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Abstract The forward-backward splitting method (FBS) for minimizing a nons-
mooth composite function can be interpreted as a (variable-metric) gradient method
over a continuously differentiable function which we call forward-backward enve-
lope (FBE). This allows to extend algorithms for smooth unconstrained optimization
and apply them to nonsmooth (possibly constrained) problems. Since the FBE and its
gradient can be computed by simply evaluating forward-backward steps, the resulting
methods rely on the very same black-box oracle as FBS. We propose an algorithmic
scheme that enjoys the same global convergence properties of FBS when the prob-
lem is convex, or when the objective function possesses the Kurdyka-Łojasiewicz
property at its critical points. Moreover, when using quasi-Newton directions the
proposed method achieves superlinear convergence provided that usual second-order
sufficiency conditions on the FBE hold at the limit point of the generated sequence.
Such conditions translate into milder requirements on the original function involving
generalized second-order differentiability. We show that BFGS fits our framework
and that the limited-memory variant L-BFGS is well suited for large-scale prob-
lems, greatly outperforming FBS or its accelerated version in practice, as well as
ADMM and other problem-specific solvers. The analysis of superlinear convergence
is based on an extension of the Dennis and Moré theorem for the proposed algorith-
mic scheme.
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1 Introduction

In this paper we focus on nonsmooth optimization problems over IRn of the form

minimize
x2IRn

j(x)⌘ f (x)+g(x), (1.1)

where f is a smooth (possibly nonconvex) function, while g is a proper, closed, con-
vex (possibly nonsmooth) function with cheaply computable proximal mapping [1].
Problems of this form appear in several application fields such as control, system
identification, signal and image processing, machine learning and statistics.

Perhaps the most well known algorithm to solve problem (1.1) is the forward-
backward splitting (FBS), also known as proximal gradient method [2, 3], which
generalizes the classical gradient method to problems involving an additional non-
smooth term. Convergence of the iterates of FBS to a critical point of problem (1.1)
has been shown, in the general nonconvex case, for functions j having the Kurdyka-
Łojasiewicz property [4–7]. This assumption was used to prove convergence of many
other algorithms [7–11]. The global convergence rate of FBS is known to be sublin-
ear of order O(1/k) in the convex case, where k is the iteration count, and can be
improved to O(1/k2) with techniques based on the work of Nesterov [12–15]. There-
fore, FBS is usually efficient for computing solutions with small to medium precision
only and, just like all first order methods, suffers from ill-conditioning of the problem
at hand. A remedy to this is to add second-order information in the computation of the
forward and backward steps, so to better scale the problem and achieve superlinear
asymptotic convergence. As proposed by several authors [16–18], this can be done
by computing the gradient steps and proximal steps according to the Q-norm rather
than the Euclidean norm, where Q is the Hessian of f or some approximation to it.
This approach has the severe limitation that, unless Q has a very particular structure,
the backward step becomes now very hard and requires an inner iterative procedure
to be computed.

In the present paper we follow a different approach. We define a function, which
we call forward-backward envelope (FBE) that serves as a real-valued, continuously
differentiable, exact penalty function for the original problem. Furthermore, forward-
backward splitting is shown to be equivalent to a (variable-metric) gradient method
applied to the problem of minimizing the FBE. The value and gradient of the FBE
can be computed solely based on the evaluation of a forward-backward step at the
point of interest. For these reasons, the FBE works as a surrogate of the Moreau en-
velope [1] for composite problems of the form (1.1). Most importantly, this opens up
the possibility of using well known smooth unconstrained optimization algorithms,
with faster asymptotic convergence properties than the gradient method, to minimize
the FBE and thus solve (1.1), which is nonsmooth and possibly constrained. This ap-
proach was first explored in [19], where two Newton-type methods were proposed,
and combines and extends ideas stemming from the literature on merit functions for
variational inequalities (VIs) and complementarity problems (CPs), specifically the
reformulation of a VI as a constrained continuously differentiable optimization prob-
lem via the regularized gap function [20] and as an unconstrained continuously differ-
entiable optimization problem via the D-gap function [21] (see [22, §10] for a survey
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and [23,24] for applications to constrained optimization and model predictive control
of dynamical systems).

Then we propose an algorithmic scheme, based on line-search methods, to mini-
mize the FBE. In particular, when descent steps are taken along quasi-Newton direc-
tions, superlinear convergence can be achieved when usual nonsingularity assump-
tions hold at the limit point of the sequence of iterates. The asymptotic analysis is
based on an analogous of the Dennis and Moré theorem [25] for the proposed algo-
rithmic scheme, and the BFGS quasi-Newton method is shown to fit this framework.
Its limited memory variant L-BFGS, which is suited for large scale problems, is also
analyzed. At the same time, we show that our algorithm enjoys the same global con-
vergence properties of FBS under the same assumptions on the original function j ,
despite our method operates on the FBE. Unlike the approaches of [16–18], our al-
gorithm does not require the solution to any inner problem.

The contributions of this work can be summarized as follows:

– We give an interpretation of forward-backward splitting as a (variable-metric)
gradient method over a C1 function, the forward-backward envelope (FBE). We
analyze the fundamental properties of the FBE, including second-order properties
around the solutions to (1.1) under mild assumptions on g.

– We propose an algorithmic scheme for solving problem (1.1) based on line-
search methods applied to the problem of minimizing the FBE, and prove that
it converges globally to a critical point when j is convex or has the Kurdyka-
Łojasiewicz property. This is a crucial feature of our approach: in fact, the FBE is
nonconvex in general, and there exist examples showing how classical line-search
methods need not converge to critical points for nonconvex functions [26–29].
When j is convex, in addition, global sublinear convergence of order O(1/k) (in
the objective value) is proved.

– We show that when the directions of choice satisfy the Dennis-Moré condition
the method converges superlinearly, under appropriate assumptions, and illustrate
when this is the case for BFGS. The resulting algorithm has the same global
convergence properties as FBS but, despite relying on the same black-box oracle,
converges much faster in practice.

The paper is organized as follows. Section 2 introduces the forward-backward
envelope function and illustrates its properties. In Section 3 we propose our algo-
rithmic scheme and prove its global convergence properties. Linear convergence is
also discussed. Section 4 is devoted to the asymptotic convergence analysis in the
particular case where quasi-Newton directions are used, specializing the results to
the case of BFGS. Limited-memory directions are also discussed. Finally, Section 5
illustrates numerical results obtained with the proposed method. Some of the proofs
are deferred to the Appendix for the sake of readability and, for the reader’s con-
venience, Appendix A will list some definitions and known results on generalized
differentiability which are needed in the analysis.
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1.1 Notation and background

Throughout the paper, h · , · i is an inner product over IRn and k · k=
p

h · , · i is
the induced norm. The set of continuously differentiable functions on IRn having L-
Lipschitz continuous gradient (also refferred to as L-smooth) is denoted by C1,1

L (IRn).
We denote the extended real line as IR⌘ IR[{+•}. The set of proper, closed, convex
functions from IRn with values in IR is referred to as G0(IRn). Given a function h on
IRn, the subdifferential ∂h(x) of h at x is considered in the sense of [30, Def. 8.3],
that is

∂h(x) =
n

v 2 IRn
| 9 (xk)k2IN,(vk

2 ∂̂h(xk))k2IN s.t. xk
! x,vk

! v
o

where

∂̂h(x) = {v 2 IRn
| h(z)� h(x)+ hv,z� xi+o(kz� xk),8z 2 IRn

} .

This includes the ordinary gradient in the case of continuously differentiable func-
tions, while for g 2 G0(IRn) it is equivalent to

∂g(x) = {v 2 IRn
| g(y)� g(x)+ hv,y� xi, for all y 2 IRn

} .

We denote the set of critical points associated with problem (1.1) as

zer∂j = {x 2 IRn
| 0 2 ∂j(x)} = {x 2 IRn

| �— f (x) 2 ∂g(x)} .

The second equality is due to [30, Ex. 8.8]. A necessary condition for a point x to
be a local minimizer for (1.1) is that x 2 zer∂j [30, Thm. 10.1]. If j is convex (for
example when f is convex) then the condition is also sufficient, and x is a global
minimizer.

Given g 2 G0(IRn), its proximal mapping is defined by

proxgg(x) = argmin
u2IRn

n

g(u)+ 1
2g ku� xk2

o

, (1.2)

cf. [1]. The proximal mapping is a generalized projection, in the sense that if g = dC
is the indicator function of a nonempty closed convex set C ✓ IRn, i.e., g(x) = 0 for
x 2C and +• otherwise, then proxgg = PC is the projection on C for any g > 0. The
value function of the optimization problem (1.2) defining the proximal mapping is
called the Moreau envelope and is denoted by gg , i.e.,

gg(x) = min
u2IRn

n

g(u)+ 1
2g ku� xk2

o

. (1.3)

Properties of the Moreau envelope and the proximal mapping are well documented
in the literature [3,30–32]. For example, the proximal mapping is single-valued, con-
tinuous and nonexpansive (Lipschitz continuous with Lipschitz constant 1) and the
envelope function gg is convex, continuously differentiable, with gradient

—gg(x) = g�1(x�proxgg(x)), (1.4)

which is g�1-Lipschitz continuous [31, Prop. 12.29].
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We will consider cases where g is twice epi-differentiable [30, Def. 13.6], and
indicate with d2g(x|v) the second-order epi-derivative of g at x for v.

For a mapping F : IRn
! IRm we will indicate by DF(x) and JF(x), respectively,

its semiderivative and Jacobian at x, when these exist. The directional derivative of F
at x along a direction d will then be denoted as DF(x)[d] if F is semidifferentiable
at x, and as JF(x)[d] = JF(x)d if F is differentiable at x. For the basic notions about
semidifferentiability, and its link with ordinary differentiability, we refer the reader
to Appendix A and the references therein.

We will talk about the linear and superlinear convergence of the proposed algo-
rithm according to the following definition (see also [33, Def. 2.3.1] and discussion
thereafter).

Definition 1.1. We say that (xk)k2IN converges to x?

(i) Q-linearly with factor w 2 [0,1) if kxk+1
� x?k wkxk

� x?k for all k � 0;
(ii) Q-superlinearly if kxk+1

� x?k/kxk
� x?k! 0.

The convergence rate is R-linear (respectively, R-superlinear) if kxk
�x?k ak for all

k � 0 and a sequence (ak)k2IN such that ak! 0 with Q-linear (Q-superlinear) rate.

1.2 The forward-backward splitting

In the rest of the paper we will work under the following

Assumption 1. j = f +g with f 2C1,1
L f

(IRn) for some L f > 0 and g 2 G0(IRn).

If f satisfies Assumption 1 then [34, Prop. A.24]

f (y) f (x)+ h— f (x),y� xi+ L f
2 ky� xk2. (1.5)

Given an initial point x0 and g > 0, forward-backward splitting (also known as proxi-
mal gradient method) seeks solutions to the problem (1.1) by means of the following
iterations:

xk+1 = proxgg(x
k
� g— f (xk)). (1.6)

Under Assumption 1 the generated sequence (xk)k2IN satisfies [15, eq. (2.13)]

j(xk+1)�j(xk) �
2�gL f

2g kx
k+1
� xk
k

2.

If g 2 (0,2/L f ) and j is lower bounded, it can be easily inferred that any cluster
point x is stationary for j , in the sense that it satisfies the necessary condition for
optimality x 2 zer∂j . The existence of cluster points is ensured if (xk)k2IN remains
bounded; due to the monotonic behavior of (j(xk))k2IN for g in the given range,
this condition in turn is guaranteed if j and the initial point x0 satisfy the following
requirement, which is a standard assumption for nonconvex problems (see e.g. [15]).

Assumption 2. The level set
�

x 2 IRn
| j(x) j(x0)

 

, which for conciseness we
shall denote

�

j  j(x0)
 

, is bounded. In particular, there exists R > 0 such that
kx� zk  R for all x 2

�

j  j(x0)
 

and z 2 argminj .
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The existence of such a uniform radius R is due to boundedness of argminj ,
which in turn follows from the assumed boundedness of

�

j  j(x0)
 

.

Example 1.2. To see that argminj 6= /0 is not enough for preventing the generation
of unbounded sequences, consider j = f +g : IR! IR where

g = d(�•,2] and f (x) =

(

exp(x)�1 if x < 0,
x� x2 if x� 0.

Assumption 1 is satisfied with L f = 2 and argminj = {2}. However, for any g 2 (0,1)
the sequence (xk)k2IN generated by (1.6) with x0 < 1/2 diverges to�•, and j(xk)!
�1 >�2 = minj . This however cannot happen in the convex case [31, Thm. 25.8].

We use shorthands to denote the forward-backward mapping and the associated
fixed-point residual in order to simplify the notation:

Tg(x) = proxgg(x� g— f (x)), (1.7)

Rg(x) = g�1(x�Tg(x)), (1.8)

so that iteration (1.6) can be written as xk+1 = Tg(xk) = xk
� gRg(xk). The set zer∂j

is easily characterized in terms of the fixed-point set of Tg as follows:

x = Tg(x)() x 2 zer∂j. (1.9)

Note that Tg(x) can alternatively be expressed as the solution to the following
partially linearized subproblem (see also Figure 1):

Tg(x) = argmin
u2IRn

n

`j(u,x)+ 1
2g ku� xk2

o

, (1.10a)

`j(u,x) = f (x)+ h— f (x),u� xi+g(u). (1.10b)

2 Forward-backward envelope

We now proceed to the reformulation of (1.1) as the minimization of an unconstrained
continuously differentiable function. To this end, we consider the value function of
problem (1.10a) defining the forward-backward mapping Tg and give the following
definition.

Definition 2.1 (Forward-backward envelope). Let f ,g and j be as in Assumption 1,
and let g > 0. The forward-backward envelope (FBE) of j with parameter g is

jg(x) = min
u2IRn

n

`j(u,x)+ 1
2g ku� xk2

o

. (2.1)

Using (1.10a) and (1.10b) it is easy to verify that (2.1) can be equivalently ex-
pressed as

jg(x) = f (x)+g(Tg(x))� gh— f (x),Rg(x)i+ g
2kRg(x)k2 (2.2)
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x0 x1

j(x0)

j(x1)

x0 x1 x2

j(x0)

j(x1)

j(x2)

Fig. 1: When g is small enough forward-backward splitting minimizes, at every step,
a convex majorization (red, dotted lines) of the original cost j (blue, solid line),
cf. (1.10a).

x

jg (x)

x

jg (x)

Fig. 2: The forward-backward envelope jg (black, dashed line) is obtained by consid-
ering the optimal values of problems (1.10a) (dotted lines), and serves as a real-valued
lower bound for the original objective j (blue, solid line).

or, by the definition of Moreau envelope, as

jg(x) = f (x)� g
2k— f (x)k2 +gg(x� g— f (x)). (2.3)

The geometrical construction of jg is depicted in Figure 2. One distinctive feature of
jg is the fact that it is real-valued, despite the fact that j can be extended-real-valued.
Function jg has other favorable properties which we now summarize.

2.1 Basic inequalities

The following result states the fundamental inequalities relating jg to j .

Proposition 2.2. Suppose Assumption 1 is satisfied. Then, for all x 2 IRn

(i) jg(x) j(x)� g
2kRg(x)k2 for all g > 0;

(ii) j(Tg(x)) jg(x)� g
2
�

1� gL f
�

kRg(x)k2 for all g > 0;
(iii) j(Tg(x)) jg(x) for all g 2 (0,1/L f ].
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x Tg (x)

j(x)

j(Tg (x))
jg (x)

x? = Tg (x?)

j?

Fig. 3: on the left, by Proposition 2.2 jg(x) is upper bounded by j(x) and, when g
is small enough, lower bounded by j(Tg(x)). On the right, by Proposition 2.3(i) the
two bounds coincide in correspondence of critical points.

Proof. Regarding 2.2(i), from the optimality condition for (1.10a) we have

Rg(x)�— f (x) 2 ∂g(Tg(x)),

i.e., Rg(x)�— f (x) is a subgradient of g at Tg(x). From subgradient inequality

g(x)� g(Tg(x))+ hRg(x)�— f (x),x�Tg(x)i

= g(Tg(x))� gh— f (x),Rg(x)i+ gkRg(x)k2.

Adding f (x) to both sides and considering (2.2) proves the claim. For 2.2(ii), we have

jg(x) = f (x)+ gh— f (x),Rg(x)i+g(Tg(x))+ g
2kRg(x)k2

� f (Tg(x))+g(Tg(x))�
L f
2 kTg(x)� xk2+ g

2kRg(x)k2.

where the inequality follows by (1.5). 2.2(iii) then trivially follows.

A consequence of Proposition 2.2 is that, whenever g is small enough, the prob-
lems of minimizing j and jg are equivalent.

Proposition 2.3. Suppose Assumption 1 is satisfied. Then,

(i) j(z) = jg(z) for all g > 0 and z 2 zer∂j;
(ii) infj = infjg and argminj ✓ argminjg for g 2 (0,1/L f ];

(iii) argminj = argminjg for all g 2 (0,1/L f ).

Proof. 2.3(i) follows from (1.9), Propositions 2.2(i) and 2.2(ii).
Suppose now g 2 (0,1/L f ]. In particular, 2.3(i) holds for any x? 2 argminj , so

jg(x?) = j(x?) j(Tg(x)) jg(x) for all x 2 IRn

where the first inequality follows from optimality of x? for j , and the second from
Proposition 2.2(iii). Therefore, every x? 2 argminj is also a minimizer of jg , and
minj = minjg provided that the former is attained. It remains to show the case
argminj = /0. By Proposition 2.2(i) we have infjg  infj . If there exists x 2 IRn
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such that jg(x)  infj , then Proposition 2.2(ii) implies that j(Tg(x))  infj , con-
tradicting argminj = /0. Therefore infjg = infj , proving 2.3(ii).

Suppose now g 2 (0,1/L f ), and let x? 2 argminjg . From Propositions 2.2(i) and
2.2(ii) we get that

jg(Tg(x?)) j(Tg(x?)) jg(x?)�
1�gL f

2 kx?�Tg(x?)k2,

which implies x? = Tg(x?), since x? minimizes jg and 1�gL f
2 > 0. Therefore, the

following chain of inequalities holds

jg(x?) = jg(Tg(x?)) j(x?) jg(x?).

Since jg  j and x? minimizes jg , it follows that x? 2 argminj . Therefore, the sets
of minimizers of j and jg coincide, proving 2.3(iii).

Example 2.4. To see that the bounds on g in Proposition 2.3 are tight, consider the
convex problem

minimize
x2IRn

j(x)⌘
f (x)

1
2kxk

2 +

g(x)

dIRn
+
(x)

where IRn
+ = {x 2 IRn

| xi � 0, i = 1 . . .n} is the nonnegative orthant. Assumption 1
is satisfied with L f = 1, and the only stationary point for j is the unique minimizer
x? = 0. Using (2.3) we can explicitly compute the FBE: for any g > 0 we have

jg(x) = 1�g
2 kxk

2 + 1
2g k(1� g)x� [(1� g)x]+k2,

where [x]+ = PIRn
+
(x) = max{x,0}, the last expression being meant componentwise.

For any g > 0 we have that jg(x?) = j(x?), as ensured by Proposition 2.3(i), and as
long as g < 1 = 1/L f all properties in Proposition 2.3 do hold. For g = 1 we have
that jg ⌘ 0, showing the inclusion in Proposition 2.3(ii) to be proper, yet satisfying
minjg = minj .

However, for g > 1 the FBE jg is not even lower bounded, as it can be easily
deduced by observing that, letting xk = (�k,0 . . .0) for k 2 IN, jg(xk) = 1�g

2 k2 is
arbitrarily negative.

Proposition 2.3 implies, using Proposition 2.2(i), that an e-optimal solution x of
j is automatically e-optimal for jg and, using Proposition 2.2(ii), from an e-optimal
for jg we can directly obtain an e-optimal solution for j if g 2 (0,1/L f ]:

j(x)� infj  e =) jg(x)� infj  e
jg(x)� infjg  e =) j(Tg(x))� infj  e

Proposition 2.3 also highlights the first apparent similarity between the concepts of
FBE and Moreau envelope (1.3): the latter is indeed itself a lower bound for the
original function, sharing with it its minimizers and minimum value. In fact, the two
are directly related as we now show. In particular, the following result implies that if
j is convex (e.g. if f is) and g 2 (0,1/L f ), then the possibly nonconvex jg is upper
and lower bounded by convex functions.

Proposition 2.5. Suppose Assumption 1 is satisfied. Then,
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(i) jg  j
g

1+gL f for all g > 0;

(ii) j
g

1�gL f
 jg for all g 2 (0,1/L f );

(iii) jg  jg if f is convex.

Proof. (1.5) implies the following bounds concerning the partial linearization:

�

L f
2 ku� xk2

 j(u)� `j(u,x)
L f
2 ku� xk2.

Combined with the definition of the FBE, cf. (2.1), this proves 2.5(i) and 2.5(ii).
If f is convex, the lower bound can be strengthened to 0  j(u)� `j(u,x).

Adding 1
2g ku�xk2 to both sides and minimizing with respect to u yields 2.5(iii).

2.2 Differentiability

We now turn our attention to differentiability of jg , which is fundamental in devising
and analyzing algorithms for solving (1.1). To ensure continuous differentiability of
jg we will need the following
Assumption 3. Function f is twice-continuously differentiable over IRn.

Under Assumption 3, the function

Qg : IRn
! IRn⇥n given by Qg(x) = I� g—2 f (x) (2.4)

is well defined, continuous, and symmetric-valued.
Theorem 2.6 (Differentiability of jg ). Suppose that Assumptions 1 and 3 are satis-
fied. Then, jg is continuously differentiable with

—jg(x) = Qg(x)Rg(x). (2.5)

If g 2 (0,1/L f ) then the set of stationary points of jg equals zer∂j .

Proof. Consider expression (2.3) for jg . The gradient of gg is given by (1.4), and
since f 2C2 we have

—jg(x) = — f (x)� g—2 f (x)— f (x)+ g�1 �I� g—2(x)
�

(x� g— f (x)�Tg(x))

=
�

I� g—2(x)
�

(— f (x)�— f (x)+ g�1(x�Tg(x))).

This proves (2.5). If g 2 (0,1/L f ) then Qg(x) is nonsingular for all x, and therefore
—jg(x) = 0 if and only if Rg(x) = 0, which means that x is a critical point of j by
(1.9).

Together with Proposition 2.3, Theorem 2.6 shows that if g 2 (0,1/L f ) the non-
smooth problem (1.1) is completely equivalent to the unconstrained minimization of
the continuously differentiable function jg , in the sense that the sets of minimizers
and optimal values are equal. In particular, as remarked in the next statement, if j is
convex then the set of stationary points of jg turns out to be equal to the set of its
minimizers, hence of solutions to the problem, even though jg may not be convex.
Corollary 2.7. Suppose that Assumptions 1 and 3 are satisfied. If j is convex (e.g. if
f is), then argminj = zer—jg for all g 2 (0,1/L f ).
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2.3 Second-order properties

The FBE is not everywhere twice continuously differentiable in general. For example,
if g is real valued then gg

2 C2 if and only if g 2 C2 [35]. However, second order
properties will only be needed at critical points of j in our framework, and for this
purpose we can rely on generalized second-order differentiability notions described
in [30, Chapter 13].

Assumption 4. Function g is twice epi-differentiable at x 2 zer∂j for�— f (x), with
second order epi-derivative generalized quadratic. That is,

d2g(x|�— f (x))[d] = hd,Mdi+dS(d), 8d 2 IRn (2.6)

where S✓ IRn is a linear subspace, and M 2 IRn⇥n is symmetric, positive semidefinite,
and such that Im(M)✓ S and Ker(M)◆ S?.

In some results we will need to assume the following slightly stronger property.

Assumption 5. Function g satisfies Assumption 4 at x 2 zer∂j and is strictly twice
epi-differentiable at x for �— f (x).

The properties of M in Assumption 4 cause no loss of generality. Indeed, letting
PS denote the orthogonal projection onto S (PS is symmetric, see [36]), if M ⌫ 0
satisfies (2.6) so does M0 = PS[

1
2 (M+M>)]PS, which has the wanted properties.

Twice epi-differentiability of g is a mild requirement, and cases where d2g is
actually generalized quadratic are abundant [37–40]. For example, if g is piecewise
linear and x 2 zer∂j , then from [37, Thm. 3.1] it follows that (2.6) holds if and only
if the normal cone N∂g(x)(�— f (x)) is a linear subspace, which is equivalent to

�— f (x) 2 relint∂g(x)

where relint∂g(x) is the relative interior of the convex set ∂g(x).

Example 2.8 (Lasso). Let A 2 IRm⇥n, b 2 IRm and l > 0. Consider f (x) = 1
2kAx�

bk2 and g(x) = lkxk1. Minimizing j = f +g is a frequent problem known as lasso,
and attempts to find a sparse least squares solution to the linear system Ax = b. One
has

[∂g(x)]i =

8

>

<

>

:

{l} xi > 0
{�l} xi < 0
[�l ,l ] xi = 0.

In this case d2g(x|�— f (x)) is generalized quadratic at a solution x as long as when-
ever xi = 0 it holds that |(AT (Ax�b))i|6= l .

We begin by investigating differentiability of the residual mapping Rg .

Lemma 2.9. Suppose that Assumptions 1 and 3 are satisfied, and that g satisfies
Assumption 4 (Assumption 5) at a point x 2 zer∂j . Then, proxgg is (strictly) differ-
entiable at x� g— f (x), and Rg is (strictly) differentiable at x with Jacobian

JRg(x) = g�1(I�Pg(x)Qg(x)), (2.7)
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where Qg is as in (2.4), and

Pg(x) = J proxgg(x� g— f (x)) = PS[I + gM]�1PS. (2.8)

Moreover, Qg(x) and Pg(x) are symmetric, Pg(x)⌫ 0, kPg(x)k 1, and if g 2 (0,1/L f )
then Qg(x)� 0.

Proof. See Appendix B.

Next, we see that differentiability of the residual Rg is equivalent to that of —jg .
Mild additional assumptions on f extend this kinship to strict differentiability. More-
over, all strong (local) minimizers of the original problem, i.e., of j , are also strong
(local) minimizers of jg (and vice versa, due to the lower-bound property of jg ).

Theorem 2.10. Suppose that Assumptions 1 and 3 are satisfied, and that g satis-
fies Assumption 4 at a point x 2 zer∂j . Then, jg is twice differentiable at x, with
symmetric Hessian given by

—2jg(x) = g�1Qg(x)(I�Pg(x)Qg(x)), (2.9)

where Qg and Pg are as in Lemma 2.9. If moreover —2 f is Lipschitz around x and g
satisfies Assumption 5 at x, then jg is strictly twice differentiable at x.

Proof. Recall from (2.5) that —jg(x) = Qg(x)Rg(x). The result follows from Lemma
2.9 and Proposition A.2 in the Appendix with Q = Qg and R = Rg .

Theorem 2.11. Suppose that Assumptions 1 and 3 are satisfied, and that g satisfies
Assumption 4 at a point x 2 zer∂j . Then, for all g 2 (0,1/L f ) the following are
equivalent:

(a) x is a strong local minimum for j;
(b) for all d 2 S, hd,(—2 f (x)+M)di> 0;
(c) JRg(x) is similar to a symmetric and positive definite matrix;
(d) —2jg(x)� 0;
(e) x is a strong local minimum for jg .

Proof. See Appendix B.

2.4 Interpretations

An interesting observation is that the FBE provides a link between gradient meth-
ods and FBS, just like the Moreau envelope (1.3) does for the proximal point algo-
rithm [41]. To see this, consider the problem

minimize g(x) (2.10)

where g 2 G0(IRn). The proximal point algorithm for solving (2.10) is

xk+1 = proxgg(x
k). (2.11)
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It is well known that the proximal point algorithm can be interpreted as a gradient
method for minimizing the Moreau envelope of g, cf. (1.3). Indeed, due to (1.4),
iteration (2.11) can be expressed as

xk+1 = xk
� g—gg(xk).

This simple idea provides a link between nonsmooth and smooth optimization and
has led to the discovery of a variety of algorithms for problem (2.10), such as semis-
mooth Newton methods [42], variable-metric [43] and quasi-Newton methods [44–
46], and trust-region methods [47], to name a few.

However, when dealing with composite problems, even if proxg f and proxgg are
cheaply computable, computing the proximal mapping of j = f + g is usually as
hard as solving (1.1) itself. On the other hand, forward-backward splitting takes ad-
vantage of the structure of the problem by operating separately on the two summands,
cf. (1.6). The question that naturally arises is the following:

Is there a continuously differentiable function that provides an interpretation
of FBS as a gradient method, just like the Moreau envelope does for the prox-
imal point algorithm?

The forward-backward envelope provides an affirmative answer. Specifically, when-
ever f is C2, FBS can be interpreted as the following (variable-metric) gradient
method on the FBE:

xk+1 = xk
� g(I� g—2 f (xk))�1—jg(xk), (2.12)

cf. Theorem 2.6. Furthermore, the following properties hold for the Moreau envelope

gg
 g, infgg = infg, argmingg = argming,

which correspond to Propositions 2.2(i) and 2.3 for the FBE. The relationship be-
tween Moreau envelope and forward-backward envelope is then apparent. This opens
the possibility of extending FBS and devising new algorithms for problem (1.1) by
simply reconsidering and appropriately adjusting methods for unconstrained mini-
mization of continuously differentiable functions, the most well studied problem in
optimization.

3 Forward-backward line-search methods

We consider line-search methods applied to the problem of minimizing jg , hence
solving (1.1). Requirements of such methods are often restrictive, including convex-
ity or even strong convexity of the objective function, properties that unfortunately
the FBE does not satisfy in general. As opposed to this, FBS possesses strong conver-
gence properties and complexity estimates. We now show that it is possible to exploit
the composite structure of (1.1) and devise line-search methods with the same global
convergence properties and oracle information as FBS.
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Algorithm 1 MINFBE
Input: x0

2 IRn, g0 > 0, s 2 (0,1), b 2 [0,1), k 0
1: if Rgk (x

k) = 0 then stop
2: select dk such that hdk,—jgk (x

k)i  0
3: select tk � 0 and set wk

 xk + tkdk such that jgk (w
k) jgk (x

k)

4: if f (Tgk (w
k))> f (xk)� gkh— f (xk),Rgk (x

k)i+ (1�b )gk
2 kRgk (x

k)k2
then gk  sgk , go to step 1

5: xk+1
 Tgk (w

k)
6: gk+1 gk
7: k k+1, go to step 1

Algorithm 1, which we call MINFBE, interleaves descent steps over the FBE with
forward-backward steps. In particular, steps 2 and 3 provide fast asymptotic conver-
gence when directions dk are appropriately selected, while step 5 ensures global con-
vergence: this is of central importance, as such properties are not usually enjoyed
by standard line-search methods employed to minimize general nonconvex func-
tions [26–29]. Moreover, in the convex case we are able to show global convergence
rate results which are not typical for line-search methods with e.g. quasi-Newton di-
rections. We anticipate some of the favorable properties that MINFBE shares with
FBS:

– square-summability of the residuals for lower bounded j (Proposition 3.4);
– global sublinear rate of the objective for convex j with bounded level sets (The-

orem 3.6);
– global convergence when j has bounded level sets and satisfies the Kurdyka-

Łojasiewicz at its stationary points (Theorem 3.10);
– local linear rate when j has the Łojasiewicz property at its critical points (Theo-

rem 3.11).

Moreover, unlike ordinary line-search methods applied to jg , we will see in Proposi-
tion 3.4 that MINFBE is a descent method both for jg and j . Note that, despite the
fact that the algorithm operates on jg , all the above properties require assumptions
or provide results on j , i.e., on the original problem.

The parameter g defining the FBE is adjusted in step 4 so as to comply with the
inequality in Proposition 2.2(ii), starting from an initial value g0 and decreasing it
when necessary. The next result shows that g0 is decremented only a finite number of
times along the iterations, and therefore gk is positive and eventually constant. In the
rest of the paper we will denote g• such asymptotic value of gk.

Lemma 3.1. Let (gk)k2IN the sequence of stepsize parameters computed by MINFBE,
and let g• = mini2IN gi. Then for all k 2 IN,

gk � g• � min
�

g0,s(1�b )/L f
 

> 0.

Proof. See Appendix C.

Remark 3.2. In MINFBE:

(i) Selecting b = 0 and dk
⌘ 0, tk⌘ 0 for all k yields the classical forward-backward

splitting with backtracking on g [14, Sec. 3].
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(ii) Substituting step 5 with xk+1
 wk yields a classical line-search method for the

problem of minimizing jg , where a suitable g is adaptively determined. How-
ever, extensive numerical experience has shown that even though this variant
seems to always converge, our choice xk+1

 Tgk(w
k) usually performs better in

practice, in terms of number of forward-backward steps, cf. Section 5.
(iii) Step 5 comes at no additional cost once tk has been determined by means of a

line-search. In fact, in order to evaluate jgk(w
k) and test the condition in step 3,

the evaluation of Tgk(w
k) is required.

(iv) When L f is known and g0 2 (0,(1�b )/L f ], the condition in step 4 never holds,
see Proposition 2.2(ii). In this case MINFBE reduces to Algorithm 2: without
loss of generality we will focus the analysis on Algorithm 1.

Algorithm 2 MINFBE with constant g
Input: x0

2 IRn, b 2 [0,1), g 2 (0,(1�b )/L f ], k 0
1: if Rgk (x

k) = 0 then stop
2: select dk such that hdk,—jg (xk)i  0
3: select tk � 0 and set wk

 xk + tkdk such that jg (wk) jg (xk)
4: xk+1

 Tg (wk)
5: k k+1, go to step 1

Remark 3.3. In order to compute descent directions in MINFBE, one usually needs
to evaluate —jg at a sequence of points. In practice, this only requires to perform
matrix-vector products with —2 f , see (2.4)-(2.5), and not the computation of the full
Hessian. For example, if f (x) = 1

2kAx�bk2 then —jg(x) = Rg(x)�A>[ARg(x)]. For
general nonlinear f , the product —2 f (x)v can be approximated numerically using
finite-differences formulas which only require one additional evaluation of — f . If f
is analytic, then one can use a complex step [48] to overcome numerical cancella-
tion problems, and compute —2 f (x)v to machine precision at the cost of one eval-
uation of — f . Finally, automatic differentiation techniques can be used to evaluate
such Hessian-vector products, that only require a small multiple of 2n operations in
addition to those required to evaluate f , see [49, Sec. 8.2].

We denote by w(x0) the set of cluster points of the sequence (xk)k2IN produced by
MINFBE started from x0

2 IRn. The following result states that MINFBE is a descent
method both for the FBE jg and for the original function j , and, as it holds for FBS,
that the sequence of fixed-point residuals is square-summable if the function is lower
bounded.

Proposition 3.4 (Subsequential convergence). Suppose that Assumption 1 is satis-
fied. Then, the following hold for the sequences generated by MINFBE:

(i) j(xk+1) j(xk)� bgk
2 kRgk(w

k)k2
�

gk
2 kRgk(x

k)k2 for all k 2 IN;

(ii) either (kRgk(x
k)k)k2IN is square summable, or j(xk)! infj = �•, in which

case w(x0) = /0;

panos patrinos

No \gamma_k, just \gamma
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(iii) w(x0)✓ zer∂j , i.e., every cluster point of (xk)k2IN is critical;
(iv) if b > 0, then either (kRgk(w

k)k)k2IN is square summable and every cluster point
of (wk)k2IN is critical, or jgk(w

k)! infj =�• in which case (wk)k2IN has no
cluster points.

Proof. See Appendix C.

An immediate consequence is the following result concerning the convergence of
the fixed-point residual.
Theorem 3.5. Suppose that Assumption 1 is satisfied, and consider the sequences
generated by MINFBE. Then,

min
i=0···k

kRgi(x
i)k2


2
(k+1)

j(x0)� infj
min

�

g0,s(1�b )/L f
 .

If b > 0, then for all k 2 IN we also have

min
i=0···k

kRgi(w
i)k2


2
(k+1)

j(x0)� infj
b min

�

g0,s(1�b )/L f
 .

Proof. See Appendix C.

We now analyze the convergence properties of MINFBE. We first consider the
case where f is convex. Then we discuss the general case under the assumption that
j has the Kurdyka-Łojasiewicz property: in this case (dk)k2IN must be uniformly
bounded with respect to (Rgk(x

k))k2IN in order to ensure convergence, see Theorem
3.10, condition which is not required in the convex case. When the directions are se-
lected, say, according to a quasi-Newton scheme dk = �B�1

k —jg(xk), boundedness
of (B�1

k )k2IN will be necessary for the sake of global convergence when the Kurdyka-
Łojasiewicz property holds for j . The latter is however a milder assumption with
respect to usual nonconvex line-search methods where (B�1

k )k2IN is required to have
bounded condition number or (dk)k2IN to be gradient-oriented (see [50] and the ref-
erences therein).

3.1 Convergence in the convex case

We now prove that when f is convex MINFBE converges to the optimal objective
value with the same sublinear rate as FBS. Notice that we require convexity of f (and
g), and not that of jg which may fail to be convex even when j is.
Theorem 3.6 (Global sublinear convergence). Suppose that Assumptions 1 and 2 are
satisfied, and that f is convex. Then, for the sequences generated by MINFBE, either
j(x0)� infj � R2/g0 and

j(x1)� infj  R2

2g0
, (3.1)

or for any k 2 IN it holds

j(xk)� infj  2R2

k min
�

g0,s(1�b )/L f
 . (3.2)
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Proof. See Appendix C.

In the following result we see that the convergence rate of (xk)k2IN is linear when
close to a strong local minimum.

Theorem 3.7 (Local linear convergence). Suppose that Assumption 1 is satisfied.
Suppose further that f is convex and that x? is a strong (global) minimum of j , i.e.,
there exist a neighborhood N of x? and c > 0 such that

j(x)�j(x?)� c
2kx� x?k2, 8x 2 N. (3.3)

Then there is k0 � 0 such that the subsequences (j(xk))k�k0 and (jgk(w
k))k�k0 pro-

duced by MINFBE converge Q-linearly to j(x?) with factor w , where

w  max
� 1

2 ,1�
c
4 min

�

g0,s(1�b )/L f
  

2 [ 1
2 ,1),

and (xk)k�k0 converges R-linearly to x?. Moreover, if x? is a strong (global) minimum
for jg• , with g• as in Lemma 3.1, then also (j(wk))k�k0 converges R-linearly to x?.

Proof. See Appendix C.

The introduction of g• in the statement above is due to the fact that gk may vary
over the iterations. However, under the assumptions of Theorem 2.11, if g• < 1/L f
then the requirement of x? to be a strong local minimizer for jg• is superfluous, as it
is already implied by strong local minimimality of x? for j .

Corollary 3.8 (Global linear convergence). Suppose that Assumption 1 is satisfied,
that f is convex and that j is strongly convex (e.g. if f is strongly convex). Then, the
sequences (j(xk))k2IN and (jgk(w

k))k2IN generated by MINFBE converge Q-linearly
to j?, while (xk)k2IN converges R-linearly to x?.

Proof. In this case Theorem 3.7 applies with N = IRn, c= µj (the convexity modulus
of j) and k0 = 0.

3.2 Convergence under KL assumption

We now analyze the convergence of the iterates of MINFBE to a critical point un-
der the assumption that j satisfies the Kurdyka-Łojasiewicz (KL) property [4–6].
For related works exploiting this property in proving convergence of optimization
algorithms such as FBS we refer the reader to [7–11].

Definition 3.9 (KL property [10, Def. 3]). A proper lower semi-continuous function
j : IRn

! IR has the Kurdyka-Łojasiewicz property (KL) at x? 2 dom∂j if there exist
h 2 (0,+•], a neighborhood U of x?, and a continuous concave function y : [0,h ]!
[0,+•) such that:

(i) y(0) = 0,
(ii) y is C1 on (0,h),

(iii) y 0(s)> 0 for all s 2 (0,h),
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(iv) for every x 2U \{x 2 IRn
| j(x?)< j(x) j(x?)+h},

y 0(j(x)�j(x?))dist(0,∂j(x))� 1.

We say that j has the KL property on S✓ IRn it has the KL property on every x 2 S.

Function y in the previous definition is usually called desingularizing function.
All subanalytic functions which are continuous over their domain have the KL prop-
erty [51]. Under the KL assumption we are able to prove the following convergence
result. Once again, we remark that such property is required on the original function
j , rather than on the surrogate jg .

Theorem 3.10. Suppose that Assumptions 1 and 2 are satisfied, and that j satisfies
the KL property on w(x0) (e.g. if it has it on zer∂j). Suppose further that in MINFBE
b > 0, and that there exist t̄,c > 0 such that tk  t̄ and kdk

k ckRgk(x
k)k for all k 2

IN. Then, the sequence of iterates (xk)k2IN is either finite and ends with Rgk(x
k) = 0,

or converges to a critical point x? of j .

Proof. See Appendix C.

In case where j is subanalytic, the desingularizing function can be taken of the
form y(s) = ss1�q , for s > 0 and q 2 [0,1) [51]. In this case, the condition in
Definition 3.9(iv) is referred to as Łojasiewicz inequality. Depending on the value of
q we can derive local convergence rates for MINFBE.

Theorem 3.11 (Local linear convergence). Suppose that Assumptions 1 and 2 are
satisfied, and that j satisfies the KL property on w(x0) (e.g. if it has it on zer∂j)
with

y(s) = ss1�q for some s > 0 and q 2 (0, 1
2 ]. (3.4)

Suppose further that in MINFBE b > 0, and that there exist t̄,c > 0 such that tk  t̄
and kdk

k ckRgk(x
k)k for all k2 IN. Then, the sequence of iterates (xk)k2IN converges

to a point x? 2 zer∂j with R-linear rate.

Proof. See Appendix C.

4 Quasi-Newton methods

We now turn our attention to choices of the direction dk in MINFBE. Applying clas-
sical quasi-Newton methods [52] to the problem of minimizing jg yields, starting
from a given x0,

dk =�B�1
k —jg(xk),

xk+1 = xk + tkdk,

where Bk is nonsingular and chosen so as to approximate (in some sense) the Hessian
of jg at xk, and stepsize tk > 0 is selected with a line-search procedure enforcing a
sufficient decrease condition. However, the convergence properties of quasi-Newton
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methods are quite restrictive. The BFGS algorithm is guaranteed to converge, in the
sense that

liminf
k!•

k—jg(xk)k= 0,

when the objective is convex [53]. Its limited memory variant, L-BFGS, requires
strong convexity to guarantee convergence, and in that case the cost is shown to
converge R-linearly to the optimal value [54]. Moreover, there exist examples of
nonconvex function for which quasi-Newton methods need not converge to critical
points [26–29].

To overcome this, we consider quasi-Newton directions in the setting of MINFBE.
The resulting methods enjoy the same global convergence properties illustrated in
Section 3 and superlinear asymptotic convergence under standard assumptions: we
will assume, as it is usual, (strict) differentiability of —jg and nonsingularity of —2jg
at a critical point. Properties of f and g that guarantee these requirements were dis-
cussed in Theorems 2.10 and 2.11: if g = g• is as in Lemma 3.1, then (strict) differ-
entiability of —jg at x? 2 zer∂j and positive definiteness of —2jg(x?) are ensured
if Assumption 4 (Assumption 5) holds, x? is a strong local minimum for j , and
g < 1/L f .

The following result gives for the proposed algorithmic scheme the analogous
of the Dennis-Moré condition, see [25, Thm. 2.2] and [55, Thm. 3.3]. Differently
from the cited results, we fit the analysis to our algorithmic framework where an
additional forward-backward step is operated. Furthermore, in Theorem 4.2 we will
see how achieving superlinear convergence is possible without the need to ensure
sufficient decrease in the objective, or even to consider direction of strict descent, but
simply with the nonincrease conditions of steps 2 and 3. This contrasts with the usual
requirements of classical line-search methods, where instead a sufficient decrease
must be enforced in order for the sequence of iterates to converge. In MINFBE, in
fact, such decrease is guaranteed by the final update in step 5.

Theorem 4.1. Suppose that Assumption 1 is satisfied, and let g > 0. Suppose that
—jg is strictly differentiable at x?, and that —2jg(x?) is nonsingular. Let (Bk)k2IN be
a sequence of nonsingular IRn⇥n-matrices and suppose that for some x0

2 IRn the
sequences (xk)k2IN and (wk)k2IN generated by

wk = xk
�B�1

k —jg(xk) and xk+1 = Tg(wk)

converge to x?. If xk,wk /2 zer∂j for all k � 0 and

lim
k!•

k(Bk�—2jg(x?))(wk
� xk)k

kwk
� xk
k

= 0, (4.1)

then (xk)k2IN and (wk)k2IN converge Q-superlinearly to x?.

Proof. See Appendix D.

To obtain superlinear convergence of MINFBE when quasi-Newton directions
are used and condition (4.1) on the sequence (Bk)k2IN holds, we must verify that
eventually jg(xk +dk) jg(xk), so that the stepsize tk = 1 is accepted in step 3 and
the iterations reduce to those described in Theorem 4.1.
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Theorem 4.2. Suppose that Assumption 1 is satisfied, and that in MINFBE direction
dk is set as

dk =�B�1
k —jgk(x

k)

for a sequence of nonsingular matrices (Bk)k2IN satisfying (4.1), with tk = 1 being
tried first in step 3. Let g = g• as in Lemma 3.1, and suppose further that the se-
quences (xk)k2IN and (wk)k2IN converge to a critical point x? at which —jg is contin-
uously semidifferentiable with —2jg(x?) � 0. Then, (xk)k2IN and (wk)k2IN converge
Q-superlinearly to x?.

Proof. See Appendix D.

4.1 BFGS

The sequence (Bk)k2IN can be computed using BFGS updates: starting from B0 � 0,
use vectors

sk = wk
� xk, yk = —jg(wk)�—jg(xk), (4.2a)

to compute

Bk+1 =

(

Bk +
yk(yk)>

hyk,sk
i

�

Bksk(Bksk)>

hsk,Bksk
i

if hsk,yk
i> 0,

Bk otherwise.
(4.2b)

Note that in this way Bk � 0, for all k � 0, and dk = �B�1—jg(xk) is always a
direction of descent for jg . No matrix inversion is needed to compute dk in practice,
since it is possible to perform the inverse updates of (4.2b) directly producing the
sequence (B�1

k )k2IN, see [49, 52].
In light of the convergence results for MINFBE given in Section 3 we now pro-

ceed under either of the following assumptions.

Assumption 6. Function j satisfies either of the following:

(i) it is convex and such that j(x)�j(x?) � c
2kx� x?k2, for some c > 0 and all x

close enough to x?, the unique minimizer of j;
(ii) it has the KL property on w(x0) with y(s) = ss1�q , where s > 0 and q 2 (0, 1

2 ].

Theorem 4.3. Suppose that Assumption 1 is satisfied, and that in MINFBE directions
dk are set as

dk =�B�1
k —jgk(x

k) with Bk as in (4.2),

and with tk = 1 being tried first in step 3. Let g = g• as in Lemma 3.1, and suppose
further that the sequences (xk)k2IN and (wk)k2IN converge to a critical point x? at
which —jg is calmly semidifferentiable (see Proposition A.5 in the Appendix) with
—2jg(x?)� 0. Then, (xk)k2IN and (wk)k2IN converge Q-superlinearly to x?.

Proof. See Appendix D.
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4.2 L-BFGS

When dealing with a large number of variables, storing (and updating) approxima-
tions of the Hessian matrix (or its inverse) may be impractical. Limited-memory
quasi-Newton methods remedy this by storing, instead of a dense n⇥n matrix, only
a few most recent pairs (sk,yk) implicitly representing such approximation. The lim-
ited-memory BFGS method (L-BFGS) is probably the most widely used method of
this class, and was first introduced in [54]. It is based on the BFGS update, but uses
at iteration k only the most recent m̃ = min{m,k} pairs (here m is a parameter, usu-
ally m 2 {3, . . . ,20}) to compute a descent direction: dk is obtained using a proce-
dure known as two-loop recursion [56], so that no matrix storage is required, and
in fact only O(n) operations are needed. For this reason L-BFGS is better suited for
large scale applications. Similarly to BFGS, a safeguard is used to make sure that
hsk,yk

i> 0, so that dk is always a descent direction for jgk .

Remark 4.4. In both BFGS and L-BFGS, the condition hsk,yk
i > 0 is sufficient to

ensure the positive definiteness of the Hessian approximation, hence the fact that dk

is a descent direction. Therefore, in MINFBE one can simply check such condition
and discard the update when it does not hold. Other methods were proposed in the
literature to ensure convergence of quasi-Newton methods in the nonconvex case, by
Powell (see [49, Sec. 18.3]) and Li, Fukushima [57]. In our experience, no significant
advantage is gained when using these techniques in MINFBE. Moreover, no such care
is required for MINFBE to converge to a critical point, and under the assumptions of
Theorem 4.2 the condition hsk,yk

i > 0 will eventually always hold (see the proof of
Theorem 4.2 for details).

5 Simulations

We now present numerical results obtained with the proposed method. In all the
results, we indicate in parenthesis the choice of directions for MINFBE. We set
b = 0.05 in MINFBE, therefore if L f is known then we set a constant g = 0.95/L f .
To determine the stepsize tk in MINFBE we use backtracking, starting with tk = 1
and reducing it until jgk(x

k + tkdk) jgk(x
k) holds.

Among the other algorithms, for each choice descent directions we also compare
MINFBE with the corresponding classical line-search method, see Remark 3.2(ii).
In this case we use a line-search procedure, inspired by [58, Sec. II.3.3], enforcing
the usual Wolfe conditions: although simpler, in our tests this strategy performed
favorably with respect to other algorithms, see for example [34, Sec. 1.2], [49, Sec. 3],
[59, Sec. 2.6].

We always set the memory parameter m= 5 when computing L-BFGS directions.
All experiments were performed in MATLAB, and the implementation of the

methods used in the tests are available.1

1 http://github.com/kul-forbes/ForBES

http://github.com/kul-forbes/ForBES
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5.1 Lasso

The problem is to find a sparse representation of a vector b 2 IRm as combination of
the columns of A 2 IRm⇥n. This is done by minimizing j = f +g where

f (x) = 1
2kAx�bk2

2, g(x) = lkxk1.

The proximal mapping of g is the soft-thresholding operation, while the computation-
ally relevant operation here is the computation of f and — f , which involves matrix-
vector products with A and A>. Parameter l modulates between a small least squares
residual and a sparse solution vector x?, i.e., the larger the l the more zero coefficients
x? has. In particular, lmax = kA>bk• is the minimum value such that for l � lmax the
solution is x? = 0. We have L f = kA>Ak, which can be quickly approximated using
power iteration, therefore we applied MINFBE with fixed stepsize g = 0.95/L f .

In Figure 4 the performance of MINFBE(BFGS) is shown in a small dimensional
instance taken from the SPEAR datasets.2 It is apparent that our method greatly im-
proves over FBS, its accelerated version, and classical BFGS applied to the problem
of minimizing jg .

Then we considered larger instances from the same dataset. In this case we ap-
plied L-BFGS and the nonlinear conjugate gradient method by Dai and Yuan (CG-
DY, see [60]), which always produces descent directions when a line-search satisfy-
ing the Wolfe conditions is employed. The same formulas were used in the context
of MINFBE: in this case CG-DY does not necessarily produce descent directions,
therefore we restart the memory of the method every time an ascent direction is en-
countered. We also compare against SpaRSA [61], a proximal gradient algorithm us-
ing the Barzilai-Borwein method to determine the stepsize and a nonmonotone line-
search to guarantee convergence, and FPC AS [62], which is an active-set type of
algorithm. These are ad-hoc solvers for `1-regularization problems, in contrast to our
approach which is for general problems of the form (1.1). Both SpaRSA and FPC AS
adopt a continuation strategy to warm-start the problem and accelerate convergence.
For the sake of fairness we ran also the other methods (fast FBS, L-BFGS, CG-DY
and MINFBE) in a similar continuation scheme: we solve a sequence of problems,
with a large initial value of l (close to lmax) which is successively reduced until
the target value is reached, using the solution to each problem as initial iterate for
the successive. As it is apparent from the results in Figure 5, MINFBE(L-BFGS)
and MINFBE(CG-DY) are able to solve all the instances we considered and gener-
ally outperform the other methods, including the corresponding classical line-search
methods. Therefore, the additional forward-backward step performed by MINFBE
after the descent step indeed pays off.

5.2 Sparse logistic regression

The composite objective function consists of

f (x) =
m

Â
i=1

log(1+ e�bihai,xi), g(x) = lkxk1.

2 http://wwwopt.mathematik.tu-darmstadt.de/spear/

http://wwwopt.mathematik.tu-darmstadt.de/spear/
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n = 1024 variables, where l = 0.05lmax was used. MINFBE converges superlinearly
to the global minimum when BFGS directions are used, and faster then the classical
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Fig. 5: Lasso: performance profile of the CPU time, for the problems in the SPEAR
dataset ranging from spear_inst_173 to spear_inst_200, and l = 10�3lmax.
All algorithms use a continuation technique to warm-start the problem solution. Each
method was stopped as soon as j(xk)�j?  10�6(1+ |j?|). Methods not meeting
this condition in 104 iterations were assigned a performance ratio of +•.
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Fast FBS L-BFGS MINFBE(L-BFGS)
ID l/lmax nnz(x? ) it. f A time (s) it. f A time (s) it. f A time (s)
rcv1 2 ·10�1 25 134 269 403 1.57 58 144 386 1.37 29 87 198 0.94
m = 20242 1 ·10�1 70 261 523 784 2.91 132 305 843 3.68 51 168 367 1.46
n = 44504 5 ·10�2 141 406 813 1219 4.49 170 386 1075 4.65 46 152 332 1.30
nnz(A) = 910K 2 ·10�2 287 885 1771 2656 9.75 230 530 1459 6.32 76 239 539 2.13

1 ·10�2 470 1189 2379 3568 14.62 356 787 2220 8.48 105 304 720 2.93
real-sim 2 ·10�1 19 123 247 370 4.62 43 115 296 2.86 15 35 91 1.38
m = 72201 1 ·10�1 52 200 401 601 7.09 72 176 472 4.75 20 56 132 1.54
n = 20958 5 ·10�2 111 325 651 976 14.18 93 215 595 5.79 29 83 195 2.42
nnz(A) = 1.5M 2 ·10�2 251 577 1155 1732 21.05 154 352 976 9.46 48 139 327 3.42

1 ·10�2 448 824 1649 2473 33.46 220 499 1388 13.68 72 227 511 7.09
news20 2 ·10�1 47 793 1590 2383 84.03 179 427 1162 50.65 79 264 573 32.76
m = 19954 1 ·10�1 98 1131 2265 3396 125.86 341 789 2172 96.70 127 401 902 51.74
n = 1355191 5 ·10�2 208 3106 6216 9322 320.49 409 944 2599 125.49 193 646 1411 82.85
nnz(A) = 3.7M 2 ·10�2 422 6647 13298 19945 673.90 1082 2481 6829 352.46 440 1499 3252 204.97

Table 1: Sparse logistic regression: performance of the algorithms on three datasets,
for different values of l . We used j(xk)�j?  10�8

|j?| as termination criteria.

Here vector ai 2 IRn contains the features of the i-th instance, and bi 2 {�1,1} indi-
cates the correspondent class. The `1-regularization enforces sparsity in the solution.
Indicating by A the matrix having ai as i-th row, we have lmax =

1
2kA

>bk•, so that
for l � lmax the optimal solution is x? = 0.

We ran the algorithms one three datasets,3 and recorded the number of itera-
tions, calls to f and — f , matrix-vector products with A and A>, and the running
time needed to reach j(xk)� j?  10�8(1 + |j?|). Unlike the previous example,
here a tight Lipschitz constant for — f is not readily available: in this case we applied
MINFBE (as well as fast FBS) with backtracking on parameter g . The results are in
Table 1: MINFBE significantly reduces the number of operations needed to solve the
problems. Since directions are computed according to L-BFGS, which is able to scale
to large dimensional problems, CPU time is reduced analogously.

5.3 Group lasso

Let vector x be partitioned as x = (x1, . . . ,xN), where each xi 2 IRni , and Âi ni = n.
We consider the `2-regularized least squares problem having

f (x) =
1
2
kAx�bk2

2, g(x) = l
N

Â
i=1
kxik2,

where x = (x1, . . . ,xN) and xi 2 IRni for i = 1, . . . ,N. The `2 terms enforce sparsity at
the block level, so that for sufficiently large l we expect many of the xi’s to be zero.
Partitioning the A by columns as A = (A1, . . . ,AN), with the same block structure at
x, then for l � lmax = max

�

kA>1 bk2, . . . ,kA>N bk2
 

the optimal solution is x? = 0.
To test the methods we generated a random instance as follows: we set m = 200,

N = 2000 and n1 = . . . = nN = 100, and generated A as a sparse matrix with nor-
mally distributed entries, density 10�2 and condition number 102 using MATLAB’s
sprandn command. Then we chose xtrue with 10 nonzero blocks, and computed

3 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Fig. 6: Group lasso: performance of the proposed method on a random sparse problem
with m = 200 data points and n = 2 ·105 variables. Horizontal axis is time in seconds.

b = Axtrue + v, where v is a Gaussian noise vector with standard deviation 0.1. Just
like in the case of lasso, the Lipschitz constant L f can be easily estimated using power
iterations. We compared fast FBS, MINFBE(L-BFGS) and ADMM (with two differ-
ent stepsize parameters g), on such an instance. As it is shown in Figure 6, MINFBE
exhibits fast asymptotic convergence, and approaches the solution much faster then
fast FBS and ADMM. Unlike ADMM, no tuning of g is needed in MINFBE to obtain
fast convergence.

5.4 Matrix completion

We consider the problem of recovering the entries of an m-by-n matrix, which is
known to have small rank, from a sample of them. One may refer to [63] for a detailed
theoretical analysis of the problem. The decision variable is now a matrix x = (xi j) 2
IRm⇥n, and the problem has the form

f (x) = 1
2kA (x)�bk2, g(x) = lkxk

⇤

,

where A : IRm⇥n
! IRk is a linear mapping selecting k entries from x, vector b 2 IRk

contains the known entries, and kxk
⇤

indicates the nuclear norm of x, which is the
sum of its singular values. In this case L f = 1, therefore we applied MINFBE with
constant g = 0.95.

The most computationally expensive operation here is the proximal step, requir-
ing a singular value decomposition (SVD). Computing the full SVD becomes infea-
sible as m and n grow, therefore we use the following partial decomposition strategy
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in evaluating proxgg: start with n0 = 10, and the i-th time proxgg is evaluated compute
only the largest ni singular values s1 � . . .� sni , and

proxgg(x)⇡U S̃+V T , S̃+ = diag(max{0,si� gl} , i = 1, . . . ,ni),

Then set ni+1 according to the following rule

ni+1 =

(

min
�

j | s j  g
 

if sni  gl
ni +5 otherwise.

The same technique for approximately evaluating the singular value thresholing is
used in other algorithms for nuclear norm regularization problems [64]. The partial
singular value decompositions were performed using PROPACK software package.4

We compared fast FBS, L-BFGS, MINFBE(L-BFGS) and ADMM on the Movie-
Lens100k dataset.5 This consists of 105 ratings of 1682 movies from 943 users, so
that the problem has ⇡ 1.6 millions variables. The results of the simulations, for
decreasing values of l , are in Figure 7. Unlike the previous example, in this case
MINFBE performs very similarly to standard L-BFGS: they both converge consider-
ably faster than the accelerated FBS, and generally faster than ADMM, especially for
smaller values of the regularization parameter. Note also that, just like in the previous
example, the performance of ADMM is very sensitive to the value of parameter g . In
our experiment we identified g = 10 as a good value by hand-tuning. Such tuning is
not required in MINFBE, where the selection of a suitable g is automatic.

5.5 Image restoration

As a nonconvex example we consider the restoration of a noisy blurred M⇥N image.
The formulation we use is similar to that in [65], although here we consider the `1
norm in place of the `0 norm as regularization term. Specifically, we set

f (x) =
MN

Â
i=1

y((Ax�b)i), g(x) = lkWxk1.

Here, b denotes the noisy blurred image, A is a Gaussian blur operator and W is a
discrete Haar wavelet transform with four levels, while y(t) = log(1+ t2), therefore
here — f has Lipschitz constant 2. Since W>W = WW> = I, the proximal mapping
of g can be computed as

proxgg(x) =W> proxgk·k1(Wx). (5.1)

We applied MINFBE to a 256⇥ 256-pixel black-and-white image. We distorted the
original image with a Gaussian blur operator 9⇥ 9 with standard deviation 4, and
with Gaussian noise with standard deviation 10�3. The regularization parameter in
(5.1) was set as l = 10�4. Results of the simulations are shown in Figures 8 and 9.

4 http://sun.stanford.edu/~rmunk/PROPACK/
5 http://grouplens.org/datasets/movielens/

http://sun.stanford.edu/~rmunk/PROPACK/
http://grouplens.org/datasets/movielens/
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Fig. 7: Matrix completion: performance of MINFBE on the MovieLens100k dataset,
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6 Conclusions

The forward-backward splitting (FBS) algorithm for minimizing j = f +g, where f
is smooth and g is convex, is equivalent to a variable-metric gradient method applied
to a continuously differentiable objective, which we called forward-backward enve-
lope (FBE), when f 2C2. Therefore, we can adopt advanced smooth unconstrained
minimization algorithms, such as quasi-Newton and limited-memory methods, to the
problem of minimizing the FBE and thus solving the original, nonsmooth problem.
We propose to implement them in an algorithmic scheme, which we call MINFBE,
which is appealing in that (i) it relies on the very same black-box oracle as FBS
(evaluations of f , its gradient, g and its proximal mapping) and is therefore suited for
large scale applications, (ii) it does not require the knowledge of global information
such as Lipschitz constant L f , but can adaptively estimate it. The proposed method
exploits the composite structure of j , and alternates line-search steps over descent
directions and forward-backward steps. For this reason, MINFBE possesses the same
global convergence properties of FBS, under the assumptions that j has the Kurdyka-
Łojasiewicz properties at its critical points, and a global convergence rate O(1/k) in
case j is convex. This is a peculiar feature of our approach, since line-search methods
do not converge to stationary points, in general, when applied to nonconvex functions.
Moreover, we proved that when quasi-Newton directions are used in MINFBE, and
the FBE is twice differentiable with nonsingular Hessian at the limit point of the
sequence of iterates, superlinear asymptotic convergence is achieved. Our theoreti-
cal results are supported by numerical experiments. These show that MINFBE with
(limited-memory) quasi-Newton directions improves the asymptotic convergence of
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FBS (and its accelerated variant when j is convex), and usually converges faster than
the corresponding classical line-search method applied to the problem of minimizing
the FBE.
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25. J. E. Dennis and J. J. Moré, “A characterization of superlinear convergence and its application to
quasi-Newton methods,” Mathematics of computation, vol. 28, no. 126, pp. 549–560, 1974.

26. Y.-H. Dai, “Convergence Properties of the BFGS Algoritm,” SIAM Journal on Optimization, vol. 13,
no. 3, pp. 693–701, 2002.

27. W. F. Mascarenhas, “The BFGS method with exact line searches fails for non-convex objective func-
tions,” Mathematical Programming, vol. 99, no. 1, pp. 49–61, 2004.

28. ——, “On the divergence of line search methods,” Computational & Applied Mathematics, vol. 26,
pp. 129 – 169, 2007.

29. Y. H. Dai, “A perfect example for the BFGS method,” Mathematical Programming, vol. 138, pp.
501–530, 2013.

30. R. T. Rockafellar and R. J.-B. Wets, Variational analysis. Springer, 2011, vol. 317.
31. H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert

spaces. Springer, 2011.
32. P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting,” Multiscale

Modeling & Simulation, vol. 4, no. 4, pp. 1168–1200, 2005.
33. J. E. Dennis Jr and R. B. Schnabel, Numerical methods for unconstrained optimization and nonlinear

equations. SIAM, 1996, vol. 16.
34. D. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
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Appendix A Definitions and known results

Given a differentiable mapping G : IRn
! IRm we let JG : IRn

! IRm⇥n denote the Jacobian of G. When
m = 1 we indicate with —G = JG> the gradient of G and with —2G = J—G> its Hessian, whenever it
makes sense. We say that G is strictly differentiable at x̄ if it satisfies the stronger limit

lim
(x,y)!(x̄,x̄)

x 6=y

kG(y)�G(x)� JG(x̄)[y� x]k
ky� xk

= 0

The next result states that strict differentiability is preserved by composition; its proof is a trivial compu-
tation and is therefore omitted.

Proposition A.1. Let F : IRn
! IRm, P : IRm

! IRk. Suppose that F and P are (strictly) differentiable at
x̄ and F(x̄), respectively. Then the composition T = P�F is (strictly) differentiable at x̄.

Similarly, the product of (strictly) differentiable functions is still (strictly) differentiable. However, if
one of the two functions vanishes at one point, then we may relax some assumptions, as it is proved in the
next result.

Proposition A.2. Let Q : IRn
! IRm⇥k and R : IRn

! IRk, and suppose that R(x̄) = 0. If Q is continuous at
x̄ (resp. Lipschitz-continuous around x̄) and R is differentiable (resp. strictly differentiable) at x̄, then their
product G : IRn

! IRm defined as G(x) = Q(x)R(x) is differentiable (resp. strictly differentiable) at x̄ with
JG(x̄) = Q(x̄)JR(x̄).



32 L. Stella, A. Themelis, P. Patrinos

Proof. Suppose first that Q is continuous at x̄ and R is differentiable at x̄. Then, expanding R(x) at x̄ and
since G(x̄) = 0, we obtain

G(x)�G(x̄)�Q(x̄)JR(x̄)[x� x̄]
kx� x̄k

=
Q(x)R(x)�Q(x̄)JR(x̄)[x� x̄]

kx� x̄k

=
(Q(x)�Q(x̄))JR(x̄)[x� x̄]+o(kx� x̄k)

kx� x̄k

The quantity JR(x̄)[ x�x̄
kx�x̄k ] is bounded, and continuity of Q at x̄ implies that taking the limit for x̄ 6= x! x̄

yields 0. This proves that G is differentiable at x̄.
Suppose now that Q is Lipschitz-continuous around x̄, and that R is strictly differentiable at x̄. Then,

expanding R(y) at x we obtain

G(y)�G(x)�Q(x̄)JR(x̄)[y� x]
ky� xk

=
(Q(y)�Q(x̄))JR(x̄)[y� x]

ky� xk

+
(Q(y)�Q(x))R(x)+Q(y)o(kx� yk)

ky� xk

The quantity JR(x̄)[ y�x
ky�xk ] is bounded, and by Lipschitz-continuity of Q at x̄ so is Q(x)�Q(y)

kx�yk for x,y suffi-
ciently close to x̄. Taking the limit for (x̄, x̄) 6= (x,y)! (x̄, x̄) with x 6= y in the above expression then yields
0, proving strict differentiability. Uniqueness of the Jacobian proves also the claimed form of JG(x̄).

Definition A.3. A mapping G : IRn
! IRm is said to be semidifferentiable (or B-differentiable [55,66]) at

a point x̄ 2 IRn if there exists a positively homogeneous mapping DG(x̄)[ · ] : IRn
! IRm such that

lim
x!x̄

kG(x)�G(x̄)�DG(x̄)[x� x̄]k
kx� x̄k

= 0.

It is strictly semidifferentiable at x̄ if the stronger limit holds

lim
(x,y)!(x̄,x̄)

x 6=y

kG(y)�G(x)�DG(x̄)[y� x]k
ky� xk

= 0.

DG(x̄) is called semiderivative of G at x̄. If G is (strictly) semidifferentiable at every point of a set S, then
it is said to be (strictly) semidifferentiable in S.

Proposition A.4 ([66, Thm. 2]). Suppose that G : IRn
! IRm is semidifferentiable in a neighborhood of

x̄ 2 IRn. Then, the following are equivalent:

(a) DG( · )[d] is continuous in its first argument at x̄ for all d 2 IRn;

(b) G is strictly semidifferentiable at x̄;

(c) G is strictly (Fréchet) differentiable at x̄.

Proposition A.5. Suppose that G : IRn
! IRm is semidifferentiable in a neighborhood N of x̄ and that DG

is calm at x̄, i.e., there exists L > 0 such that, for all x 2 N and d 2 IRn with kdk= 1,

kDG(x)[d]�DG(x̄)[d]k Lkx� x̄k.

Then,
kG(x)�G(y)�DG(x̄)[x� y]k  Lmax{kx� x̄k,ky� x̄k}kx� yk

Proof. Follows from [55, Lem. 2.2] by observing that the assumption of Lipschitz-continuity may be
relaxed to calmness.
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Appendix B Proofs of Section 2

Proof of Lemma 2.9.

We know from [67, Thms. 3.8, 4.1] that proxgg is (strictly) differentiable at x� g— f (x) if and only if
g satisfies Assumption 4 (Assumption 5) at x for �— f (x). Since f 2C2 by assumption, then in particular
— f is strictly differentiable. The formula (2.7) follows from Proposition A.1 with P = proxgg and F(x) =
x� g— f (x).

Matrix Qg (x) is symmetric since f 2C2 and positive definite if g < 1/L f . To obtain an expression for
Pg (x) = J proxgg(x� g— f (x)) we can apply [30, Ex. 13.45] to the tilted function g+ h— f (x), · i so that,
letting d2g = d2g(x|�— f (x))[ · ] and PS the idempotent and symmetric projection matrix on S,

Pg (x)d = prox(g/2)d2g(d)

= argmin
d02S

n

1
2 hd
0,Md0i+ 1

2g kd
0

�dk2
o

= PS argmin
d02IRn

n

1
2 hPSd0,MPSd0i+ 1

2g kPSd0 �dk2
o

= PS(PS[I + gM]PS)
†PSd

= PS[I + gM]�1PSd

where † indicates the pseudo-inverse, and last equality is due to [36, Facts 6.4.12(i)-(ii) and 6.1.6(xxxii)]
and the properties of M as stated in Assumption 4. Apparently Pg (x) ⌫ 0 is symmetric, with kPg (x)k
1.

Proof of Theorem 2.11.

If follows from Theorem 2.10 that the Hessian —2jg (x) exists and is symmetric. Moreover, from [30,
Ex. 13.18] we know that for all d 2 IRn

d2j(x|0)[d] = hd,—2 f (x)di+d2g(x|�— f (x))[d]

= hd,—2 f (x)di+ hd,Mdi+dS(d). (B.1)

2.11(a), 2.11(b): Follows directly from (B.1), using [30, Thm. 13.24(c)].
2.11(c) , 2.11(d): Letting Q = Qg (x), we see from (2.7) and (2.9) that JRg (x) is similar to the

symmetric matrix Q�1/2—2jg (x)Q�1/2, which is positive definite if and only if —2jg (x) is.
2.11(b) , 2.11(c): From the point above we know that JRg (x) has all real eigenvalues, and it can

be easily seen to be similar to g�1(I�QP), where P = Pg (x). From [68, Theorem 7.7.3] it follows that
lmin(I�QP)> 0 if and only if Q�1

� P. For all d 2 S, using (2.8) we have

hd,(Q�1
�P)di= hd,Q�1di�hd,PS[I + gM]�1PSdi

= hd,Q�1di�hPSd, [I + gM]�1PSdi

= hd,Q�1di�hd, [I + gM]�1di

and last quantity is positive if and only if I+gM �Q on S. By definition of Q, we then have that this holds
if and only if —2 f (x)+M � 0 on S, which is 2.11(b).

2.11(d), 2.11(e): Trivial since —2jg (x) exists.

Appendix C Proofs of Section 3

The following results are instrumental in proving convergence of the iterates of MINFBE.
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Lemma C.1. Under Assumption 1, consider the sequences (xk)k2IN and (wk)k2IN generated by MINFBE.
If there exist t̄,c > 0 such that tk  t̄ and kdk

k ckRgk (x
k)k, then

kxk+1
� xk
k  gkkRgk (w

k)k+ t̄ckRgk (x
k)k 8k 2 IN (C.1)

and, for k large enough,

kxk+1
� xk
k  gkkRgk (w

k)k+ t̄c(1+ gkL f )kRgk�1 (w
k�1)k (C.2)

Proof. Equation (C.1) follows simply by

kxk+1
� xk
k= kxk+1

�wk + tkdk
k gkkRgk (w

k)k+t̄ckRgk (x
k)k.

Now, for k sufficiently large gk = gk�1 = g• > 0, see Lemma 3.1, and

kRgk (x
k)k= g�1

k kx
k
�Tgk (x

k)k

= g�1
k kTgk (w

k�1)�Tgk (x
k)k

 g�1
k kw

k�1
� gk— f (wk�1)� xk + gk— f (xk)k

 g�1
k kw

k�1
� xk
k+k— f (wk�1)�— f (xk)k

 (1+ gkL f )kRgk�1 (w
k�1)k,

where the first inequality follows from nonexpansiveness of proxgg, and the last one from Lipschitz conti-
nuity of — f . Putting this together with (C.1) gives (C.2).

Lemma C.2. Let (bk)k2IN and (dk)k2IN be real sequences satisfying bk � 0, dk � 0, dk+1  dk and b 2
k+1 

(dk�dk+1)bk for all k 2 IN. Then Â•
k=0 bk < •.

Proof. Taking the square root of both sides in b 2
i+1  (di�di+1)bi and using

p

z h  (z +h)/2,

for any nonnegative numbers z , h , we arrive at 2bi+1  (di� di+1)+bi. Summing up the latter for i =
0, . . . ,k, for any k 2 IN,

2Âk
i=0bi+1  Âk

i=0(di�di+1)+Âk
i=0bi

= d0�dk+1 +b0�bk+1 +Âk
i=0bi+1

 d0 +b0 +Âk
i=0bi+1.

Hence
•

Â
i=0

bi+1  d0 +b0 < •, (C.3)

which concludes the proof.

Proposition C.3. Suppose Assumption 1 is satisfied and that j is lower bounded, and consider the se-
quences generated by MINFBE. If b 2 (0,1) and there exist t̄,c> 0 such that tk  t̄ and kdk

k ckRgk (x
k)k

then
•

Â
k=0
kxk+1

� xk
k

2< •. (C.4)

If moreover (xk)k2IN is bounded, then

lim
k!•

distw(x0)(x
k) = 0 (C.5)

and w(x0) is a nonempty, compact and connected subset of zer∂j over which j is constant.
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Proof. (C.4) follows from (C.1), Propositions 3.4(ii) and 3.4(iv), and the fact that the sum of square-
summable sequences is square summable.

If (xk)k2IN is bounded, that w(x0) is nonempty, compact and connected and limk!• distw(x0)(x
k) = 0

follow by [10, Lem. 5(ii),(iii), Remark 5]. That j is constant on w(x0) follows by a similar argument as
in [10, Lem. 5(iv)].

The following is [10, Lem. 6], therefore we state it with no proof.
Lemma C.4 (Uniformized KL property). Let K ⇢ IRn be a compact set and suppose that the proper lower
semi-continuous function j : IRn

! IR is constant on K and satisfies the KL property at every x? 2 K.
Then there exist e > 0, h > 0, and a continuous concave function y : [0,h ]! [0,+•) such that properties
3.9(i), 3.9(ii) and 3.9(iii) hold, and
(iv’) for all x? 2 K and x such that distK(x)< e and j(x?)< j(x)< j(x?)+h ,

y 0(j(x)�j(x?))dist(0,∂j(x))� 1. (C.6)

Proof of Lemma 3.1.

Let (gk)k2IN be the sequence of stepsize parameters computed by MINFBE. To arrive to a contradic-
tion, suppose that k0 is the smallest element of IN such that

gk0 < min
�

g0,s(1�b )/L f
 

.

Clearly, k0 � 1. Moreover s�1gk0 must satisfy the condition in step 4: for some w 2 IRn (corresponding
to wk = xk + tkdk selected before going back to step 1 after the condition in step 4 is passed, which might
differ from the final value of wk after step 4 is passed)

j(Ts�1gk0
(w))> js�1gk0

(w)�
bs�1gk0

2
kRs�1gk0

(w)k2.

But from Proposition 2.2(ii) we also have

j(Ts�1gk0
(w)) js�1gk0

(w)�
s�1gk0

2
(1�s�1gk0 L f )kRs�1gk0

(w)k2

 js�1gk0
(w)�

bs�1gk0

2
kRs�1gk0

(w)k2,

where last inequality follows from s�1gk0 < (1� b )/L f . This leads to a contradiction, therefore gk �

min
�

g0,s(1�b )/L f
 

as claimed. That gk is asymptotically constant follows since the sequence (gk)k2IN
is nonincreasing.

Proof of Proposition 3.4.

We have

j(xk+1) jgk (w
k)� bgk

2 kRgk (w
k)k2

 jgk (x
k)� bgk

2 kRgk (w
k)k2 (C.7)

 j(xk)� bgk
2 kRgk (w

k)k2
�

gk
2 kRgk (x

k)k2,

where the first inequality comes from step 4, the second from step 3 and the third from Proposition 2.2(i).
This shows 3.4(i). Let j? = limk!• j(xk), which exists since (j(xk))k2IN is monotone. If j? =�•, clearly
infj =�• and w(x0) = /0 due to properness and lower semicontinuity of j and to the monotonic behavior
of (j(xk))k2IN. Otherwise, telescoping the inequality we get

1
2

k

Â
i=0

gi
�

bkRgi (w
i)k2 +kRgi (x

i)k2�
 j(x0)�j(xk+1) j(x0)�j? (C.8)

and since gk is uniformly lower bounded by a positive number (see Lemma 3.1) 3.4(ii) follows, hence
3.4(iii). If b > 0, observing that for k large enough such that gk ⌘ g• we have

jgk (w
k+1)

step 3

 jgk (x
k+1)

step 5

= jgk (Tk(wk))  jgk (w
k),

similar argumentations as those for proving 3.4(ii) show 3.4(iv).
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Proof of Theorem 3.5.

If infj =�• there is nothing to prove. Otherwise, since the sequence (gk)k2IN is nonincreasing, from
(C.8) we get

(k+1)gk

2

✓

min
i=0...k

kRgi (x
i)k2+b min

i=0...k
kRgi (w

i)k2
◆

 j(x0)� infj.

Rearranging the terms and invoking Lemma 3.1 gives the result.

Proof of Theorem 3.6.

The proof is similar to that of [15, Thm. 4]. By Proposition 2.5(iii) we know that jg  jg for any
g > 0. Combining this with (C.7) we get

j(xk+1) min
x2IRn

n

j(x)+ 1
2gk
kx� xk

k

2
o

, (C.9)

and in particular, for x? 2 argminj ,

j(xk+1) min
a2[0,1]

n

j(ax?+(1�a)xk)+ a2

2gk
kxk
� x?k2

o

 min
a2[0,1]

n

j(xk)�a(j(xk)� infj)+ R2

2gk
a2
o

,

where the last inequality follows by convexity of j . If j(x0)� infj � R2/g0, then the optimal solution of
the latter problem for k = 0 is a = 1 and we obtain (3.1). Otherwise, the optimal solution is

a =
gk(j(xk)� infj)

R2 

gk(j(x0)� infj)
R2  1,

and we obtain

j(xk+1) j(xk)�
gk(j(xk)� infj)2

2R2 .

Letting lk =
1

j(xk)�infj the latter inequality is expressed as

1
lk+1



1
lk
�

gk

2R2l 2
k+1

.

Multiplying both sides by lklk+1 and rearranging

lk+1 � lk +
gk

2R2
lk+1

lk
� lk +

gk

2R2 ,

where the latter inequality follows from the fact that (j(xk))k2IN is nonincreasing, cf. Proposition 3.4(i).
Telescoping the inequality and using Lemma 3.1, we obtain

lk � l0 +
k min

�

g0,s(1�b )/L f
 

2R2 �

k min
�

g0,s(1�b )/L f
 

2R2 .

Rearranging, we arrive at (3.2).

Proof of Theorem 3.7.

If (3.3) holds, then j has bounded level sets and zer∂j = {x?}. In particular, w(x0) 6= /0 and Propo-
sition 3.4(iii) then ensures xk

! x?. Therefore, there is k0 2 IN such that xk
2 N for all k � k0. Inequality

(C.9) holds, and in particular for k � k0

j(xk+1) min
a2[0,1]

n

j(ax?+(1�a)xk)+ a2

2gk
kx?� xk

k

2
o

 min
a2[0,1]

n

j(xk)+a
⇣

a
cgk
�1

⌘

(j(xk)� infj)
o

,
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where the second inequality follows by convexity of j and (3.3). The minimum of last expression is
achieved for a = min

�

1, c
2 gk

 

. When gk < 2c�1 we have the bound

j(xk+1)� infj  (1� c
4 gk)(j(xk)� infj).

When instead gk � 2c�1 we have the bound

j(xk+1)� infj  (cgk)
�1(j(xk)� infj) 1

2 (j(x
k)� infj).

Therefore j(xk+1)� infj  w(j(xk)� infj), where

w  sup
k

max{ 1
2 ,1�

c
4 gk}

max{ 1
2 ,1�

c
4 min{g0,s(1�b )/L f }} 2 [ 1

2 ,1),

last inequality following from Lemma 3.1. This proves the claim on the sequence (j(xk))k�k0 and using
inequality (C.7) the same holds for (jgk (w

k))k�k0 . From the error bound (3.3) we obtain that xk
! x?

R-linearly. If the same error bound holds for jg• , then also wk
! x? R-linearly.

Proof of Theorem 3.10.

The case where the sequence is finite does not deserve any further investigation, therefore we as-
sume that (xk)k2IN is infinite. We then assume that Rgk (x

k) 6= 0 which implies through Proposition 3.4 that
j(xk+1)< j(xk). Due to (C.5), the KL property for j , and Lemma C.4, there exist e,h > 0 and a contin-
uous concave function y : [0,h ]! [0,+•) such that for all x with distw(x0)(x) < e and j(x?) < j(x) <
j(x?)+h one has

y 0(j(x)�j(x?))dist(0,∂j(x))� 1.

According to Proposition C.3 there exists a k1 2 IN such that distw(x0)(x
k)< e for all k� k1. Furthermore,

since j(xk) converges to j(x?) there exists a k2 such that j(xk) < j(x?) +h for all k � k2. Take k̄ =
max{k1,k2}. Then for every k � k̄ we have

y 0(j(xk)�j(x?))dist(0,∂j(xk))� 1.

From Proposition 3.4(i)
j(xk+1) j(xk)� bgk

2 kRgk (w
k)k2.

For every k> 0 let —̃j(xk)=— f (xk)�— f (wk�1)+Rgk�1 (w
k�1). Since Rgk�1 (w

k�1)2— f (wk�1)+∂g(xk),
then —̃j(xk) 2 ∂j(xk) and

k—̃j(xk)k  k— f (xk)�— f (wk�1)k+kRgk�1 (w
k�1)k

= (1+ gk�1L f )kRgk�1 (w
k�1)k.

From (C.6)

y 0(j(xk)�j(x?))�
1

k—̃j(xk)k
�

1
(1+ gk�1L f )kRgk�1 (wk�1)k

.

Let Dk = y(j(xk)�j(x?)). By concavity of y and Proposition 3.4(i)

Dk�Dk+1 � y 0(j(xk)�j(x?))(j(xk)�j(xk+1))

�

bgk

2(1+ gk�1L f )

kRgk (w
k)k2

kRgk�1 (wk�1)k

�

bgmin

2(1+ g0L f )

kRgk (w
k)k2

kRgk�1 (wk�1)k

where gmin = min
�

g0,s(1�b )/L f
 

, see Lemma 3.1, or

kRgk (w
k)k2
 a(Dk�Dk+1)kRgk�1 (w

k�1)k (C.10)
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where a = 2(1+ g0L f )/(bgmin). Applying Lemma C.2 with

dk = aDk, bk = kRgk�1 (w
k�1)k,

we conclude that Â•
k=0kRgk (w

k)k< •. From (C.2), using the fact that gk  g0 for all k, then it follows that
•

Â
k=0
kxk+1

� xk
k< •.

Then (xk)k2IN is a Cauchy sequence, hence it converges to a point that, by Proposition 3.4, is a critical
point x? of j .

Proof of Theorem 3.11.

Theorem 3.10 ensures that (xk)k2IN converges to a critical point, be it x?. We know from Lemma
3.1 that eventually gk = g• > 0, therefore we assume k is large enough for this purpose and indicate g in
place of gk for simplicity. Denoting Ak = Â•

i=kkx
i+1
� xi
k clearly Ak � kxk

� x?k, so we will prove that Ak
converges linearly to zero to obtain the result. Note that by (C.2) we know that

kxi+1
� xi
k gkRg (wi)k+t̄c(1+ gL f )kRg (wi�1)k.

Therefore we can upper bound Ak as follows

Ak  t̄c(1+ gL f )kRg (wk�1)k+
�

g + t̄c(1+ gL f )
�

Â•
i=k kRg (wi)k



�

g + t̄c(1+ gL f )
�

Â•
i=k�1 kRg (wi)k, (C.11)

and reduce the problem to proving linear convergence of Bk = Â•
i=kkRg (wi)k. When y is as in (3.4), for

sufficiently large k the KL inequality reads

j(xk)�j(x?) [s(1�q)kvk
k]

1
q , 8vk

2 ∂j(xk).

Taking vk = — f (xk)�— f (wk�1)+Rg (wk�1) 2 ∂j(xk), this in turn yields

j(xk)�j(x?)
h

s(1�q)(1+ gL f )kRg (wk�1)k
i

1
q
, (C.12)

(see the proof of Theorem 3.10). Inequality (C.10) holds, for sufficiently large k, with Dk = s(j(xk)�
j(x?))1�q in this case. Applying Lemma C.2 with

dk = aDk, bk = kRg (wk�1)k= Bk�1�Bk,

we obtain

Bk  (Bk�1�Bk)+s(j(xk)�j(x?))1�q

 (Bk�1�Bk)+s
⇥

s(1�q)(1+ gL f )(Bk�1�Bk)
⇤

1�q
q ,

where the second inequality is due to (C.12). Since Bk�1�Bk ! 0, then for k large enough it holds that
s(1+ gL f )(Bk�1�Bk) 1, and the last term in the previous chain of inequalities is increasing in q when
q 2 (0, 1

2 ]. Therefore Bk eventually satisfies

Bk C(Bk�1�Bk),

where C > 0, and so Bk  [C/(1+C)]Bk�1, i.e., Bk converges to zero Q-linearly. This in turn implies that
kxk
� x?k converges to zero with R-linear rate. Furthermore,

kwk
� x?k= kxk

� x?+ tkdk
k

 kxk
� x?k+t̄ckRgk (x

k)k

= kxk
� x?k+t̄cgk

�1
kTgk (x

k)� xk
k

 (1+ t̄cg�1
k )kxk

� x?k+t̄cgk
�1
kTgk (x

k)�Tgk (x?)k

 (1+ t̄cg�1
k )kxk

� x?k+t̄cgk
�1
kxk
� gk— f (xk)� x?+ gk— f (x?)k

 (1+ t̄c(2g�1
k +L f ))kxk

� x?k,
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where the last two inequalities follow by nonexpansiveness of proxgg and Lipschitz continuity of — f .
Since gk is lower bounded by a positive quantity, then we deduce that also kwk

� x?k converges R-linearly
to zero.

Appendix D Proofs of Section 4

Proof of Theorem 4.1.

Since wk = xk
�B�1

k —jg (xk), letting k! • and using (4.1) we have that

0 
(Bk�—2jg (x?))(wk

� xk)

kwk
� xk
k

= �
—jg (xk)+—2jg (x?)(wk

� xk)

kwk
� xk
k

= �
—jg (xk)�—jg (wk)+—2jg (x?)(wk

� xk)

kwk
� xk
k

�

—jg (wk)

kwk
� xk
k

.

By strict differentiability of —jg at x? we obtain

lim
k!•

k—jg (wk)k

kwk
� xk
k

= 0 (D.1)

By nonsingularity of —2jg (x?) and since wk
! x?, there exist a > 0 such that k—jg (xk)k� akxk

�x?k for
k large enough. Therefore, for k sufficiently large,

k—jg (wk)k

kwk
� xk
k

�

akwk
� x?k

kwk
� xk
k

�

akwk
� x?k

kwk
� x?k+kxk

� x?k
.

Using (D.1) we get

lim
k!•

kwk
� x?k

kwk
� x?k+kxk

� x?k
= lim

k!•

kwk
� x?k/kxk

� x?k
kwk
� x?k/kxk

� x?k+1
= 0,

from which we obtain

lim
k!•

kwk
� x?k

kxk
� x?k

= 0. (D.2)

Finally,

kxk+1
� x?k= kTg (wk)�Tg (x?)k

=
�

�

�

proxgg(w
k
� g— f (wk))� proxgg(x?� g— f (x?))

�

�

�



�

�

�

wk
� g— f (wk)� x?+ g— f (x?)

�

�

�

 (1+ gL f )kwk
� x?k, (D.3)

where the first inequality follows from nonexpansiveness of proxgg and the second from Lipschitz conti-
nuity of — f . Using (D.3) in (D.2) we obtain that (xk)k2IN and (wk)k2IN converge Q-superlinearly to x?.

Proof of Theorem 4.2.

From Proposition A.4(a) it follows that —jg is strictly differentiable and continuosly semidifferen-
tiable at x?. Moreover, we know from Lemma 3.1 that eventually gk = g• > 0. Therefore we assume
that k is large enough for this purpose and indicate g in place of gk for simplicity. We denote for short
gk = —jg (xk). In MINFBE

wk
� xk = tkdk =�tkB�1

k gk,
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and by (4.1) and Cauchy-Schwarz inequality

k(Bk�—2jg (x?))(wk
� xk)k

kwk
� xk
k

=
kgk +—2jg (x?)dk

k

kdk
k

�

�

�

�

�

�

hdk,gk +—2jg (x?)dk
i

kdk
k

2

�

�

�

�

�

! 0.

Therefore
�hgk,dk

i= hdk,—2jg (x?)dk
i+o(kdk

k

2). (D.4)

Since —2jg (x?) is positive definite, then there is h > 0 such that for sufficiently large k

�hgk,dk
i � hkdk

k

2. (D.5)

Since D—jg is continuous at x? and xk
! x?, we have

kD—jg (xk)[dk]�—2jg (x?)dk
k= o(kdk

k). (D.6)

Next, since xk
! x?, for k large enough —jg is semidifferentiable at xk and we can expand jg around xk

using [30, Ex. 13.7(c)] to obtain

jg (xk +dk)�jg (xk) = hgk,dk
i+ 1

2 hd
k,D—jg (xk)[dk]i+o(kdk

k

2)

= hgk,dk
i+ 1

2 hd
k,—2jg (x?)dk

i+o(kdk
k

2)

= 1
2 hg

k,dk
i+o(kdk

k

2),

where the second equality is due to (D.6), and the last equality is due to (D.4). Therefore, using (D.5), for
sufficiently large k

jg (xk +dk)�jg (xk)� h
2 kd

k
k

2< 0.

i.e., tk = 1 satisfies the non-increase condition. As a consequence, MINFBE eventually reduces to the
iterations of Theorem 4.1 and the proof follows.

Proof of Theorem 4.3.

Suppose that Assumption 6(i) holds. Since x? 2 zer∂j and —2jg (x?)� 0, it follows that x? is a strong
local minimizer of jg , hence of j in light of Propositions 2.2(i) and 2.3(i). Theorem 3.7 then ensures that
(xk)k2IN and (wk)k2IN converge linearly to x?. If instead (kB�1

k k)k2IN is bounded and Assumption 6(ii)
holds, then Theorem 3.11 applies and again (xk)k2IN and (wk)k2IN converge linearly to a critical point, be
it x?. In both cases we can apply Proposition A.5 and for k sufficiently large

kyk
�—2jg (x?)sk

k

ksk
k

 Lmax
n

kwk
� x?k,kxk

� x?k
o

. (D.7)

Since the convergence is linear, then the right-hand side of (D.7) is summable. With similar arguments to
those of [25, Lem. 3.2] we can see that eventually hsk,yk

i > 0. Therefore we can apply [69, Thm. 3.2],
which ensures that condition (4.1) holds. The result follows then from Theorem 4.2.
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