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DOUGLAS-RACHFORD SPLITTING AND ADMM FOR NONCONVEX
OPTIMIZATION: TIGHT CONVERGENCE RESULTS∗

ANDREAS THEMELIS† AND PANAGIOTIS PATRINOS†

Abstract. Although originally designed and analyzed for convex problems, the alternating direction method
of multipliers (ADMM) and its close relatives, Douglas-Rachford splitting (DRS) and Peaceman-Rachford splitting
(PRS), have been observed to perform remarkably well when applied to certain classes of structured nonconvex opti-
mization problems. However, partial global convergence results in the nonconvex setting have only recently emerged.
In this paper we show how the Douglas-Rachford envelope (DRE), introduced in 2014, can be employed to unify
and considerably simplify the theory for devising global convergence guarantees for ADMM, DRS and PRS applied
to nonconvex problems under less restrictive conditions, larger prox-stepsizes and over-relaxation parameters than
previously known. In fact, our bounds are tight whenever the over-relaxation parameter ranges in (0, 2]. The analysis
of ADMM uses a universal primal equivalence with DRS that generalizes the known duality of the algorithms.

Key words. Nonsmooth nonconvex optimization, Douglas-Rachford and Peaceman-Rachford splitting, ADMM.

AMS subject classifications. 90C06, 90C25, 90C26, 49J52, 49J53.

1. Introduction. First introduced in [11] for finding numerical solutions of heat differ-
ential equations, the Douglas-Rachford splitting (DRS) is now a textbook algorithm in convex
optimization or, more generally, in monotone inclusion problems. As the name suggests, DRS
is a splitting scheme, meaning that it works on a problem decomposition by addressing each
component separately, rather than operating on the whole problem which is typically too hard
to be tackled directly. In optimization, the objective to be minimized is split as the sum of two
functions, resulting in the following canonical framework addressed by DRS:

(1.1) minimize
s∈�p

ϕ(s) ≡ ϕ1(s) + ϕ2(s).

Here, ϕ1, ϕ2 : �p → � are proper, lower semicontinuous (lsc), extended-real-valued func-
tions (� B � ∪ {∞} denotes the extended-real line). Starting from some s ∈ �p, one DR-
iteration applied to (1.1) with stepsize γ > 0 and relaxation parameter λ > 0 amounts to

(DRS)


u ∈ proxγϕ1

(s)
v ∈ proxγϕ2

(2u − s)
s+ = s + λ(v − u).

The case λ = 1 corresponds to the classical DRS, whereas for λ = 2 the scheme is also known
as Peaceman-Rachford splitting (PRS). If s is a fixed point for the DR-iteration — that is, such
that s+ = s — then it can be easily seen that u satisfies the first-order necessary condition for
optimality in problem (1.1). When both ϕ1 and ϕ2 are convex functions, the condition is also
sufficient and DRS iterations are known to converge for any γ > 0 and λ ∈ (0, 2).

Closely related to DRS and possibly even more popular is the alternating direction
method of multipliers (ADMM), first appeared in [17, 14], see also [16] for a recent his-
torical overview. ADMM addresses linearly constrained optimization problems

(1.2) minimize
(x,z)∈�m×�n

f (x) + g(z) subject to Ax + Bz = b,

∗Submitted to the editors on January 5, 2018.
Funding: This work was supported by the Research Foundation Flanders (FWO) research projects G086518N

and G086318N; Research Council KU Leuven C1 project No. C14/18/068; Fonds de la Recherche Scientifique —
FNRS and the Fonds Wetenschappelijk Onderzoek — Vlaanderen under EOS project no 30468160 (SeLMA).
†Department of Electrical Engineering (ESAT-STADIUS) – KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven,

Belgium (andreas.themelis@kuleuven.be, panos.patrinos@esat.kuleuven.be)

1

mailto:andreas.themelis@kuleuven.be
mailto:panos.patrinos@esat.kuleuven.be


2 A. THEMELIS AND P. PATRINOS

where f : �m → �, g : �n → �, A ∈ �p×m, B ∈ �p×n, and b ∈ �p. ADMM is an iterative
scheme based on the following recursive steps

(ADMM)


y+/2 = y − β(1 − λ)(Ax + Bz − b)
x+ ∈ arg min Lβ( · , z, y+/2)
y+ = y+/2 + β(Ax+ + Bz − b)
z+ ∈ arg min Lβ(x+, · , y+).

Here, β > 0 is a penalty parameter, λ > 0 is a possible relaxation parameter, and

Lβ(x, z, y) B f (x) + g(z) + 〈y, Ax + Bz − b〉 + β
2 ‖Ax + Bz − b‖2(1.3)

is the β-augmented Lagrangian of (1.2) with y ∈ �p as Lagrange equality multiplier. It is
well known that for convex problems ADMM is simply DRS applied to a dual formulation
[13], and its convergence properties for λ = 1 and arbitrary penalty parameters β > 0 are
well documented in the literature, see e.g., [10]. Recently, DRS and ADMM have been ob-
served to perform remarkably well when applied to certain classes of structured nonconvex
optimization problems and partial or case-specific convergence results have also emerged.

1.1. Contributions. Our contributions can be summarized as follows.
1) New tight convergence results for nonconvex DRS. We provide novel convergence results

for DRS applied to nonconvex problems with one function being Lipschitz differentiable
(Theorem 4.3). Differently from the results in the literature, we make no a priori assump-
tion on the existence of accumulation points and we consider all relaxation parameters
λ ∈ (0, 4), as opposed to λ ∈ {1, 2}. Moreover, our results are tight for all λ ∈ (0, 2] (The-
orem 4.9). Figures 1.1a and 1.1b highlight the extent of the improvement with respect to
the state of the art.

2) Primal equivalence of DRS and ADMM. We prove the equivalence of DRS and ADMM
for arbitrary problems and relaxation parameters, so extending their well-known duality
holding in the convex case and the recently observed primal equivalence when λ = 1.

3) New convergence results for ADMM. Thanks to the equivalence with DRS, not only do
we provide new convergence results for the ADMM scheme, but we also offer an elegant
unifying framework that greatly simplifies and generalizes the theory in the literature, is
based on less restrictive assumptions, and provides explicit bounds for stepsizes and pos-
sible other coefficients. A comparison with the state of the art is shown in Figure 1.1c.

4) A continuous and exact merit function for DRS and ADMM. Our results are based on
the Douglas-Rachford Envelope (DRE), first introduced in [31] for convex problems and
here generalized. The DRE extends the known properties of the Moreau envelope and its
connections to the proximal point algorithm to composite functions as in (1.1) and (1.2).
In particular, we show that the DRE serves as an exact, continuous and real-valued (as
opposed to extended-real-valued) merit function for the original problem, computable with
quantities obtained in the iterations of DRS (or ADMM).

Finally, we propose out-of-the-box implementations of DRS and ADMM where no prior
knowledge of quantities such as Lipschitz moduli is needed, as the stepsize γ and the penalty
parameter β are adaptively tuned, and which preserve convergence guarantees of the original
nonadpative algorithms.

1.2. Comparisons & related work. We now compare our results with a selection of
recent related works which, to the best of our knowledge, represent the state of the art for
generality and contributions.
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1.2.1. ADMM. A primal equivalence of DRS and ADMM has been observed in [5,
Rem. 3.14] when A = −B = I and λ = 1. In [36, Thm. 1] the equivalence is extended to
arbitrary matrices; although limited to convex problems, the result is easily extendable. Our
generalization to any relaxation parameter (and nonconvex problems) is largely based on this
result and uses the same problem reformulation proposed therein. The relaxation considered
in this paper corresponds to that introduced in [12]; it is worth mentioning that another type
of relaxation has been proposed, corresponding to λ = 1 in (ADMM) but with a different
steplength for the y-update: that is, with β replaced by θβ for some θ > 0. The known con-
vergence results for θ ∈ (0, 1+

√
5

2 ) in the convex case, see [15, §5], were recently extended to
nonconvex problems and for θ ∈ (0, 2) in [18].

In [35] convergence of ADMM is studied for problems of the form

minimize
x=(x0...xt),z

g(x) +
∑t

i=0 fi(xi) + h(z) subject to Ax + Bz = 0.

Although addressing a more general class of problem than (1.2), when specialized to the
standard two-function formulation analyzed in this paper it relies on numerous assumptions.
These include Lipschitz continuous minimizers of all ADMM subproblems (in particular,
uniqueness of their solution). For instance, the requirements rule out interesting cases involv-
ing discrete variables or rank constraints.

In [23] a class of nonconvex problems with more than two functions is presented and
variants of ADMM with deterministic and random updates are discussed. The paper provides
a nice theory and explicit bounds for the penalty parameter, which agree with ours in best- and
worst-case scenerarios, but are more restrictive otherwise (cf. Figure 1.1c for a more detailed
comparison). The main limitation of the proposed approach is that the theory only allows
for functions either convex or smooth, differently from ours where the nonsmooth term can
virtually be anything. Once again, many interesting applications are not covered.

The work [25] studies a proximal ADMM where a possible Bregman divergence term in
the second block update is considered. By discarding the Bregman term so as to recover the
original ADMM scheme, the same bound on the stepsize as in [23] is found. Another prox-
imal variant is proposed in [18], under less restrictive assumptions related to the concept of
smoothness relative to a matrix that we will introduce in Definition 5.12. When B is injective,
the proximal term can be discarded and their method reduces to the classical ADMM.

The problem addressed in [19] is fully covered by our analysis, as they consider ADMM
for (1.2) where f is L-Lipschitz continuously differentiable and A is the identity matrix. Their
bound β > 2L for the penalty parameter is more conservative than ours; in fact, the two
coincide only in a worst-case scenario.

1.2.2. Douglas-Rachford splitting. Few exceptions apart [26, 24], advances in non-
convex DRS theory are problem specific and only provide local convergence results, at best.
These mainly focus on feasibility problems, where the goal is to find points in the intersection
of nonempty closed sets A and B subjected to some regularity conditions. This is done by ap-
plying DRS to the minimization of the sum of ϕ1 = δA and ϕ2 = δB, where δC is the indicator
function of a set C (see Subsection 2.1). The minimization subproblems in DRS then reduce
to (set-valued) projections onto either sets, regardless of the stepsize parameter γ > 0. This
is the case of [3], where A and B are finite unions of convex sets. Local linear convergence
when A is affine, under some conditions on the (nonconvex) set B, are shown in [20, 21].

Although this particular application of DRS does not comply with our requirements,
as ϕ1 fails to be Lipschitz differentiable, however replacing δA with ϕ1 = 1

2 dist2
A yields an

equivalent problem which fits into our framework when A is a convex set. In terms of DRS
iterations, this simply amounts to replacing ΠA, the projection onto set A, with a “relaxed”
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version ΠA,t B (1 − t)id + t ΠA for some t ∈ (0, 1). Then, it can be easily verified that for any
α, β ∈ (0,+∞] one DRS-step applied to

(1.4) minimize
s∈�n

α
2 dist2

A(s) +
β
2 dist2

B(s)

results in

(1.5) s+ ∈ (1 − λ/2)s + λ/2 ΠB,q ΠA,p s

for p =
2αγ

1+αγ
and q =

2βγ
1+βγ

. Notice that (1.5) is the λ/2-relaxation of the “method of alternating
(p, q)-relaxed projections” ((p, q)-MARP) [6]. The (non-relaxed) (p, q)-MARP is recovered
by setting λ = 2, that is, by applying PRS to (1.4). Local linear convergence of MARP was
shown when A and B, both possibly nonconvex, satisfy some constraint qualifications, and
also global convergence when some other requirements are met. When set A is convex, then
α
2 dist2

A is convex and α-Lipschitz differentiable; our theory then ensures convergence of the
fixed-point residual and subsequential convergence of the iterations (1.5) for any λ ∈ (0, 2),
p ∈ (0, 1) and q ∈ (0, 1], without any requirements on the (nonempty closed) set B. Here, q =

1 is obtained by replacing β
2 dist2

B with δB, which can be interpreted as the hard penalization
obtained by letting β = ∞. Although the non-relaxed MARP is not covered due to the non-
strong convexity of dist2

A, however λ can be set arbitrarily close to 2.
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Figure 1.1: Maximum stepsize γ ensuring convergence of DRS (Figure 1.1a) and PRS (Figure 1.1b), and
maximum inverse of the penalty parameter 1/β in ADMM (Figure 1.1c); comparison between our bounds
(blue plot) and [26] for DRS, [24] for PRS and [18, 19, 23, 25, 35] for ADMM. On the x-axis the ratio
between hypoconvexity parameter σ and Lipschitz modulus L of the gradient of the smooth function.
On the y-axis, the supremum of stepsize γ such that the algorithms converge. For ADMM the analysis
is made for a common framework: 2-block ADMM with no Bregman or proximal terms, Lipschitz-
differentiable f , A invertible and B identity; L and σ are relative to the transformed problem. Notice
that, due to the proved analogy of DRS and ADMM, our bounds coincide in Figures 1.1a and 1.1c.

The work [26] presents the first general analysis of global convergence of (non-relaxed)
DRS for fully nonconvex problems where one function is Lipschitz differentiable. In [24]
PRS is also considered under the additional requirement that the smooth function is strongly
convex with strong-convexity/Lipschitz moduli ratio of at least 2/3. For sufficiently small (ex-
plicitly computable) stepsizes one iteration of DRS or PRS yields a sufficient decrease on an
augmented Lagrangian, and the generated sequences remain bounded when the cost function
has bounded level sets.

Other than completing the analysis to all relaxation parameters λ ∈ (0, 4), as opposed to
λ ∈ {1, 2}, we improve their results by showing convergence for a considerably larger range
of stepsizes and, in the case of PRS, with no restriction on the strong convexity modulus of
the smooth function. We also show that our bounds are optimal whenever λ ∈ (0, 2]. The
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extent of the improvement is evident in the comparisons outlined in Figure 1.1. Thanks to the
lower boundedness of the DRE, as opposed to the lower unbounded augmented Lagrangian,
we show that the vanishing of the fixed-point residual occurs without coercivity assumptions.

1.3. Organization of the paper. The paper is organized as follows. Section 2 introduces
some notation and offers a brief recap of the needed theory; the proof of the results therein is
deferred to the dedicated Appendix A. In Section 3, after formally stating the needed assump-
tions for the DRS problem formulation (1.1) we introduce the DRE and analyze in detail its
key properties. Based on these properties, in Section 4 we prove convergence results of DRS
and show the tightness of our findings by means of suitable counterexamples. In Section 5 we
deal with ADMM and show its equivalence with DRS; based on this, convergence results for
ADMM are derived from the ones already proven for DRS. Section 6 concludes the paper.

2. Background.

2.1. Notation. The extended-real line is � B � ∪ {∞}. The positive and negative parts
of r ∈ � are defined respectively as [r]+ B max {0, r} and [r]− B max {0,−r}, so that
r = [r]+ − [r]−. We adopt the convention that 1/0 = ∞.

The open and closed balls centered in x and with radius r are denoted by B(x; r) and
B(x; r), respectively. With id we indicate the identity function x 7→ x defined on a suitable
space, and with I the identity matrix of suitable size. For a nonzero matrix M ∈ �p×n we let
σ+(M) denote its smallest nonzero singular value.

For a set E and a sequence (xk)k∈� we write (xk)k∈� ⊂ E to indicate that xk ∈ E for all
k ∈ �. We say that (xk)k∈� ⊂ �n is summable if

∑
k∈� ‖xk‖ is finite, and square summable if

(‖xk‖2)k∈� is summable.
We use the notation H : �n ⇒ �m to indicate a point-to-set mapping H : �n → P(�m),

where P(�m) is the power set of �m (the set of all subsets of �m). The graph of H is the set
gph H B {(x, y) ∈ �n ×�m | y ∈ H(x)}.

The domain of an extended-real-valued function h : �n → � is the set dom h B
{x ∈ �n | h(x) < ∞}, while its epigraph is the set epi h B {(x, α) ∈ �n ×� | h(x) ≤ α}. h is
said to be proper if dom h , ∅, and lower semicontinuous (lsc) if epi h is a closed subset of
�n+1. For α ∈ �, lev≤α h is the α-level set of h, i.e., lev≤α h B {x ∈ �n | h(x) ≤ α}. We say
that h is level bounded if lev≤α h is bounded for all α ∈ �. We denote by ∂̂h : �n ⇒ �n the
regular subdifferential of h, where

(2.1) v ∈ ∂̂h(x̄) ⇔ lim inf
x→x̄
x, x̄

h(x) − h(x̄) − 〈v, x − x̄〉
‖x − x̄‖ ≥ 0.

A necessary condition for local minimality of x for h is 0 ∈ ∂̂h(x), see [32, Thm. 10.1]. The
(limiting) subdifferential of h is ∂h : �n ⇒ �n, where v ∈ ∂h(x) iff there exists a sequence
(xk, vk)k∈� ⊆ gph ∂̂h such that (xk, h(xk), vk) → (x, h(x), v) as k → ∞. The set of horizon
subgradients of h at x is ∂∞h(x), defined as ∂h(x) except that vk → v is meant in the “cosmic”
sense, namely λkvk → v for some λk ↘ 0.

2.2. Smoothness and hypoconvexity. The class of functions h : �n → � that are k
times continuously differentiable is denoted as Ck(�n). We write h ∈ C1,1(�n) to indicate that
h ∈ C1(�n) and that ∇h is Lipschitz continuous with modulus Lh. To simplify the terminology,
we will say that such an h is Lh-smooth. It follows from [7, Prop. A.24] that if h is Lh-smooth,
then |h(y) − h(x) − 〈∇h(x), y − x〉| ≤ Lh

2 ‖y − x‖2 for all x, y ∈ �n. In particular, there exists
σh ∈ [−Lh, Lh] such that h is σh-hypoconvex, in the sense that h− σh

2 ‖ · ‖2 is a convex function.
Thus, every Lh-smooth and σh-hypoconvex function h satisfies

(2.2) σh
2 ‖y − x‖2 ≤ h(y) − h(x) − 〈∇h(x), y − x〉 ≤ Lh

2 ‖y − x‖2 ∀x, y ∈ �n.
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By applying [29, Thm. 2.1.5] to the (convex) function ψ = h − σh
2 ‖ · ‖2 we obtain that this is

equivalent to having

(2.3) σh‖y − x‖2 ≤ 〈∇h(y) − ∇h(x), y − x〉 ≤ Lh‖y − x‖2 ∀x, y ∈ �n.

Note that σh-hypoconvexity generalizes the notion of (strong) convexity by allowing negative
strong convexity moduli. In fact, if σh = 0 then σh-hypoconvexity reduces to convexity, while
for σh > 0 it denotes σh-strong convexity.

Lemma 2.1 (Subdifferential characterization of smoothness). Let h : �n → � be such
that ∂h(x) , ∅ for all x ∈ �n, and suppose that there exist L ≥ 0 and σ ∈ [−L, L] such that

(2.4) σ‖x1 − x2‖2 ≤ 〈v1 − v2, x1 − x2〉 ≤ L‖x1 − x2‖2 ∀xi ∈ �n, vi ∈ ∂h(xi), i = 1, 2.

Then, h ∈ C1,1(�n) is L-smooth and σ-hypoconvex.

Proof. See Appendix A.

Theorem 2.2 (Lower bounds for smooth functions). Let h ∈ C1,1(�n) be Lh-smooth and
σh-hypoconvex. Then, for all x, y ∈ �n it holds that

h(y) ≥ h(x) + 〈∇h(x), y − x〉 + ρ(y, x),

where
(i) either ρ(y, x) = σh

2 ‖y − x‖2,

(ii) or ρ(y, x) = σhLh
2(Lh+σh) ‖y − x‖2 + 1

2(Lh+σh) ‖∇h(y) − ∇h(x)‖2, provided that −Lh < σh ≤ 0.
Clearly, all inequalities remain valid if Lh is replaced with any L ≥ Lh and σh with any
σ ∈ [−L, σh].

Proof. See Appendix A.

2.3. Proximal mapping. The proximal mapping of h : �n → � with parameter γ > 0
is proxγh : �n ⇒ dom h defined as

(2.5) proxγh(x) B arg min
w∈�n

{
h(w) + 1

2γ ‖w − x‖2
}
.

We say that a function h is prox-bounded if h + 1
2γ ‖ · ‖2 is lower bounded for some γ > 0. The

supremum of all such γ is the threshold of prox-boundedness of h, denoted as γh. If h is proper
and lsc, proxγh is nonempty- and compact-valued over �n for γ ∈ (0, γh) [32, Thm. 1.25].
The value function of the minimization problem defining the proximal mapping, namely the
Moreau envelope with stepsize γ ∈ (0, γh), denoted by hγ : �n → � and defined as

(2.6) hγ(x) B inf
w∈�n

{
h(w) + 1

2γ ‖w − x‖2
}
,

is finite and strictly continuous [32, Thm. 1.25 and Ex. 10.32]. The necessary optimality
conditions of the problem defining proxγg together with [32, Thm. 10.1 and Ex. 8.8] imply

(2.7) 1
γ
(x − x̄) ∈ ∂̂h(x̄) ∀x̄ ∈ proxγh(x).

When h ∈ C1,1(�n), its proximal mapping and Moreau envelope enjoy many favorable prop-
erties which we summarize next.

Proposition 2.3 (Proximal properties of smooth functions). Let h ∈ C1,1(dom h) be Lh-
smooth, hence σh-hypoconvex for some σh ∈ [−Lh, Lh]. Then, h is prox-bounded with γh ≥
1/[σh]− and for all γ < 1/[σh]− the following hold:
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(i) proxγh is single valued, and for all s ∈ �n it holds that u = proxγh(s) iff s = u +γ∇h(u).

(ii) proxγh is ( 1
1+γLh

)-strongly monotone and (1 + γσh)-cocoercive, in the sense that

〈u − u′, s − s′〉 ≥ 1
1+γLh

‖s − s′‖2 and 〈u − u′, s − s′〉 ≥ (1 + γσh)‖u − u′‖2

for all s, s′ ∈ �n, where u = proxγh(s) and u′ = proxγh(s′). In particular,

(2.8) 1
1+γLh

‖s − s′‖ ≤ ‖u − u′‖ ≤ 1
1+γσh

‖s − s′‖.
Thus, proxγh is a 1

1+γσh
-Lipschitz and invertible mapping, and its inverse id + γ∇h is

(1 + γLh)-Lipschitz continuous.
(iii) hγ ∈ C1,1(�n) is Lhγ -smooth and σhγ -hypoconvex, with Lhγ = max

{
Lh

1+γLh
, [σh]−

1+γσh

}
and

σhγ = σh
1+γσh

. Moreover, ∇hγ(s) = 1
γ
(s−proxγh(s)) and ∇h(proxγh(s)) = 1

γ

(
s−proxγh(s)

)
.

Proof. See Appendix A.

3. Douglas-Rachford envelope. We now list the blanket assumptions for the functions
in problem (1.1).

Assumption I (Requirements for the DRS formulation (1.1)). The following hold
(i) ϕ1 ∈ C1,1(�n) is Lϕ1 -smooth, hence σϕ1 -hypoconvex for some σϕ1 ∈ [−Lϕ1 , Lϕ1 ].

(ii) ϕ2 is proper and lsc.
(iii) Problem (1.1) has a solution, that is, arg minϕ , ∅.

Remark 3.1 (Feasible stepsizes for DRS). Under Assumption I, both ϕ1 and ϕ2 are prox-
bounded with threshold at least 1/Lϕ1 , and in particular DRS iterations are well defined for all
γ ∈ (0, 1/Lϕ1 ). That γϕ1 ≥ 1/Lϕ1 follows from Proposition 2.3, having 1/[σϕ1 ]− ≥ 1/Lϕ1 . As for ϕ2,
for all s ∈ �p it holds that

inf ϕ ≤ ϕ1(s) + ϕ2(s)
(2.2)
≤ ϕ1(0) + 〈∇ϕ1(0), s〉 + Lϕ1

2 ‖s‖2 + ϕ2(s),

hence, for all γ < 1/Lϕ1 the function s 7→ ϕ2(s) + 1
2γ ‖s‖2 is lower bounded.

Starting from s ∈ �p, let (u, v) be generated by a DRS step under Assumption I. As first
noted in [31], from the relation s = u + γ∇ϕ1(u) (see Proposition 2.3(i)) it follows that

(3.1) v ∈ proxγϕ2
(u − γ∇ϕ1(u))

is the result of a forward-backward step at u, amounting to

v ∈ arg min
w∈�p

{
ϕ2(w) + ϕ1(u) + 〈∇ϕ1(u),w − u〉 + 1

2γ ‖w − u‖2
}
,(3.2)

see e.g., [9, 34] for an extensive discussion on nonconvex forward-backward splitting (FBS).
This shows that v is the result of the minimization of a majorization model for the original
function ϕ = ϕ1 + ϕ2, where the smooth function ϕ1 is replaced by the quadratic upper bound
emphasized by the under-bracket in (3.2). First introduced in [31] for convex problems, the
Douglas-Rachford envelope (DRE) is the function ϕdrγ : �p → � defined as

ϕdrγ (s) B min
w∈�p

{
ϕ2(w) + ϕ1(u) + 〈∇ϕ1(u),w − u〉 + 1

2γ ‖w − u‖2
}
,(3.3)

where u B proxγϕ1
(s). Namely, rather than the minimizer v, ϕdrγ (s) is the value of the mini-

mization problem (3.2) defining the v-update in (DRS). The expression (3.3) emphasizes the
close connection that the DRE has with the forward-backward envelope (FBE) as in [34],
here denoted ϕfbγ , namely

(3.4) ϕdrγ (s) = ϕfbγ (u), where u = proxγϕ1
(s).
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The FBE is an exact penalty function for FBS, which was initially proposed for convex prob-
lems in [30] and later extended and further analyzed in [33, 34, 27]. In this section we will
see that, under Assumption I, the DRE serves a similar role with respect to DRS which will
be key for establishing (tight) convergence results in the nonconvex setting. Another useful
intepretation of the DRE is obtained by plugging the minimizer w = v in (3.3). This leads to

(3.5) ϕdrγ (s) = L1/γ(u, v, γ−1(u − s)),

where u and v come from the DRS iteration and

(3.6) Lβ(x, z, y) B ϕ1(x) + ϕ2(z) + 〈y, x − z〉 + β
2 ‖x − z‖2

is the β-augmented Lagrangian relative to the equivalent problem formulation

(3.7) minimize
x,z∈�p

ϕ1(x) + ϕ2(z) subject to x − z = 0.

This expression also emphasizes that evaluating ϕdrγ (s) requires the same operations as per-
forming one DRS update s 7→ (u, v).

3.1. Properties. Building upon the connection with the FBE emphasized in (3.4), in this
section we highlight some important properties enjoyed by the DRE. We start by observing
that ϕdrγ is a strictly continuous function for γ < 1/Lϕ1 , owing to the fact that so is the FBE [34,
Prop. 4.2], and that proxγϕ1

is Lipschitz continuous as shown in Proposition 2.3(ii).

Proposition 3.2 (Strict continuity). Suppose that Assumption I is satisfied. For all γ <
1/Lϕ1 the DRE ϕdrγ is a real-valued and strictly continuous function.

Next, we investigate the fundamental connections relating the DRE ϕdrγ and the cost func-
tion ϕ. We show, for γ small enough and up to an (invertible) change of variable, that infima
and minimizers of the two functions coincide, as well as equivalence of level boundedness.

Proposition 3.3 (Sandwiching property). Suppose that Assumption I is satisfied. Let γ <
1/Lϕ1 be fixed, and consider u, v generated by one DRS iteration starting from s ∈ �p. Then,

(i) ϕdrγ (s) ≤ ϕ(u).

(ii) ϕ(v) ≤ ϕdrγ (s) − 1−γLϕ1
2γ ‖u − v‖2.

Proof. 3.3(i) is easily inferred from definition (3.3) by considering w = u. Moreover,
it follows from [34, Prop. 4.3] and the fact that v ∈ proxγϕ2

(u − γ∇ϕ1(u)), cf. (3.1), that

ϕ(v) ≤ ϕfbγ (u) − 1−γLϕ1
2γ ‖u − v‖2. 3.3(ii) then follows from (3.4).

Theorem 3.4 (Minimization and level-boundedness equivalence). Suppose that Assump-
tion I is satisfied. For any γ < 1/Lϕ1 the following hold:

(i) inf ϕ = inf ϕdrγ .
(ii) arg minϕ = proxγϕ1

(
arg minϕdrγ

)
.

(iii) ϕ is level bounded iff so is ϕdrγ .

Proof. It follows from [34, Thm. 4.4] that the FBE satisfies arg minϕ = arg minϕfbγ
and inf ϕ = inf ϕfbγ . The similar properties 3.4(i) and 3.4(ii) of the DRE then follow from
the identity ϕdrγ = ϕfbγ ◦ proxγϕ1

, cf. (3.4), and the fact that proxγϕ1
is invertible, as shown in

Proposition 2.3.
We now show 3.4(iii). Denote ϕ? B inf ϕ = inf ϕdrγ , which is finite by assumption.

♠ Suppose that ϕdrγ is level bounded, and let u ∈ lev≤α ϕ for some α > ϕ?. Then, s B
u + γ∇ϕ1(u) is such that proxγϕ1

(s) = u, as shown in Proposition 2.3(i). Thus, from Propo-
sition 3.3 it follows that s ∈ lev≤α ϕdrγ . In particular, lev≤α ϕ ⊆ [I + γ∇ϕ1]−1(lev≤α ϕdrγ ), and
since proxγϕ1

= [I +γ∇ϕ1]−1 is Lipschitz continuous and lev≤α ϕdrγ is bounded by assumption,
it follows that lev≤α ϕ is also bounded.
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♠ Suppose now that ϕdrγ is not level bounded. Then, there exists α > ϕ? together with a
sequence (sk)k∈� satisfying sk ∈ lev≤α ϕdrγ \ B(0; k) for all k ∈ �. Let uk B proxγϕ1

(sk),
so that sk = uk + γ∇ϕ1(uk) (Proposition 2.3(i)), and let vk ∈ proxγϕ2

(uk − γ∇ϕ1(uk)). From
Proposition 3.3(ii) it then follows that vk ∈ lev≤α ϕ, and that

α − ϕ? ≥ ϕdrγ (sk) − ϕ? ≥ ϕdrγ (sk) − ϕ(vk) ≥ 1−γLϕ1
2γ ‖uk − vk‖2.

Therefore, ‖uk − vk‖2 ≤ 2γ(α−ϕ?)
1−γLϕ1

and

‖vk‖ ≥ ‖uk − u0‖ − ‖u0‖ − ‖uk − vk‖
2.3(ii)
≥ 1

1+γLϕ1
‖sk − s0‖ − ‖u0‖ − ‖uk − vk‖

≥ k−‖s0‖
1+γLϕ1

− ‖u0‖ −
√

2γ(α−ϕ?)
1−γLϕ1

→ +∞ as k → ∞.

This shows that lev≤α ϕ is also unbounded.

4. Convergence of Douglas-Rachford splitting. Closely related to the DRE, the aug-
mented Lagrangian (3.6) (in fact, rather a “reduced” Lagrangian with negative penalty β)
was used in [26] under the name of Douglas-Rachford merit function to analyze DRS for the
special case λ = 1. It was shown that for sufficiently small γ there exists c > 0 such that the
iterates generated by DRS satisfy

(4.1) L−1/γ(uk+1, vk+1, ηk+1) ≤ L−1/γ(uk, vk, ηk) − c‖uk − uk+1‖2 with ηk = γ−1(uk − sk),

to infer that (uk)k∈� and (vk)k∈� have same accumulation points, all of which are stationary
for ϕ. In [24], where also the case λ = 2 is addressed with L−3/γ as penalty function, it was
then shown that the sequence remains bounded and thus accumulation points exist in case
ϕ is level bounded. We now generalize the decrease property (4.1) shown in [26, 24] by
considering arbitrary relaxation parameters λ ∈ (0, 4) (as opposed to λ ∈ {1, 2}) and providing
tight ranges for the stepsize γ whenever λ ∈ (0, 2]. Thanks to the lower boundedness of ϕdrγ ,
it will be possible to show that the DRS residual vanishes without any coercivity assumption.

Theorem 4.1 (Sufficient decrease on the DRE). Suppose that Assumption I is satisfied,

and consider one DRS update s 7→ (u, v, s+) for some stepsize γ < min
{

2−λ
2[σϕ1 ]−

, 1
Lϕ1

}
and

relaxation λ ∈ (0, 2). Then,

(4.2) ϕdrγ (s) − ϕdrγ (s+) ≥ c
(1+γLϕ1 )2 ‖s − s+‖2,

where, denoting pϕ1 B σϕ1/Lϕ1 ∈ [−1, 1], c is a strictly positive constant defined as1

(4.3) c =
2 − λ
2λγ

−
Lϕ1 max

{
[pϕ1 ]−

2(1−[pϕ1 ]−) ,
γLϕ1
λ
− 1

2

}
if pϕ1 ≥ λ

2 − 1,
[σϕ1 ]−
λ

otherwise.

If ϕ1 is strongly convex, then (4.2) also holds for

(4.4) 2 ≤ λ < 4
1+
√

1−pϕ1

and
pϕ1λ−δ
4σϕ1

< γ <
pϕ1λ+δ

4σϕ1
,

where δ B
√

(pϕ1λ)2 − 8pϕ1 (λ − 2), in which case

(4.5) c = 2−λ
2λγ +

σϕ1
λ

( 1
2 −

γLϕ1
λ

).

1A one-line expression for the constant is c = 2−λ
2λγ − min

{
[pϕ1 ]−
λ , Lϕ1 max

{
[σϕ1 ]−

2(1−[pϕ1 ]−) ,
γLϕ1
λ − 1

2

}}
.
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Proof. Let (u+, v+) be generated by one DRS iteration starting at s+. Then,

ϕdrγ (s+) = min
w∈�n

{
ϕ1(u+) + ϕ2(w) + 〈∇ϕ1(u+),w − u+〉 + 1

2γ ‖w − u+‖2
}

and the minimum is attained at w = v+. Therefore, letting ρ be as in Theorem 2.2,

ϕdrγ (s+) ≤ ϕ1(u+) + 〈∇ϕ1(u+), v − u+〉 + ϕ2(v) + 1
2γ ‖u+ − v‖2

= ϕ1(u+) + 〈∇ϕ1(u+),u − u+〉 + 〈∇ϕ1(u+), v − u〉 + ϕ2(v) + 1
2γ ‖u+ − v‖2

Thm. 2.2
≤ ϕ1(u) − ρ(u,u+) + 〈∇ϕ1(u+), v − u〉 + ϕ2(v) + 1

2γ ‖u+ − v‖2

= ϕ1(u) − ρ(u,u+) + 〈∇ϕ1(u), v − u〉 + ϕ2(v) + 1
2γ ‖u+ − v‖2 + 〈∇ϕ1(u+) − ∇ϕ1(u), v − u〉

= ϕdrγ (s) − ρ(u,u+) + 〈∇ϕ1(u+) − ∇ϕ1(u), v − u〉 + 1
2γ ‖u − u+‖2 + 1

γ
〈u+ − u,u − v〉.

Since u − v = 1
λ
(s − s+) = 1

λ
(u − u+) +

γ
λ
(∇ϕ1(u) − ∇ϕ1(u+)), see Proposition 2.3(i), it all

simplifies to

(4.6) ϕdrγ (s) − ϕdrγ (s+) ≥ 2−λ
2γλ ‖u − u+‖2 − γ

λ
‖∇ϕ1(u+) − ∇ϕ1(u)‖2 + ρ(u, u+).

It will suffice to show that

ϕdrγ (s) − ϕdrγ (s+) ≥ c‖u − u+‖2;

inequality (4.2) will then follow from 1
1+γLϕ1

-strong monotonicity of proxγϕ1
, see Proposi-

tion 2.3(ii). We now proceed by cases.
♠ Case 1: λ ∈ (0, 2).
Let σ B −[σϕ1 ]− = min

{
σϕ1 , 0

}
and L ≥ Lϕ1 be such that L + σ > 0; the value of such an L

will be fixed later. Then, σ ≤ 0 and ϕ1 is L-smooth and σ-hypoconvex. We may thus choose
ρ(u, u+) as in Theorem 2.2(ii) with these values of L and σ. Inequality (4.6) then becomes

ϕdrγ (s)−ϕdrγ (s+)
L ≥

(
2−λ
2λξ +

p
2(1+p)

)
‖u+ − u‖2 + 1

L2

(
1

2(1+p) − ξ
λ

)
‖∇ϕ1(u+) − ∇ϕ1(u)‖2,

where ξ B γL and p B σ/L ∈ (−1, 0]. Since ∇ϕ1 is Lϕ1 -Lipschitz continuous, the constant c
can be taken such that

(4.7)
c
L

=


2−λ
2λξ +

p
2(1+p) if 0 < 1

2(1+p) − ξ
λ
,

2−λ
2λξ +

p
2(1+p) +

L2
ϕ1

L2

(
1

2(1+p) − ξ
λ

)
otherwise.

We will now select a suitable L so as to ensure that c is indeed strictly positive and as given in
the statement. To this end, we consider two subcases:
• Case 1a: 0 < λ ≤ 2(1 + σ/Lϕ1 ).

Then, σ ≥ − 2−λ
2 Lϕ1 > −Lϕ1 and we can take L = Lϕ1 . Consequently, p = σ/Lϕ1 , ξ = γLϕ1 ,

and (4.7) becomes

(4.8)
c

Lϕ1

=
2 − λ

2λγLϕ1

+


p

2(1+p) if γLϕ1 <
λ

2(1+p) ,
1
2 −

γLϕ1
λ

otherwise.

Let us verify that in this case any γ such that γ < 1/Lϕ1 yields a strictly positive coefficient
c. If 0 < γLϕ1 <

λ
2(1+p) ≤ 1, then

c
Lϕ1

= 2−λ
2λγLϕ1

+
p

2(1+p) >
2−λ
2λ +

p
λ

=
1+p
λ
− 1

2 ≥ 0,
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where the first inequality uses the facts that λ < 2, p ≤ 0, and γLϕ1 < 1. If instead
λ

2(1+p) ≤ γLϕ1 < 1, then

c
Lϕ1

= 2−λ
2λγLϕ1

+ 1
2 −

γLϕ1
λ

> 2−λ
2λ + 1

2 − 1
λ

= 0.

Either way, the sufficient decrease constant c is strictly positive. Since σ = −[σϕ1 ]− and

2−λ
2λγ + σ

2(1+p) ≤ 2−λ
2λγ +

Lϕ1
2 −

γL2
ϕ1
λ

⇔ γ ≤ λ
2(Lϕ1 +σ) ,

from (4.8) we conclude that c is as in (4.2).
• Case 1b: 2(1 + σ/Lϕ1 ) < λ < 2.

Necessarily σ < 0, for otherwise the range of λ would be empty. In particular, σ = σϕ1 ,
and the lower bound on λ can be expressed as σϕ1 < − 2−λ

2 Lϕ1 . Consequently, L B
−2σϕ1

2−λ
is strictly larger than Lϕ1 , and in particular σ + L = σϕ1 + L > 0. The ratio of σ and L is
thus p = λ

2 − 1, and (4.7) becomes

(4.9) c = 2−λ
2λγ +


σϕ1
λ

if γ < 2−λ
−2σϕ1

,
σϕ1
λ
− γL2

ϕ1
λ

+ 2−λ
−2σϕ1λ

L2
ϕ1

otherwise.

Let us show that, when γ < 2−λ
−2σϕ1

= 1
L , also in this case the sufficient decrease constant

c is strictly positive. We have

c
L = 2−λ

2λγL +
σϕ1
λ

1
L >

2−λ
2λ +

σϕ1
λ

2−λ
−2σϕ1

= 0,

hence the claim. This concludes the proof for the case λ ∈ (0, 2).
♠ Case 2: λ ≥ 2.
In this case we need to assume that ϕ1 is strongly convex, that is, that σϕ1 > 0. Instead of
considering a single expression of ρ, we will rather take a convex combination of those in
Theorems 2.2(i) and 2.2(ii), namely

ρ(u, u+) = (1 − α)
σϕ1

2 ‖u − u+‖2 + α 1
2Lϕ1
‖∇ϕ1(u) − ∇ϕ1(u+)‖2

for some α ∈ [0, 1] to be determined. (4.6) then becomes

ϕdrγ (s)−ϕdrγ (s+)
Lϕ1

≥
(

2−λ
2λξ +

(1−α)p
2

)
‖u − u+‖2 + 1

L2
ϕ1

(
α
2 − ξ

λ

)
‖∇ϕ1(u) − ∇ϕ1(u+)‖2,

where ξ B γLϕ1 and p B σϕ1/Lϕ1 ∈ (0, 1]. By restricting ξ ∈ (0, 1), since λ ≥ 2 one can take
α B 2ξ/λ ∈ (0, 1) to make the coefficient multiplying the gradient norm vanish. We then obtain

(4.10) c
Lϕ1

= 2−λ
2λξ +

(λ−2ξ)p
2λ .

Imposing c > 0 results in the following second-order equation in variable ξ,

(4.11) 2pξ2 − pλξ + (λ − 2) < 0.

The discriminant is ∆ B (pλ)2 − 8p(λ − 2), which, for λ ≥ 2, is strictly positive iff

2 ≤ λ < 4
1+
√

1−p
∨ λ > 4

1−
√

1−p
.
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Denoting δ B
√

∆ =
√

(pλ)2 − 8p(λ − 2), the solution to (4.11) is pλ−δ
4p < ξ < pλ+δ

4p . However,

the case λ ≥ 4 has to be discarded, as pλ−δ
4p > 1 in this case, contradicting the fact that p ≤ 1.

To see this, suppose λ ≥ 4. Then,

pλ−δ
4p < 1 ⇔ p(λ − 4) < δ

⇔ p2(λ − 4)2 < ∆ = (pλ)2 − 8p(λ − 2)
⇔ p(2 − λ) < 2 − λ,

hence p > 1, which contradicts the fact that σϕ1 ≤ Lϕ1 . Thus, the only feasible ranges are the
ones given in (4.4), hence the claimed sufficient decrease constant c, cf. (4.10).

Remark 4.2 (Simpler bounds for DRS). By using the (more conservative) estimate σϕ1 =

0 when the smooth function ϕ1 is convex, and σϕ1 = −Lϕ1 otherwise, the range of γ can be
simplified as follows in case λ ∈ (0, 2]:

λ ∈ (0, 2)

γ <
1

Lϕ1
and c = 2−λ

2λγ − Lϕ1

[ γLϕ1
λ
− 1

2
]
+ if ϕ1 is convex,

γ < 2−λ
2Lϕ1

and c = 2−λ
2λγ −

Lϕ1
λ

otherwise.

λ = 2

γ < 1
Lϕ1

and c =
σϕ1

4 (1 − γLϕ1 ) if ϕ1 is strongly convex,

∅ otherwise.

Theorem 4.3 (Subsequential convergence of DRS). Suppose that Assumption I is satis-
fied, and consider a sequence (sk, uk, vk)k∈� generated by DRS with stepsize γ and relaxation
λ as in Theorem 4.1, starting from s0 ∈ �p. The following hold:

(i) The residual (uk − vk)k∈� vanishes with rate mini≤k ‖ui − vi‖ = o(1/
√

k).
(ii) (uk)k∈� and (vk)k∈� have same cluster points, all of which are stationary for ϕ and on

which ϕ has same (finite) value, this being the limit of (ϕdrγ (sk))k∈�. In fact, for each k

one has dist(0, ∂̂ϕ(vk)) ≤ 1−γσϕ1
γ
‖uk − vk‖.

(iii) If ϕ has bounded level sets, then the sequence (sk, uk, vk)k∈� is bounded.

Proof. To avoid trivialities, we assume that a fixed point is not found in a finite number
of iterations, hence that vk , uk for all k ∈ �.
♠ 4.3(i) Let c = c(γ, λ) be as in Theorem 4.1. Telescoping the inequality (4.2) yields

cλ2

(1+γLϕ1 )2

∑
k∈� ‖uk − vk‖2 ≤ ∑

k∈�
[
ϕdrγ (sk) − ϕdrγ (sk+1)

] ≤ ϕdrγ (s0) − inf ϕdrγ .

Since inf ϕdrγ = inf ϕ > −∞ and ϕdrγ is real valued (Proposition 3.2 and Theorem 3.4), it
follows that (uk−vk)k∈� is square summable, hence the claimed rate of convergence. Moreover,
since ϕdrγ (sk) is decreasing it admits a (finite) limit, be it ϕ?.

♠ 4.3(ii) Since (uk − vk)k∈� → 0, necessarily (uk)k∈� and (vk)k∈� have same cluster points.
Suppose that (uk)k∈K → u′ for some K ⊆ � and u′ ∈ �p. Then, (vk)k∈K → u′, and since sk =

uk +∇ϕ1(uk) (Proposition 2.3(i)), continuity of ∇ϕ1 implies that (sk)k∈K → s′ = u′ + γ∇ϕ1(u′).
From Proposition 2.3(i) we infer that u′ = proxγϕ1

(s′).
Similarly, (uk − γ∇ϕ1(uk))k∈K → u′ − γ∇ϕ1(u′), and the outer semicontinuity of proxγϕ2

[32,
Ex. 5.23(b)] combined with (3.1) implies that

u′ = lim
K3k→∞

vk ∈ lim sup
K3k→∞

proxγϕ2

(
uk − γ∇ϕ1(uk)

)
⊆ proxγϕ2

(
u′ − γ∇ϕ1(u′)

)
.
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From (2.7) we then have that −∇ϕ1(u′) ∈ ∂̂ϕ2(u′), hence 0 ∈ ∂̂ϕ(u′), as it follows from [32,
Ex. 8.8]. Finally, since vk → u′,

ϕ(u′) ≤ lim inf
K3k→∞

ϕ(vk) ≤ lim sup
K3k→∞

ϕ(vk) ≤ lim sup
K3k→∞

ϕdrγ (sk) = ϕdrγ (s′) ≤ ϕ(u′),

where the first inequality is due to lower semicontinuity of ϕ, the third and the last to the sand-
wiching property (Proposition 3.3), and the equality to the continuity of ϕdrγ (Proposition 3.2).
This shows that (ϕ(vk))k∈K → ϕ(u′) = ϕdrγ (s′), and since (ϕdrγ (sk))k∈� → ϕ?, then necessarily
ϕ(u′) = ϕdrγ (s′) = ϕ? independently of the cluster point u′. As to the last assert, due to (2.7) the
optimality condition of vk as in (3.1) read 1

γ
(uk − vk) − ∇ϕ1(uk) ∈ ∂̂ϕ2(vk). Let F B id − γ∇ϕ1

and observe that it is a (1−γσ f )-Lipschitz continuous mapping. From the above inclusion one
has 1

γ
(F(uk) − F(vk)) ∈ ∂̂ϕ(vk), hence dist(0, ∂̂ϕ(vk)) ≤ 1

γ
‖F(uk) − F(vk)‖ ≤ 1−γσϕ1

γ
‖uk − vk‖.

♠ 4.3(iii) Suppose that ϕ has bounded level sets. Then, it follows from Theorem 3.4(iii) that
so does ϕdrγ , and since sk ∈ lev≤ϕdrγ (s0) ϕ

dr
γ for all k ∈ �, then the sequence (sk)k∈� is bounded.

Due to Lipschitz continuity of proxγϕ1
(Proposition 2.3(ii)), also (uk)k∈� is bounded. In turn,

since vk − uk → 0 we conclude that also (vk)k∈� is bounded.

The Kurdyka-Łojasiewicz (KL) property is a powerful tool to establish global conver-
gence (as opposed to subsequential convergence) of descent methods, see [1], and semial-
gebraic functions comprise a wide class of functions that enjoy this property. It was first
observed in [26] that an augmented Lagrangian decreases along iterates generated by non-
relaxed DRS, cf. (4.1), and global convergence was thus established when ϕ1 and ϕ2 are
semialgebraic functions and the sequence remains bounded. The latter requirement was later
shown to hold in [24] when ϕ has bounded level sets, as Theorem 3.4(iii) confirms. The key
observation to extend the result of [26] to the tight ranges here provided is that for Lβ as in
(3.6) one has ∂L1/γ(uk, vk, γ−1(uk − sk)) 3 (

γ−1(uk − vk), 0, uk − vk), owing to the facts that
sk = uk+γ∇ϕ1(uk) and 2uk−sk−vk

γ
∈ ∂ϕ2(vk). This ensures the bound dist

(
0, ∂L1/γ(uk, vk, γ−1(uk−

sk))
) ≤ √1 + 1/γ2‖uk−vk‖ for all k, which together with the sufficient decrease of Theorem 4.1

and the identity ϕdrγ (sk) = L1/γ(uk, vk, γ−1(uk − sk)), allows to replicate the arguments of [26,
Thm. 2] to infer global convergence when L1/γ has the KL property.

Theorem 4.4 (Global convergence of DRS [26, Thm. 2]). Suppose that Assumption I is
satisfied, that ϕ is level bounded, and that ϕ1 and ϕ2 are semialgebraic. Then, the sequences
(uk)k∈� and (vk)k∈� generated by DRS with γ and λ as in Theorem 4.3 converge to (the same)
stationary point for ϕ.

4.1. Adaptive variant. As described in Remark 4.2, when the hypoconvexity modulus
σϕ1 is not known one can always consider σϕ1 = −Lϕ1 ; in case ϕ1 is convex, the tighter esti-
mate σϕ1 = 0 is also feasible. In particular, for any λ ∈ (0, 2) the knowledge of Lϕ1 is enough
for determining ranges of γ, although possibly conservative, that comply with Theorem 4.1
and thus make DRS iterations convergent.

When also the Lipschitz constant Lϕ1 is not available, it is however possible to adjust
the stepsize γ along the iterations without losing the convergence properties of Theorem 4.3.
This can be done by selecting an initial estimate γ for the stepsize, and reduce it whenever a
sufficient decrease condition is violated. Due to the fact that γmay be larger than the unknown
threshold 1/[σϕ1 ]− below which proxγϕ1

is ensured to be single valued (Proposition 2.3), the
DRE may fail to be a well-defined function of s. For this reason, we resort to the augmented
Lagrangian interpretation given in (3.5).

The procedure is summarized in Algorithm 4.1. At each iteration, the stepsize γ is re-
duced whenever a sufficient decrease condition on the augmented Lagrangian is violated.
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Algorithm 4.1 DRS with adaptive stepsize.
Lβ is the augmented Lagrangian as defined in (3.6).
DRSγ,λ : �p ⇒ �p ×�p ×�p maps s ∈ �p to a triplet (u, v, s+) as in (DRS).

Require s0 ∈ �p, L > 0, λ ∈ (0, 2), γ, c as in Remark 4.2 with L in place of Lϕ1 ,
Initialize (u0, v0, s1) ∈ DRSγ,λ(s0), L0 = L1/γ(u0, v0, γ−1(u0 − s0))
For k = 1, 2, . . . do

1: (uk, vk, sk+1) ∈ DRSγ,λ(sk)
2: Lk = L1/γ(uk, vk, γ−1(uk − sk))
3: if Lk > Lk−1 − cλ2

(1+γL)2 ‖vk−1 − uk−1‖2 or ϕ(vk) > Lk then
4: γ ← γ/2, c← 2c, L← 2L

5: (uk−1, vk−1, sk) ∈ DRSγ,λ(sk−1)
6: Lk−1 ← L1/γ(uk−1, vk−1, γ−1(uk−1 − sk−1)) and go back to step 1

This can happen only a finite number of times, since for γ small enough (3.5) holds and the
sufficient decrease property as stated in Theorem 4.1 applies. The recomputation of the pre-
vious iterates at steps 5 and 6 is crucial: whenever γ is decreased the previous augmented
Lagrangian value Lk−1 has to be updated with the new value of γ, for no decrease can be
guaranteed when comparing L1/γ and L1/γ′ (or ϕdrγ and ϕdrγ′ ) when γ , γ′. Finally, note that
it may also be the case that γ remains high and lower boundedness cannot be inferred from
Theorem 3.4(i). The additional condition Lk ≥ ϕ(vk) at step 3 prevents the augmented La-
grangian from dropping arbitrarily low. This is a feasible requirement, since as soon as γ falls
below 1/Lϕ1 the bound of Proposition 3.3(ii) applies.

Theorem 4.5 (Subsequential convergence of adaptive DRS). Suppose that Assumption I
is satisfied, and consider the iterates generated by Algorithm 4.1. The following hold:

(i) The residual (uk − vk)k∈� vanishes with rate mini≤k ‖ui − vi‖ = o(1/
√

k).
(ii) (uk)k∈� and (vk)k∈� have same cluster points, all of which are stationary for ϕ and on

which ϕ has same (finite) value, this being the limit of (Lk)k∈�.
(iii) If ϕ is level bounded, then the sequence (sk, uk, vk)k∈� is bounded.

Proof. The sufficient decrease constant in Remark 4.2 satisfies c(γ/2, 2L) = 2c(γ, L).
Therefore, if L ≥ Lϕ1 at iteration k, then it follows from (3.6) that Lk = ϕdrγ (sk), and from
Proposition 3.3 and Thm. 4.1 we infer that the condition at step 3 is never passed. Therefore,
starting from iteration k the stepsize γ is never decreased, and the algorithm reduces to plain
(nonadaptive) DRS. Either way, γ is decreased only a finite number of times; up to possibly
discarding the first iterates we may assume that γ is constant (although possibly larger than
or equal to 1/Lϕ1 ). The iterates generated by Algorithm 4.1 then satisfy ϕ(vk) ≤ Lk and Lk+1 ≤
Lk − c′‖uk − vk‖2 for some constant c′ > 0. Due to lower boundedness of Lk, by telescoping
the second inequality we obtain that (‖uk − vk‖2)k∈� is summable, hence the claimed rate.

Since uk − vk → 0, necessarily uk and vk have same cluster points. Suppose that a subse-
quence (uk)k∈K converges to a point u′; then, so does (vk)k∈K . Moreover, it follows from [32,
Ex. 10.2] that sk = uk + γ∇ϕ1(uk) (due to the fact that γ may be larger than 1/[σϕ1 ]−, differently
from the characterization given in Proposition 2.3(i) this condition is only necessary). Thus,
for all k it holds that vk ∈ proxγϕ2

(2uk − sk) = proxγϕ2

(
uk − γ∇ϕ1(uk)

)
. From the continuity

of ∇ϕ1 and the outer semicontinuity of proxγϕ2
, cf. [32, Ex. 5.23(b)], it follows that the limit

u′ of (vk)k∈K satisfies u′ ∈ proxγϕ2
(u′ − γ∇ϕ1(u′)), and the same reasoning as in the proof of
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Theorem 4.3(ii) shows that 0 ∈ ∂̂ϕ(u′).
Finally, since ϕ(vk) ≤ Lk ≤ L0, if ϕ is level bounded, then necessarily (vk)k∈� is bounded,

hence so are (uk)k∈� and (sk)k∈� (since uk − vk → 0 and sk = uk + γ∇ϕ1(uk)).

Global convergence of adaptive DRS again falls as a consequence of [26, Thm. 2].

Theorem 4.6 (Global convergence of adaptive DRS). Suppose that Assumption I holds,
that ϕ is level bounded, and that ϕ1 and ϕ2 are semialgebraic. Then, the sequences (uk)k∈�
and (vk)k∈� generated by Algorithm 4.1 converge to (the same) stationary point of ϕ.

Apart from the re-evaluation of u- and v-steps whenever γ is decreased, the adaptive
variant comes at the additional cost of computing ϕ1(uk), ϕ1(vk), and ϕ2(vk) at each iteration,
needed for the evaluation of Lk and for the test at step 3. The second condition at step 3 is
what ensures the augmented Lagrangian to be lower bounded along the generated iterates
even if the stepsize γ does not fall below the threshold 1/Lϕ1 . Whenever a lower bound for the
optimal cost is known, the same condition can be guaranteed without the need to compute
ϕ1(vk). Letting ϕlb be a known quantity such that −∞ < ϕlb ≤ inf ϕ, this can be achieved by
modifying the condition at step 3 as follows:
3′: if Lk > Lk−1 − cλ2

(1+γL)2 ‖vk−1 − uk−1‖2 or Lk < ϕlb then . . .
The modified condition Lk ≥ ϕlb will eventually always be satisfied, owing to the fact that
Lk = ϕdrγ (sk) ≥ inf ϕ for γ < 1/Lϕ1 . Consequently, with the sole exception of 4.5(iii) all claims
of Theorem 4.5 hold when step 3 is modified with the here proposed step 3′.

4.2. Tightness of the results. When both ϕ1 and ϕ2 are convex and ϕ1 + ϕ2 attains a
minimum, well-known results of monotone operator theory guarantee that for any λ ∈ (0, 2)
and γ > 0 the residual uk − vk generated by DRS iterations vanishes [4, Cor. 28.3]. In fact, the
whole sequence (uk)k∈� converges and ϕ1 need not even be differentiable. On the contrary,
when ϕ2 is nonconvex, the bound γ < 1/Lϕ1 plays a crucial role, as the next example shows.

Theorem 4.7 (Necessity of γ < 1/Lϕ1 ). For any L > 0 and σ ∈ [−L, L] there exist ϕ1, ϕ2 :
�→ � satisfying the following properties
p1 ϕ1 is L-smooth and σ-hypoconvex;
p2 ϕ2 is proper and lsc;
p3 arg min(ϕ1 + ϕ2) , ∅;
p4 for all s0 ∈ �, γ ≥ 1/L, and λ > 0, the sequence (sk)k∈� generated by DRS iterations with

stepsize γ and relaxation λ starting from s0 satisfies ‖sk − sk+1‖ 6→ 0 as k → ∞.

Proof. Fix t > 1, and let ϕ = ϕ1 + ϕ2, where ϕ2 = δ{±1} and

(4.12) ϕ1(x) =

 L
2 x2 if x ≤ t,
L
2 x2 − L−σ

2 (x − t)2 otherwise.

Notice that domϕ = {±1}, and therefore ±1 are the unique stationary points of ϕ (in fact, they
are also global minimizers). It can be easily verified that ϕ1 and ϕ2 satisfy properties 4.7p1,
4.7p2 and 4.7p3. Moreover, proxγϕ1

is well defined iff γ < 1/[σ]−, in which case

(4.13) proxγϕ1
(s) =

 s
1+γL if s ≤ t(1 + γL),
s−γ(L−σ)t

1+γσ
otherwise,

and proxγϕ2
= sgn,

where sgn(0) = {±1}. Let now s0 ∈ �, 1/L ≤ γ < 1/[σ]−, and λ > 0 be fixed, and consider a
sequence (sk)k∈� generated by DRS with stepsize γ and relaxation λ, starting at s0. To arrive
to a contradiction, suppose that ‖sk − sk+1‖ = λ‖uk − vk‖ → 0 as k → ∞. For any k ∈ � we
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have vk = − sgn(sk) if sk ≤ t(1 + γL), resulting in

uk − vk ∈
 sk

1+γL + sgn(sk) if sk ≤ t(1 + γL),
sk

1+γσ
− γ(L−σ)t

1+γσ
− vk otherwise,

where vk is either 1 or −1 in the second case. Since uk − vk → 0, then

min
{∣∣∣ sk

1+γL + sgn(sk)
∣∣∣, ∣∣∣ sk

1+γσ
− L−σ

1+γσ
γt − 1

∣∣∣, ∣∣∣ sk

1+γσ
− L−σ

1+γσ
γt + 1

∣∣∣}→ 0.

The first element in the set above is always larger than 1, thus eventually sk will be always
close to either (L−σ)γt + (1 + γσ) or (L−σ)γt − (1 + γσ), both of which are strictly smaller
than t(1 + γL) (since t > 1). Therefore, eventually sk ≤ t(1 + γL) and the residual will be
uk − vk = sk

1+γL + sgn(sk) which is bounded away from zero, hence the contradiction.

Theorem 4.8 (Necessity of 0 < λ < 2(1 + γσ)). For any L > 0 and σ ∈ [−L, L] there
exist ϕ1, ϕ2 : �→ � satisfying the following properties
p1 ϕ1 is L-smooth and σ-hypoconvex;
p2 ϕ2 is proper, lsc, and strongly convex;
p3 arg min(ϕ1 + ϕ2) , ∅;
p4 for all 0 < γ < 1/L and λ ≥ 2(1+γσ), the sequence (sk)k∈� generated by DRS with stepsize
γ and relaxation λ starting from a nonstationary point s0 satisfies ‖sk − sk+1‖ 6→ 0.

Proof. Let ϕ = ϕ1 + ϕ2, where ϕ1 is as in (4.12) with t = 1, and ϕ2 = δ{p} for some
p > 1. Clearly, properties 4.8p1, 4.8p2, and 4.8p3 are satisfied. Let γ < 1/L, λ ≥ 2(1 + γσ).
Starting from s0 , (1 + γσ)p + γ(L − σ) (so that u0 , p), consider DRS with stepsize
γ and relaxation λ. To arrive to a contradiction, suppose that the residual vanishes. Since
vk = proxγϕ2

(2uk − sk) = p, necessarily uk → p; therefore, eventually uk > 1 and in particular

uk+1 + γ L−σ
1+γσ

= 1
1+γσ

sk+1 = 1
1+γσ

(sk + λ(p − uk)) = uk + γ L−σ
1+γσ

+ λ
1+γσ

(p − uk),

where the identity sk = (1 + γσ)uk + γ(L − σ) was used, cf. (4.13). Therefore,∣∣∣uk+1 − p
∣∣∣ =

∣∣∣1 − λ
1+γσ

∣∣∣∣∣∣uk − p
∣∣∣ ≥ ∣∣∣uk − p

∣∣∣,
where the inequality is due to the fact that λ ≥ 2(1 + γσ). Since u0 , p due to the choice of
s0, apparently (uk)k∈� is bounded away from p, hence the contradiction.

Let us draw some conclusions:
• The nonsmooth function ϕ2 is (strongly) convex in Theorem 4.8, therefore even for fully

convex formulations the bound 0 < λ < 2(1 + γσϕ1 ) need be satisfied.
• If λ > 2 (which is feasible only if ϕ1 is strongly convex, i.e., if σϕ1 > 0), then, regardless

of whether also ϕ2 is (strongly) convex or not, we obtain that the stepsize must be lower
bounded as γ > λ−2

2σϕ1
. In the more general setting of σ-strongly monotone operators in

Hilbert spaces (with σ ≥ 0) the similar bound λ < min {2(1 + γσ), 2 + γσ + 1/γσ} has
been recently established in [28].

• Combined with the bound γ < 1/Lϕ1 shown in Theorem 4.7, we infer that (at least when ϕ2
is nonconvex) necessarily 0 < λ < 2(1 + σϕ1/Lϕ1 ) and consequently λ ∈ (0, 4).

Theorem 4.9 (Tightness). Unless the generality of Assumption I is sacrificed, when λ ∈
(0, 2) or ϕ1 is not strongly convex the bound γ < min

{
1

Lϕ1
, 2−λ

2[σϕ1 ]−

}
is tight for ensuring

convergence of DRS. Similarly, PRS (i.e., DRS with λ = 2) is ensured to converge iff ϕ1 is
strongly convex and γ < 1/Lϕ1 .
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5. Alternating direction method of multipliers. While the classical interpretation of
ADMM as DRS applied to the dual formulation is limited to convex problems, it has been
recently observed that the two schemes are in fact related through a primal equivalence, when
λ = 1. A proof of this fact can be found in [5, Rem. 3.14] when A = −B = I; in turn,
[36, Thm. 1] shows that there is no loss of generality in limiting the analysis to this case.
Patterning the arguments of [36] in the next subsection we will show that the equivalence can
be further extended to any relaxation parameter λ. To this end, we introduce the notion of
image function, also known as epi-composition or infimal post-composition [2, 4, 32].

Definition 5.1 (Image function). Given h : �n → � and C ∈ �m×n, the image function
(Ch) : �m → [−∞,+∞] is defined as

(Ch)(s) B inf
x∈�n
{h(x) | Cx = s}.

We now list some properties of image functions; the proofs are deferred to Appendix B.

Proposition 5.2. Let h : �n → � and C ∈ �p×n. Suppose that for some β > 0 the set-
valued mapping Xβ(s) B arg minx∈�n

{
h(x) +

β
2 ‖Cx − s‖2

}
is nonempty for all s ∈ �p. Then,

(i) The image function (Ch) is proper.
(ii) (Ch)(Cxβ) = h(xβ) for all s ∈ �p and xβ ∈ Xβ(s).

(iii) prox(Ch)/β = CXβ.

Proposition 5.3. For a function h : �n → � and C ∈ �p×n, let X : �p ⇒ �n be defined
as X(s) B arg minx∈�n {h(x) | Cx = s}. Then, for all s̄ ∈ C dom h and x̄ ∈ X(s̄) it holds that

C>∂̂(Ch)(s̄) ⊆ ∂̂h(x̄).

Proposition 5.4 (Strong convexity of the image function). Suppose that h : �n → �
is proper, lsc, and σh-strongly convex. Then, for every C ∈ �p×n the image function (Ch) is
σ(Ch)-strongly convex with σ(Ch) = σh/‖C‖2.

5.1. A universal equivalence of DRS and ADMM. Let us eliminate the linear coupling
between x and z in the ADMM problem formulation (1.2), so as to bring it into DRS form
(1.1). To this end, let us introduce a slack variable s ∈ �p and rewrite (1.2) as

minimize
x∈�m,z∈�n,s∈�p

f (x) + g(z) subject to Ax = s, Bz = b − s.

Invoking [32, Prop. 1.35], we may minimize first with respect to (x, z) to arrive to

minimize
s∈�p

inf
x∈�m
{ f (x) | Ax = s} + inf

z∈�n
{g(z) | Bz = b − s}.

The two parametric infima define two image functions, cf. Definition 5.1: indeed, ADMM
problem formulation (1.2) can be expressed as

minimize
s∈�p

(A f )(s) + (Bg)(b − s),(5.1)

which is exactly (1.1) with ϕ1 = (A f ) and ϕ2 = (Bg)(b − · ). Apparently, unless A and B are
injective the correspondence between variable s in (5.1) and variables x, z in (1.2) may fail to
be one to one, as s is associated to sets of variables x ∈ X(s) and z ∈ Z(s) defined as

X(s) B arg min
x∈�m

{ f (x) | Ax = s} and Z(s) B arg min
z∈�n

{g(z) | Bz = b − s}.
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Theorem 5.5 (Primal equivalence of DRS and ADMM). Starting from a triplet (x, y, z) ∈
�m × �p × �n, consider an ADMM-update applied to problem (1.2) with relaxation λ and
large enough penalty β > 0 so that any ADMM minimization subproblem has solutions. Let

(5.2)


s B Ax − y/β
u B Ax
v B b − Bz

and, similarly,


s+ B Ax+ − y+/β
u+ B Ax+

v+ B b − Bz+.

Then, the variables are related as follows:
s+ = s + λ(v − u)
u+ ∈ proxγϕ1

(s+)
v+ ∈ proxγϕ2

(2u+ − s+),
where


ϕ1 B (A f )
ϕ2 B (Bg)(b − · )
γ B 1/β.

Moreover,
(i) ϕ1(u+) = (A f )(Ax+) = f (x+),

(ii) ϕ2(v+) = (Bg)(Bz+) = g(z+),
(iii) −y+ ∈ ∂̂ϕ1(u+) = ∂̂(A f )(Ax+),
(iv) −A>y+ ∈ ∂̂ f (x+), and
(v) dist(−B>y+, ∂̂g(z+)) ≤ β‖B‖‖Ax+ + Bz+ − b‖.

If, additionally, A has full row rank, ϕ1 ∈ C1,1(�p) is Lϕ1 -smooth, and β > Lϕ1 , then it also
holds that

(vi) ϕdrγ (s+) = Lβ(x+, z+, y+).

Proof. Observe first that, as shown in Proposition 5.2(iii), it holds that

proxγϕ1
= A arg min

{
f + 1

2γ ‖A · − s‖2
}
.(5.3a)

Similarly, with a simple change of variable one obtains that

proxγϕ2
= b − B arg min

{
g + 1

2γ ‖B · + s − b‖2
}
.(5.3b)

Let (s, u, v) and (s+, u+, v+) be as in (5.2). We have

s + λ(v − u) = Ax − 1
β
y − λ(Ax + Bz − b) = Ax − 1

β
y+/2 − (Ax + Bz − b) = − 1

β
y+ + Ax+ = s+,

where in the second and third equality the ADMM update rules for y+/2 and y+, respectively,
were used. Moreover,

u+ = Ax+ ∈ A arg min Lβ( · , z, y+/2)
(5.3a)
= proxϕ1/β(b − Bz − y+/2/β) = proxϕ1/β(s+),

where the last equality uses the identity b−Bz−y+/2/β = v−γy+(1−λ)(u−v) = s+λ(v−u) = s+.
Next, observe that 2u+ − s+ = 2Ax+ − (Ax+ − y+/β) = Ax+ + y+/β, hence

v+ = b − Bz+ ∈ b − B arg min Lβ(x+, · , y+)
(5.3b)
= proxϕ2/β(Ax+ + y+/β) = proxϕ2/β(2u+ − s+).

Let us now show the numbered claims.
♠ 5.5(i) & 5.5(ii) Follow from Proposition 5.2(ii).
♠ 5.5(iii) Since u+ ∈ proxγϕ1

(s+) and −y+ = 1
γ
(s+ − u+), the claim follows from (2.7).

♠ 5.5(iv) This follows from the optimality conditions of x+ in the ADMM-subproblem defin-
ing the x-update (the claim can also be deduced from 5.5(iii) and Proposition 5.3).
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♠ 5.5(v) The optimality conditions in the ADMM-subproblem defining the z-update read

0 ∈ ∂̂zLβ(xk+1, zk+1, yk+1) = ∂̂g(zk+1) + B>(Axk+1 + Bzk+1 − b + yk+1/β),

and the claim readily follows.
♠ 5.5(vi) Suppose now that ϕ1 is Lϕ1 -smooth (hence A is surjective, for otherwise ϕ1 has not
full domain), and that β > Lϕ1 . Due to smoothness, the inclusion in 5.5(iii) can be strengthened
to ∇ϕ1(u+) = − y+. We may then invoke the expression (3.3) of the DRE (recall that the
minimum is attained at v+) to obtain

ϕdrγ (s+) = ϕ1(u+) + ϕ2(v+) + 〈∇ϕ1(u+), v+ − u+〉 + 1
2γ ‖v+ − u+‖2

= f (x+) + g(z+) + 〈y+, Ax+ + Bz+ − b〉 + β
2 ‖Ax+ + Bz+ − b‖2 = Lβ(x+, z+, y+).

5.2. Convergence of the ADMM. In order to extend the theory developed for DRS to
ADMM we shall impose that ϕ1 and ϕ2 as in (5.1) comply with Assumption I. This motivates
the following blanket requirement.

Assumption II (Requirements for the ADMM formulation (1.2)). The following hold:
a1 f : �m → � and g : �n → � are proper and lsc.
a2 A is surjective.
a3 ϕ1 B (A f ) ∈ C1,1(�p) is L(A f )-smooth, hence σ(A f )-hypoconvex with |σ(A f )| ≤ L(A f ).
a4 ϕ2 B (Bg) is lsc.
a5 Problem (1.2) has a solution: arg min Φ , ∅, where Φ(x, z) B f (x) + g(z) + δS (x, z) and

S B {(x, z) ∈ �m ×�n | Ax + Bz = b} is the feasible set.

These requirements generalize Assumption I by allowing linear constraints more generic
than x−z = 0, cf. (3.7). Surjectivity of A is as general as the inclusion range B ⊆ b+range A.
In fact, (up to an orthogonal transformation) without loss of generality we may assume that
A =

(
A′
)

for some surjective matrix A′ ∈ �r×m, where r = rank A, stacked over a (p − r) × n

zero matrix. Then, in light of the prescribed range inclusion necessarily B =
(

B′
)

and b =
(

b′
)
,

for some B′ ∈ �r×n and b ∈ �r. Then, problem (1.2) can be simplified to the minimization of
f (x) + g(z) subject to A′x + B′z = b′, which satisfies the needed surjectivity property.

Notice further that Lipschitz differentibility of (A f ) guarantees that all the ADMM sub-
problems admit minimizers when β > L(A f ). This is a consequence of the 1/L(A f )-prox-bound-
edness of (A f ) (which follows from Remark 3.1 and the fact that inf(A f )+(Bg)(b−·) = inf Φ),
and the relation between ADMM subproblems and proximal mapping in Proposition 5.2(iii).

Theorem 5.6 (Convergence of ADMM). Suppose that Assumption II is satisfied, and let
ϕ1, ϕ2, and Φ be as defined therein. Starting from (x−1, y−1, z−1) ∈ �m ×�p ×�n, consider a
sequence (xk, yk, zk)k∈� generated by ADMM with penalty β = 1/γ and relaxation λ, where γ
and λ are as in Theorem 4.1. The following hold:

(i) Lβ(xk+1, zk+1, yk+1) ≤ Lβ(xk, zk, yk) − cλ2

(1+γL(A f ))2 ‖Axk + Bzk − b‖2, where c is as in Theo-

rem 4.1, and the residual (Axk+Bzk−b)k∈� vanishes with mini≤k ‖Axi+Bzi−b‖ = o(1/
√

k).
(ii) All cluster points (x, z, y) of (xk, zk, yk)k∈� satisfy the KKT conditions

• −A>y ∈ ∂ f (x)
• −B>y ∈ ∂g(z)
• Ax + Bz = b,

and attain the same (finite) cost f (x) + g(z), this being the limit of (Lβ(xk, zk, yk))k∈�.
(iii) The sequence (Axk, yk, Bzk)k∈� is bounded provided that the cost function Φ is level

bounded. If, additionally, f ∈ C1,1(�m), then the sequence (xk, yk, zk)k∈� is bounded.
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Proof. Let s0 B Ax0 − y0/β, and consider the sequence (sk, uk, vk)k∈� generated by DRS
applied to (5.1), with stepsize γ, relaxation λ, and starting from s0. Then, for all k ∈ � it
follows from Theorem 5.5 that the variables are related as

sk = Axk − yk/β
uk = Axk

vk = b − Bzk,
and satisfy


ϕ1(uk) = f (xk)
ϕ2(vk) = g(zk)
ϕdrγ (sk) = Lβ(xk, zk, yk)

and


yk = −∇ϕ1(uk)
−A>yk ∈ ∂̂ f (xk)
dist(−B>yk, ∂̂g(zk))→ 0.

♠ 5.6(i) Readily follows from Theorems 4.1 and 4.3.
♠ 5.6(ii) Suppose that for some K ⊆ � the subsequence (xk, yk, zk)k∈K converges to (x, y, z);
then, necessarily Ax + Bz = b. Moreover,

(A f )(Ax) ≤ f (x) ≤ lim inf
K3k→∞

f (xk) = lim inf
K3k→∞

(A f )(Axk) ≤ lim sup
K3k→∞

(A f )(Axk) = (A f )(Ax),

where the second inequality is due to the fact that f is lsc, and the last equality to the fact that
(A f ) is continuous. Therefore, f (xk) → f (x), and the inclusion −A>yk ∈ ∂̂ f (xk) in light of the
definition of subdifferential results in −A>y ∈ ∂ f (x). In turn, since ϕ1(uk) + ϕ1(vk) converges
to ϕ1(Ax) + ϕ2(b − Bz) = (A f )(Ax) + (Bg)(Bz) as it follows from Theorem 4.3(ii), one has

lim inf
K3k→∞

f (xk) + g(zk) = lim inf
K3k→∞

(A f )(Axk) + (Bg)(Bzk) = (A f )(Ax) + (Bg)(Bz).

The first term is lower bounded by f (x) + g(z) due to lsc, and the last one is upper bounded
by f (x) + g(z) due to the definition of image function. Therefore f (xk) + g(zk) → f (x) +

g(z) as K 3 k → ∞, and since f (xk) converges to f (x) we conclude that g(zk) converges
to g(z). In turn, since dist(−B>yk, ∂̂g(zk)) → 0, g-attentive outer semicontinuity of ∂g, see
[32, Prop. 8.7], implies that −B>y ∈ ∂g(z). Finally, that f (x) + g(z) equals the limit of the
whole sequence (Lβ(xk, zk, yk))k∈� then follows from Theorem 4.3(ii) through the identity
ϕdrγ (sk) = Lβ(xk, zk, yk).

♠ 5.6(iii) Once we show that ϕ = ϕ1 + ϕ2 is level bounded, boundedness of (Axk, Bzk, yk)k∈�
will follow from Theorem 4.3(iii). For α ∈ � we have

lev≤α ϕ =

{
s | inf

x
{ f (x) | Ax = s} + inf

z
{g(z) | Bz = b − s} ≤ α

}
=

{
s | inf

x,z
{ f (x) + g(z) | Ax = s, Bz = b − s} ≤ α

}
= {Ax | f (x) + g(z) ≤ α, ∃z : Ax + Bz = b} = {Ax | (x, z) ∈ lev≤α Φ, ∃z}.

Since ‖Ax‖ ≤ ‖A‖‖x‖ ≤ ‖A‖‖(x, z)‖ for any x, z, it follows that if lev≤α Φ is bounded, then
so is lev≤α ϕ. Suppose now that f ∈ C1,1(�n) is L f -smooth, and for all k ∈ � let ξk B
xk − A>(AA>)−1(Axk + Bzk − b). Then, Aξk = b − Bzk, hence f (ξk) + g(zk) = Φ(ξk, zk), and
ξk − xk → 0 as k → ∞. We have

|Φ(ξk, zk) − ( f (xk) + g(zk))| =
∣∣∣ f (ξk) − f (xk)

∣∣∣ ≤ |〈∇f (xk), ξk − xk〉| + L f

2 ‖ξk − xk‖2

≤
∣∣∣〈yk, Axk − Aξk〉

∣∣∣ +
L f

2 ‖A>(AA>)−1‖2‖Axk + Bzk − b‖2,

where the second inequality uses the identity ∇f (xk) = −A>yk, cf. Theorem 5.5(iv). In partic-
ular, f (ξk) − f (xk) → 0 as k → ∞, and therefore Φ(ξk, zk) converges to a finite quantity (the
limit of Lβ(xk, zk, yk)). Since Φ is level bounded, (ξk, zk)k∈� is bounded and thus so is (xk)k∈�.
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Since no restriction is made on the initial triplet, the virtual iteration k = −1 is considered
in the statement of Theorem 5.6 so as to ensure that for all k ≥ 0 the triplets (xk, yk, zk) are
the output of an ADMM step whence the DRS equivalence of Theorem 5.5 can be invoked.
Smoothness of f as required in Theorem 5.6(iii) is a standing assumption in the (proximal)
ADMM analysis of [25], which, together with the restriction A = I, ensures that (A f ) =

f complies with Requirement IIa3. Our requirement of level boundedness of Φ to ensure
boundedness of the sequences generated by ADMM is milder than that of [25, Thm. 3],
which instead requires coercivity of either f or g.

Remark 5.7 (Simpler bounds for ADMM). In parallel with the simplifications outlined
in Remark 4.2 for DRS, denoting L B L(A f ) simpler (more conservative) bounds for the
penalty parameter β in ADMM are, in case λ ∈ (0, 2]:

λ ∈ (0, 2)

β > L and c = β 2−λ
2λ − L

[ L
βλ
− 1

2
]
+ if f is convex,

β > 2L
2−λ and c = β 2−λ

2λ − L
λ

otherwise,

λ = 2

β > L and c =
σ f

4‖A‖2 (1 − L/β) if f is strongly convex,

∅ otherwise,

The case λ = 2 uses Proposition 5.4 to infer strong convexity of (A f ) from that of f .

The Tarski-Seidenberg theorem ensures that ϕ1 B (A f ) and ϕ2 B (Bg)(b − · ) are semi-
algebraic functions provided f and g are, see e.g., [8]. Therefore, sufficient conditions for
global convergence of ADMM follow from the similar result for DRS stated in Theorem 4.4,
through the primal equivalence of the algorithms illustrated in Theorem 5.5. We should em-
phasize, however, that the equivalence identifies uk = Bzk and vk = b − Axk; therefore, only
convergence of (Axk, yk, Bzk)k∈� can be deduced, as opposed to that of (xk, yk, zk)k∈�.

Theorem 5.8 (Global convergence of ADMM). Suppose Assumption II is satisfied, and
let Φ be as defined therein. If Φ is level bounded and f and g are semialgebraic, then the
sequence (Axk, yk, Bzk)k∈� generated by ADMM with β and λ as in Theorem 5.6 converges.

5.3. Adaptive variant. Similar to what done for DRS, one can ensure a sufficient de-
crease on the augmented Lagrangian without knowing the exact value of L(A f ), when λ ∈
(0, 2). However, due to the implicitness of ϕ1 = (A f ), enforcing the inequality ϕ(vk) ≤ Lk as
in step 3 of Algorithm 4.1, needed to ensure the lower boundedness of (L1/γ(xk, zk, yk))k∈�,
may not be possible. Indeed, although we may exploit (5.2) and Theorem 5.5(ii) to arrive to

ϕ(vk) = ϕ1(vk) + ϕ2(vk) = (A f )(b − Bzk) + g(zk),

the value of (A f )(b−Bzk) may not be readily available. For this reason we adopt the alternative
proposed at the end of Subsection 4.1, which requires prior knowledge of a constant Φlb ≤
inf Φ. This detail apart, the adaptive variant of DRS can be easily translated into the adaptive
ADMM version of Algorithm 5.1, in which the penalty β is suitably adjusted. For the sake of
simplicity, we only consider the case λ = 1, so that the half-update y+/2 can be discarded.

Theorem 5.9 (Subsequential convergence of adaptive ADMM). Suppose that Assump-
tion II is satisfied. Then, the following hold for the iterates generated by Algorithm 5.1:

(i) All cluster points (x, y, z) of (xk, yk, zk)k∈� satisfy the KKT conditions
• −A>y ∈ ∂ f (x)
• −B>y ∈ ∂g(z)
• Ax + Bz = b,

and attain the same (finite) cost f (x) + g(z), this being the limit of (Lk)k∈�.
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Algorithm 5.1 ADMM with adaptive stepsize (λ = 1 for simplicity).
ADMMβ : �p ×�n ⇒ �m ×�p ×�n maps (y, z) to a triplet (x+, y+, z+) as in
(ADMM) with λ = 1 (since λ = 1, the update does not depend on x).

Require (y−1, z−1) ∈ �p ×�n, L > 0, β, c as in Remark 5.7 with λ = 1,
Φlb ∈ (−∞, inf Φ] (a known lower bound for the optimal cost)

Initialize (x0, y0, z0) ∈ ADMMβ(y−1, z−1), L0 = Lβ(x0, z0, y0)
For k = 0, 1, . . . do

1: (xk+1, yk+1, zk+1) ∈ ADMMβ(yk, zk)
Lk+1 = Lβ(xk+1, yk+1, zk+1)

2: if Lk+1 > Lk − cλ2

(1+L/β)2 ‖Axk + Bzk − b‖2 or Lk+1 < Φlb then
3: β← 2β, c← 2c, L← 2L

(xk, yk, zk) ∈ ADMMβ(yk−1, zk−1)
Lk ← Lβ(xk, yk, zk) and go back to step 1

(ii) The residual (‖Axk + Bzk − b‖)k∈� vanishes with rate mini≤k ‖Axi + Bzi − b‖ ≤ o(1/
√

k).
In particular, the claims hold if at some iteration the inequality β > L(A f ) is satisfied. In this
case, and if the cost function Φ is level bounded, the following also hold:
(iii) the sequence (Axk, yk, Bzk)k∈� is bounded.
(iv) the sequence (Axk, yk, Bzk)k∈� is convergent if f and g are semialgebraic.

5.4. Sufficient conditions. This subsection provides sufficient conditions on f and g
ensuring that Assumption II is satisfied.

5.4.1. Lower semicontinuity of the image function.

Proposition 5.10 (Lsc of (Bg)). Suppose that Requirements IIa1 and IIa2 are satisfied.
Then, (Bg) is proper. It is also lsc provided that the set Z(s) B arg minz {g(z) | Bz = s} is
nonempty for all z̄ ∈ dom g, and that dist(0,Z(s)) is bounded for all s ∈ B dom g close to Bz̄.

Proof. Properness is shown in Proposition 5.2(i). Suppose that (sk)k∈� ⊆ lev≤α(Bg) for
some α ∈ � and that sk → s̄. Then, due to [32, Thm. 1.6] it suffices to show that s̄ ∈ lev≤α(Bg).
The assumption ensures the existence of a bounded sequence (zk)k∈� such that eventually
Bzk = sk and (Bg)(sk) = g(zk). By possibly extracting, zk → z̄ and necessarily Bz̄ = s̄. Then,

(Bg)(s̄) ≤ g(z̄) ≤ lim inf
k→∞

g(zk) = lim inf
k→∞

(Bg)(sk) ≤ α,
hence s̄ ∈ lev≤α(Bg).

The requirement in Proposition 5.10 is weaker than Lipschitz continuity of the map s 7→
Z(s), which is the standing assumption in [35]. In fact, no uniqueness or boundedness of
the sets of minimizers is required, but only the existence of minimizers not arbitrarily far.

g(
0,
·)
=

1

g( · , 0) = 1

g(x, 1/x) = −|x|
convex

combination

The pathology occurring when this condition is not met can
be well visualized by considering g : �2 → � defined as

(5.4) g(x, y) =

{−|x| if |xy| ≥ 1,
1 − q(|xy|)(1 + |x|) otherwise,

where q(t) is any function such that q(0) = 0 < q(t) < 1 =

q(1) for all t ∈ (0, 1). On the right, a graphical representation
of the piecewise definition on the positive orthant of �2 (the
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function is mirrored in all other orthants). On the axes, f achieves its maximum value, that is,
1. In the gray region |xy| ≥ 1, f (x, y) = −|x|. In the white portion, f is extended by means of
a convex combination of 1 and −|x|. Function g and B B [1 0] are ADMM-feasible, meaning
that arg minw∈�2

{
g(w) +

β
2 ‖Bw − s‖2

}
, ∅ for all s ∈ � and β large enough (in fact, for all

β > 0, being g( · , y) +
β
2 ‖ · − s‖2 coercive for any y ∈ �). However, (Bg)(s) = − |s| if s , 0

while (Bg)(0) = 1, resulting in the lack of lsc at s = 0. For every s , 0, the minimizers of
g with smallest norm in the set {(x, y) | x = s} = {s} × � are (s,±s−1), and while escaping to
infinity (in norm) they satisfy g(s,±s−1) = −|s| → 0 as s → 0. However, if instead s = 0 is
fixed (as opposed to s→ 0), then the pathology comes from the fact that g(0, · ) ≡ 1 > 0. The
interpolating function q simply models the transition from a constant function on the axes
and a linear function in the regions delimited by the hyperbolae. For any k ∈ � it can thus
be chosen such that g is k times continuously differentiable; the choice q(t) = 1

2 (1 − cos πt),
for instance, makes g ∈ C1(�2). In particular, (high-order) continuous differentiability is not
enough for (Bg) to be lsc.

The next result provides necessary and sufficient conditions ensuring the image function
(Bg) to inherit lower semicontinuity from that of g. It will be evident that pathological cases
such as the one depicted in (5.4) may only occur due to the behavior of g at infinity.

Theorem 5.11. For any lsc function g : �n → � and B ∈ �p×n, (Bg) is lsc iff

(5.5) lim inf
‖d‖→∞
Bd→0

g(z̄ + d) ≥ inf
d∈ker B

g(z̄ + d) ∀z̄ ∈ dom g.

In particular, for any lsc and level bounded function g : �n → � and B ∈ �p×n, (Bg) is lsc.

Proof. Observe first that the right-hand side in (5.5) is (Bg)(Bz̄). Suppose now that (5.5)
holds, and given s̄ ∈ dom(Bg) consider a sequence (sk)k∈� ⊆ lev≤α(Bg) for some α ∈ �
and such that sk → s̄. Then, it suffices to show that s̄ ∈ lev≤α(Bg). Let (zk)k∈� be such that
Bzk = sk and g(zk) ≤ (Bg)(sk) + 1/k for all k ∈ �. If, up to possibly extracting, there exists z
such that zk → z as k → ∞, then the claim follows with a similar reasoning as in the proof of
Proposition 5.10. Suppose, instead, that tk B ‖zk‖ → ∞ as k → ∞, and let dk B zk − z̄, where
z̄ ∈ dom g is any such that Bz̄ = s (such a z̄ exists, being s̄ ∈ dom(Bg) = B dom g). Since
Bdk = B(zk − z̄) = sk − s̄→ 0, we have

(Bg)(s̄) = inf
d∈ker B

g(z̄ + d) ≤ lim inf
k→∞

g(z̄ + dk) = lim inf
k→∞

g(zk) ≤ lim inf
k→∞

(Bg)(sk) + 1
k ≤ α,

proving that s̄ ∈ lev≤α(Bg). To show the converse implication, suppose that (5.5) does not
hold. Thus, there exist z̄ ∈ dom g and (dk)k∈� ⊂ �n such that Bdk → 0 and ‖dk‖ → ∞ as
k → ∞, and such that, for some ε > 0,

g(z̄ + dk) + ε ≤ inf
d∈ker B

g(z̄ + d) = (Bg)(Bz̄) ∀k.

Then, sk B B(z̄ + dk) satisfies sk → Bz̄ as k → ∞, and

(Bg)(Bz̄) ≥ lim inf
k→∞

g(z̄ + dk) + ε ≥ lim inf
k→∞

(Bg)(sk) + ε,

hence (Bg) is not lsc at Bz̄.

The asymptotic function g∞(d̄) B lim infd→d̄, t→∞
g(td)

t is a tool used in [2] to analyze
the behavior of g at infinity and derive sufficient properties ensuring lsc of (Bg). These all
ensure that the set of minimizers Z(s) as defined in Proposition 5.10 is nonempty, although
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this property is not necessary as long as lower semicontinuity is concerned. To see this, it
suffices to modify (5.4) as follows

g(x, y) =

{−|x| if |xy| ≥ 1,
e−y2 − q(|xy|)(e−y2

+ |x|) otherwise,

that is, by replacing the constant value 1 on the y axis with e−y2
. Then, (Bg)(s) = −|s| is lsc,

but the set of minimizers arg minw {g(w) | Bw = 0} = {0} × arg miny e−y2
is empty at s = 0.

5.4.2. Smoothness of the image function. We now turn to the smoothness requirement
of (A f ). To this end, we introduce the following notion of smoothness with respect to a matrix.

Definition 5.12 (Smoothness relative to a matrix). We say that h : �n → � is smooth
relative to a matrix C ∈ �p×n, and we write h ∈ C1,1

C (�n), if h is differentiable and ∇h satisfies
the following Lipschitz condition: there exist Lh,C and σh,C with |σh,C | ≤ Lh,C such that

(5.6) σh,C‖C(x − y)‖2 ≤ 〈∇h(x) − ∇h(y), x − y〉 ≤ Lh,C‖C(x − y)‖2

whenever ∇h(x),∇h(y) ∈ range C>.

This condition is similar to that considered in [18], where Πrange A>∇f is required to be
Lipschitz. The paper analyzes convergence of a proximal ADMM; standard ADMM can be
recovered when matrix A is invertible, in which case both conditions reduce to Lipschitz
differentiability of f . In general, our condition applies to a smaller set of points only, as it
can be verified with f (x, y) = 1

2 x2y2 and A = [1 0]. In fact, Πrange A>∇f (x, y) =
(

xy2

0

)
is not

Lipschitz continuous; however, ∇f (x, y) ∈ range A> iff xy = 0, in which case ∇f ≡ 0. Then, f
is smooth relative to A with L f ,A = 0.

To better understand how this notion of regularity comes into the picture, notice that if
f is differentiable, then ∇f (x) ∈ range A>on some domain U if there exists a differentiable
function q : AU → � such that f (x) = q(Ax). Then, it is easy to verify that f is smooth
relative to A if the local “reparametrization” q is smooth (on its domain). From an a poste-
riori perspective, if (A f ) is smooth, then due to the relation A>∇(A f )(Azs) = ∇f (zs) holding
for zs ∈ arg minz:Az=s f (z) (Proposition 5.3), it is apparent that q serves as (A f ). Therefore,
smoothness relative to A is somewhat a minimal requirement ensuring smoothness of (A f ).

Theorem 5.13 (Smoothness of (A f )). Let A ∈ �p×n be surjective and f : �n → � be
lsc. Suppose that there exists β ≥ 0 such that the function f +

β
2 ‖A · − s‖2 is level bounded for

all s ∈ �p. Then, the image function (A f ) is smooth on �p, provided that either
(i) f ∈ C1,1

A (�n), in which case L(A f ) = L f ,A and σ(A f ) = σ f ,A,
(ii) or f ∈ C1,1(�n), and X(s) B arg min { f (x) | Ax = s} is single valued and Lipschitz

continuous with modulus M, in which case

L(A f ) = L f M2 and σ(A f ) =

{
σ f/‖A‖2 if σ f ≥ 0,
σ f M2 σ f < 0;

(iii) or f ∈ C1,1(�n) is convex, in which case L(A f ) =
L f

σ+(A>A) and σ(A f ) = σ f/‖A‖2.

Proof. As shown in Proposition 5.2(i), (A f ) is proper. Surjectivity of A and level bound-
edness ensure that for all α ∈ � and s ∈ �p the set {x | f (x) ≤ α, ‖Ax − s‖ < ε} is bounded for
some ε > 0 (in fact, for all ε > 0). Then, we may invoke [32, Thm. 1.32] to infer that (A f ) is
lsc, that the set X(s) B arg minx { f (x) | Ax = s} is nonempty for all s ∈ �p (owing to surjec-
tivity of A and the fact that dom f = �p), and that the function H(x, s) B f (x) + δ{0}(Ax − s)
is uniformly level bounded in x locally uniformly in s, in the sense of [32, Def. 1.16]. More-
over, since f is differentiable, observe that ∂∞H(x, Ax) = range

(
A>
I

)
for all x ∈ �m. Hence,
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for all s ∈ �p it holds that

∂∞(A f )(s) ⊆
⋃

x∈X(s)

{y | (0, y) ∈ ∂∞H(x, s)} = ker A>= {0},

where the inclusion follows from [32, Thm. 10.13]. By virtue of [32, Thm. 9.13], we conclude
that (A f ) is strictly continuous and has nonempty subdifferential on �p. Fix si ∈ �p and
yi ∈ ∂(A f )(si), i = 1, 2, and let us proceed by cases.
♠ 5.13(i) and 5.13(ii) It follows from Proposition 5.3 and continuous differentiability of f
that A>yi ∈ ∂ f (xi) = {∇f (xi)}, for some xi ∈ X(si), i = 1, 2. We have

〈y1 − y2, s1 − s2〉 = 〈y1 − y2, Ax1 − Ax2〉 = 〈A>y1 − A>y2, x1 − x2〉
= 〈∇f (x1) − ∇f (x2), x1 − x2〉.(5.7)

If 5.13(i) holds, since ∇f (xi) = A>yi ∈ range A>, i = 1, 2, smoothness of f relative to A implies

σ f ,A‖s1 − s2‖2 = σ f ,A‖Ax1 − Ax2‖2
≤ 〈y1 − y2, s1 − s2〉 ≤ L f ,A‖Ax1 − Ax2‖2 = L f ,A‖s1 − s2‖2

for all si ∈ �p and yi ∈ ∂(A f )(si), i = 1, 2. Otherwise, if 5.13(ii) holds, then

σ f ‖x1 − x2‖2 ≤ 〈y1 − y2, s1 − s2〉 ≤ L f ‖x1 − x2‖2

and from the bound 1
‖A‖‖s1 − s2‖ ≤ ‖x1 − x2‖ ≤ M‖s1 − s2‖ we obtain

σ(A f )‖s1 − s2‖2 ≤ 〈y1 − y2, s1 − s2〉 ≤ L(A f )‖s1 − s2‖2

with the constants σ(A f ) and L(A f ) as in the statement. The claimed smoothness and hypocon-
vexity then follow by invoking Lemma 2.1.
♠ 5.13(iii) It follows from [22, Thm. D.4.5.1 and Cor. D.4.5.2] that (A f ) is convex and
differentiable, and satisfies ∇(A f )(s) = y, where for any x ∈ X(s), y is such that A>y = ∇f (x).
For yi = ∇(A f )(si) and xi ∈ X(si), i = 1, 2, the equalities in (5.7) hold. In turn,

〈s1 − s2, y1 − y2〉 ≥ 1
L f
‖A>(y1 − y2)‖2 ≥ σ+(A>A)

L f
‖Πrange A(y1 − y2)‖2 =

σ+(A>A)
L f
‖y1 − y2‖2,

where the first inequality is due to 1/L f -cocoercivity of ∇f , see [29, Thm. 2.1.5], the second
inequality is a known fact (see e.g., [18, Lem. A.2]), and the equality is due to the fact that A
is surjective. We may again invoke [29, Thm. 2.1.5] to infer the claimed L f

σ+(A>A) -smoothness
of (A f ). Since (A f ) is convex (thus 0-hypoconvex), if σ f = 0 there is nothing more to show.
The case σ f > 0 follows from Proposition 5.4.

Notice that the condition in Theorem 5.13(ii) covers the case when f ∈ C1,1(�n) and A
has full column rank (hence is invertible), in which case M = 1/σ+(A). This is somehow trivial,
since necessarily (A f )(s) = f ◦ A−1 in this case.

6. Conclusive remarks. This paper provides new convergence results for nonconvex
Douglas-Rachford splitting (DRS) and ADMM with an all-inclusive analysis of all possible
relaxation parameters λ ∈ (0, 4). Under the only assumption of Lipschitz differentiability of
one function, convergence is shown for larger prox-stepsizes and relaxation parameters than
was previously known. The results are tight when λ ∈ (0, 2], covering in particular classical
(non-relaxed) DRS and PRS, or when the differentiable function is nonconvex. The necessity
of λ < 4 and of a lower bound for the stepsize when λ > 2 is also shown.
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Our theory is based on the Douglas-Rachford envelope (DRE), a continuous, real-valued,
exact penalty function for DRS, and on a primal equivalence of DRS and ADMM that extends
the well-known connection of the algorithms to arbitrary (nonconvex) problems. The DRE is
shown to be a better Lyapunov function for DRS than the augmented Lagrangian, due to its
closer connections with the cost function and with DRS iterations.
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out by the anonymous reviewers that led to this final version of the paper.

A. Proofs of Section 2.
Proof of Lemma 2.1 (Subdifferential characterization of smoothness). The claimed hy-

poconvexity follows from [32, Ex. 12.28]. It suffices to show that h is continuously differ-
entiable, so that ∂h = ∇h and the claim then follows from (2.3). To this end, without loss of
generality we may assume that σ ≥ 0, since h is continuously differentiable iff so is h− σ

2 ‖·‖2.
Thus, for all xi ∈ �n, vi ∈ ∂h(xi), i = 1, 2, one has

h(x1) ≥ h(x2) + 〈v2, x1 − x2〉 = h(x2) + 〈v2 − v1, x1 − x2〉 + 〈v1, x1 − x2〉
≥ h(x2) − L‖x1 − x2‖2 + 〈v1, x1 − x2〉,

where the first inequality follows from convexity of h (being it 0-hypoconvex by assumption).
Rearranging,

h(x2) ≤ h(x1) + 〈v1, x2 − x1〉 + L‖x1 − x2‖2 ∀xi ∈ �n, v1 ∈ ∂h(x1), i = 1, 2.

Let h̃ B h−〈v1, · 〉, so that 0 ∈ ∂h(x1). Due to convexity, x1 ∈ arg min h̃, hence for all w ∈ �n

and v′1 ∈ ∂h(x1) one has

h̃(x1) ≤ h̃(w) ≤ h(x1)+〈v′1,w−x1〉+L‖w−x1‖2−〈v1,w〉 = h̃(x1)+〈v′1−v1,w−x1〉+L‖w−x1‖2.

By selecting w = x1− 1
2L (v′1−v1), one obtains ‖v1−v′1‖2 ≤ 0, hence necessarily v1 = v′1. From

the arbitrarity of x1 ∈ �n and v1, v′1 ∈ ∂h(x1) it follows that ∂h is everywhere single valued,
and the sought continuous differentiability of h then follows from [32, Cor. 9.19].

Proof of Theorem 2.2 (Lower bounds for smooth functions).
♠ 2.2(i) This is the lower bound in (2.2).
♠ 2.2(ii) Let L ≥ Lh and σ ∈ (−L,min {0, σh}] be fixed. Then, h is L-smooth and σ-
hypoconvex, and from [29, Thm. 2.1.12] we obtain that

(A.1) 〈∇h(y) − ∇h(x), y − x〉 ≥ σL
L+σ
‖x − y‖2 + 1

L+σ
‖∇h(x) − ∇h(y)‖2

for all x, y ∈ �n. (Although [29, Thm. 2.1.12] assumes σ > 0, the given proof does not
necessitate this restriction). Moreover, ψ B h − σ

2 ‖ · ‖2 is convex and Lψ-smooth, with Lψ =

L−σ. Consequently, for all x, y ∈ �n one has ψ(y) ≥ ψ(x)+〈∇ψ(x), y−x〉+ 1
2Lψ
‖∇ψ(y)−∇ψ(x)‖2,

see [29, Thm. 2.1.5], resulting in

h(y) ≥ h(x) + 〈∇h(x), y − x〉 + σL
2(L−σ)‖y − x‖2 + 1

2(L−σ) ‖∇h(y) − ∇h(x)‖2
− σ

L−σ 〈∇h(y) − ∇h(x), y − x〉.

Since σ ≤ 0, the coefficient of the scalar product in the second line is positive. We may thus
invoke the inequality (A.1) to arrive to

h(y) ≥ h(x) + 〈∇h(x), y − x〉 + σL
2(L−σ) ‖y − x‖2 + 1

2(L−σ) ‖∇h(y) − ∇h(x)‖2
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− σ
L−σ

[
σL

L+σ
‖x − y‖2 + 1

L+σ
‖∇h(x) − ∇h(y)‖2

]
= h(x) + 〈∇h(x), y − x〉 + σL

2(L+σ) ‖y − x‖2 + 1
2(L+σ) ‖∇h(y) − ∇h(x)‖2,

hence the claimed inequality.

Proof of Proposition 2.3 (Proximal properties of smooth functions). Fix γ ∈ (0, 1/[σh]−),
and let ψ B γh + 1

2‖ · ‖2. Observe that ψ ∈ C1,1(�n) is Lψ-smooth and σψ-strongly convex,
with Lψ = 1 + γLh and σψ = 1 + γσh. In particular, due to strong convexity inf ψ > −∞, and
by definition of prox-boundedness it then follows that γh ≥ 1/[σh]−.
♠ 2.3(i) Follows from (2.7), by observing that h + 1

2γ ‖ · − s‖2 is strongly convex, hence that
a minimizer is characterized by stationarity.
♠ 2.3(ii) For s, s′ ∈ �n, let u = proxγh(s) and u′ = proxγh(s′). Then,

〈s − s′, u − u′〉 = 〈∇ψ(u) − ∇ψ(u′), u − u′〉 ≥ σψ‖u − u′‖2 = (1 + γσh)‖u − u′‖2,

where the first equality was shown in 2.3(i) and the inequality follows from (2.3). By using
the 1

Lψ
-cocoercivity of ∇ψ [29, Thm. 2.1.10], also the claimed strong monotonicity follows. In

turn, the Cauchy-Schwartz inequality on the inner product yields (2.8).
♠ 2.3(iii) From [32, Ex. 10.32] it follows that hγ is strictly continuous and that ∂hγ(s) ⊆
1
γ
(s − proxγh(s)). Because of single valuedness of proxγh, by invoking [32, Thm. 9.18] we

conclude that hγ is everywhere differentiable with ∇hγ(s) = 1
γ
(s − proxγh(s)). Thus,

〈∇hγ(s) − ∇hγ(s′), s − s′〉 = 1
γ

(
‖s − s′‖2 − 〈s − s′, u − u′〉

)
,

and from the bounds in 2.3(ii) we conclude that

σh
1+γσh

‖s − s′‖2 ≤ 〈∇hγ(s) − ∇hγ(s′), s − s′〉 ≤ Lh
1+γLh

‖s − s′‖2.

The claimed smoothness and hypoconvexity follow from the characterization of (2.3).

B. Proofs of Section 5.
Proof of Proposition 5.2.

♠ 5.2(i) If s̄ < C dom h, then (Ch)(s̄) = ∞. If instead s̄ = Cx̄ for some x̄ ∈ dom h, then

−∞ < min
x

{
h(x) +

β
2 ‖Cx − s̄‖2

}
≤ inf

x: Cx=s̄

{
h(x) +

β
2 ‖Cx − s̄‖2

}
(def)
= (Ch)(s̄),

which is upper bounded by the finite quantity h(x̄).
♠ 5.2(ii) Since C(xβ + v) = Cxβ iff v ∈ ker C, for all s ∈ �p and xβ ∈ Xβ(s) necessarily
h(xβ) ≤ h(xβ + v). Consequently,

(Ch)(Cxβ) ≤ h(xβ) ≤ inf
v∈ker C

h(xβ + v) = inf
x: Cx=Cxβ

h(x) = (Ch)(Cxβ).

♠ 5.2(iii) For any s̄ ∈ �p one has

proxγ(Ch)(s̄) = arg min
w∈�p

{
(Ch)(w) + 1

2γ ‖w − s̄‖2
}

= arg min
w∈�p

{
inf
x∈�n

f (x) + 1
2γ ‖w − s̄‖2 | Cx = w

}
= C arg min

x∈�n

{
f (x) + 1

2γ ‖Cx − s̄‖2
}

= CX(s̄),

where the third equality uses the change of variable w = Cx.
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Proof of Proposition 5.3. Let v̄ ∈ ∂̂(Ch)(Cx̄). Then,

lim inf
x→x̄
x, x̄

h(x) − h(x̄) − 〈C>̄v, x − x̄〉
‖x − x̄‖ = lim inf

x→x̄
x, x̄

h(x) − (Ch)(Cx̄) − 〈v̄,C(x − x̄)〉
‖x − x̄‖

≥ lim inf
x→x̄
x, x̄

(Ch)(Cx) − (Ch)(Cx̄) − 〈v̄,C(x − x̄)〉
‖x − x̄‖

≥ lim inf
x→x̄
x, x̄

o(‖C(x − x̄)‖)
‖x − x̄‖ = 0,

where the last inequality follows from the fact that v̄ ∈ ∂̂(Ch)(Cx̄).

Proof of Proposition 5.4 (Strong convexity of the image function). That (Ch) is convex
follows from [4, Prop. 12.36(ii)]. Due to strong convexity of h, for every s ∈ C dom h =

dom(Ch) there exists a unique xs ∈ �n such that Cxs = s and (Ch)(s) = h(xs). Let vs ∈
∂(Ch)(s). Then, Proposition 5.3 ensures that C>vs ∈ ∂h(xs), hence, for all s′ ∈ dom(Ch)

h(xs′ ) ≥ h(xs) + 〈C>vs, xs′ − xs〉 + σh
2 ‖xs′ − xs‖2 ≥ h(xs) + 〈vs, s′ − s〉 + σh

2‖C‖2 ‖s′ − s‖2.
Strong convexity then follows by observing that h(xs) = (Ch)(s) and h(xs′ ) = (Ch)(s′).
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