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1. Introduction

Electric propulsion systems show considerable promise
for satellite station-keeping and orbital transfer applications;
they offer an attractive combination of high thrust efficiency,
exceeding 50%, and high specific impulse, as compared to
chemical thrusters. The development of electric propulsion
systems, however, will depend on the measurement of neu-
tral atom density, since charge exchange collisions lead to
sputtering on the satellite surface and ion engine grids.1–4)

The measurement of neutral atom number density will also
be crucial for the estimation of on-orbit performance from
ground test data, since background neutral particles affect
ionization and acceleration processes as well as the
charge–exchange collisional processes. In fact, the presence
of background neutral particles may lead to increased dis-
charge current, thrust, and plume divergence, and cause dif-
ferences in the oscillation characteristics of electric systems
under testing conditions as opposed to on-orbit condition.5)

There has been considerable work5–10) on vacuum facility
effects on Hall thrusters, including thrust measurements at
various back pressures, numerical modeling, and direct
measurement of neutral atom number density. These studies
have shown that thrust performance depends on pressure,
and there exists a critical back pressure for adequate evalua-
tion of thrust performance, though the pressure is specific to
the test facility. This is because the neutral number density
distribution in the vacuum chamber is different in each fa-
cility, due to differences in thruster/pump/vacuum chamber
geometries.10–12)

There are various techniques for measuring neutral atom
number density: ionization gauge measurements,12,13) differ-
ential pressure gauge measurements,14) absorption spectros-
copy,15) laser induced fluorescence (LIF),16) two-photon ab-
sorption LIF spectroscopy,17) electron beam excitation,18)

and cavity ring-down spectroscopy.19) The use of LIF has
proven to be effective for the measurement of relative num-
ber density and velocity, though it is difficult to use for quan-

titative number density measurements.
The approach presented here uses the laser Rayleigh scat-

tering technique.20,21) This is a non-intrusive method; it does
not disturb the plasma and neutral flow. Number densities
can be measured quantitatively by calibration using 104 Pa
nitrogen, so a complicated collisional-radiative model is
not required. The Rayleigh scattering spectrum reflects the
velocity distribution of the atoms, so propellant xenon atoms
can be distinguished from the ambient xenon atoms. In addi-
tion, even when both ions and electrons are present, the neu-
tral number density can be estimated, since the scattering
spectrum is a convolution of Rayleigh and Thomson spec-
tra.22) The contribution of scattering from metastable atoms
can be addressed23) by measuring the population of metasta-
ble atoms by laser absorption spectroscopy.15)

Measurement of neutral atom density using Rayleigh scat-
tering is not novel; it has been used in compressible turbu-
lent-flow research,21) plasma process research,22,23) and other
fields. The target range of our measurement, however, is be-
low 1020m¹3, at least one order of magnitude lower than pre-
vious studies. The aim of this study is to demonstrate the
measurement of neutral atom number density in high vacuum
(pressure less than 1 Pa) using the Rayleigh scattering tech-
nique, in order to understand the effect of neutral particles
on thrust performance. First, we measure the nitrogen molec-
ular number density in the absence of a thruster. Next, we
measure the xenon neutral number density downstream of
a miniature Hall thruster, without a plasma discharge.

2. Experimental Setup

Our laser Rayleigh scattering measurement setup is shown
in Fig. 1. A 0.267m diameter by 0.4m long vacuum cham-
ber with a turbo molecular pump (TMP, ULVAC, PT150,
pumping speed 150 l/s with nitrogen gas) is used. Nitrogen
gas is supplied from the upstream port and the pressure inside
the chamber is controlled by changing the conductance of the
needle valve upstream of the nitrogen port. The horizontal
distance from the probe laser path to the N2 port is
200mm. The miniature Hall thruster is positioned 6mm up-
stream of the probe laser path. Pressure is measured by
means of a pressure sensor (Keyence, AP-C31) and an ion-
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ization gauge (ULVAC WIT-18) on the chamber wall. The
horizontal distance from the probe laser path to the ionization
gauge is 204mm. The chamber baseline pressure was below
3� 10�3 Pa for these experiments, and the room temperature
was 294 K. We assume that the nitrogen molecular temper-
ature and xenon atom temperature in the vacuum chamber
are the same as the room temperature (294K).

Second harmonic beams of two Nd:YAG lasers, wave-
length 532 nm, were used as the probe light source. The first
laser has maximum energy 200mJ, repetition rate 10Hz,
pulse width 6 ns, and nominal beam divergence 0.6 mrad
(Continuum, Surelite II). The second has maximum energy
100mJ, repetition rate 50Hz, pulse width 3 ns, and nominal
beam divergence 0.6 mrad (EKSPLA, NL231). Each beam is
focused through a plano-convex focusing lens (focal length,
f, 500mm). The diameter of the focal spot for each beam was
estimated by observing the spatial profile of Rayleigh scatter-
ing in 40 kPa air, and found to be 150 Lm and 100 Lm, re-
spectively; the difference is due to differences in the actual
beam divergence. Each beam is delivered through a Brewster
window and passes through another Brewster window to a
beam dump. Buffers are used in front of both entrance and
exit windows to prevent light scattered on the windows from
reaching the detector. The scattered radiation is observed at
90 degrees to both the Hall thruster axis and the probe laser
beam. Scattered light is focused onto the entrance slit of a tri-
ple grating spectrometer (TGS) with two achromatic lenses

of f ¼ 220mm and f ¼ 200mm. The TGS was used to ob-
tain the scattering light spectrum, in order to distinguish the
Rayleigh scattering signal from the Thomson scattering sig-
nal for future measurement of neutral atom density with plas-
ma discharge.23) The instrumental function of the detection
system is 0.35 nm (full-width at half-maximum) and the lin-
ear dispersion is 1.66 nm/mm. In order to reduce the inci-
dence of stray light (primarily from multiple wall reflected
light), an absorptive neutral density (ND) filter with an
anti-reflection coating (optical density 6) is set upstream of
the observation direction as a viewing dump. The scattered
light is dispersed using the TGS with dispersion subtrac-
tion,24) and is detected by a photo-multiplier tube (PMT,
Hamamatsu, R943-02).

The estimated Rayleigh scattered photon number is so
small that we use a photon counting method. The detected
Rayleigh scattered signals are analyzed by a photon counting
device (SR430, Stanford Research Systems) after more than
5,000 laser shots. The measurement periods per pulse with
the 6 ns pulse width laser and 3 ns laser are 10 ns (5 ns � 2
bin) and 5 ns (5 ns � 1 bin), respectively. A high-speed pho-
to diode is used for detection of laser firing and triggering the
PMT signal. The incident laser is fixed at 10mJ, to avoid
double counting. We confirmed that an increase in laser en-
ergy does not contribute to improvement of the signal to
noise (SN) ratio. The experimental uncertainty for each point
was determined primarily from the statistical fluctuation in
the number of detected photons.25)

Absolute calibration was performed by Rayleigh scatter-
ing measurement through the ND filter (optical density of
4) at 3, 6, 9, and 12 kPa nitrogen gas. The ratio of the xenon
cross section to the nitrogen cross section was assumed to be
1.83, following Ref. 26).

Figure 2 shows the miniature Hall thruster developed at
Kyushu University.27) The anode is located 9mm upstream
of the thruster exit face, and the outer acceleration channel
diameter is 19mm. Details and performance are presented
in Ref. 27). For the present experiments, the thruster was
positioned on the axis of the chamber and the thruster exit
face was set 6mm upstream of the probe beam. Xenon atom
number density was measured without discharge; the gas was
supplied to the thruster using a thermal mass flow controller
(Brooks Instrument, 5850S, full scale of 3 sccm). The back-
ground pressure detected using an ionization gauge on the
chamber was 0.05 Pa at xenon mass flow rate of 0.2mg/s.
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Fig. 1. Schematic of laser Rayleigh scattering system for Hall thruster, (a)
top view, (b) side front view.
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Fig. 2. Cross-section of miniature Hall thruster developed at Kyushu Uni-
versity.
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3. Results and Discussion

Figure 3 shows the Rayleigh scattering signal count num-
ber per 5,000 laser shots for various pressures. Both signals
have a linear relation to the pressure measured by the ioniza-
tion gauge. The estimated number of photons at 1 Pa pressure
nitrogen with 10mJ incident laser per shot is about 0.06, con-
sidering the Rayleigh scattering cross section of 6� 10�32

m2/sr, observed length along the probe beam of 2mm, solid
angle of 0.18, optical system efficiency of 0.06, and quantum
efficiency of the PMT of 0.1. This estimate is in approximate
agreement (within a factor of two) with the obtained result.

The S/N ratio is better with the 3 ns pulse duration than
with the 6 ns pulse. The minimum detection limits at pulse
durations of 3 ns and 6 ns are estimated to be 0.05 Pa and
0.08 Pa, respectively, because the reducing the detection du-
ration from 10 ns to 5 ns reduces the chance of incidence of
stray light on the chamber surface. The difference in the
slope, which corresponds to the sensitivity of the system, is
due to inaccuracies in the optical system and a difference
in beam divergence (the diameters of the probe laser beam
at the measurement position are 100mm and 150mm, re-
spectively, for the 3 ns and 6 ns lasers.

We measured the neutral particle atom number density by
Rayleigh scattering under high vacuum conditions; xenon
atom number density was measured on the axis 6mm down-
stream of the miniature Hall thruster, using the same method.
The 3 ns pulse width laser was used, since it has a better S/N
ratio. Figure 4 shows the estimated xenon atom number den-
sity for four mass flow rates through the miniature Hall
thruster without plasma discharge (cold flow conditions).
The number density at that position was 2:3� 1019m¹3.
This is in good agreement with the number density from a
1D calculation of 2:9� 1019 m¹3 (the flux tube cross section
is estimated as a circle of diameter 19mm, and the tempera-
ture of the xenon atom is estimated to be 294K), considering
the divergence of the neutral atoms from the acceleration
channel of the thruster. The large uncertainty is due to stray
light; for lower density measurements (below 1019 m¹3), the
incidence of stray light will need to be reduced.

4. Conclusion

The neutral number density of a miniature Hall thruster
was successfully measured under cold flow conditions using
the nonintrusive laser Rayleigh scattering optical method.
Pressure estimated from Rayleigh scattering shows a linear
relation to the pressure measured by an ion gauge under high
vacuum (0.2–1.3 Pa). The adoption of a short laser pulse
width improves the S/N ratio, that is, it improves the detec-
tion limit for the neutral atom number density; the detection
limit of current system is 1:7� 1019 m¹3. The adoption of a
short wavelength laser also improves the sensitivity of the
system, since the scattering cross section is inversely propor-
tional to the biquadrate of the laser wavelength. A demon-
stration measurement of the neutral atom number density at
6mm downstream of a miniature Hall thruster was per-
formed; at a xenon mass flow rate of 0.2mg/s, the xenon
atom number density was estimated to be (4� 1:5Þ �
1019m¹3.

The present results prove that the Rayleigh scattering
method will be useful for measuring the neutral atom number
density in the plume region, with further improvement of the
detection limit. This method could be used to reveal vacuum
facility effects on electric propulsion system performance,
and further illuminate the physics behind electric propulsion.
In future work, we plan to further improve the detection limit
by using a laser with even shorter wavelength and pulse
width.
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