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FORWARD-BACKWARD ENVELOPE FOR THE SUM OF TWO
NONCONVEX FUNCTIONS: FURTHER PROPERTIES AND

NONMONOTONE LINE-SEARCH ALGORITHMS∗

ANDREAS THEMELIS AND LORENZO STELLA AND PANOS PATRINOS †

Abstract. We propose ZeroFPR, a nonmonotone linesearch algorithm for minimizing the sum of
two nonconvex functions, one of which is smooth and the other possibly nonsmooth. ZeroFPR is the
first algorithm that, despite being fit for fully nonconvex problems and requiring only the black-box
oracle of forward-backward splitting (FBS) — namely evaluations of the gradient of the smooth term
and of the proximity operator of the nonsmooth one — achieves superlinear convergence rates under
mild assumptions at the limit point when the linesearch directions satisfy a Dennis-Moré condition,
and we show that this is the case for Broyden’s quasi-Newton directions. Our approach is based on the
forward-backward envelope (FBE), an exact and strictly continuous penalty function for the original
cost. Extending previous results we show that, despite being nonsmooth for fully nonconvex problems,
the FBE still enjoys favorable first- and second-order properties which are key for the convergence
results of ZeroFPR. Our theoretical results are backed up by promising numerical simulations. On
large-scale problems, by computing linesearch directions using limited-memory quasi-Newton updates
our algorithm greatly outperforms FBS and its accelerated variant (AFBS).

Key words. Nonsmooth optimization, nonconvex optimization, forward-backward splitting, line-
search methods, quasi-Newton methods, prox-regularity.
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1. Introduction. In this paper we deal with optimization problems of the form

(1.1) minimize
x∈Rn

ϕ(x) ≡ f(x) + g(x)

under the following requirements, which will be assumed without further mention.
Assumption I (Basic assumption). In problem (1.1)

(i) f ∈ C1,1(Rn) (differentiable with Lf -Lipschitz continuous gradient);
(ii) g : Rn → R is proper, closed and γg-prox-bounded (see Section 2.1);
(iii) a solution exists, that is, argminϕ 6= ∅.

Both f and g are allowed to be nonconvex, making (1.1) prototypic for a plethora
of applications spanning signal and image processing, machine learning, statistics,
control and system identification. A well known algorithm addressing (1.1) is forward-
backward splitting (FBS), also known as proximal gradient method. FBS has been
thoroughly analyzed under the assumption of g being convex. If moreover f is convex,
then FBS is known to converge globally with rate O(1/k) in terms of objective value,
where k is the iteration count. In this case, accelerated variants of FBS, also known
as fast forward-backward splitting (FFBS), can be derived thanks to the work of
Nesterov [9, 36], that only require minimal additional computations per iteration but
achieve the provably optimal global convergence rate of order o(1/k2) [6].

The work in [41] pioneered an alternative acceleration technique. The method is
based on an exact, real-valued penalty function for the original problem (1.1), namely
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the forward-backward envelope (FBE), defined as follows

(1.2) ϕγ(x) = ϕf,gγ (x) := inf
z∈Rn

{
f(x) + 〈∇f(x), z − x〉+ 1

2γ ‖z − x‖2 + g(z)
}

where γ > 0 is a given parameter. We will adopt the simpler notation ϕγ without
superscript whenever f and g are clear from context.

The name forward-backward envelope comes from the fact that ϕγ(x) is the value
of the minimization problem that defines the forward-backward step and alludes to
the kinship that it has with the Moreau envelope. These claims will be addressed more
in detail in Section 4. When f is sufficiently smooth and both f and g are convex,
the FBE was shown to be continuously differentiable and amenable to be minimized
with generalized Newton methods. More recently, [50] proposed a linesearch algorithm
based on (L-)BFGS quasi-Newton directions for minimizing the FBE. The curvature
information exploited by Newton-like methods acts as an online preconditioner, en-
abling superlinear rates of convergence, under some assumptions. However, unlike
plain (F)FBS schemes, such methods require accessing second-order information of
the smooth term f (needed for the evaluation of ∇ϕγ), and are well defined only as
long as the nonsmooth term g is convex. On the contrary, FBS only requires first-order
information on f and prox-boundedness of g, in which case all accumulation points
are stationary for ϕ, i.e., they satisfy the first order necessary conditions [5].

Contributions. In this paper we propose ZeroFPR, a nonmonotone linesearch al-
gorithm that, to the best of our knowledge, is the first that (1) addresses the same
range of problems as FBS, (2) requires the same black-box oracle as FBS (gradient of
one function and proximity operator of the other), (3) yet achieves superlinear rates
if some assumptions (only) at the limit point are met. Though related to minFBE al-
gorithm [50], ZeroFPR is conceptually different, mainly because it is gradient-free, in
the sense that it does not require the gradient of the FBE. Moreover,
• We provide the necessary theoretical background linking the concepts of station-

arity of a point for problem (1.1), criticality and optimality. To the best of our knowl-
edge, such an analysis was previously made only for the proximal point algorithm [45],
for a special case of the projected gradient method [7, 8] and for difference-of-convex
minimization problems [40].
• The analysis of the FBE, previously studied only in the case of f being C2(Rn)

and g convex [50], is extended to f and g as in Assumption I. In particular, we discuss
properties of f and g that ensure (1) continuous differentiabilty of the FBE around
critical points, (2) (strict) twice differentiability at critical points, and (3) equivalence
of strong local minimality for the original function and the FBE.
• Exploiting the investigated properties of the FBE and of critical points we prove

that ZeroFPR with monotone linesearch converges (1) globally if ϕγ has the Kurdyka-
Łojasiewicz property [33, 34, 27], and (2) superlinearly when quasi-Newton Broyden
directions are employed, under additional requirements at the limit point.

Organization of the paper. In Section 2 we introduce some notation and list known
facts about FBS. In Section 3 we define and explore notions of stationarity and crit-
icality for the investigated problem and relate them with properties of the forward-
backward operator. In Section 4 we extend the results of [50] about the fundamental
properties of the FBE to the more general setting addressed in this paper; for the sake
of readability, some of the proofs are deferred to Appendix A. Section 5 addresses the
core contribution of the paper, ZeroFPR; although arbitrary directions can be cho-
sen, we specialize the results on superlinear convergence to a quasi-Newton Broyden
method so as to truely maintain the same black-box oracle as FBS. Some ancillary
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results needed for the proofs are listed in Appendix B. Finally, Section 6 illustrates
numerical results obtained with the proposed method.

2. Preliminaries.

2.1. Notation. The identity n×n matrix is denoted as I, and the extended real
line as R = R∪ {∞}. The open and closed ball of radius r ≥ 0 centered in x ∈ Rn is
denoted as B(x; r) and B(x; r), respectively. Given a set E and a sequence (xk)k∈N,
we write (xk)k∈N ⊂ E with the obvious meaning of xk ∈ E for all k ∈ N. The
(possibly empty) set of cluster points of (xk)k∈N is denoted as ω

(
(xk)k∈N

)
, or simply

as ω(xk) whenever the indexing is clear from context. We say that (xk)k∈N ⊂ Rn is
summable if

∑
k∈N ‖xk‖ is finite, and square-summable if (‖xk‖2)k∈N is summable.

A function h : Rn → R is level-bounded if for all α ∈ R the level-set lev≤α h :=
{x ∈ Rn | h(x) ≤ α} is bounded. Following the terminology of [49], we say that a
function f : Rn → R is strictly continuous at x̄ if lim supy,z→x̄

y 6=z
|f(y)−f(z)|
‖y−z‖ is finite, and

strictly differentiable at x̄ if ∇f(x̄) exists and limy,z→x̄
y 6=z

f(y)−f(z)−〈∇f(x̄),y−z〉
‖y−z‖ = 0. The

set of functions Rn → R with Lipschitz continuous gradient is denoted as C1,1(Rn),
and for f ∈ C1,1(Rn) we write Lf to indicate the Lipschitz modulus of ∇f .

For a proper, closed function g : Rn → R, a vector v ∈ ∂g(x) is a subgradient of
g at x, where the subdifferential ∂g(x) is considered in the sense of [49, Def. 8.3]

∂g(x) =
{
v ∈ Rn | ∃(xk)k∈N → x, (vk ∈ ∂̂g(xk))k∈N → v s.t. g(xk)→ g(x)

}
,

and ∂̂g(x) is the set of regular subgradients of g at x, namely

∂̂g(x) =
{
v ∈ Rn | g(z) ≥ g(x) + 〈v, z − x〉+ o(‖z − x‖), ∀z ∈ Rn

}
.

We have ∂ϕ(x) = ∇f(x) + ∂g(x) and ∂̂ϕ(x) = ∇f(x) + ∂̂g(x) [49, Ex. 8.8(c)].
Given a parameter value γ > 0, the Moreau envelope function gγ and the proximal

mapping proxγg are defined by

gγ(x) := inf
z

{
g(z) + 1

2γ ‖z − x‖2
}
,(2.1)

proxγg(x) := argmin
z

{
g(z) + 1

2γ ‖z − x‖2
}
.(2.2)

We now summarize some properties of gγ and proxγg; the interested reader is referred
to [49] for a detailed discussion. A function g : Rn → R is prox-bounded if there exists
γ > 0 such that g + 1

2γ ‖ · ‖2 is bounded below on Rn. The supremum of all such γ
is the threshold γg of prox-boundedness for g. In particular, if g is convex or bounded
below then γg = ∞. In general, for any γ ∈ (0, γg) the proximal mapping proxγg is
nonempty- and compact-valued, and the Moreau envelope gγ finite [49, Thm. 1.25].

Given a nonempty closed set S ⊆ Rn we let δS : Rn → R denote its indicator
function, namely δS(x) = 0 if x ∈ S and δS(x) = ∞ otherwise, and ΠS : Rn ⇒ Rn

the (set-valued) projection x 7→ argminz∈S ‖z − x‖. Proximal mappings can be seen
as generalized projections, due to the relation ΠS = proxγδS for any γ > 0.

For a set-valued mapping T : Rn ⇒ Rn we let gphT = {(x, y) | y ∈ T (x)}
denote its graph, zerT = {x ∈ Rn | 0 ∈ T (x)} the set of its zeros and fixT =
{x ∈ Rn | x ∈ T (x)} the set of its fixed-points.
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2.2. Forward-backward iterations. Due to the quadratic upper bound

(2.3) f(z) ≤ f(x) + 〈∇f(x), z − x〉+
Lf
2 ‖z − x‖2

holding for all x, z ∈ Rn [11, Prop. A.24], for any γ ∈ (0, 1/Lf) the function

(2.4) `f,gγ (z; x) := f(x) + 〈∇f(x), z − x〉+ 1
2γ ‖z − x‖2 + g(z)

furnishes a majorization model for ϕ, in the sense that
• `f,gγ (z ; x) ≥ ϕ(z) for all x, z ∈ Rn, and
• `f,gγ (x; x) = ϕ(x) for all x ∈ Rn.

Given a point x ∈ Rn, one iteration of forward-backward splitting (FBS) for problem
(1.1) consists in the minimization of the majorizing function `f,gγ , namely, in selecting

(2.5) x+ ∈ T f,gγ (x) := argminz`
f,g
γ (z; x),

where γ ∈
(
0,min {γg, 1/Lf}

)
is the stepsize parameter. The (set-valued) forward-

backward operator T f,gγ can be equivalently expressed as

T f,gγ (x) = proxγg (x− γ∇f(x)),(2.6a)

which motivates the bound γ < γg in (2.5) to ensure the existence of x+ for any x.
We also introduce the corresponding (set-valued) forward-backward residual, namely

Rf,gγ (x) := 1
γ

(
x− T f,gγ (x)

)
.(2.6b)

Whenever no ambiguity occurs, we will omit the superscript and write simply `γ , Tγ
and Rγ in place of `f,gγ , T f,gγ and Rf,gγ , respectively.

The inclusion (2.5) emphasizes that FBS is a majorization-minimization algo-
rithm (MM), a class of methods which has been thoroughly analyzed when the ma-
jorizing function is strongly convex in the first argument [14] (for `γ , this is the case
when g is convex). MM algorithms are of interest whenever minimizing the surrogate
function `γ( · ; x) is significantly easier than directly addressing the non structured
minimization of ϕ. For FBS this translates into simplicity of proxγg and ∇f oper-
ations, cf. (2.6a). Under very mild assumptions FBS iterations (2.5) converge to a
critical point (see §3) independently of the choice of x+ in the set Tγ(x) [5]. The key
is the following sufficient decrease property, whose proof can be found in [15, Lem. 2].
Lemma 2.1 (Sufficient decrease). For any γ ∈ (0, γg), x ∈ Rn and x̄ ∈ Tγ(x) it
holds that ϕ(x̄) ≤ ϕ(x)− 1−γLf

2γ ‖x− x̄‖2.
3. Stationary and critical points. Unless ϕ is convex, the stationarity condi-

tion 0 ∈ ∂̂ϕ(x?) in problem (1.1) is only necessary for the optimality of x? [49, Thm.
10.1]. In this section we define different concepts of (sub)optimality and show how
they are related for generic functions ϕ = f + g as in Assumption I.
Definition 3.1. We say that a point x? ∈ domϕ is

(i) stationary if 0 ∈ ∂̂ϕ(x?);
(ii) critical if it is γ-critical for some γ ∈ (0, γg), i.e., if x? ∈ Tγ(x?);
(iii) optimal if x? ∈ argminϕ, i.e., if it solves (1.1).

The notion of criticality was already discussed in [7, 8] under the name of L-
stationarity (L plays the role of 1/γ) for the special case of g = δB∩Cs , where B is a
convex set and Cs is the (nonconvex) set of vectors with at most s nonzero entries.
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In [40] it is defined as d-stationarity, although the analysis is limited to difference-of-
convex minimization problems; more precisely, it addresses problem (1.1) for a concave
piecewise smooth function f and a convex function g.

If g is convex, then γg =∞ and we may talk of criticality without mention of γ: in
this case, γ-criticality and stationarity are equivalent properties regardless of the value
of γ. For more general functions g, instead, the value of γ plays a role in determining
whether a point is γ-critical or not, which legitimizes the following definition.
Definition 3.2. The criticality threshold is the function Γf,g : Rn → [0, γg]

(3.1) Γf,g(x) := sup
({
γ > 0 | x ∈ T f,gγ (x)

}
∪ {0}

)
for x ∈ Rn.

As usual, whenever f and g are clear from the context we simply write Γ in place
of Γf,g. The bound Γ ≤ γg is due to the fact that proxγg (and consequently Tγ) is
everywhere empty-valued for γ > γg. Considering also γ = 0 forces the set in the
definition to be nonempty, and the lower-bound Γ ≥ 0 in particular; more precisely,
observe that, by definition, Γ(x) > 0 iff x is a critical point.
Example 3.3. Let us consider ϕ = f+g for f(x) = 1

2x
2 and g = δC where C = {±1}.

Clearly, γg = +∞ (as g is lower-bounded), Lf = 1 and ±1 are both (unique) optima.
Since ∂̂ϕ(x) = R for x ∈ C and ∂̂ϕ is clearly empty elsewhere, all points in C are
stationary. proxγg is the (set-valued) projection on C, therefore the forward-backward
operator is Tγ(x) = ΠC((1− γ)x). We have

Tγ(−1) =

{−1} if γ < 1
{±1} if γ = 1
{1} if γ > 1

and Tγ(1) =

 {1} if γ < 1
{±1} if γ = 1
{−1} if γ > 1.

In particular, Γ(1) = Γ(−1) = 1.
We now list some properties of critical and optimal points which will be used to

derive regularity properties of Tγ and gγ .
Theorem 3.4 (Properties of critical points). The following properties hold:

(i) for γ ∈ (0, γg), a point x? is γ-critical iff

g(x) ≥ g(x?) + 〈 − ∇f(x?), x− x?〉 − 1
2γ ‖x− x?‖2 ∀x ∈ Rn;

(ii) if x? is critical, then it is γ-critical for all γ ∈ (0,Γ(x?)); moreover, x? is also
Γ(x?)-critical provided that Γ(x?) < γg;

(iii) Tγ(x?)={x?} and Rγ(x?)={0} for any critical point x? and γ ∈ (0,Γ(x?)).

Proof.
♠ 3.4(i): by definition, x? is γ-critical iff `γ(x?; x?) ≤ `γ(x; x?) for all x, i.e., iff

f(x?) + g(x?) ≤ f(x?) + 〈∇f(x?), x− x?〉+ 1
2γ ‖x− x?‖2 + g(x) ∀x ∈ Rn.

By suitably rearranging, the claim readily follows.
♠ 3.4(ii): since x? is γ-critical, due to 3.4(i) apparently it is also γ′-critical for any
γ′ ∈ (0, γ]. From the definition (3.1) of the criticality threshold Γ(x?), it then follows
that x? is γ-critical for any γ ∈ (0,Γ(x?)). Suppose now that Γ(x?) < γg. Then, due
to 3.4(i) for all γ ∈ (0,Γ(x?)) we have

g(x) ≥ g(x?) + 〈 − ∇f(x?), x− x?〉 − 1
2γ ‖x− x?‖2 ∀x ∈ Rn.

By taking the limit as γ ↗ Γ(x?) we obtain that the inequality holds for Γ(x?) as
well, proving the claim in light of the characterization 3.4(i).
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♠ 3.4(iii): let x? be a critical point, and let x ∈ Tγ(x?) for some γ < Γ(x?). Fix
γ′ ∈ (γ,Γ(x?)). From 3.4(i) and 3.4(ii) it then follows that

(3.2) g(x) ≥ g(x?) + 〈 − ∇f(x?), x− x?〉 − 1
2γ′ ‖x− x?‖2.

Since x, x? ∈ Tγ(x?), it holds that `γ(x?; x?) = `γ(x; x?), i.e.,

g(x?) = 〈∇f(x?), x− x?〉+ 1
2γ ‖x− x?‖2 + g(x)

(3.2)
≥ g(x?) +

(
1

2γ − 1
2γ′

)
‖x− x?‖2.

Since 1
2γ − 1

2γ′ > 0, necessarily x = x?.

The inequality in Theorem 3.4(i) can be rephrased as the fact that the vector
−∇f(x̄) is a “global” proximal subgradient for g at x̄ as in [49, Def. 8.45], where
“global” refers to the fact that δ can be taken +∞ in the cited definition. An interesting
consequence is that the definition of criticality depends solely on ϕ and not on the
considered decomposition f + g; in fact, it is only the threshold Γ that depends on
it. To see this, let f̃ = f − h and g̃ = g + h for some h ∈ C1,1(Rn), and consider a
point x? which is γ-critical with respect to the decomposition f + g, i.e., such that
x? ∈ T f,gγ (x?). Combining Theorem 3.4(i) with the quadratic bound (2.3) for h, we
obtain

g̃(x) ≥ g̃(x?)− 〈∇f̃(x?), x− x?〉 − 1
2 γ

1+γLh

‖x− x?‖2 for all x ∈ Rn.

Again from the characterization of Theorem 3.4(i), we deduce that x? ∈ T f̃ ,g̃γ̃ (x?),
where γ̃ = γ

1+γLh
. In particular, considering h = −f we infer that a point x? is

critical iff x? ∈ T 0,ϕ
γ (x?) = proxγϕ(x?) for some γ > 0, which legitimizes the notion

of criticality without mentioning a specific decomposition.
In the next result we show that criticality is a halfway property between station-

arity and optimality. In light of these relations we shall seek “suboptimal” solutions
which we characterize as critical points.
Proposition 3.5 (Optimality, criticality, stationarity). Let γ̄ := min {γg, 1/Lf}.

(i) (criticality ⇒ stationarity) fixTγ ⊆ zer ∂̂ϕ for all γ ∈ (0, γg);
(ii) (optimality ⇒ criticality) Γ(x?) ≥ γ̄ for all x? ∈ argminϕ; in particular,

argminϕ ⊆ fixTγ for all γ ∈ (0, γ̄), and also for γ = 1/Lf if γg > 1/Lf ;

Proof.
♠ 3.5(i): let γ ∈ (0, γg) and x ∈ fixTγ . Since x minimizes g + 1

2γ ‖ · − x+ γ∇f(x)‖2,
we have 0 ∈ ∂̂

[
g + 1

2γ ‖ · − x + γ∇f(x)‖2
]
(x) = ∂̂g(x) + ∇f(x) = ∂̂ϕ(x), where the

first inclusion follows from [49, Thm. 10.1] and the equalities from [49, Thm. 8.8(c)].
This proves that x is stationary.
♠ 3.5(ii): Fix γ ∈ (0, γ̄), x? ∈ argminϕ and y ∈ Tγ(x?). Necessarily y = x?, oth-
erwise, due to Lem. 2.1, ϕ(y) would contradict minimality of ϕ(x?). Therefore, x? is
γ-critical and the claim follows from the arbitrarity of γ ∈ (0, γ̄).

As already seen in Example 3.3, the bound Γ(x?) ≥ min {γg, 1/Lf} at optimal
points in Proposition 3.5(ii) is tight, and clearly the implication “optimality ⇒ crit-
icality” cannot be reversed (consider, e.g., the point x? = 0 for ϕ = cos). The next
example shows that the other implication is also proper.
Example 3.6 (Stationarity 6⇒ criticality). Let f(x) = 1

2x
2 and g(x) = x5/3. We have

γg = +∞, Lf = 1, and for x? = 0 it holds that ∂̂ϕ(x?) = {∇ϕ(x?)} = {0}. Thus, x? is
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stationary; however, Tγ(x?) = proxγg(0) =
{
−(5γ/3)3

}
, and in particular x? /∈ Tγ(x?)

for any γ > 0, proving x? to be non critical.

4. Forward-backward envelope. The FBE (1.2) was introduced in [41] and
further analyzed in [50, 32] in the case when g is convex. Under such assumption the
FBE was shown to be continuously differentiable, which made it possible to derive
minimization algorithms based on its gradient. In the general setting addressed in
this paper the FBE might fail to be (continuously) differentiable, and as such we
need to resort to methods that do not need first-order information of the FBE. This
task will be addressed in Section 5 where Algorithm ZeroFPR will be proposed; other
than being applicable to a wider range of problems, the proposed scheme is entirely
based on the same oracle of forward-backward iterations, unlike the approaches in
[41, 50, 32] which instead require the computation of ∇2f . All this will be possible
thanks to continuity properties of the FBE, and to the behavior of ϕγ at critical
points. We now focus on its continuity, while the other property will be addressed
shortly after in Theorem 4.4.
Remark 4.1 (Alternative expressions for ϕγ). By expanding the square and rear-
ranging the terms in the definition (1.2), ϕγ can equivalently be expressed as

ϕγ(x) = inf
z∈Rn

{
f(x)− γ

2 ‖∇f(x)‖2 + g(z) + 1
2γ ‖z − x+ γ∇f(x)‖2

}
.

Comparing with (2.5), it is apparent that the set of minimizers z in the above expres-
sion coincides with Tγ(x), the forward-backward operator at x. Moreover, taking out
the constant term f(x) − γ

2 ‖∇f(x)‖2 from the infimum we immediately obtain the
following expression involving the Moreau envelope of g:

(4.1) ϕγ(x) = f(x)− γ
2 ‖∇f(x)‖2 + gγ(x− γ∇f(x)).

Other than providing an explicit way of computing the FBE, (4.1) emphasizes
how ϕγ inherits the regularity properties of the Moreau envelope of g. In particular,
the next key property follows from the strict continuity of gγ [49, Ex. 10.32].
Proposition 4.2 (Strict continuity of ϕγ). For any γ ∈ (0, γg), the FBE ϕγ is a
real-valued and strictly continuous function on Rn.

4.1. Connections with the Moreau envelope. For the special case f = 0,
FBS iterations (2.5) reduce to the proximal point algorithm (PPA) x+ ∈ proxγϕ(x),
first introduced in [35] for convex functions ϕ and later generalized for functions with
convex majorizing surrogate ` 0,ϕ

γ ( · ; x) = ϕ( · ) + 1
2γ ‖ · − x‖2, see e.g., [26]. Similarly,

the FBE reduces to the Moreau envelope ϕγ = ϕ0,ϕ
γ . In fact, the FBE extends the

connection between PPA and Moreau envelope

ϕγ(x) = minz`
0,ϕ
γ (z; x) ↔ proxγϕ(x) = argminz`

0,ϕ
γ (z; x),(4.2a)

holding for f = 0 in (2.4), to majorizing functions `f,gγ with arbitrary f ∈ C1,1(Rn)

ϕγ(x) = minz`
f,g
γ (z; x) ↔ Tγ(x) = argminz`

f,g
γ (z; x).(4.2b)

In the next section we will see the fundamental qualitative similarities between the
FBE and the Moreau envelope. Namely, for γ small enough both ϕγ and ϕγ are lower
bounds for the original function ϕ with same minimizers and minimum; in particular
the minimization of ϕ is equivalent to that of ϕγ or ϕγ . Similarly, the identity

ϕ(x̄) = ϕγ(x)− 1
2γ ‖x− x̄‖2 for x̄ ∈ proxγϕ(x)
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will be extended to the inequality
ϕ(x̄) ≤ ϕγ(x)− 1−γLf

2γ ‖x− x̄‖2 for x̄ ∈ Tγ(x).

4.2. Basic properties. We now provide bounds relating ϕγ to the original func-
tion ϕ that extend the well known inequalities involving the Moreau envelope.
Proposition 4.3. Let γ ∈ (0, γg) be fixed. Then

(i) ϕγ ≤ ϕ.
(ii) ϕ(x̄) ≤ ϕγ(x)− 1−γLf

2γ ‖x− x̄‖2 for all x ∈ Rn and x̄ ∈ Tγ(x).

Proof. 4.3(i) is obvious from the definition of the FBE (consider z = x in (1.2)). As
to 4.3(ii), since the set of minimizers in (1.2) is Tγ(x) (cf. (4.2b)), (2.3) yields

ϕγ(x) = f(x) + 〈∇f(x), x̄− x〉+ g(x̄) + 1
2γ ‖x− x̄‖2

≥ f(x̄)− Lf/2‖x̄− x‖2 + g(x̄) + 1
2γ ‖x− x̄‖2 = ϕ(x̄) +

1−γLf
2γ ‖x− x̄‖2.

With respect to the inequalities holding for convex g treated in [50], the lower
bound in Proposition 4.3 is weaker, while the upper bound unchanged. Regardless, an
immediate consequence of the result is that the value of ϕ and ϕγ at critical points is
the same, and minimizers and infima of the two functions coincide for γ small enough.
Theorem 4.4. The following hold

(i) ϕ(x) = ϕγ(x) for all γ ∈ (0, γg) and x ∈ fixTγ ;

(ii) inf ϕ = inf ϕγ and argminϕ = argminϕγ for all γ ∈
(
0,min {1/Lf , γg}

)
.

The bound γ < 1/Lf in Theorem 4.4(ii) is tight even when f and g are convex,
as the counterexample with f(x) = 1

2x
2 and g = δR+

shows (see [50, Ex. 2.4] for
details).

Although we will address problem (1.1) by simply exploiting the continuity of
the FBE, nevertheless ϕγ enjoys favorable properties which are key for the efficacy of
the method which will be discussed in Section 5. Firstly, observe that, due to strict
continuity, ϕγ is almost everywhere differentiable, as it follows from Rademacher’s
theorem. The same applies to the mapping x 7→ x− γ∇f(x), its Jacobian being

(4.3) Qγ(x) := I− γ∇2f(x)

which is symmetric wherever it exists [49, Cor. 13.42 and Prop. 13.34]. However, in
order to show that the proposed method achieves fast convergence we need additional
regularity properties, namely (strict) twice differentiability at critical points and con-
tinuous differentiability around. The rest of the section is dedicated to this task.

4.3. Prox-regularity and first-order properties. In the favorable case in
which g is convex and f ∈ C2(Rn), the FBE enjoys global continuous differentiability
[50]. In our setting, prox-regularity acts as a surrogate of convexity; the interested
reader is referred to [49, §13.F] for a detailed discussion.
Definition 4.5 (Prox-regularity). Function g is said to be prox-regular at x0 for
v0 ∈ ∂g(x0) if there exist ρ, ε > 0 such that for all x′ ∈ B(x0; ε) and

(x, v) ∈ gph ∂g s.t. x ∈ B(x0; ε), v ∈ B(v0; ε), and g(x) ≤ g(x0) + ε

it holds that g(x′) ≥ g(x) + 〈v, x′ − x〉 − ρ
2‖x′ − x‖2.

Prox-regularity is a mild requirement enjoyed globally and for any subgradient
by all convex functions, with ε = +∞ and ρ = 0. When g is prox-regular at x0 for v0,
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then for sufficiently small γ > 0 the Moreau envelope gγ is continuously differentiable
in a neighborhood of x0 + γv0 [45]. To our purposes, when needed, prox-regularity of
g will be required only at critical points x?, and only for the subgradient −∇f(x?).
Therefore, with a slight abuse of terminology we define prox-regularity of critical
points as follows.
Definition 4.6 (Prox-regularity of critical points). We say that a critical point x?
is prox-regular if g is prox-regular at x? for −∇f(x?).

Examples where a critical point fails to be prox-regular are of challenging con-
struction; before illustrating a cumbersome such instance in Example 4.9, we first
prove an important result that connects prox-regularity with first-order properties of
the FBE.
Theorem 4.7 (Continuous differentiability of ϕγ). Suppose that f is of class C2

around a prox-regular critical point x?. Then, for all γ ∈ (0,Γ(x?)) there exists a
neighborhood Ux? of x? on which the following properties hold:

(i) Tγ and Rγ are strictly continuous, and in particular single-valued;
(ii) ϕγ ∈ C1 with ∇ϕγ = QγRγ , where Qγ is as in (4.3).

Proof. For γ′ ∈ (γ,Γ(x?)), using Thm.s 3.4(i) and 3.4(iii) we obtain that

(4.4) g(x) ≥ g(x?)− 〈∇f(x?), x− x?〉 − 1
2γ′ ‖x− x?‖2 ∀x ∈ Rn.

Replacing γ′ with γ in the above expression, the inequality is strict for all x 6= x?.
From [45, Thm. 4.4] applied to the “tilted” function x 7→ g(x+x?)−g(x?)−〈∇f(x?), x〉
it follows that there is a neighborhood V of x? − γ∇f(x?) in which proxγg is strictly
continuous and gγ is of class C1+ with ∇gγ(x) = γ−1

(
x− proxγg(x)

)
for all x ∈ V .

Since f is C2 around x? and ∇f is continuous, by possibly narrowing Ux? we may
assume that f ∈ C2(Ux?) and x − γ∇f(x) ∈ V for all x ∈ Ux? . Part 4.7(ii) then
follows from (4.1) and the chain rule of differentiation, and 4.7(i) from the fact that
strict continuity is preserved by composition.

When f = 0, Theorem 4.7 restates the known fact that if g is prox-regular at
x? for 0 ∈ ∂g(x?), then gγ is continuously differentiable around x? with ∇gγ(x) =
1
γ (x−proxγg(x)). Notice that the bound γ < Γ(x?) is tight: in general, for γ = Γ(x?)
no continuity of Tγ nor continuous differentiability of ϕγ around x? can be guaranteed.
In fact, even when x? is Γ(x?)-critical, Tγ might even fail to be single-valued and ϕγ
differentiable at x?, as the following counterexample shows.
Example 4.8 (Necessity of γ 6= Γ(x?) in first-order properties). Consider f = 1

2x
2

and g = δS where S = {0, 1}. Then, Lf = 1, γg = +∞, Tγ(x) = ΠS((1−γ)x) and the
FBE is ϕγ(x) = 1−γ

2 ‖x‖2 + 1
2γ dist((1 − γ)x, S)2. At the critical point x = 1, which

satisfies Γ(1) = 1/2, g is prox-regular for any subgradient. For any γ ∈ (0, 1/2) it is
easy to see that ϕγ is differentiable in a neighborhood of x = 1. However, for γ = 1/2
the distance function has a first-order singularity in x = 1, due to the 2-valuedness of
Tγ(1) = ΠS(1/2) = {0, 1}.
Example 4.9 (Prox-nonregularity of critical points). Consider ϕ = f + g where
f(x) = 1

2x
2, g(x) = δS(x) and S = {1/n | n ∈ N≥1} ∪ {0}. For x0 = 0 we have

Γ(x0) = +∞, however g fails to be prox-regular at x0 for v0 = 0 = −∇f(x0). For
any ρ > 0 and for any neighborhood V of (0, 0) in gph g it is always possible to find
a point arbitrarily close to (0,−1/ρ) with multi-valued projection on V . Specifically,
the midpoint Pn =

(
1
2 ( 1
n + 1

n+1 ), − 1/ρ
)
has 2-valued projection on gph g for any

n ∈ N≥1, being it Πgph g(Pn) = {1/n, 1/n+1}. By considering a large n, Pn can be
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made arbitrarily close to (0,−1/ρ) and at the same time its projection(s) arbitrarily
close to (0, 0). It follows that g cannot be prox-regular at 0 for 0, for otherwise such
projections would be single-valued close enough to (0, 0) [45, Cor. 3.4 and Thm. 3.5].
As a result, gγ(x) = 1

2γ dist(x, S)2 is not differentiable around x = 0, and indeed at
each midpoint 1

2 ( 1
n + 1

n+1 ) for n ∈ N≥1 it has a nonsmooth spike.
To underline how unfortunate the situation depicted in Example 4.9 is, notice

that adding a linear term λx to f for any λ 6= 0, yet leaving g unchanged, restores
the desired prox-regularity of each critical point. Indeed, this is trivially true for any
nonzero critical point; besides, g is prox-regular at 0 for any λ ∈ (0,−∞), while for
any λ < 0 the point 0 is not critical.

4.4. Second-order properties. In this section we discuss sufficient conditions
for twice-differentiability of the FBE at critical points. Additionally to prox-regularity,
which is needed for local continuous differentiability, we will also need generalized
second-order properties of g. The interested reader is referred to [49, §13] for an
extensive discussion on epi-differentiability.
Assumption II. With respect to a given critical point x?

(i) ∇2f exists and is (strictly) continuous around x?;
(ii) g is prox-regular and (strictly) twice epi-differentiable at x? for −∇f(x?), with

its second order epi-derivative being generalized quadratic:

(4.5) d2g(x?|−∇f(x?))[d] = 〈d,Md〉+ δS(d), ∀d ∈ Rn

where S ⊆ Rn is a linear subspace and M ∈ Rn×n. Without loss of generality
we take M symmetric, and such that Im(M) ⊆ S and ker(M) ⊇ S⊥.1

We say that the assumptions are “strictly” satisfied if the stronger conditions in paren-
thesis hold.

Twice epi-differentiability of g is a mild requirement, and cases where d2g is
generalized quadratic are abundant [47, 48, 43, 44]. Moreover, prox-regular and C2-
partly smooth functions g (see [29, 19]) comprise a wide class of functions that strictly
satisfy Assumption II(ii) at a critical point x? provided that strict complementarity
holds, namely if −∇f(x?) ∈ relint ∂g(x?). In fact, it follows from [19, Thm. 28]
applied to the tilted function g̃ = g + 〈∇f(x?), · 〉 (which is still C2-partly smooth
and prox-regular at x? [29, Cor. 4.6], [49, Ex. 13.35]) that proxγg̃ is continuously
differentiable around x? for γ small enough (in fact, for γ < Γ(x?)). From [42, Thm
4.1(g)] we then obtain that g̃ is strictly twice epi-differentiable at x? with generalized
quadratic second-order epiderivative, and the claim follows by tilting back to g.

We now show that the quite common properties required in Assumption II are all
that is needed for ensuring first-order properties of the proximal mapping and second-
order properties of the FBE at critical points. The result generalizes the one in [50]
by allowing nonconvex functions g. Although the proof is quite similar, we include it
for the sake of self-inclusiveness.
Theorem 4.10 (Twice differentiability of ϕγ). Suppose that Assumption II is (strictly)
satisfied with respect to a critical point x?. Then, for any γ ∈ (0,Γ(x?))

(i) proxγg is (strictly) differentiable at x? − γ∇f(x?) with symmetric and positive
semidefinite Jacobian

(4.6) Pγ(x?) := J proxγg(x
? − γ∇f(x?));

1This can indeed be done without loss of generality: if M and S satisfy (4.5), then it suffices to
replace M with M ′ = 1

2
ΠS(M +M>)ΠS to ensure the desired properties.
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(ii) Rγ is (strictly) differentiable at x? with Jacobian

(4.7) JRγ(x?) = 1
γ [I− Pγ(x?)Qγ(x?)],

where Qγ is as in (4.3) and Pγ as in (4.6);
(iii) ϕγ is (strictly) twice differentiable at x? with symmetric Hessian

(4.8) ∇2ϕγ(x?) = Qγ(x?)JRγ(x?).

Proof. See Appendix A.

Again, when f ≡ 0 Theorem 4.10 covers the differentiability properties of the
proximal mapping (and consequently the second-order properties of the Moreau en-
velope, due to the identity ∇gγ(x) = 1

γ (x− proxγg(x))) as discussed in [42].
We now provide a key result that links nonsingularity of the Jacobian of the

forward-backward residual Rγ to strong (local) minimality for the original cost ϕ and
for the FBE ϕγ , under the generalized second-order properties of Assumption II.
Theorem 4.11 (Conditions for strong local minimality). Suppose that Assumption
II is satisfied with respect to a critical point x?, and let γ ∈ (0,min {Γ(x?), 1/Lf}).
The following are equivalent:

(a) x? is a strong local minimum for ϕ;
(b) x? is a local minimum for ϕ and JRγ(x?) is nonsingular;
(c) the (symmetric) matrix ∇2ϕγ(x?) is positive definite;
(d) x? is a strong local minimum for ϕγ ;
(e) x? is a local minimum for ϕγ and JRγ(x?) is nonsingular.

Proof. See Appendix A.

5. ZeroFPR algorithm. The first algorithmic framework exploiting the FBE for
solving composite minimization problems was studied in [41], and other schemes have
been recently investigated in [50, 32]. All such methods tackle the problem by looking
for a (local) minimizer of the FBE, exploiting the equivalence of (local) minimality
for the original function ϕ and for the FBE ϕγ , for γ small enough. To do so, they all
employ the concept of directions of descent, thus requiring the gradient of the FBE to
be well defined everywhere. In the more general framework addressed in this paper,
such basic requirement is not met, which is why we approach the problem from a
different perspective. This leads to ZeroFPR, the first algorithm, to the best of our
knowledge, that despite requiring only the black-box oracle of FBS and being suited
for fully nonconvex problems it achieves superlinear convergence rates.

5.1. Overview. Instead of directly addressing the minimization of ϕ or ϕγ , we
seek solutions of the following nonlinear inclusion (generalized equation)

(5.2) find x? ∈ Rn such that 0 ∈ Rγ(x?).

By doing so we address the problem from the same perspective of FBS, that is, finding
fixed points of the forward-backward operator Tγ or, equivalently, zeros of its residual
Rγ . Despite Rγ might be quite irregular when g is nonconvex, it enjoys favorable
properties at the very solutions to (5.2) — i.e., at γ-critical points — starting from
single-valuedness, cf. Theorem 3.4(iii). If some assumptions are met, Rγ turns out to
be continuous around and even differentiable at critical points (cf. Theorems 4.7 and
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Algorithm ZeroFPR generalized forward-backward with nonmonotone linesearch

Require γ ∈ (0,min {1/Lf , γg}), β, pmin ∈ (0, 1), σ ∈ (0, γ
1−γLf

2 ), x0 ∈ Rn.
Initialize Φ̄0 = ϕγ(x0), k = 0.
1: Select x̄k ∈ Tγ(xk) and set rk = 1

γ (xk − x̄k)

2: if ‖rk‖ = 0, then stop; end if
3: Select a direction dk ∈ Rn

4: Let τk ∈ {βm | m ∈ N} be the largest such that xk+1 = x̄k + τkd
k satisfies

(5.1) ϕγ(xk+1) ≤ Φ̄k − σ‖rk‖2

5: Φ̄k+1 = (1− pk)Φ̄k + pkϕγ(xk+1) for some pk ∈ [pmin, 1]
k ← k + 1 and go to step 1.

4.10), and as a consequence the inclusion problem (5.2) reduces to a well behaved
system of equations, as opposed to generalized equations, when close to solutions.

This motivates addressing problem (5.2) with fast methods for nonlinear equa-
tions. Newton-like schemes are iterative methods that prescribe updates of the form

(5.3) x+ = x−HRγ(x)

which essentially amount to selecting H = H(x), a linear operator that ideally carries
information of the geometry of Rγ around x, in the attempt to yield an optimal
iterate x+. For instance, when Rγ is sufficiently regular Newton method corresponds
to selecting H as the inverse of an element of the generalized Jacobian of Rγ at x,
enabling fast convergence when close to a solution under some assumptions. However,
selectingH as in Newton method would require information additional to the forward-
backward oracle Tγ , and as such it goes beyond the scope of the paper. For this reason
we focus instead on quasi-Newton schemes, in which H are linear operators recursively
defined with low-rank updates that satisfy the (inverse) secant condition

(5.4) H+y = s, where s = x+ − x and y ∈ Rγ(x+)−Rγ(x).

A famous result [21] states that, under some assumptions and starting sufficiently
close to a solution x?, updates as in (5.3) are superlinearly convergent to x? iff the

Dennis-Moré condition holds, namely the limit ‖(H
−1−JRγ(x?))s‖
‖s‖ → 0, see also [22]

for a thorough survey. More recently, in [23] the result was extended to generalized
equations of the form f(x) +G(x) 3 0, where f is smooth and G possibly set-valued.
The study focuses on Josephy-Newton methods where the update x+ is the solution
of the inner problem f(x) − Bx ∈ Bx+ + G(x+), where B = H−1, which can be
interpreted as a forward-backward step in the metric induced by B. In particular,
differently from the proposed ZeroFPR, the method in [23] has the crucial limitation
that, unless the operator B has a very particular structure, the backward step (B +
G)−1 may be prohibitely challenging. The same remark applies to proximal (quasi-)
Newton-type methods, in which each iteration requires the computation of a scaled
proximal gradient step, see [28] and the references therein.

5.1.1. Globalization strategy. Quasi-Newton schemes are extremely handy
and widely used methods. However, it is well known that they are effective only when
close enough to a solution and might even diverge otherwise. To cope with this crucial
downside there comes the need of a globalization strategy; this is usually addressed
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by means of a linesearch over a suitable merit function ψ, along directions of descent
for ψ so as to ensure sufficient decrease for small enough stepsizes. Unfortunately, the
potential choice ψ(x) = 1

2‖Rγ(x)‖2 is not regular enough for a ‘direction of descent’
to be everywhere defined. The proposed Algorithm ZeroFPR bypasses this limitation
by exploiting the favorable properties of the FBE. In Theorem 5.10 we will see that
ZeroFPR achieves superlinear convergence, provided that f and g enjoy some regular-
ity requirements at the limit point and the directions satisfy a Dennis-Moré condition.
However, regardless of whether or not any of such conditions is met, the algorithm
has the same convergence guarantees of FBS (cf. Thm. 5.6).

ZeroFPR globalizes the convergence of any fast local method, and requires exactly
the same oracle of FBS. Conceptually, the algorithm is really elementary; for simplic-
ity, let us first consider the monotone case, i.e., with pk ≡ 1 so that Φ̄k = ϕγ(xk) (cf.
step 5). The following steps are executed for updating the iterate xk:

1) first, at step 1 a nominal forward-backward call yields an element x̄k ∈ Tγ(xk)

that decreases the value of ϕγ by at least γ 1−γLf
2 ‖rk‖2 (Prop. 4.3(i));

2) then, at step 3 an update direction dk at x̄k (not at xk!) is selected;
3) because of the sufficient decrease xk 7→ x̄k on ϕγ and the continuity of ϕγ , at

step 4 a stepsize τk can be found with finite many backtrackings τk ← βτk
that ensures a decrease for ϕγ of at least σ‖rk‖2 in the update xk 7→ x̄k+τkd

k,
for any σ < γ

1−γLf
2 .

In order to reduce the number of backtrackings, pk < 1 can be selected resulting
in a nonmonotone linesearch. The sufficient decrease is enforced with respect to a
parameter Φ̄k ≥ ϕγ(xk) (cf. Lem. 5.1), namely a convex combination of

{
ϕγ(xi)

}k
i=0

.
For the sake of convergence, (pk)k∈N can be selected arbitrarily in (0, 1] as long as it is
bounded away from 0, hence the role of the user-set lower bound pmin. Consequently,
small values of σ and pk concur in reducing conservatism in the linesearch by favoring
larger stepsizes.
Lemma 5.1 (Nonmonotone linesearch globalization). For all k ∈ N the iterates
generated by ZeroFPR satisfy

(5.5) ϕγ(x̄k) ≤ ϕ(x̄k) ≤ ϕγ(xk) ≤ Φ̄k

and there exists τ̄k > 0 such that

(5.6) ϕγ(x̄k + τdk) ≤ Φ̄k − σ‖rk‖2 ∀τ ∈ [0, τ̄k].

In particular, the number of backtrackings at step 4 is finite.

Proof. The first two inequalities in (5.5) are due to Prop.s 4.3(i) and 4.3(ii), respec-
tively. Moreover,

Φ̄k+1 = (1− pk)Φ̄k + pkϕγ(xk+1) ≥ (1− pk)ϕγ(xk+1) + pkϕγ(xk+1) = ϕγ(xk+1),

where the inequality follows by the linesearch condition (5.1); this proves the last
inequality in (5.5). As to (5.6), let k be fixed and contrary to the claim suppose that
for all ε > 0 there exists τε ∈ [0, ε] such that the point xε = x̄k + τεd

k satisfies
ϕγ(xε) > ϕγ(xk)− σ‖rk‖2. By taking the limit for ε→ 0+, so that xε → x̄k, we have

ϕγ(x̄k) = lim
ε→0+

ϕγ(xε) ≥ ϕγ(xk)− σ‖rk‖2 ≥ ϕ(x̄k) +
(
γ

1−γLf
2 − σ

)
‖rk‖2 > ϕ(x̄k)

which contradicts Prop. 4.3(i). Here, the equality follows from the continuity of ϕγ
(Prop. 4.2), the first inequality from the property of xε, the second one from Prop.
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4.3(ii), and the last one from the fact that rk 6= 0 and γ 1−γLf
2 > σ. Therefore, there

exists τ̄k > 0 such that

ϕγ(x̄k + τdk) ≤ ϕγ(xk)− σ‖rk‖2
(5.5)
≤ Φ̄k − σ‖rk‖2 for all τ ∈ [0, τ̄k].

The existence of τ̄k > 0 as in (5.6) ensures that, for any direction dk, a stepsize τk
is found at step 3 with finitely many backtrackings. In Section 5.4 we will also see that
ZeroFPR returns solutions of problem (5.2), and that convergence is superlinear when
the directions are chosen according to a modified Broyden’s quasi-Newton scheme, if
some properties are satisfied at the limit point. In Section 6 we will then confirm the
theoretical findings with numerical simulations, which however seem to agree that also
BFGS is extremely well performing in practice, although not supported by the theory
(of superlinear convergence). A tentative explanation of this fact will be hinted in the
conclusive remarks. Before going into the theory, we briefly discuss how to compute
such quasi-Newton directions.

5.1.2. Choice of the directions: quasi-Newton methods. As already em-
phasized, fast convergence of ZeroFPR will be obtained thanks to the employment of
Newton-like directions dk. Differently from the classical Newton-like step (5.3), when
stepsize 1 is accepted, the update in ZeroFPR is of the form x+ = x̄ + d rather than
x+ = x+d, where x̄ is an element of Tγ(x). Consequently, d needs to be a Newton-like
direction at x̄, and not at x, namely

(5.7) dk = −Hkr̄
k for some r̄k ∈ Rγ(x̄k)

(as opposed to r̄k ∈ Rγ(xk)).
Broyden’s method. We consider a modified Broyden’s scheme [46] that performs

rank-one updates of the form

(5.8a) Hk+1 = Hk +
sk −Hkyk

〈sk, (1/ϑk − 1)sk +Hkyk〉
s>k Hk with

{
sk = xk+1 − x̄k
yk = rk+1 − r̄k,

for a sequence (ϑk)k∈N ⊂ (0, 2]. The original Broyden formula [17] corresponds to
selecting ϑk ≡ 1, whereas for other values of ϑk the secant condition (5.4) is drifted
to H+ỹ = s, where ỹ = (1− ϑ)H−1s+ ϑy. In particular, [46] suggests

(5.8b) ϑk :=

{
1 if |γk| ≥ ϑ̄
1−sgn(γk)ϑ̄

1−γk if |γk| < ϑ̄
where γk :=

〈Hky
k, sk〉

‖sk‖2

and ϑ̄ ∈ (0, 1) is a fixed parameter, with the convention that sgn 0 = 1. Starting
from an invertible matrix H0, this specific selection ensures that all matrices Hk are
invertible.

BFGS method. BFGS method consists of the following update rule for matrices
Hk in (5.7): starting from a symmetric and positive definite H0,

(5.9) Hk+1 =
(
I−ρksky>k

)
Hk

(
I−ρkyks>k

)
+ρksks

>
k , ρk =

{ 1
〈sk,yk〉 if 〈sk, yk〉 > 0

0 otherwise,

with sk = xk+1 − x̄k and yk = rk+1 − r̄k, see e.g., [38, §6.1]. BFGS is the most
popular quasi-Newton scheme; it is based on rank-two updates that enforce symmetry,
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additionally to the secant condition. In fact, BFGS is guaranteed to satisfy the Dennis-
Moré condition provided that the Jacobian of the nonlinear system at the limit point
is symmetric [18]. Although this is not the case for JRγ(x?), we observed in practice
that BFGS directions (5.9) perform extremely well.

Limited-memory variants. Ultimately, instead of storing and operating on dense
m ×m matrices, limited-memory variants of quasi-Newton schemes keep in memory
only a few (usually 3 to 20) most recent pairs (sk, yk) implicitly representing the
approximate inverse Jacobian. Their employment considerably reduces storage and
computations over the full-memory counterparts, and as such they are the methods of
choice for large-scale problems. The most popular limited-memory method is L-BFGS:
based on BFGS, it efficiently computes matrix-vector products with the approximate
inverse Jacobian using a two-loop recursion procedure [31, 37, 38].

5.2. Connections with other methods. The first algorithmic framework ex-
ploiting the FBE was studied in [41], where two semismooth Newton methods were
analyzed for convex f and g with f ∈ C2,1(Rn) (twice continuously differentiable
with Lipschitz continuous gradient). A generalization of the scheme was then studied
in [50] under less restrictive assumptions, with particular attention to quasi-Newton
directions in place of semismooth Newton methods. The proposed algorithm inter-
leaves descent steps over the FBE with forward-backward steps. The study [32] then
analyzed global and linear convergence properties of a generic linesearch algorithmic
framework for minimizing the FBE based on gradient-related directions, for analytic
f and subanalytic, convex, and lower bounded g.

Though apparently closely related, the approach that we provide in this paper
presents major conceptual differences from any of the ones above. Apart from the sig-
nificantly less restrictive assumptions, the crucial distinction is that our method does
not require the gradient of the FBE. As a consequence, no computation nor the exis-
tence of ∇2f is required, resulting in a method that, differently from the others, truly
relies on the very same oracle information of the forward-backward operator Tγ . More-
over, not only does the method have the same worst-case convergence properties of
FBS, but it also has a certificate of superlinear convergence if some mild requirements
are met.

5.3. Main remarks. In this section we list a few observations that come in
handy when implementing ZeroFPR.
Remark 5.2 (Adaptive variant when Lf is unknown). In practice, no prior knowledge
of the global Lipschitz constant Lf is required for ZeroFPR. In fact, replacing Lf with
an initial estimate L > 0 and fixing a backtracking ratio α ∈ (0, 1), after step 2 the
following instruction can be added:
2bis: if f(x̄k) > f(xk)− 〈∇f(xk), xk − x̄k〉+ L

2 ‖xk − x̄k‖2 then
γ ← αγ, L← L/α, σ ← ασ, Φ̄k ← ϕγ(xk) and go to step 1.

end if
Whenever the quadratic bound (2.3) is violated with L in place of Lf , the estimated
Lipschitz constant L is increased and γ decreased accordingly; as a consequence, the
FBE ϕγ changes and the nonmonotone linesearch is restarted. Since replacing Lf
with any L ≥ Lf still satisfies (2.3), it follows that L is incremented only a finite
number of times. Therefore, there exists an iteration k0 starting from which γ and
σ are constant; in particular, all the results of the paper remain valid starting from
iteration k0, at latest.
Remark 5.3 (Support for locally Lipschitz ∇f). If dom g is bounded and, as it is
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reasonable, the directions (dk)k∈N selected at step 3 do not diverge, then Assumption
I(i) on f can be relaxed to ∇f being locally Lipschitz.

In fact, it follows from the definition of proximal mapping that (x̄k)k∈N ⊆ dom g,
and if the directions are bounded then there exists a compact domain Ω ⊇ dom g
such that (xk)k∈N ⊆ Ω. Then, all results of the paper apply by replacing Lf with
lipΩ∇f , the (finite) Lipschitz constant of ∇f on Ω.
Remark 5.4 (Cost per iteration). Evaluating ϕγ essentially amounts to one evalu-
ation of Tγ ; this is evident from the expression (4.1), together with the observation
that gγ(x−γ∇f(x)) = g(x̄)+ 1

2γ ‖x−γ∇f(x)− x̄‖2 for any x̄ ∈ Tγ(x). Therefore, com-
puting ϕγ(x̄k + τkd

k) at step 4 yields an element x̄k+1 ∈ Tγ(xk+1) required in step 1,
since xk+1 = x̄k + τkd

k at every iteration. In general, one evaluation of Tγ per back-
tracking step is required. If the directions dk are computed with Broyden or BFGS
methods (5.8) and (5.9), then one additional evaluation of Tγ is required for retriev-
ing dk; in the best case of τk = 1 being accepted, which asymptotically happens if
some assumptions are met (cf. Thm. 5.11), the algorithm then requires exactly two
evaluations of Tγ per iteration.
Remark 5.5 (Extension of FBS). Observe that by selecting dk ≡ 0 the condition at
step 4 is always statisfied with τk = 1 (in fact, for any τk), since for any σ < 1−γLf

2γ

it holds that ϕγ(x̄k) ≤ ϕγ(xk) − 1−γLf
2γ ‖xk − x̄k‖2 ≤ Φ̄k − σ‖xk − x̄k‖2, where the

inequalities follow from Prop. 4.3(ii) and (5.5), respectively. ZeroFPR then reduces to
the classical FBS algorithm (cf. (2.5)), as xk+1 = x̄k+dk = x̄k ∈ Tγ(xk) for any k.

5.4. Convergence results. In this section we analyze the properties of cluster
points of the iterates generated by ZeroFPR. Specifically,
• every cluster point of (xk)k∈N and (x̄k)k∈N solves problem (5.2) (Theorem 5.6);
• if the linesearch is (eventually) monotone and some assumptions are met, then

global and linear convergence are achieved (Theorems 5.8 and 5.9);
• directions satisfying the Dennis-Moré condition, such as Broyden’s, enable super-

linear rates under mild assumptions (Theorems 5.10 and 5.11).
In what follows, in order to exclude the trivial case in which the optimality condition
rk = 0 is achieved in a finite number of iterations we assume rk 6= 0 for all k’s.
Theorem 5.6 (Criticality of cluster points). The following hold for the iterates gen-
erated by ZeroFPR:

(i) rk → 0 square-summably, and all cluster points of (xk)k∈N and (x̄k)k∈N are
critical; more precisely, ω(xk) = ω(x̄k) ⊆ fixTγ ;

(ii) (ϕγ(xk))k∈N converges to a (finite) value ϕ?, and so does (ϕ(x̄k))k∈N if (xk)k∈N

is bounded.

Proof.
♠ 5.6(i): For all iterates k we have

(5.10) Φ̄k+1 = (1− pk)Φ̄k + pkϕγ(xk+1)
(5.1)
≤ Φ̄k − σpk‖rk‖2 ≤ Φ̄k − σpmin‖rk‖2.

By telescoping the above inequality and using (5.5), we obtain

(5.11) Φ̄k − inf ϕ ≥ Φ̄0 − Φ̄k+1 =
∑k
i=0

[
Φ̄i − Φ̄i+1

]
≥ σpmin

∑k
i=0 ‖ri‖2,

proving rk → 0 square-summably. Now, let K ⊆ N be such that (xk)k∈K → x′ for
some x′ ∈ Rn. Then, since ‖x̄k − xk‖ = γ‖rk‖ → 0, in particular (x̄k)k∈K → x′ as
well. Due to the arbitrarity of the cluster point x′ it follows that ω(xk) ⊆ ω(x̄k), and
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a similar reasoning proves the converse inclusion, hence ω(xk) = ω(x̄k). Moreover, we
have xk ∈ B(x̄k; γ‖rk‖) ⊆ proxγg

(
xk − γ∇f(xk)

)
+ B(0; γ‖rk‖) and since (xk −

γ∇f(xk))k∈K → x′ − γ∇f(x′), from the outer semicontinuity of proxγg [49, Ex.
5.23(b)] it follows that x′ ∈ proxγg (x′ − γ∇f(x′)), i.e., x′ ∈ fixTγ .
♠ 5.6(ii): from (5.10) it follows that (Φ̄k)k∈N is decreasing, and in particular its limit
exists, be it ϕ?. Notice that ϕ? = inf Φ̄k ≥ inf ϕ > −∞, where the first inequality is
due to (5.5). Therefore

0← Φ̄k − Φ̄k+1 = pk
(
Φ̄k − ϕγ(xk+1)

) (5.1)
≥ pminσ‖rk‖2 ≥ 0,

and since Φ̄k converges to ϕ?, then so does ϕγ(xk+1). If (xk)k∈N is bounded, then so is
(x̄k)k∈N due to compact-valuedness of proxγg [49, Thm. 1.25]. Due to local Lipschitz
continuity of the FBE (Prop. 4.2) and boundedness of (xk)k∈N and (x̄k)k∈N, ϕγ is
Lipschitz continuous on a compact set that contains the sequences with modulus, say,
L > 0. Then,

0 ≤ ϕγ(xk)− ϕ(x̄k) ≤ ϕγ(xk)− ϕγ(x̄k) ≤ L‖xk − x̄k‖ = Lγ‖rk‖ → 0,

where the first two inequalities follow from Prop. 4.3. This shows that ϕ(x̄k)→ ϕ?.

5.4.1. Global and linear convergence. Due to (5.5) and the fact that the
sequence (Φ̄k)k∈N is decreasing (cf. (5.10)), the iterates of ZeroFPR satisfy ϕ(x̄k) ≤
Φ̄0 = ϕ(x̄0). As a consequence, a sufficient condition for ensuring that the sequence
(x̄k)k∈N does not diverge, and consequently nor does (xk)k∈N (provided that the
sequence of directions (dk)k∈N is bounded), is that the level set lev≤ϕ(x̄0) ϕ is compact.
In the adaptive variant discussed in Remark 5.2, this translates to boundedness of the
level set lev≤ϕ(x̄k0 ) ϕ, where k0 denotes the iteration starting from which γ is constant.
Since the iterate k0 and the point x̄k0 are unknown a priori, the sufficient condition
needs be strengthened to ϕ having bounded level sets.

We now show that if ϕγ is well-behaved at cluster points, then the whole sequence
generated by ZeroFPR is convergent. Good behavior involves the existence of a desin-
gularizing function, that is, ϕγ needs to possess the Kurdyka-Łojasiewicz property, a
standard requirement that we restate here for the reader’s convenience.
Definition 5.7 (KL property). A proper and lower semicontinuous function h :
Rn → R has the Kurdyka-Łojasiewicz property (KL property) at x? ∈ dom ∂h if
there exist a concave desingularizing function (or KL function) ψ : [0, η] → [0,+∞)
for some η > 0 and a neighborhood Ux? of x?, such that

(i) ψ(0) = 0;
(ii) ψ is C1 with ψ′ > 0 on (0, η);
(iii) for all x ∈ Ux? s.t. h(x?) < h(x) < h(x?) + η it holds that

(5.12) ψ′
(
h(x)− h(x?)

)
dist

(
0, ∂h(x)

)
≥ 1.

The KL property is a mild requirement enjoyed by semi-algebraic functions and
by subanalytic functions which are continuous on their domain [13, 12] see also
[33, 34, 27]. Moreover, since semi-algebraic functions are closed under parametric
minimization, from the expression (1.2) it is apparent that ϕγ is semi-algebraic pro-
vided that f and g are. More precisely, in all such cases the desingularizing function
can be taken of the form ψ(s) = ρsθ for some ρ > 0 and θ ∈ (0, 1], in which case it
is usually referred to as a Łojasiewicz function. This property has been extensively
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exploited to provide convergence rates of optimization algorithms such as FBS, see
[3, 4, 5, 15, 24, 39]. Further properties of f and g that ensure ϕγ to satisfy such
requirement are discussed in [32].

We first show how the KL property on ϕγ ensures global convergence of the
iterates of ZeroFPR if the linesearch is eventually monotone, i.e., if pk = 1 for k
sufficiently large, and then show that linear convergence is attained when the KL
function is actually a Łojasiewicz function with large enough exponent.
Theorem 5.8 (Global convergence (monotone LS)). Consider the iterates generated
by ZeroFPR with pk = 1 for k’s large enough, and with directions satisfying

(5.13) ‖dk‖ ≤ D‖rk‖ for all k

for some D ≥ 0. Suppose that (xk)k∈N remains bounded, that ϕγ has the KL property
on ω(xk), and that every cluster point is prox-regular. If f is of class C2 in a neigh-
borhood of ω(xk), then (xk)k∈N and (x̄k)k∈N are convergent to (the same γ-critical
point) x?, and the sequence of residuals (rk)k∈N is summable.

Proof. From Lem. B.2 we know that ϕγ is constant on the (nonempty) compact set
ω(xk). It then follows from [15, Lem. 6] that there exist η, ε > 0 and a uniformized
KL function, namely a function ψ satisfying Def.s 5.7(i), 5.7(ii) and 5.7(iii) for all
x? ∈ ω(xk) and x such that dist(x, ω(xk)) < ε and ϕ(x?) < ϕ(x) < ϕ(x?) + η. Let
ϕ? := limk→∞ ϕγ(xk), which exists and is finite (cf. Thm. 5.6), and let k1 ∈ N be
such that pk = 1 for all k ≥ k1. Then we have (cf. step 5 and (5.1))

(5.14) Φ̄k = ϕγ(xk) and ϕγ(xk) > ϕγ(xk+1) > ϕ? ∀k ≥ k1.

By possibly restricting ε, from Thm. 4.7(ii) and since ω(xk) is compact, it follows
that ϕγ is differentiable in an ε-enlargement of ω(xk). Since (ϕγ(xk))k≥k1 converges
to ϕ? strictly decreasing (cf. (5.14)), and since dist(xk, ω(xk)) → 0 as shown in
Lem. B.2, there exists k2 ≥ k1 such that for all k ≥ k2 we have ϕ? < ϕγ(xk) <
ϕ? + η and dist(xk, ω(xk)) < ε. For all such k, by Thm. 4.7(ii) we have ∇ϕγ(xk) =
Qγ(xk)Rγ(xk) =

[
I− γ∇2f(xk)

]
rk and the uniformized KL property yields

(5.15) ψ′
(
ϕγ(xk)− ϕ?

)
≥ 1
‖∇ϕγ(xk)‖ ≥ 1

(1+γLf )‖rk‖ .

Let ∆k := ψ
(
ϕγ(xk)− ϕ?

)
> 0. Then,

∆k −∆k+1 ≥ ψ′
(
ϕγ(xk)− ϕ?

)(
ϕγ(xk)− ϕγ(xk+1)

)
(5.15)
≥ ϕγ(xk)− ϕγ(xk+1)

(1 + γLf )‖rk‖
(5.14)

=
Φ̄k − Φ̄k+1

(1 + γLf )‖rk‖
(5.10)
≥ σpmin

1 + γLf
‖rk‖(5.16)

where the first inequality follows from the concavity of ψ, and the second uses the fact
that ψ′ ≥ 0. Since ϕγ(xk)→ ϕ? and ψ is continuous, it follows that ∆k → ψ(0) = 0.
Hence, by telescoping the inequality it follows that (‖rk‖)k∈N is summable. In turn,
due to Lem. B.1(i), (‖xk+1 − xk‖)k∈N is also summable. We conclude that (xk)k∈N

is a Cauchy sequence and as such it admits a limit. It follows from Thm. 5.6(i) that
the limit point is also the limit of (x̄k)k∈N and that it is γ-critical.

Theorem 5.9 (Linear convergence (monotone LS)). Consider the iterates generated
by ZeroFPR. Suppose that the assumptions of Theorem 5.8 are satisfied, and that the
KL function can be taken of the form ψ(s) = ρsθ for some θ ∈ [1/2, 1]. Then, (xk)k∈N

and (x̄k)k∈N are R-linearly convergent.
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Proof. As shown in Thm. 5.8, both (xk)k∈N and (x̄k)k∈N converge to the same (γ-
critical) point, be it x?. Defining Bk :=

∑
i≥k ‖ri‖, from Lem.s B.1(i) and B.1(ii) we

have

‖xk − x?‖ ≤ ∑i≥k ‖xi+1 − xi‖ ≤ (γ +D)Bk and ‖x̄k − x?‖ ≤ (3γ +D)Bk.

The proof now reduces to showing that (Bk)k∈N converges with asymptotic Q-linear

rate. Inequality (5.15) reads ϕγ(xk)− ϕ? ≤
[
(1 + γLf )ρθ‖rk‖

] 1
1−θ , and since rk → 0

for large enough k, we have

∆k := ψ
(
ϕγ(xk)−ϕ?

)
= ρ[ϕγ(xk)−ϕ?]θ ≤ ρ

[ <1 for large k︷ ︸︸ ︷
(1 + γLf )ρθ‖rk‖

] θ
1−θ ≤ ρ2(1+γLf )‖rk‖.

Therefore, eventually ∆k < 1, and from (5.16) we get

Bk =
∑
i≥k ‖ri‖

(5.16)
≤ 1+γLf

σpmin

∑
i≥k(∆i −∆i+1) ≤ 1+γLf

σpmin
∆k ≤ ρ2(1+γLf )2

σpmin
‖rk‖ = C‖rk‖

for some C > 0. Thus, Bk ≤ C‖rk‖ = C(Bk − Bk+1) for any k large enough i.e.,
Bk+1 ≤ (1− 1/C)Bk, proving the sought asymptotic Q-linear convergence of Bk.

5.4.2. Superlinear convergence. In the next result we provide sufficient con-
ditions ensuring that, if the directions satisfy a Dennis-Moré condition, ZeroFPR
achieves superlinear convergence rates. Then, we show that the Broyden scheme (5.8)
produces directions that satisfy such condition, and that due to the acceptance of unit
stepsize τk = 1, eventually each iteration of ZeroFPR will require only two evaluations
of Tγ (cf. Rem. 5.4). We remind that a sequence (xk)k∈N such that xk 6= x? for all k
is said to be superlinearly convergent to x? if ‖xk+1 − x?‖/‖xk − x?‖ → 0 as k →∞.
Theorem 5.10 (Superlinear convergence under Dennis-Moré condition). Suppose
that Assumption II is strictly satisfied at a strong local minimum x? of ϕ, and consider
the iterates generated by ZeroFPR. Suppose that (xk)k∈N converges to x? and that the
directions (dk)k∈N satisfy the Dennis-Moré condition

(5.17) lim
k→∞

‖r̄k + JRγ(x?)dk‖
‖dk‖ = 0 where r̄k ∈ Rγ(x̄k).

Then, eventually the stepsize τk = 1 is always accepted and the sequences (xk)k∈N,
(x̄k)k∈N, and (rk)k∈N, converge with superlinear rate.

Proof. From Thm.s 4.10(ii), 4.10(iii), 4.7 and 4.11 we know that ∇ϕγ and Rγ are
strictly differentiable at x?, with G? := ∇2ϕγ(x?) = Qγ(x?)JRγ(x?) � 0, and that
there exists a neighborhood Ux? of x? in which ϕγ is differentiable and Rγ Lipschitz
continuous with modulus, say, LR. Since x̄k = xk − γrk → x? due to Thm. 5.6(i),
it holds that xk, x̄k ∈ Ux? for any k large enough. By single-valuedness of Rγ , for
all such k we may write Rγ(xk) and Rγ(x̄k) in place of rk and r̄k, respectively. In
particular, since x? ∈ fixTγ (cf. Thm. 5.6(i)), necessarily Rγ(x̄k) → 0. In turn, due
to (5.17), it also holds that dk → 0. Let xk+1

0 := x̄k + dk; then, from (5.17) we have

0← Rγ(x̄k)+JRγ(x?)dk

‖dk‖ =
Rγ(x̄k)+JRγ(x?)(xk+1

0 − x̄k)−Rγ(xk+1
0 )

‖xk+1
0 − x̄k‖

+
Rγ(xk+1

0 )

‖xk+1
0 − x̄k‖

.

Since xk+1
0 − x̄k = dk → 0, from strict differentiability of Rγ at x? applied on the first

term on the right-hand side it follows that

(5.18) lim
k→∞

‖Rγ(xk+1
0 )‖/‖xk+1

0 −x̄k‖ = 0.
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By possibly restricting Ux? , nonsingularity of JRγ(x?) ensures the existence of a
constant α > 0 such that ‖Rγ(x)‖ ≥ α‖x− x?‖ for all x ∈ Ux? . Since x̄k + dk → x?,
eventually xk+1

0 ∈ Ux? . From (5.18) we obtain

0← ‖Rγ(xk+1
0 )‖

‖xk+1
0 − x̄k‖

≥ α‖x
k+1
0 − x?‖

‖xk+1
0 − x̄k‖

≥ α ‖xk+1
0 − x?‖

‖xk+1
0 − x?‖+ ‖x̄k − x?‖

= α

‖xk+1
0 −x?‖
‖x̄k−x?‖

1 +
‖xk+1

0 −x?‖
‖x̄k−x?‖

which implies

(5.19) lim
k→∞

‖xk+1
0 − x?‖
‖x̄k − x?‖ = lim

k→∞
‖x̄k + dk − x?‖
‖x̄k − x?‖ = 0.

A second-order expansion of ϕγ at x? yields

ϕγ(x̄k) = ϕγ(x?)+ 1
2 〈G?(x̄k−x?),x̄k−x?〉+o(‖x̄k−x?‖2)

and
ϕγ(x̄k+dk) = ϕγ(x?)+ 1

2 〈G?(x̄k+dk−x?),x̄k+dk−x?〉+o(‖x̄k+dk−x?‖2)

= ϕγ(x?)+o(‖x̄k−x?‖2),

where the last equality uses the inclusion ‖x̄k+dk−x?‖ ∈ o(‖x̄k−x?‖) (which follows
from (5.19)). Substracting,

ϕγ(x̄k + dk)− ϕγ(x̄k) = − 1
2 〈G?(x̄k − x?), x̄k − x?〉+ o(‖x̄k − x?‖2)

≤ − β‖x̄k − x?‖2 + o(‖x̄k − x?‖2),

where β = 1
2λmin(G?) > 0. Hence there exists k0 ∈ N such that ϕγ(x̄k+dk) ≤ ϕγ(x̄k)

for all k ≥ k0; in particular, for all k ≥ k0

ϕγ(x̄k + dk) ≤ ϕγ(x̄k) ≤ ϕγ(xk)− γ 1−γLf
2 ‖rk‖2 ≤ Φ̄k − σ‖rk‖2,

where the second inequality follows from Prop. 4.3(ii), and the last one from (5.5)
and the fact that σ < γ

1−γLf
2 . Therefore, for k ≥ k0 the linesearch condition (5.1)

holds with τk = 1, and unitary stepsize is always accepted. In particular, the limit
(5.19) reads limk→∞ ‖xk+1 − x?‖/‖x̄k − x?‖ = 0, and from the inequality

‖x̄k − x?‖ = ‖x̄k − xk + xk − x?‖ ≤ γ‖Rγ(xk)‖+ ‖xk − x?‖
= γ‖Rγ(xk)−Rγ(x?)‖+ ‖xk − x?‖ ≤ (γLR + 1)‖xk − x?‖

superlinear convergence of (xk)k∈N follows. Since ‖rk‖ = ‖Rγ(xk) − Rγ(x?)‖ ≤
LR‖xk − x?‖, also the sequence (rk)k∈N converges superlinearly; in turn, since ‖x̄k −
x?‖ ≤ γ‖rk‖+ ‖xk − x?‖, so does the sequence (x̄k)k∈N.

We conclude the section showing that employing Broyden directions (5.8) in Ze-
roFPR enables superlinear convergence rates, provided that Rγ is Lipschitz continu-
ously semidifferentiable at the limit point (see [25]).
Theorem 5.11 (Superlinear convergence with Broyden directions). Suppose that
Assumption II is strictly satisfied at a strong local minimum x? of ϕ at which Rγ is
Lipschitz-continuously semidifferentiable. Consider the iterates generated by ZeroFPR
with directions dk selected with Broyden method (5.8), and suppose that xk → x?.

Then, the Dennis-Moré condition (5.17) is satisfied, and in particular all the
claims of Theorem 5.10 hold.
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Proof. It follows from the assumptions and Thm. 4.10 that Rγ is strictly differentiable
at x?, and Lipschitz-continuously semidifferentiable there. Denoting G? = JRγ(x?),

‖yk −G?sk‖
‖sk‖ =

‖Rγ(xk+1)−Rγ(x̄k)−G?(xk+1 − x̄k)‖
‖xk+1 − x̄k‖ ,

and since xk, x̄k → x?, due to [25, Lem. 2.2] there exists L > 0 such that ‖y
k−G?sk‖
‖sk‖ ≤

Lmax
{
‖xk+1 − x?‖, ‖x̄k − x?‖

}
for k large enough. Consequently, due to Thm. 5.9

and Lem. B.3, ‖yk−G?sk‖‖sk‖ is summable. Let Ek = Bk − G? and let ‖ · ‖F denote the
Frobenius norm. With a simple modification of the proofs of [25, Thm. 4.1] and [2,
Lem. 4.4] that takes into account the scalar ϑk ∈ [ϑ̄, 2− ϑ̄] we obtain

‖Ek+1‖F ≤
∥∥∥Ek(I− ϑk sk(sk)>

‖sk‖2
)∥∥∥

F
+ ϑk

‖yk −G?sk‖
‖sk‖

≤ ‖Ek‖F −
ϑ̄(2− ϑ̄)

2‖Ek‖F
‖Eksk‖2
‖sk‖2

.

Consequently, (‖Ek‖F )k∈N is decreasing, and in particular Ē := sup(‖Ek‖F )k∈N is
finite. By rearranging the inequality above we obtain

ϑ̄(2− ϑ̄)

2Ē

∑
k∈N

‖Eksk‖2
‖sk‖2

≤
∑
k∈N

ϑ̄(2− ϑ̄)

2‖Ek‖F
‖Eksk‖2
‖sk‖2

≤
∑
k∈N

(‖Ek‖F − ‖Ek+1‖F ) ≤ ‖E0‖F .

Therefore, (‖Eksk‖‖sk‖ )k∈N = ( (‖(Bk−G?)sk‖
‖sk‖ )k∈N is square summable, proving in partic-

ular the claimed Dennis-Moré condition (5.17).

6. Simulations. We now present numerical results with the proposed method.
In ZeroFPR we set β = 1/2, and for the nonmonotone linesearch we used the sequence
pk = (ηQk + 1)−1 where Q0 = 1, Qk+1 = ηQk + 1, η = 0.85: in this way (pk)k∈N is
computed as in [52, 30].

We performed experiments with different choices of dk in step 3. In particular,
• ZeroFPR(Broyden): dk = −Hkr̄

k, and Hk obtained by the Broyden method (5.8)
with ϑ̄ = 10−4;

• ZeroFPR(BFGS): dk = −Hkr̄
k, where Hk is computed using BFGS updates (5.9);

• ZeroFPR(L-BFGS): dk is computed using L-BFGS [38, Alg. 7.4] with memory 10.
We only show the results with full quasi-Newton updates (Broyden, BFGS) for one of
the examples: for the other experiments we focus on L-BFGS, which is better suited for
large-scale problems. Although JRγ is nonsymmetric at the critical points in general,
we observed that the symmetric updates of BFGS and L-BFGS perform very well in
practice and outperform the Broyden method.

We compared ZeroFPR with the forward-backward splitting algorithm (denoted
FBS), that is (2.5), the inertial FBS (denoted IFBS) proposed in [16, Eq. (7)] (with
parameter β = 0.2), and the nonmonotone accelerated FBS (denoted AFBS) pro-
posed in [30, Alg. 2] for fully nonconvex problems. All experiments were performed in
MATLAB. The implementation of the methods used in the tests is available online.2

6.1. Nonconvex sparse approximation. Here we consider the problem of
finding a sparse solution x ∈ Rn to a least-squares problem Ax = b, where A ∈ Rm×n

and b ∈ Rm. Sparsity can be induced by constraining or penalizing the `0 quasi-norm
of x, namely the number of nonzero elements of x, but due to the challenges of

2http://github.com/kul-forbes/ForBES

http://github.com/kul-forbes/ForBES
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n λ FBS IFBS AFBS ZeroFPR(L-BFGS)
avg/max (s) avg/max (s) avg/max (s) avg/max (s)

500 0.10 0.141/0.405 0.159/0.449 0.135/0.221 0.037/0.088
0.03 0.498/2.548 0.688/3.962 0.274/0.430 0.084/0.126
0.01 1.305/5.445 1.721/4.942 0.570/1.157 0.152/0.560

1000 0.10 0.176/0.287 0.231/0.659 0.228/0.483 0.021/0.077
0.03 0.576/2.756 0.645/4.165 0.382/0.841 0.091/0.275
0.01 1.864/9.740 2.391/8.311 0.795/1.446 0.222/0.438

2000 0.10 0.291/0.599 0.392/0.719 0.393/0.640 0.025/0.055
0.03 0.553/1.841 0.602/3.270 0.464/0.702 0.088/0.198
0.01 2.108/10.934 2.439/8.010 0.979/1.411 0.271/0.464

Table 1
Nonconvex sparse approximation. Performance of FBS, IFBS, AFBS and ZeroFPR on problems

with different values of n and λ. The table shows average and maximum CPU time required to reach
‖Rγ(xk)‖ ≤ 10−6 in 100 random experiments. Each algorithm was run on the same set of randomly
generated problems, with x0 = 0.

nonconvexity it is often the case that the `1 norm is used instead. As well explained
and documented in [51], the use of the (square root of the) `1/2 quasi-norm, namely
‖x‖1/21/2 =

∑n
i=1 |xi|

1/2, is in some sense optimal in trading-off representativeness of
the solution and numerical simplicity of the `0 and `1 approaches, respectively. The
problem then becomes

(6.1) minimize
x∈Rn

1
2‖Ax− b‖22 + λ‖x‖1/21/2,

where λ > 0 is a regularization parameter. Function ‖x‖1/21/2 is separable, and its
proximal mapping can be computed in closed form as follows, see [51, Thm. 1]:[

prox
γ‖·‖1/21/2

(x)
]
i

= 2
3

(
1 + cos 2

3

(
π − arccos γ8(

|xi|/3)−
3/2
))
xi, i = 1, . . . , n.

We ran numerical experiments consistently with the setting of [20, Sec. 8.2]. We
considered different scenarios obtained by changing the regularization term λ and the
size of A, keeping a constant column-to-row ratio of n/m = 5 for matrix A. Matrix A
was generated with random Gaussian entries, with zero mean and variance 1/m, while
vector b was generated as b = Axorig + v where xorig ∈ Rn was randomly generated
with k = 5 nonzero normally distributed entries, and v ∈ Rn is a noise vector with
zero mean and variance 1/m.

For each scenario, we solved 100 randomly generated problems and compared
the performance of all algorithms in terms of CPU time to reach an accuracy of
‖rk‖ ≤ 10−6. For all algorithms and problems, we used x0 = 0 as the starting iterate.
Average and worst-case performance of the algorithms in each of the nine scenarios
are illustrated in Table 1; apparently, ZeroFPR is significantly faster than FBS, IFBS
and AFBS, even in a worst-case-to-average comparison.

Figure 1 shows the convergence rates of the algorithms in one of the generated
problems. Since ZeroFPR employs a linesearch, and therefore the complexity of each
iteration is unknown a priori, we recorded the number of matrix-vector products
by A and A> performed during the iterations, and displayed it on the horizontal
axis. Apparently, ZeroFPR with Broyden’s directions achieves superlinear convergence,
beating the linear of FBS, IFBS and AFBS. This comparison also confirms what
previously announced, namely the great performance of (L-)BFGS directions.

6.2. Dictionary learning. Expressing large data by means of only few elements
from a collection of vectors is an important problem in machine learning and signal
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Figure 1. Nonconvex sparse approx-
imation. Convergence of fixed-point resid-
ual and cost in FBS, IFBS, AFBS and Ze-
roFPR, for different choices of the search di-
rections and for n = 1500, λ = 0.03.

processing. The challenge is finding such a collection of vectors, known as dictionary,
that can accurately represent data signals in the sparsest way. In mathematical terms,
givenm signals y1, . . . , ym ∈ Rn we wish to find k dictionary atoms d1, . . . , dk ∈ Rn in
such a way that each yj can be represented, or accurately approximated, as a sparse
linear combination of them. If we stack the data in a matrix Y ∈ Rn×m, and the
dictionary atoms in a matrix D ∈ Rn×k (to be found), the problem can be expressed
as follows [1]

(6.2) minimize
D,C

1
2‖Y −DC‖2F subject to ‖di‖2 = 1 i = 1, . . . , k,

‖cj‖0 ≤ N j = 1, . . . ,m,
‖cj‖∞ ≤ T j = 1, . . . ,m,

where C = [c1, . . . , cm] ∈ Rk×m is a matrix containing the sought coefficients, and
N ∈ N and T > 0 are parameters. Differently from [1], we bound the set of feasible
points by means of the `∞-norm constraint; this artificial constraint ensures that ∇f
is globally Lipschitz continuous over the feasible domain (cf. Rem. 5.3). Moreover, we
explicitly constrain the norm of the dictionary atoms: this causes no loss of generality,
as the objective value of (6.2) is unchanged if the j-th atom dj and the j-th row of C
are scaled by reciprocal factors.

The problem can be expressed in the canonical form (1.1) by letting f(D,C) =
1
2‖Y −DC‖2F and g(D,C) = δS(D,C), where

S =
{
D ∈ Rn×k | ‖dj‖2 = 1, j = 1 . . . k

}
×
{
C ∈ Rk×m | ‖cj‖0 ≤N‖cj‖∞≤T,

j = 1 . . .m
}

is the product of Euclidean spheres and box-constrained `0 balls. Both f and g are
nonconvex in this case. The projection of (D,C) onto S is simple and column-wise
separable: the columns dj of D are scaled by their `2 norm, while the N largest
coefficients (in absolute value) of the columns cj of C are projected onto the box
[−T, T ] and the other ones are set to zero, see e.g., [7, Alg. 3 and Ex. 4.6].

We tested our algorithm on 50 problems with N = 3, n = 20, m = 500 and
k = 50, for a total of 26000 variables each. We chose T = 106 as a large bound for
`∞ norm of the columns of C. Problems were generated according to [1, §V.A]: first,
a dictionary Dgen ∈ R20×50 was randomly generated with normal entries, and each
column was normalized to one. Then, a matrix Cgen ∈ R50×500 was constructed with 3
normally distributed nonzero coefficients per column. Then we set Y = CgenDgen +V ,
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Figure 2. Dictionary learning. Performance pro-
files of FBS, AFBS and ZeroFPR(L-BFGS) when ap-
plied to 50 randomly generated problems with n = 20,
m = 500, k = 50, T = 106 and N = 3. The algo-
rithms are executed until tolerance ‖Rγ(xk)‖ ≤ 10−4

is reached. In the great majority of cases, ZeroFPR(L-
BFGS) reaches a critical point significantly faster than
FBS.

where V ∈ R20×500 is a matrix with normally distributed entries with variance 10−2.
We compared FBS, AFBS and ZeroFPR(L-BFGS), using the backtracking proce-

dure discussed in Remark 5.2 to adaptively adjust the stepsize γ. IFBS could not be
applied due to the lack of an adaptive stepsize-selection rule for the algorithm [16].
Moreover, we did not test ZeroFPR with Broyden and (full) BFGS directions because
of the prohibitive overhead of storing and operating with 26000× 26000 matrices.

Figure 2 shows the performance profile of the algorithms by comparing the time
needed to reach an accuracy of ‖rk‖ ≤ 10−4 starting from (D0, C0) = (0, 0). In most
of the cases, ZeroFPR(L-BFGS) exhibited a speedup of a factor 5-to-100 with respect
to FBS, and 3-to-60 with respect to AFBS, at reaching a critical point.

7. Conclusions. The forward-backward envelope is a valuable tool for deriving
efficient algorithms tackling nonsmooth and nonconvex problems of the form ϕ = f+g,
as it can be used as a merit function to devise globally convergent linesearch methods
solving the system of nonlinear equations defining the stationary points of ϕ.

ZeroFPR implements this idea, and we proved that it globally converges to a sta-
tionary point under the assumption that ϕγ has the Kurdyka-Łojasiewicz property.
Furthermore, if the linesearch directions satisfy the Dennis-Moré condition (for exam-
ple, if they are determined according to the Broyden method), the convergence rate
at strong local minima is superlinear.

Numerical simulations with the proposed method on convex and nonconvex prob-
lems confirm our theoretical results. Using Broyden method, BFGS (in the case of
small-scale problems) and L-BFGS (for large-scale problems) to compute directions
in ZeroFPR greatly outperform FBS and its accelerated variant. It is our belief that
the surprising efficacy of (L-)BFGS is due to the fact that, under the appropriate as-
sumptions, the Jacobian of Rγ at strong local minima is similar to a symmetric and
positive definite matrix. Future investigation may better explain the effectiveness of
symmetric update formulas in this framework.
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Appendix A. Proofs of Section 4.

Proof of Theorem 4.10. (Twice differentiability of ϕγ)
♠ 4.10(i): It follows from [42, Thm.s 3.8 and 4.1] that proxγg is (strictly) differen-
tiable at x?− γ∇f(x?) iff g (strictly) satisfies Assumption II(ii). Consequently, if f is
of class C2 around x? (and in particular strictly differentiable at x? [49, Cor. 9.19]),
Rγ(x) = x−proxγg (x− γ∇f(x)) is (strictly) differentiable at x? with Jacobian as in
(4.7) due to the chain rule of differentiation (and the fact that strict differentiability
is preserved by composition). For γ′ ∈ (γ,Γ(x?)) and w ∈ Rn we have

d2g(x?|−∇f(x?))[w] = liminf
w′→w
τ→0+

g(x?+τw′)−g(x?)+τ〈∇f(x?),w〉
τ2
/2

(4.4)
≥ − 1

γ′ ‖w‖2.

The expression (4.5) of the second-order epi-derivative then implies 〈Mw,w〉 ≥ −
1
γ′ ‖w‖2 for all w ∈ Rn (since Mw = 0 for w ∈ S⊥). Therefore, λmin(M) ≥ − 1/γ′ >

− 1/γ, proving I + γM to be positive definite, and in particular invertible.
The proof now is similar to that of [50, Lem. 2.9]. To obtain an expression for Pγ(x?) =
J proxγg(x

? − γ∇f(x?)) we can apply [49, Ex. 13.45] to the function g + 〈∇f(x?), · 〉
so that, letting d2g = d2g(x?|−∇f(x?))[ · ] and ΠS the idempotent and symmetric
projection matrix on S,

Pγ(x?)d = prox(γ/2)d2g(d) = argmin
d′∈S

{
1
2 〈d′,Md′〉+ 1

2γ ‖d′ − d‖2
}

= ΠS argmin
d′∈Rn

{
1
2 〈ΠS d

′,M ΠS d
′〉+ 1

2γ ‖ΠS d
′ − d‖2

}
= ΠS

(
ΠS [I + γM ] ΠS

)†
ΠS d

= ΠS [I + γM ]−1 ΠS(A.1)

where † indicates the pseudo-inverse, and last equality is due to [10, Facts 6.4.12(i)-(ii)
and 6.1.6(xxxii)]. Apparently, JPγ(x?) is symmetric and positive semidefinite.
♠ 4.10(ii): Since Qγ is (strictly) continuous at x? and Rγ is (strictly) differentiable
at x?, from [50, Prop. 6.2] we have that ∇ϕγ = QγRγ is (strictly) differentiable at x?,
and (4.7) follows by the chain rule.
♠ 4.10(iii): A simple application of the chain rule proves (4.8); moreover, combined
with (4.7) we obtain ∇2ϕγ(x?) = 1

γ [Qγ(x?)−Qγ(x?)Pγ(x?)Qγ(x?)], and since both
Qγ(x?) and Pγ(x?) are symmetric, so is ∇2ϕ(x?).

Proof of Theorem 4.11. (Conditions for strong local minimality)We show that all
conditions are equivalent to either one of the following

(f) 〈d, (∇2f(x?) +M)d〉 > 0 ∀d ∈ S, where M and S are as in Assumption II;
(g) JRγ(x?) is similar to a symmetric and positive definite matrix.

♠ 4.11(c) ⇔ 4.11(d): trivial, since ∇2ϕγ(x?) exists as shown in Thm. 4.10(iii).
♠ 4.11(a) ⇔ 4.11(f): follows from [49, Thm. 13.24(c)], since

d2ϕ(x?|0)[d] = 〈d,∇2f(x?)d〉+ d2g(x?|−∇f(x?))[d] = 〈d, (∇2f(x?) +M)d〉+ δS(d).

♠ 4.11(c)⇔ 4.11(e): if∇2ϕγ(x?) � 0, then x? is a (strong) local minimum for ϕγ and,
due to (4.8), necessarily JRγ(x?) is invertible. Conversely, if x? is a local minimum
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for ϕγ , then ∇2ϕγ(x?) � 0. If, additionally, JRγ(x?) is invertible, then due to (4.8)
∇2ϕγ(x?) is also invertible, thus positive definite.
♠ 4.11(c)⇔ 4.11(g): by comparing (4.7) and (4.8) we observe that JRγ(x?) is similar
to Qγ(x?)−1/2∇2ϕγ(x?)Qγ(x?)−1/2, which is positive definite iff so is ∇2ϕγ(x?).
♠ 4.11(f) ⇔ 4.11(g): the proof is the same as that of [50, Thm. 2.11(b)⇔(c)].
♠ 4.11(b) ⇒ 4.11(g): with similar reasonings as in the proof of the implications
“4.11(a) ⇔ 4.11(f) ⇔ 4.11(g)”, we conclude that local minimality of x? for ϕ entails
JRγ(x?) being similar to a symmetric and positive semidefinite matrix. Therefore, if
JRγ(x?) is nonsingular, then it is similar to a symmetric and positive definite matrix.
♠ 4.11(e) ⇒ 4.11(b): trivial, since ϕγ ≤ ϕ and ϕγ(x?) = ϕ(x?) (cf. Prop. 4.3(i)
and Thm. 4.4(i)).

Appendix B. Additional results for Section 5.
Lemma B.1. Consider the iterates generated by ZeroFPR and suppose that the di-
rections (dk)k∈N are selected so as to satisfy (5.13). Then,

(i) ‖xk+1 − xk‖ ≤ (γ +D)‖rk‖
(ii) ‖x̄k+1 − x̄k‖ ≤ γ‖rk+1‖+ (2γ +D)‖rk‖
(iii) in particular, ‖xk+1 − xk‖ and ‖x̄k+1 − x̄k‖ converge to 0.

Proof. For all k’s we have

‖xk+1 − xk‖ = ‖x̄k + τkd
k − xk‖ = ‖τkdk − γrk‖ ≤ γ‖rk‖+ τk‖dk‖ ≤ (γ +D)‖rk‖

where in the last inequality we used the fact that τk ∈ (0, 1]. This proves B.1(i), and
B.1(ii) trivially follows by the triangular inequality ‖x̄k+1 − x̄k‖ ≤ ‖xk+1 − xk‖ +
γ‖rk+1‖+ γ‖rk‖. Using this, B.1(iii) follows from Thm. 5.6(i).

Lemma B.2. Consider the iterates generated by ZeroFPR. Suppose that (5.13) is sat-
isfied and that the sequence (xk)k∈N is bounded. Then, ω(xk) = ω(x̄k) are nonempty
compact and connected sets over which ϕ and ϕγ are constant and coincide. Moreover,

(B.1) lim
k→∞

dist(xk, ω(xk)) = lim
k→∞

dist(x̄k, ω(xk)) = 0.

Proof. The sets of cluster points are nonempty because of boundedness of the se-
quences; in turn, connectedness and compactness as well as (B.1) are shown in [15,
Rem. 5], which applies since ‖xk+1 − xk‖ and ‖x̄k+1 − x̄k‖ converge to 0 (cf. Lem.
B.1(iii)). Moreover, since (ϕγ(xk))k∈N converges to some value ϕ? ∈ R and ω(xk) =
ω(x̄k) ⊆ fixTγ as shown in Thm. 5.6, it follows Theorem 4.4(i) that ϕ and ϕγ coincide
on ω(xk) (and equal ϕ?).

Lemma B.3. Suppose that Assumption II is satisfied at a strong local minimum x?

of ϕ. Then, for any γ ∈ (0, 1/Lf) the FBE ϕγ possesses the KL property at x?, and
the desingularizing function ψ can be taken of the form ψ(s) = ρs1/2 for some ρ > 0.

Proof. From Thm. 4.11(c) it follows that x? is a strong local minimum for ϕγ at
which ϕγ is twice differentiable with H? := ∇2ϕγ(x?) � 0. Let λ := λmin(H?) and
Λ := λmax(H?). Since ∇ϕγ(x?) = 0, from a second-order expansion of ϕγ and a first-
order expansion of ∇ϕγ we obtain that there exists a neighborhood Ux? of x? such
that, for all x ∈ Ux? , ϕγ(x)−ϕγ(x?) ≤ Λ

4 ‖x−x?‖2 and ‖∇ϕγ(x)‖ ≥ λ
2 ‖x−x?‖, and in

particular ψ′(ϕγ(x)− ϕγ(x?))‖∇ϕγ(x)‖ = ρ

2
√
ϕγ(x)−ϕγ(x?)

‖∇ϕγ(x)‖ ≥ ρλ

2
√

Λ
. Letting

ρ = 2
√

Λ
λ we obtain that ψ is a KL function for ϕγ at x?.
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