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Abstract. Let kq, . . ., k, be positive integers. Let g1, . . ., g, be pairwise coprime positive
integers with ¢; >2 (i=1,...,r),andsetg=gq;---q,. Foreachi=1,...,r,let T; be
a set of ¢(g;)/2 representatives mod ¢; such that the union 7; U (—T7;) is a complete set of
coprime residues mod ¢;. Let K be an algebraic number field over which the gth cyclotomic
polynomial @, is irreducible. Then, ¢(g)/2" numbers

r dk;—]

Ki—1 (COthi)Izi=ai/q,' (a,-eT,-,i:],...,r)

i=1 i
are linearly independent over K. As an application, a generalization of the Baker—Birch—
Wirsing theorem on the non-vanishing of the multiple Dirichlet series L(sy, ..., s-; f) with

periodic coefficients at (sq, ..., s,) = (k1, .. ., k) is proven under a parity condition.

1. Introduction

Sarvadaman Chowla [7] proved that if p is an odd prime, then the (p — 1)/2 real numbers
cotRma/p) (a=1,2,..., (p—1)/2) are linearly independent over the field Q of rational
numbers. Other proofs were provided by [2, 3, 10, 14].

Let k, g be positive integers with ¢ > 2, and let T be a set of ¢(q)/2 representatives mod
g such that the union 7 U (—T) is a complete set of coprime residues mod g. Okada [15] and
Wang [16] independently generalized the aforementioned Chowla’s theorem as follows.

THEOREM 1.1. (Okada [15] and Wang [16]) The ¢(gq)/2 numbers
k—1
dzk=1

are linearly independent over Q.

(cotwz)lz=asq (@ €T)

For a positive integer k and a periodic function f : Z — C, we consider the value L(k, f)
of the Dirichlet series defined by

Lk =) fn(,’f).
n=1

In the early 1960s, Chowla made the following conjecture: Let f:Z — Q be a non-
zero periodic function with prime period p satisfying f(p) =0. Then, L(1, f) %0 if this
converges. Chowla [6] proved this conjecture in the case where f is an odd function. Baker,
Birch, and Wirsing [4] proved Chowla’s conjecture in a more general setting, as follows.
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THEOREM 1.2. (Baker, Birch, and Wirsing [4]) Let g be a positive integer and let f : 7. —
Q be a non-zero periodic function with algebraic values and period g such that

i) f(r)=0ifl <gcd(r,q) <q, and

(ii)  the qth cyclotomic polynomial ® is irreducible over Q(f (1), ..., f(g)).

Then, L(1, f) # 0 if this converges.

Under the same assumptions as Theorem 1.2, Adhikari, Saradha, Shorey, and Tijdeman
[1] proved that L(1, f) is a transcendental number if this converges. Concerning the values
L(k, f) (k> 1), Okada [15] obtained the following theorem, which is a generalization of
Theorem 1.2 under a parity condition.

THEOREM 1.3. (Okada [15]) Let k be a positive integer, and let f : 7 — Q be a non-zero
periodic function with algebraic values and period q > 2 such that

(i)  f is even or odd based on whether k is even or odd,

i) f(m)=0ifged(n, q) > 1, and

(iii) the qth cyclotomic polynomial ® is irreducible over Q(f (1), ..., f(g)).

Then, L(k, f) # 0 if this converges.

Let kq, . .., k, be positive integers, and let f : Z" — C be a function such that for each
i, f(...,n;,...) is periodic. We investigate the value L(ky, ..., k,; f) of the multiple
Dirichlet series for f defined by
o0
. f(n17"'7nr)
Lkt,oo ke )= )
v Ty = nl S
Weatherby [17] proved the transcendence properties of the value L(1, ..., 1; f).

The purpose of this paper is to generalize the Okada—Wang theorem (Theorem 1.1) and
apply our result to the multiple Dirichlet series to generalize Okada’s theorem (Theorem 1.3).
The remainder of this paper is organized as follows. In Section 2, we generalize the Okada—
Wang theorem and apply our result to compute the dimension of the Chowla—Milnor spaces.
In Section 3, we present the basic properties of the values of the multiple Dirichlet series
to generalize Weatherby’s results [17]. In Section 4, we state a generalization of Okada’s
theorem. Section 5 is devoted to the proof of this generalization.

2. Okada-Wang theorem

2.1.  Main theorem
The following is a generalization of the Okada—Wang theorem.

THEOREM 2.1. Let ki, ..., k. be positive integers. Let qy, ..., qr be pairwise coprime
positive integers with gi >2 (i=1,...,r), and set q=q1---qr. Foreachi =1, ...,r,
let T; be a set of ¢(q;)/2 representatives mod q; such that the union T; U (—T;) is a complete
set of coprime residues mod q;. Let K be an algebraic number field over which the qth
cyclotomic polynomial ® is irreducible. Then, the ¢(q)/2" numbers
r dk;—]
[ cotnzdlomary @eTii=1,....r
i=1 i

are linearly independent over K.
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Proof. We prove the theorem by induction on r. Murty and Saradha [12, Lemma 11] proved
the case r = 1. Let r > 1, and we assume that the case r — 1 is correct. Let

k—1

@ = Tami @t

(7 cot 7).

We can observe that Fy, (a;/q;) € Q(&y,), where &, is a primitive g;th root of unity. We first
prove that

Fkl(al/CIl)"'Fk,-(ar/CIr) (aiensi:17"'vr) (21)

are linearly independent over Q. Assume that

a ey ar€T,

o, € Q. This equation can be written as

,,,,,

DAY D Ca a,FM(al/ql)ka,l(ar_l/qr_n)Fk,(ar/qr)=0. 22)

ar€T, <a1€T1 ar—1€Tr—1

As Fy (ar/q;) (ar € T,) are linearly independent over Q, using Q(&y,...q,_;) N Q(gy,) =Q,
Fy,(ar/qr) (ar € T,) are linearly independent over Q(Zy,...q,_, ). Combining

a1€Ty ar—1€Tr—

with (2.2), we obtain

a1y ar—1€T,—
Applying the assumption of induction to these equations, we have

o =0 (@eT,i=1,...,r).

We prove that the numbers in (2.1) are linearly independent over K. By assumption, K
and Q(g,) are linearly disjoint over Q. As the numbers in (2.1), which belong to Q(¢,), are
linearly independent over Q, they are linearly independent over K. O

2.2.  Application: the dimension of the Chowla—Milnor space

For x € R with 0 < x <1 and s € C with Re(s) > 1, the Hurwitz zeta function is defined by

as 1
(s, )=y ——.
n=0 (n +x)*
Definition 2.2. Let qq, ..., q» > 1 be integers, and let K be an algebraic number field. For
integers k1, ..., k, > 1,1et Vi, .« (q1, - .., qr; K) be the K-linear space defined by

Vit (@1, oo qrs K)
= K-spanof {¢(k1, ar/q1) - - - ¢k, ar/qr) |1 <a; <gi, ged(a;, gi)=1,i=1,...,r},

which is called the Chowla—Milnor space.
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Using Theorem 2.1, we can provide the following non-trivial lower bound for the
dimension of the Chowla—Milnor space.

THEOREM 2.3. Letqy, ..., g, beintegerswithq; >2({=1,...,r),andsetqg=qi - - - qy.
Let K be an algebraic number field over which the qth cyclotomic polynomial ®, is
irreducible. Then,
v(q)

or
Proof. According to Chatterjee [5, Lemma 3], for a; € Z with 1 < a; < ¢; and ged(a;, qi) =
1, it holds that

dimg Vi, ..k, (q1, ..., qr; K) >

(_l)k,-—l dk,-—l
(ki — D! g

i

¢(kivai/qi) + (=DNg ki, 1 —ai/gi) = (7T cot 72i)|zy=a; Jqi -
For each i, let
Ti={a,€Z|1=<aq; <gq;/2, gcd(a;, gi) = 1}.

The set {a;, g —a; | a; € T;} becomes a complete set of coprime residues mod ¢g;. Using
Theorem 2.1, the ¢(g) /2" numbers

Qi ai/g) + (=D5eki, 1 —ai/q)) (@i €T i=1,...,r),
=1

l

which belong to Vi,,..x (g1, . ... qr; K), are linearly independent over K. This completes
the proof. O

Remark 2.4. Gun, Murty, and Rath [8, 9] formulated the following conjecture, which is called
the Chowla—Milnor conjecture: Let k, g be positive integers with ¢ > 1, and let K be an
algebraic number field over which the gth cyclotomic polynomial ®, is irreducible. Then, it
holds that dimg Vi (gq; K) = ¢(g). They [9] proved the case r = 1 for Theorem 2.3.

3. Multiple Dirichlet series

We prove the basic properties of the values of the multiple Dirichlet series to generalize
Weatherby’s results [17].

Let g1, ..., g, be positive integers, and let K be a subfield of C. We write
F(q1,.-.,qr; K) for the set of all functions f:7Z" — K such that, for each i,
f(..,n;, ...) is periodic with period g;. The function f € F(qi, ..., qr; K) is called a
multiple periodic function with multiple period (q1, . . ., qr).

3.1. Convergence

Let ki, ...,k be positive integers. For f € F(qi, ..., qr; C), we define the value
L(ky, ..., kq; f) of the multiple Dirichlet series by
o0
fny, ..., n)
Ltkt, ook )= )
Ny, np= ny - np
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where each N; can go to infinity independent of the other N;. That is, this series converges

to the same value regardless of how Ny, ..., N, go to infinity.

The following proposition is a criterion for the convergence of L(k1, ..., k.; f).
PROPOSITION 3.1. For f € F(q1, ---,qr; C), the series L(ky, ..., kq; f) converges if,
and only if, for each i with k; =1,

qi
Zf(al,...,ai_l,n,-,ai+1,...,ar)zO (3.1)
n[=1
foralla; €{l,...,q;}(j#i).
Proof. Assume that L(kq, ..., k.; f) converges. For r = 1, we refer the reader to Murty and

Saradha [11, Theorem 16]. Let r > 1. When k; = 1, we have

Z Z f(n17.~.-.-7 ny)

n1=I1 n,=1 ny
_Z Ni 1 Ni 1 i 1 Zf(al,..., Niv ..., a)
a;=1 allq aj—1=1 alkl 11 aiy1=14 zk—lt-Jrl1 ar=1 ar ni=l1 ’
which converges as N; — oo. Hence, szzl flay,...,nj, ..., a,)ni_l converges. This

yields (3.1).

Conversely, assume that (3.1) holds for each i with k; = 1. We prove the claim by
induction on r. For r = 1, we refer the reader to Murty and Saradha [11, Theorem 16]. Let
r > 1, and we assume that the case r — 1 is correct. For n; € N, let

F(i’ll)— Z f(nlsn2v-"v r)’ (32)

k2 k,
~~~~~ ny=1 ny coeny

which converges by the assumption of induction. We observe that F:N— C is a
periodic function with period ¢;. When ki > 1, we observe that L(ky,...,k; f) =
an_l F(nl)n1 converges. When k; = 1, using (3.1),

91
> F= Z Z funz, ... in)=0
ni=l1 ny,..,n=1n=l1
which shows that L(kq, ..., k.; f) = ZZ?:I F(n])nl*k1 converges. O

3.2.  Fourier analysis

We recall the Fourier analysis for the multiple periodic functions discussed by [17]. For
positive integers g1, . . ., g, let {, =exp(2mi/q;) (i =1, ..., r)and

G, - g )=Z/7Z x --- X ZL/q 7
For f € F(q1,...,q;C),

—~ 1
f(n], ey nr) = q— Z f(ah .. ar)g_alnl T Cq_rarnr

Ll (ay,.00,0€G (1,000
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is called the Fourier transform of f.1If f is an algebraic-valued function, then fis also an
algebraic-valued function. Using f, f can be written as

fl, ... n) = > flar, ... agg!™ - o
(al,---,tlr)EG(ql ----- qr)

which is called the Fourier inversion formula. According to [17, Lemma 8], (3.1) holds for
alla; € {1, ..., q;} (j #i)if and only if

Flar, ... aio, gi a1, .. a) =0 (3.3)
foralla;j €{1,...,q;}(j#i).
PROPOSITION 3.2. For f € F(q1, - - -, qr; C)\ {0}, the following properties hold:

0 FeF@....a:0%; ~
(i) f and f have the same parity, i.e. for each i, f(...,n;,...)and f(...,n;,...) are
evenor f(...,nj,..)and f(...,n;,...)areodd.

Proof. The proof of (i) is easy. We prove (ii). Let g = ¢q1 - - - g,. For each i, let

‘_{1, if f(...,n;,...)iseven,
;=

1, if fC..,n, ... is odd. (3-4)

We have

S, .oooonis.ooony)

ajn; —(g: —a:n;:
Z Hé“q, ” Z f@i ... a1 qi —ai, ais, ... ap)gg SO

q ajeGlg;) j#i

J#L
L]
S T1e™ Y. flan .. aich, —ai aigas ... g,
ajeG(qj) j#i a;=1
j#i
:Eif(n17""ni_1’ _ni7nl‘+1”"7nr)' D

3.3.  Some formulas

We recall polygamma functions to describe the values of multiple Dirichlet series. The
digamma function ¥ (x) = ¥(x) is defined by

1
b ()

where y is the Euler constant. For a positive integer k, the kth polygamma function v (x) is
defined by

1
_ — (=D S —
V() = - kvf(x) (=1 Z T
Let kg, . .., k, be positive integers. We set
(_1)kl+'“+kr
cky, ... k) =

(ky — D)+ - (ky — D)gkitthe

to simplify the notation.



Okada’s theorem and multiple Dirichlet series 435

PROPOSITION 3.3. We assume that L(ky, ..., kr; f) converges for f € F(qi, ..., qr; C).
Then, it holds that

L(kla "'5kr; f)=c(k17 "'7kr)
x > flar, . a) ¥ —1(ar/qn) - - Yi,—1(ar /qr)-
(ay,....ar)€G(q15---,qr)
(3.5)
Proof. We prove the proposition by induction on r. The case r = 1 was proved by Murty and
Saradha [12, (6)]. Let » > 1, and assume that the case r — 1 is correct. Let F : Z — C be the
periodic function with period ¢ defined by (3.2). Using this, it holds that

00

Lk, ... ki)=Y Fapn ™. (3.6)

ni=1
By the assumption of induction, F(n1) can be written as
F(n) =cka, ..., k)
x > f.a. ... a)Y-1(@/q) - Yi—1(ar/qr).

(a2,....ar)€G(q2,.-,qr)

3.7
Applying the case r = 1 to (3.6), we have
Lki, ...k fy=ck) Y Fla)yi-1ai/q),
a1€G(q1)
which becomes the right-hand side of (3.5). O

For a positive integer k and z € C with |z| < 1, the kth polylogarithm function Lik (z) is
defined by

e8]

Lix(2) = Z %

n=1
Note that for k = 1, this series becomes —log(1 — z) for |z| < 1. We describe the values of
multiple Dirichlet series in terms of polylogarithm functions.

PROPOSITION 3.4. We assume that L(ky, ..., kr; f) converges for f € F(q1, - - ., qr; C).
Then, it holds that

QI Qr
Lki, ..o kes f)=)" - > flar, ..., a)Lix (&) -+ Lix, (G5, (3.8)
a=1 ar=1

where
qj ifkj >2,
qj—l, ifkj=1.

Proof. Using the Fourier inversion formula, we have

Q;=

%} 1 q1 qr -
Lo ki = Y 3N S arapga g
ni,..on=1"%1 *° sy a=1 a,=1

Applying Proposition 3.1 and (3.3) to this equation, we obtain the right-hand side of (3.8). O
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4. Okada’s theorem

In this section, we generalize Okada’s theorem (Theorem 1.3). We provide some definitions
to state our result.

Definition 4.1. Let K be a subfield of C. A function f € F(qi, ..., gr; K) is said to be of
Dirichlet type if f(ny, ..., n,) =0 whenever there exists i such that gcd(n;, g;) > 1. We set

FD(q1,..-,qr; K)={f € F(q1,...,qr; K)| f is of Dirichlet type}.

Definition 4.2. Let f e F(q1,...,qr; C) and (ky, ..., k) e N'. We say that f and
(k1, ..., k) have the same parity if, for each i, f(...,n;,...) and k; are even or
f(..,ni, ...) andk; are odd.

The following is a generalization of Theorem 1.3, which is one of the main theorems in
this paper.

THEOREM 4.3. Let ki, ..., k. be positive integers. Let qi, ..., qr be pairwise coprime
positive integers with q; >2 (i=1,...,r), and set g =q1 - - - qr Let K be an algebraic
number field over which the qth cyclotomic polynomial ® is irreducible. We assume that
feFDq,...,qr; K)\{0} and (k1, ..., k) have the same parity. If L(ky, ..., kr; )
converges, then L(ky, ..., k; f) is a transcendental number.

It is interesting to study certain infinite series in [13, 17] to generalize this theorem.
As a corollary to Theorem 4.3, we have the following result on the linear independence
of the values of the multiple Dirichlet L-functions.

THEOREM 4.4. Let ki, ..., k. be positive integers. Let q1, ..., qr be pairwise coprime
positive integers with g; >2 (i=1,...,r), and set q =q1 - - - qr. Let K be an algebraic
number field, and suppose that K (e¥1/9@)y N Qy) =Q. Let A(ky, ..., k) be the set
of x € FD(q1, - .., qr; C) such that x becomes a character of the unit group (Z/q1Z x
<« X Z/q,Z)* and such that x and (ky, ..., k,) have the same parity. Then, the numbers
Lki, ..., kr; x) (x € Alky, ..., k) are linearly independent over K (e*7!/¢@),

Proof. We assume that

Z cyLki, ...,k x)=0 (¢, € K(¥/9@)),
XEA(KT .. kr)
Let f=3% cat..k)CxX- As L(ki,... k; f)=0, using Theorem 4.3, one has
er Atky..dy) €xX =0. Thus, the orthogonality of characters yields ¢, =0 for any
X € Alky, ..., k). |

Remark 4.5. Theorem 4.4 is a generalization of Okada [15, Corollary 2] and Murty and
Saradha [12, Theorem 13].

5. Proof of Theorem 4.3

In this section, we prove Theorem 4.3.
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5.1. Non-vanishing of L(ky, ..., kr; f)

In this subsection, we prove that L(kq, ..., k,; f)isnot zero. As f is of Dirichlet type, using
Proposition 3.3, it holds that

Ly, ..., k5 f)
=clky, ..., k) Z flar, ..., a0 -1(ar/q1) - - - Yi,—1(ar/qr),

(@r,....ar)€(Z/q1Z)* x---x (L[ qr L)*
where each (Z/q;Z)* is the unit group of Z/q;Z. For each i, let
Ti ={a; € Z|1=<a; <qi/2, gcd(a;, gi) =1}.
The set {a;, gi — a; | a; € T;} becomes a complete set of coprime residues mod g;. Observing

the parity of f, L(ky, ..., k,; f) becomes

,
ctkis .o k) YT fbr b)Yk (L /q)) - k-1 (br/qr)
i=1 biefai,qi—a;}
a; €T;

=c(ki, ... k) > fai, ... a) [ [Wn-1(ai/a) + i1 (1 — ai /i),
i=1

(@rsees ar)€Ty x--xTy

where ¢; is the number defined by (3.4). Murty and Saradha [12, (7)] proved that

dki—l ‘
— T (7 ot wa) = Y1 () + (=D - (- 2).
As f and (ki, ..., k;) have the same parity, L(k1, ..., k,; f) becomes
r dk,‘—l
(—l)rC(kl,...,kr) Z f(alv"'var)l_[( ki—1 ( COthZi)|z,-=ai/q,~>,
@@y,e.,ar) €Ty - x T, i=1 dZi

which is not zero from Theorem 2.1.

5.2. Algebraicity of L(ky, ..., k;; f)/ﬂk1+-~+k,

In this subsection, we prove that L(ky, ..., k; f) /nk‘+"'+k' is an algebraic number. Let
By (x) be the kth Bernoulli polynomial. We need the following lemma.

LEMMA 5.1. Let f € F(q1, ..., qr; C)\ {0} and (ky, ..., k) € N'. We assume that f and
(k1, ..., kr) have the same parity. If L(k1, . .., ky; f) converges, then

YLky, ... ke f)
—D' i ki+-+k Q1 Or .
S EUE Y Y P adBu@fan - B/, G

a=1 ar=1

where each Q j is the number defined in Proposition 3.4. In particular, if f is an algebraic-
valued function, then L(ky, . .., k; f)/nk1+"'+k’ is an algebraic number.
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Proof. For each i, let

s _ [0 ifki=2,
L ik =1

Using (3.3) and Proposition 3.4, it holds that

L(kla"'akr;f)
q1—1 =l
. —a : r—ar
=Y Y Flai—ar g —ap)Lig G - Li, (6
ay;=4; ar=4
01 Or .
- Z Z f(=an. ..., —a,)Li, (¢, ™) - - - Lix, (£,%)
alzl ar:l

0 Or
=ecr-o6 ) oo ) flar, . a)Lig (6 - - Lig (65,").

ar=1 ar=1

Hence, we have

2"Lky, ... ks f)
% Or
a=1

According to Murty and Saradha [12, Section 2], it holds that

Flan, oo an TT i €51 + €L 6
1

ar= j=1

k! . ‘
—By(x) = W(Lik(ﬁmk) + (= D¥Lig (e~ 2miky).

As f and (kq, ..., k) have the same parity, (5.1) is obtained.
We prove the latter part of the lemma. By assumption, fis an algebraic-valued function.
As each By (x) has rational coefficients, L(ky, ..., k;; f)/nk1+"'+kf is an algebraic number.

5.3.  Conclusion of the proof

Finally, using Sections 5.1 and 5.2, we conclude that L(kq, ..., k,; f) is a transcendental
number. This completes the proof of Theorem 4.3.

From the discussion in Section 5.1, we can formulate the following conjecture, which is
a generalization of [12, Conjecture 1].

CONJECTURE 5.2. Let ki, ..., k. be positive integers, and let q1, ..., qr be pairwise
coprime positive integers with q; >2 (i=1,...,r). Let K be an algebraic number field
over which the qth cyclotomic polynomial ® is irreducible. Then, the ¢(q) numbers

Wkl(al/ﬁh)"'wkr(ar/ch) (ISCZ[ S%’» ng(aiv qi)=11 l:1, "'1r)

are linearly independent over K.
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