) =
∂v(x, y)

∂y
= C1σyy(x, y)− C2σxx(x, y), (37)

γxy(x, y) =
σxy(x, y)

G23
=

∂v(x, y)

∂x
+

∂u(x, y)

∂y
≈ ∂v(x, y)

∂x
. (38)
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1

2

3

l l

z

x

y

t

t

Transverse crack

Figure 1. Representative volume element in a cracked ply with transverse crack spacing 2l
and ply thickness 2t. (1, 2, 3) is the material coordinate system, and (x, y, z) is the
representative volume element coordinate system.

Here, u and v are the displacements along the x and y directions respectively. C1 and C2

are given by

C1 =
1− ν12ν21

E2
, C2 =

ν23 + ν12ν21
E2

. (39)

We assumed that ∂u/∂y was negligible in Eq. (38) so that the compatible condition of
the strain tensor was not satisfied. To obtain the governing equation for displacement v,
the following relationship was introduced:

εxx(x, y) = aεyy(x, y), (40)

where a is the effective Poisson’s ratio derived from the equilibrium equation.
Substituting Eq. (40) into Eqs. (36) and (37), we obtained the stress with displacement v
as follows:

σxx(x, y) =
aC1 + C2

C2
1 − C2

2

∂v(x, y)

∂y
, (41)

σyy(x, y) =
C1 + aC2

C2
1 − C2

2

∂v(x, y)

∂y
. (42)

These stresses satisfy the following two-dimensional equilibrium equations:

∂σxx

∂x
+

∂σxy

∂y
= 0, (43)

∂σxy

∂x
+

∂σyy

∂y
= 0. (44)
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Substituting Eqs. (38) and (41) into Eqs. (43) and removing the trivial case (i.e.,
∂2v/∂x∂y ̸= 0), a was calculated as

a = −C2 +G23(C
2
1 − C2

2 )

C1

= −E2(ν23 + ν12ν21) +G23{(1− ν12ν21)
2 − (ν23 + ν12ν21)

2}
E2(1− ν12ν21)

.

(45)

Furthermore, substituting Eqs. (38) and (42) into Eq. (44), the following governing
equation of the displacement field was obtained:

∂2v

∂x2
+ λ2 ∂

2v

∂y2
= 0, (46)

where

λ =

√
C1 + aC2

G23(C2
1 − C2

2 )
=

√
E2 −G23(ν23 + ν12ν21)

G23(1− ν12ν21)
. (47)

The boundary condition of the governing equation is written as

σxy(0, y) = 0 ⇔ ∂v

∂x
(0, y) = 0, (48)

v(t, y) = ε∞yy, (49)

v(x, 0) = 0, (50)

σyy(x, l) = 0 ⇔ ∂v

∂y
(x, l) = 0, (51)

where ε∞yy is the applied strain of the ply parallel to the y-axis and 2t is the ply
thickness. The displacement field can be solved with Eq. (46). In our previous study,29

this partial differential equation was solved by the variable separation method. However,
the obtained solution was an infinite series and very complicated. Therefore, this study
obtained a simplified form of the displacement field.

To obtain the simplified solution, the displacement form of the following type was
assumed:

v(x, y) = A(y)x2 +B(y)x+ C(y). (52)

Using the displacement in Eq. (52) in Eqs. (48) and (49) yielded

B(y) = 0, (53)

C(y) = ε∞yyy −A(y)t2. (54)

Thus, Eq. (52) can be written as

v(x, y) = A(y)(x2 − t2) + ε∞yyy. (55)
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Next, our main task was to explicitly determine A(y). The boundary condition of Eq.
(50) gives

A(0) = 0. (56)

However, it is impossible to satisfy the boundary condition of Eq. (51) exactly as it is.
Thus, according to McCartney,17 the following averaged boundary condition was used:

1

t

∫ t

0

∂v(x, l)

∂y
dx = 0. (57)

Hence, using Eq. (55) into Eq. (57) results in

dA(l)

dy
=

3ε∞yy
2t2

. (58)

Similar to Eq. (51), the government equation, i.e., Eq. (46), cannot be solved directly.
Instead of Eq. (46), the following averaged government equation was here solved.

1

t

∫ t

0

(
∂2v

∂x2
+ λ2 ∂

2v

∂y2

)
dx = 0 (59)

Using Eq. (55) in Eq. (59) yielded the following ordinary differential equation

d2A(y)

dy2
− β2A(y) = 0, (60)

where

β =

√
3

λt
. (61)

The solution of Eq. (60) with the boundary conditions in Eqs. (56) and (58) is

A(y) =
3ε∞yy
2t2β

sinhβy

coshβl
. (62)

Thus, it can be shown that

v(x, y) =
3ε∞yy
2t2β

sinhβy

coshβl
(x2 − t2) + ε∞yyy. (63)

As stated in our previous paper,29 the damage variable is the ratio of the inelastic strain
due to crack opening to the total strain and is finally given by

d22 =

ε∞yy −
1

lt

∫ t

0

v(x, l)dx

ε∞yy
=

tanhβl

βl
=

2ρ

β
tanh

β

2ρ
, (64)
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where ρ = 1/(2l) is the transverse crack density in the damaged ply. As stated above, we
derived the following equation:29

d22 = 1− 8

π3λt

∞∑
n=1

1

(2n− 1)3
tanh[(2n− 1)πλtρ]

ρ
. (65)

Equation (64) is obviously simpler than Eq. (65) and loosening the boundary condition
Eq. (51) increases crack opening, so that Eq. (64) gives better predictions than Eq. (65)
in some cases. We will describe this section later through verifications and validations.

Damage variable d12 associated with transverse cracking When the effective
compliance matrix shown in Eq. (18) is used, the analytical form for damage variable
d12 is required. The schematic shown in Fig. 1 is also considered here. The neighboring
ply deforms under a constant shear strain γ∞

yz in the yz plane and the displacement field
is assumed as

u(x, y, z) = v(x, y, z) = 0, (66)
w = w(x, y). (67)

Thus, these equations give σx = σy = σz = σxy = 0 and εx = εy = εz = γxy = 0 , so
that the out of plane shear stresses are nonzero and given as

σxz(x, y) = G12γxz(x, y) = G12
∂w(x, y)

∂x
, (68)

σyz(x, y) = G12γyz(x, y) = G12
∂w(x, y)

∂y
. (69)

The stresses should satisfy the following three-dimensional equilibrium equations:

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
= 0, (70)

∂σxy

∂x
+

∂σyy

∂y
+

∂σyz

∂z
= 0, (71)

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
= 0. (72)

These stresses given in Eqs. (68) and (69) automatically satisfy Eqs. (70) and (71) and
leads to the following governing equation derived from Eq. (72):

∂2w

∂x2
+

∂2w

∂y2
= 0. (73)
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As mentioned in the previous section, the following boundary conditions should be
satisfied:

σxz(0, y) = 0 ⇔ ∂w

∂x
(0, y) = 0, (74)

w(t, y) = γ∞
yzy, (75)

w(x, 0) = 0, (76)

σyz(x, l) = 0 ⇔ ∂w

∂y
(x, l) = 0. (77)

This boundary problem defined by Eqs. (73)-(77) is almost the same as the one defined by
Eqs. (46)-(51); therefore, the same derivation procedure can be adopted for this boundary
problem. Thus, the displacement field is given by

w(x, y) =
3γ∞

yz

2t2β12

sinhβ12y

coshβ12l
(x2 − t2) + γ∞

yzy, (78)

β12 =

√
3

t
. (79)

The shear damage variable d12 can be defined as

d12 = 1− Gd
12

G12
, (80)

where Gd
12 is the shear stiffness of the ply with transverse cracking. The average ply shear

strain γave
yz not considering the crack-opening displacement and applied shear strain γ∞

yz

are described as follows:

γave
yz = 1− σyz

G12
, (81)

γ∞
yz = 1− σyz

Gd
12

. (82)

Substituting Eqs. (81) and (82) into Eq. (80), d12 can be rewritten as

d12 = 1−
γave
yz

γ∞
yz

. (83)

The average shear strain is defined by

γave
yz =

1

lt

∫ t

0

w(x, l)dx. (84)

We obtained d12 from Eqs. (78), (83), and (84).

d12 =

γ∞
yz −

1

lt

∫ t

0

w(x, l)dx

γ∞
yz

=
tanhβ12l

β12l
=

2ρ

β12
tanh

β12

2ρ
(85)
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The reduction in shear modulus was initially determined by Hashin,11 by using the
variation approach. Recently, Onodera and Okabe32 also obtained the shear damage
variable with an infinite series.

d12 = 1− 8

π3t

∞∑
n=1

1

(2n− 1)3
tanh[(2n− 1)πtρ]

ρ
(86)

However, Eq. (85) is obviously simpler than the infinite series of Eq. (86).

Effective elastic constants for the damaged composite laminates
The substitution of damage variables d22 and d12 into Eqs. (1), (2), (8), and (18) gives
the effective compliance/stiffness matrix of a ply with transverse cracks as a function of
crack density ρ, and fiber breaks can be considered by substituting d11 into Eqs. (1), (2),
and (18). The effective stiffness of composite laminates with transverse cracks can be
estimated through the CLT using the effective compliance matrix of a damaged ply.

Let us consider the coordinate systems shown in Fig. 2. The effective compliance
matrix and thermal expansion coefficient of the kth ply having transverse crack density
ρ in material coordinate system (1, 2, 3) are defined as Ck(ρ) and αk, respectively.
Similarly, those of laminate coordinate system (X,Y, Z) are defined as Ck(ρ) and αk,
respectively. When the fiber angle is given by θk, Ck(ρ) and αk are given as

Ck(ρ) = RkCk(ρ)T
−1
k , (87)

αk = Rαk, (88)

where

αk =
[
α11 α22 0

]T
, (89)

Rk =

 cos2 θk sin2 θk − sin θk cos θk
sin2 θk cos2 θk sin θk cos θk

2 sin θk cos θk −2 sin θk cos θk cos2 θk − sin2 θk

 , (90)

1st
2nd
3rd

kth

(N-1)th

Nth

kth ply

L
t

X

Y

Z

2 1
Y

X

θ
k

Figure 2. Relationship between the laminate coordinate system (X,Y, Z) and material
coordinate system (1, 2, 3).
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Tk =

 cos2 θk sin2 θk −2 sin θk cos θk
sin2 θk cos2 θk 2 sin θk cos θk

sin θk cos θk − sin θk cos θk cos2 θk − sin2 θk

 . (91)

α is the thermal expansion coefficient. Therefore, according to the CLT, the effective
laminate strain εL is expressed as

εL = CLσL +αL∆T, (92)

where the effective stiffness matrix CL(ρ) and thermal expansion coefficient αL(ρ) of
the cracked laminate can be written as

CL(ρ) =
[
CLij

]
=

[
1

tL

N∑
k=1

tkC
−1

k (ρ)

]−1

, (93)

αL(ρ) =
[
αLi

]
= CL

[
1

tL

N∑
k=1

tkC
−1

k (ρ)αk

]
. (94)

σL is the applied axial laminate stress, tL is the thickness of the corresponding composite
laminates, and ∆T (= T − Tsf) is the difference between the testing temperature T
and stress-free temperature Tsf . Therefore, the effective elastic constants and effective
thermal expansion coefficients of the laminates are given as

EX =
1

C11(ρ)
, EY =

1

C22(ρ)
, νXY = −C12(ρ)

C11(ρ)
, GXY =

1

C66(ρ)
, (95)

αX = αL1(ρ), αY = αL2(ρ). (96)

We can derive the effective elastic constants analytically with the crack density and
fiber breaks through the CLT. The stress-strain relationship of damaged laminates can
be obtained using Eq. (92).

Results and Discussions

Verification of damage models
The stiffness reduction in laminates with transverse cracking was studied using five
approaches for verifying the effective compliance/stiffness matrices and proposed
damage variables d22 and d12. Murakami simplified shows the Murakami model using
d22 expressed in a simplified form in Eq. (64). Yoshimura simplified is the Yoshimura
model with d22 expressed in a simplified form, identical to Murakami simplified.
Li simplified is the Li model including the damage parameter ω in Eqs. (16) and (64), and
constant damage parameter ξ in Eqs. (17) and (47). Maimı́ simplified gives the Maimı́
model with simplified forms of d22 in Eq. (64) and d12 in Eq. (85). Maimı́ infinite series
describes the result of the Maimı́ model with infinite forms of d22 in Eq. (65) and d12
in Eq. (86). In Li simplified, the upper limit of the transverse crack density resulting
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from the assumption of a small damage postulated in Li’s effective stiffness matrix was
determined in the same manner as in our previous study.33 Table 1 presents the upper
limit of the transverse crack density in GFRP laminates used in Li simplified.

For verification, comparisons to results obtained using FEA are presented for [90/0]s
GFRP cross-ply laminates. The material properties listed in Table 2 were used.
Transverse cracks are assumed to exist in the 90◦ plies and face the outer surface.
Gudmundson and Zang22 calculated the reduction in Poisson’s ratio and Young’s
modulus due to the increase in the transverse crack density. When the matrix crack faces
the surface, the crack length should be doubled to include the surficial effect and satisfy
the boundary condition. Therefore, we obtain

d22 =
4ρ

β
tanh

β

4ρ
, (97)

d12 =
4ρ

β12
tanh

β12

4ρ
, (98)

d22 = 1− 4

π3λt

∞∑
n=1

1

(2n− 1)3
tanh[2(2n− 1)πλtρ]

ρ
, (99)

d12 = 1− 4

π3t

∞∑
n=1

1

(2n− 1)3
tanh[2(2n− 1)πtρ]

ρ
. (100)

The comparison results are shown in Figs. 3 and 5. As for Young’s modulus, all
approaches reproduce the tendency of the results observed in FEA. When comparing
Maimı́ simplified and Maimı́ infinite series, it is shown that the simple forms of
Eqs. (64) and (85) yielded results closer to the FEA results than the infinite
series forms of Eqs. (65) and (86). Thus, Eqs. (65) and (86) gave smaller crack
openings than the FEA results and loosening the boundary condition may improve
the tendency of the crack opening displacement to match with those obtained using
FEA. Murakami simplified, Li simplified, Maimı́ simplified and Maimı́ infinite series
captured the degradation tendency of the Poisson’s ratio; however, Yoshimura simplified

Table 1. Upper limit of transverse crack density used in Li simplified.

Laminte Upper limit of transverse crack density (cracks/mm)

GFRP [90/0]s 2.01
GFRP [55/− 55]N 4.02

Table 2. Material constants and thickness of GFRP ply used in stiffness reduction
calculation. 22

E1 E2 ν12 ν23 G12 G23 α1 α2 Ply thickness
(GPa) (GPa) (GPa) (GPa) (/°C) (/°C) (mm)

41.7 13 0.3 0.42 3.4 4.58 6.72 29.3 0.203
×10−6 ×10−6

Prepared using sagej.cls



18 Journal Title XX(X)

20

22

24

26

28

0 2 4 6 8 10

Y
o

u
n

g
’s

 m
o

d
u

lu
s
E

X
(G

P
a)

Crack density ρ (/mm)

FEA result
Murakami_simplified
Yoshimura_simplified
Li_simplified
Maimí_simplified
Maimí_infinite_series

Figure 3. Comparison of Young’s modulus reduction in GFRP [90/0]s laminate due to
transverse crack predicted using present models and FEA (Gudmundson and Zhang 22).
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Figure 4. Comparison of Poisson’s ratio reduction in GFRP [90/0]s due to transverse
cracking predicted using present models and FEA (Gudmundson and Zhang 22).

obviously underestimated the degradation. This causes the significant errors in the case
of angle-ply laminates because the non-diagonal component directly affects the Young’s
modulus of the laminate.

Gudmundson and Zhang22 also calculated the stiffness reduction in several types of
angle-ply laminates using FEA. The present model was verified by comparison with the
results for [±55]N angle-ply GFRP laminates. The material properties listed in Table
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Figure 5. Comparison of Young’s moduli of GFRP [±55]N axial laminates due to transverse
cracking predicted by present models and FEA (Gudmundson and Zhang 22).
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Figure 6. Comparison of Young’s moduli reduction in GFRP [±55]N transverse laminate due
to transverse cracking predicted by present models and FEA (Gudmundson and Zhang 22).

2 were used. Figures 5 - 10 show the changes in the Young’s moduli, shear modulus,
Poisson’s ratio, and thermal expansion coefficients of [±55]N laminate as a function of
the transverse crack density. Clearly, Maimı́ simplified shows the best agreement among
these five approaches for any of the elastic constants, whereas Yoshimura simplified
cannot capture the trends of Young’s modulus and Poisson’s ratio at all. As stated above,
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Figure 7. Comparison of shear modulus reduction in GFRP [±55]N laminate due to
transverse cracking predicted by present models and FEA (Gudmundson and Zhang 22).
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Figure 8. Comparison of Poisson’s ratio change in GFRP [±55]N laminate due to transverse
cracking predicted by present models and FEA (Gudmundson and Zhang 22).

Poisson’s ratio is a critical parameter for evaluating the properties of angle-ply laminates
as it reflects the behavior of non-diagonal components in compliance/stiffness matrix.
The trends of Yoshimura simplified are substantially different from those observed in
FEA. Therefore, we do not recommend using Yoshimura simplified for evaluating angle-
ply laminates.
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Figure 9. Comparison of axial laminate thermal expansion coefficient reduction in GFRP
[±55]N due to transverse cracking predicted by present models and FEA (Gudmundson and
Zhang 22).
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Figure 10. Comparison of transverse laminate thermal expansion coefficient reduction in
GFRP [±55]N due to transverse cracking predicted by present models and FEA
(Gudmundson and Zhang 22).

Although the results obtained using all the models agree well with the FEA results,
Maimı́ simplified shows the best agreement. In fact, we proved that Maimı́ simplified is
the most appropriate approach among five approaches considering in this study.
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Nonlinear stress-strain response of CFRP cross-ply laminates
The nonlinear stress-strain response of CFRP cross-ply laminates resulting from
transverse cracking was calculated using the present model and compared to the
experimental results obtained in this study. We also applied our model to the results
reported by Fikry et al.42 The stress-strain response of cross-ply laminates with
transverse cracking was calculated using Eqs. (92)-(94). From the verification result
described in the previous section, the effective stiffness model of Maimı́ simplified
composed of the Maimı́ model with simplified forms of d22 in Eq. (64) and d12 in Eq.
(85) was utilized to predict the stiffness reduction due to transverse cracks in 90◦ plies. In
CFRP laminates subjected to quasi-static monotonic tensile loading, fiber fracture often
occurs at the ultimate failure stress of the laminate. Therefore, the stiffness reduction
owing to fiber breaks was not considered here, and the ultimate tensile strength of CFRP
cross-ply laminates was predicted based on a strain-based fiber failure criterion presented
by McCartney27 to determine the fracture point in the nonlinear stress-strain curve. In this
criterion, the calculated effective laminate axial strain using Eq. (92) is considered equal
to the fiber axial strain in 0◦ plies. When the effective laminate axial strain is equal to the
critical strain, εfc, during ultimate fiber failure, ultimate failure of the laminate occurs.
The ultimate fiber failure strain, εfc, is derived from the spring element model (SEM)
simulation,43 which considers the surficial stress concentration obtained from multiple-
fiber fragmentation tests.44 The bimodal Weibull distribution was applied to reproduce
the statistically distributed strength in fibers. A stress concentration factor of 1.9 was
used. The average ultimate fiber failure strain obtained by 100 SEM simulations scaled
with each specimen size, was regarded as the ultimate fiber failure strain εfc. Table 3
lists the material properties of the T700S and resin and Table 4 shows bimodal Weibull
parameters of the T700S fiber used in SEM simulations. The evolution of transverse
crack density ρ as a function of the applied laminate stress is needed to predict the
nonlinear stress-strain curves of the laminates. In this study, to validate the proposed
stiffness reduction model, we assumed the following Weibull form for transverse crack
density evolution:

ρ = ρs

[
1− exp

{
−
(
σL − σL0

σLc

)mT
}]

, (101)

Table 3. Properties of T700S fiber and resin used in SEM simulations. 45

Fiber axial Young’s modulus Ef (GPa) 230
Fiber radius r (µm) 3.5
Matrix Young’s modulus Em (GPa) 3.4
Matrix Poisson’s ratio νm (-) 0.31

Table 4. Bimodal Weibull parameters of the T700S fiber used in SEM simulations. 44

σ01 (GPa) m1 σ02 (GPa) m2

5.2 4.8 6.1 12.0
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where ρs is the saturated transverse crack density, σL0 is the initiation stress of the
transverse crack, σLc is the Weibull scale parameter, and mT is the Weibull modulus.
These parameters were determined by fitting with the experimental results.

We performed the experiments by ourselves to validate our model presented in this
study. Here, we briefly explain the experimental procedures followed to determine the
stiffness reduction, transverse crack density, and stress-strain curves of the cross-ply
laminates. Loading and unloading tests were conducted to obtain the nonlinear stress-
strain response of cross-ply laminates, transverse crack density in 90◦ plies, and stiffness
reduction. The [0/908/0] cross-ply laminate was composed of T700S/2592 (Toray
Industries) unidirectional plies. The laminate specimen had a length, width, and thickness
of 249, 25, and 1.42 mm, respectively. A strain gauge (Kyowa Electronic Instruments
Co.) was used to measure the strain in the laminate. The free edge of the laminate was
polished by a diamond grinding disk (Buehler Ltd.) to observe the transverse crack
density. Loading and unloading tests were performed using a servo-hydraulic testing
machine MTS810 (MTS Systems Corporation) and involved the following steps. (1) The
specimen was loaded with a crosshead speed 1.0 mm/min. (2) When the load reached
a specific value, the specimen was held at this load and the transverse cracks were
observed at the free edge of the specimen using RepliSet (Struers). (3) The specimen
was then unloaded with a crosshead speed 1.0 mm/min until the load reached zero. This
loading/unloading cycle comprising steps (1)-(3) was repeated until the specimen failed.

The stress-strain relationship for the T700S/2592 [0/908/0] laminate predicted from
the present model was compared to the obtained experiment results. We denote
T700S/2592 as CFRP-I. The material properties of the ply, parameters of transverse crack
evolution, and ultimate fiber failure strain, εfc, derived from SEM simulations are listed
in Tables 5, 6, and 7, respectively. The out-of-plane shear modulus, G23, of CFRP-I ply
given in Table 5 was derived as follows:

G23 =
E2

2(1 + ν23)
. (102)

Parameters of transverse crack density evolution were determined by fitting the
calculated results of the present model with the experimental data as shown in Fig. 11
(a). Figure 11 (b) presents a comparison of the predicted results for stiffness reduction
as a function of transverse crack density determined by using the present model with
experimental results. The results predicted using the present model agree quantitatively
with the experimental results obtained through loading/unloading tests. The predicted
stress-strain responses of the T700S/2592 [0/908/0] laminate was compared to the
experimental results, as shown in Fig. 11 (c). The results of the present model obtained
considering stiffness reduction due to transverse cracking show good agreement with
the experimental data. According to these results, the nonlinearity of the stress-strain
responses observed in the 200-350 MPa range is mainly due to transverse cracking. The
ultimate failure stress and strain determined from the critical-strain-based criterion also
agree with the experimental data. This result implies that the ultimate failure strength of
CFRP laminates with 0◦ plies can be determined using the strain-based fiber criterion,
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Table 5. Mechanical properties of plies used in the calculation of stress-strain behavior of
cross-ply laminates.

CFRP-I 46 CFRP-II 42

Longitudinal Young’s modulus E1 (GPa) 115 123
Transverse Young’s modulus E2 (GPa) 7.74 8.68
In-plane Poisson’s ratio ν12 (-) 0.315 0.33
Out-of-plane Poisson’s ratio ν23 (-) 0.394 0.394c

In-plane shear modulus G12 (GPa) 3.54 3.92
Out-of-plane shear modulus G23 (GPa) 3.78a 2.91a

Longitudinal thermal expansion coefficient α1 (10−6/°C) 0.4b 0.4b

Transverse thermal expansion coefficient α2 (10−6/°C) 36b 36b

Temperature difference ∆T (°C) −100 −110
Fiber volume fraction f (-) 0.51 0.528d

Ply thickness (mm) 0.142 0.15
a G23 was estimated using Eq. (102).
b These values are quoted from Okabe et al. 45

c This value is quoted from Kumagai et al. 46

d This was estimated from Eq. (103). Ef and Em given in Table 3 were used.

Table 6. Simulation results of ultimate fiber failure strain at stress concentration factor of 1.9.

CFRP-I CFRP-II

Ultimate fiber failure strain εfc (%) 1.77 1.83

Table 7. Parameters of transverse crack evolution in CFRP laminate used in Eq. (102).

CFRP-I CFRP-II

σL0 (MPa) 180 180
σLc (MPa) 74 110
mT 1.5 1.7
ρs (/mm) 0.76 0.9

and the ultimate fiber failure strain used in this criterion can be predicted through SEM
simulations.

The nonlinear stress-strain behavior of the T700SC/2592 [0/908/0] laminate was
predicted using the present model and the results were compared to the experimental
result obtained by Fikry et al.42 We denote T700SC/2592 as CFRP-II. The material
properties of the ply, parameters of transverse crack evolution, and ultimate fiber failure
strain, εfc, derived from SEM simulations are also listed in Table 5, 6, and 7, respectively.
The out-of-plane shear modulus G23 of CFRP-II ply given in Table 5 was estimated using
Eq. (102). The fiber volume fraction, f , of CFRP-II is estimated as

f =
E1 − Em

Ef − Em
, (103)
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Figure 11. Comparison of results predicted using present model for (a) transverse crack
density evolution, (b) stiffness reduction, and (c) stress-strain response of T700S/2592
[0/908/0] laminate with experimental results.

where Ef is the fiber axial Young’s modulus and Em is the matrix Young’s modulus
given in Table 3. The crack evolution parameters used in Eq. (101) were derived by
fitting the predicted results with the experiment results, as shown in Fig. 12 (a). The
predicted results for stiffness reduction as a function of the transverse crack density show
excellent agreement with the experimental results, as shown in Fig. 12 (b). Figure 12 (c)
presents the nonlinear stress as a function of the longitudinal or transverse strain obtained
using the present model and through experiments. The present model considering the
stiffness reduction due to transverse cracks can predict the nonlinearity of the stress-
strain response up to the ultimate failure strength of the laminate estimated using the
critical-strain-based criterion.

Nonlinear stress-strain response of GFRP cross-ply laminates
The nonlinear stress-strain behavior of E-glass/TX24235 GFRP [0/90n/0]s (n = 2, 4, 6)
laminates was predicted to validate our proposed damage variables d11, d22, and d12. The
stress-strain responses of cross-ply laminates with transverse cracking and fiber breaks
were calculated using Eqs. (92)-(94). The effective stiffness model Maimı́ simplified
comprising of the Maimı́ model with simplified forms of d22 in Eq. (64) and d12 in Eq.
(85) was utilized to predict the stiffness reduction due to transverse cracks in 90◦ plies. In
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Figure 12. Comparison of (a) transverse crack density, (b) stiffness reduction, and (c)
stress-strain response of T700SC/2592 [0/908/0] predicted using the present model with
experimental results (Fikry et al. 42).

the case of GFRP laminates, the stiffness reduction due to multiple-fiber fragmentation
in 0◦ plies and subsequent final laminate failure was calculated using damage variable
d11 in Eq. (28).

The GFRP ply properties were estimated using the analytical model developed by
Kravchenko et al.47 According to them, the properties of unidirectional-fiber-reinforced
ply composed of the transversely isotropic fibers and the isotropic matrix are determined
as follows:

E1 = E
(f)
1 f (f) + E(m)f (m) +

[
4(ν(m) − ν

(f)
12 )2k(m)k(f)G(m)

(k(f) +G(m))k(m) + (k(f) − k(m))G(m)f (f)

]
f (f)f (m),

(104)

E2 =

[
1

4k2
+

1

4G23
+

ν212
E1

]−1

, (105)

ν12 = ν
(f)
12 f (f) + ν(m)f (m) +

[
(ν(m) − ν

(f)
12 )(k(m) − k(f))G(m)

(k(f) +G(m))k(m) + (k(f) − f (m))G(m)f (f)

]
f (f)f (m),

(106)
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ν23 = 1− E2

2k2
− 2ν212

E2

E1
, (107)

G12 = G(m)

[
(G

(f)
12 +G(m)) + (G

(f)
12 −G(m))f (f)

(G
(f)
12 +G(m))− (G

(f)
12 −G(m))f (f)

]
, (108)

G23 = G(m)

[
(G

(f)
23 +G(m))k(m) + 2G

(f)
23 G(m) + (G

(f)
23 −G(m))k(m)f (f)

(G
(f)
23 +G(m))k(m) + 2G

(f)
23 G(m) − (G

(f)
23 −G(m))(k(m) + 2G(m))f (f)

]
,

(109)

α1 =
α
(f)
1 E

(f)
1 + α(m)E(m)f (m)

E
(f)
1 f (f) + E(m)f (m)

, (110)

α2 = (α
(f)
2 + ν

(f)
12 α

(f)
1 )f (f) + (1 + ν(m))α(m)f (m) − (ν

(f)
12 f (f) + ν(m)f (m))α1,

(111)

where

k(f) =
E

(f)
1 E

(f)
2

2(1− ν
(f)
23 )E

(f)
1 − 4

(
ν
(f)
12

)2
E

(f)
2

, (112)

k(m) =
E(m)

2(1− ν(m))− 4
(
ν(m)

)2 , (113)

k2 =
(k(f) +G(m))k(m) + (k(f) − k(m))G(m)f (f)

(k(f) +G(m))− (k(f) − k(m))f (f)
. (114)

Here, superscripts (f) and (m) denote the fiber and matrix property, respectively.
Subscripts 1, 2, and 3 represent the material coordinate axis of the ply shown in
Fig. 1. E, G, ν, α, k, and f are the Young’s modulus, shear modulus, Poisson’s
ratio, thermal expansion coefficient, bulk modulus, and volume fraction, respectively.
k2 is the transverse plane bulk modulus. E(f)

1 = E
(f)
2 = E(f), G(f)

12 = G
(f)
23 = G(f),

ν
(f)
12 = ν

(f)
23 = ν(f), and α

(f)
1 = α

(f)
2 = α(f) are assumed because the E-glass fiber is

isotropic. Table 8 lists the material properties of the E-glass fiber and resin used in Eqs.
(104)-(114). Tables 9 and 10 present the material properties used for calculating d11
and the parameters of transverse crack evolution in Eq. (101), respectively. The crack
evolution parameters were derived by fitting the results predicted by present model with
the experimental results, as shown in Fig. 13 (a).

Figure 13 (b) shows the comparison of the stress-strain responses of E-glass/TX24235
GFRP [0/90n/0]s (n = 2, 4, 6) laminates with those obtained experimentally by Okabe
et al.50 The results predicted by the present model for the [0/902/0]s laminate does
not agree with the experiment results. The present model overestimated the laminate
failure strength, despite considering the stiffness reduction due to transverse cracking
and fiber breaks. The reason for this overestimation may be the stiffness reduction, due
to additional damage modes such as delamination resulting from stress concentration at
the transverse crack tip. The predicted results for [0/904/0]s and [0/906/0]s laminates
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Table 8. Material properties of E-glass fiber and resin. 48

Fiber Young’s Modulus E(f) (GPa) 72.4
Fiber Poisson’s ratio ν(f) 0.2
Fiber shear modulus G(f) (GPa) 30.17
Fiber thermal expansion coefficient α(f) (10−5/°C) 0.5
Fiber volume fraction f 0.5
Matrix Young’s modulus E(m) (GPa) 3.4
Matrix Poisson’s ratio ν(m) 0.35
Matrix shear modulus G(m) (GPa) 1.259
Matrix thermal expansion coefficient α(m) (10−5/°C) 11.0

Table 9. Material properties used for calculating d11. 49

Fiber radius r (µm) 6.5
Gauge length L0 (mm) 24
Weibull modulus m 6.34
Fiber strength σ0 based on L0 (MPa) 1550
Fiber/matrix interfacial shear stress τ (MPa) 25

Table 10. Parameters of transverse crack evolution in E-glass/TX24235 GFRP [0/90n/0]s
(n = 2, 4, 6) laminates.

[0/902/0]s [0/904/0]s [0/906/0]s

σL0 (MPa) 140 70 55
σLc (MPa) 100 100 100
mT 3.1 3.1 3.1
ρs (/mm) 21.5 16.0 10.5

reasonably agrees with the experimental results. Furthermore, the laminate failure
strength derived from the GLS model can be used to predict the results. From the results
described in the previous and current sections, we concluded that the present model can
reproduce the stress-strain responses of cross-ply laminates with transverse cracks and
fiber breaks using the Maimı́ model with damage variables d11, d22, and d12 proposed in
this study.

Conclusions
This study involved deriving a new analytical model for predicting the effective
compliance of composite laminates and simplified expressions for the damage tensor.
We evaluated four models that yielded asymmetric/symmetric compliance matrices of
damaged composite plies. Damage variable d11 describing stiffness reduction due to fiber
breaks and its upper bound dmax

11 given by 1/(m+ 2) were formulated using the GLS
model. Moreover, the simplified analytical forms of damage variables d22 and d12 were
developed, assuming that the displacement field along the longitudinal direction could be
expressed as a quadric function by loosening the boundary condition for the governing
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Figure 13. Comparison of (a) transverse cracking progression and (b) stress-strain
responses of E-glass/TX24235 GFRP [0/90n/0]s (n = 2, 4, 6) laminates predicted using the
present model with experimental results (Okabe et al. 50).

differential equation. We also proved that the effective laminate properties could be
obtained by substituting the damage variables into the CLT- and CDM-based models.
Comparisons of the effective stiffness of laminates with transverse cracking to the results
obtained via finite element calculations were performed for model verification. We found
that the Maimı́ model41 in combination with the proposed formulation for the damage
variables, referred to as Maimı́ simplified in this study, was the most appropriate model
for predicting or estimating damage in composite laminates with transverse cracking.

The nonlinear stress-strain behaviors of CFRP cross-ply laminates resulting from
transverse cracking were predicted using the present model, and the predicted results are
compared with the experimental results. The effective compliance model with simplified
damage variable d22 and d12 was utilized to calculate the stiffness reduction of the CFRP
laminates. The ultimate tensile strength of CFRP cross-ply laminates was predicted based
on a strain-based fiber failure criterion because fiber fracture in CFRP laminate occurs
at the ultimate laminate failure stress. We assumed that the laminate failed when the
effective axial laminate strain became equal to the ultimate fiber axial failure strain
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in 0◦ plies. The ultimate fiber axial failure strain was derived from SEM simulations.
The present model quantitatively reproduced the experimental results up to the ultimate
failure strength of the laminate.

We predicted the nonlinear stress-strain behavior of [0/90n/0]s (n = 2, 4, 6) GFRP
cross-ply laminates with transverse cracks in 90◦ plies and fiber breaks in 0◦ plies to
validate our proposed damage tensor d11, d22, and d12. d11 associated with fiber breaks
and its upper bound describing the ultimate failure condition were analytically derived
using the GLS model.35 The effective stiffness model with simple damage variables d11,
d22, and d12 was utilized to evaluate the stiffness reduction due to transverse cracking,
fiber breaks, and ultimate failure of the laminate. In [0/904/0]s and [0/906/0]s laminates,
the results predicted using the developed model showed reasonable agreement with
the experimental results when the transverse cracking progression was fitted with the
experimental results. Thus, if transverse cracking progression is formulated properly, the
stress-strain diagram can be reproduced better.
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