
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Optimization of Ion Thruster Grids Using JIEDI
Code with Genetic Algorithm

Inoue, Atsumu
Department of Advanced Energy Engineering Science, Kyushu University

Yamamoto, Naoji
Department of Advanced Energy Engineering Science, Faculty of Engineering Science, Kyushu
University

Nakamura, Yusuke
Department of Advanced Energy Engineering Science, Kyushu University

Nakano, Masakatsu
Tokyo Metropolitan College of Industrial Technology

https://hdl.handle.net/2324/4377911

出版情報：Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace
Technology Japan. 19 (1), pp.75-80, 2021-01-04. 日本航空宇宙学会
バージョン：
権利関係：(c) 2021 The Japan Society for Aeronautical and Space Sciences



75

Optimization of Ion Thruster Grids  
Using JIEDI Code with Genetic Algorithm 

By Atsumu INOUE,1) Naoji YAMAMOTO,1) Yusuke NAKAMURA,1) and Masakatsu NAKANO2)

1) Department of Advanced Energy Engineering Science, Kyushu University, Kasuga, Japan
2) Tokyo Metropolitan College of Industrial Technology, Tokyo, Japan

(Received July 12th, 2019)

    The grid design of ion thrusters is currently based on trial and error development and durability tests. These methods 
make it difficult to rapidly develop optimal thrusters for diverse missions. As a way to address this problem, this paper 
provides a method of designing grids using numerical simulation with a genetic algorithm. Screen grid thickness, screen 
grid hole diameter, accel grid thickness, accel grid hole diameter, accel grid potential, and grid gap are optimized for 
long-life grids. The JIEDI tool is a powerful tool to design grid systems; it is used here as a fitness function to evaluate the 
lifetime of the grid in an ion thruster. As a result of the optimization, the lifetime of the model developed using the genetic 
algorithm is about 6.5 times longer than that of the experimental model. The optimization of grid parameters using the 
Genetic Algorithm and the JIEDI tool shows promise for future design tasks. 
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Nomenclature 

d :  hole diameter, mm 
f :  fitness function 
k :  constant 
l1 :  gap between the grids, mm 
P :  probability being selected 
t :  thickness, mm 
u :  random number
V :  potential, V 
x :  value of a parameter 
𝛼𝛼 :  expansion rate in crossover 
η :  proportion 

Subscripts 
a :  accel grid 
i :  individual number 
s :  screen grid 

1. Introduction

In recent years, space development has advanced rapidly
with missions as diverse as planetary exploration and artificial 
satellites for commercial purposes. In this trend continues, 
various requirements will be imposed on ion thrusters, one of 
the promising electric propulsion systems. Design of the grids 
is very important in the development of ion thrusters, because 
the grid plays an essential role in accelerating ions, and greatly 
affects both the performance and the lifetime of the propulsion 
system. 

Grid design involves a large number of interdependent 
parameters,1) generally using heuristic methods, trial and error, 
and durability tests. These methods, however, are expensive 
and time-consuming, 2) and the cost and time are expected to 

increase with the required lifetime of thrusters. This makes it 
difficult to develop ion thrusters in line with the fast-changing 
trends of the times.  

The present research investigates grid design by numerical 
simulation with machine learning. Six parameters: screen grid 
thickness, screen grid hole diameter, accel grid thickness, 
accel grid hole diameter, accel grid potential, and grid gap, are 
optimized using a genetic algorithm (GA) to design a long-life 
grid. One problem in grid design is how to reconcile a large 
number of optimal parameters; the cost of calculating optimal 
parameters among the huge number of possible combinations 
is likely to be high unless the algorithm has learning ability. 
Therefore, GA, which is a kind of machine learning, was 
selected as the optimization method. The details of the choice 
of GA are discussed in Section 3. The lifetime of the 
developed ion thruster is calculated using the JAXA Ion 
Engine Development Initiative (JIEDI) tool. This tool is 
introduced in Section 2. 

2. Numerical Simulation

The JIEDI tool developed by JAXA is a numerical
simulation code to evaluate the lifetime of a grid in an ion 
thruster. The flow of charged particles is treated as a current 
beam, which reduces calculation cost.3) Reproducibility has 
been tested through comparison of experimental and 
simulation results, and agreement has been deemed 
sufficient.4)  

A two-gridded ion thruster is analyzed in this research, and 
the analysis area is 1/12 of one grid hole, assuming the 
symmetry of the hole arrangement as shown in Fig. 1. The 
analysis model and six parameters are shown in Fig. 2. Ions 
are accelerated in the positive z-direction. Other parameters 
and the operating conditions are shown in Table 1. 
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Fig. 1.  The symmetry of the hole arrangement. 

Fig. 2.  Schematic of the two-grid system analyzed here. 

Table 1.  Parameters and operating conditions. 

Grid material CC 
Propellant Xe 
Screen grid potential: Vs 1000 V 
Open area fraction of screen grid 0.58 
Temperature of grid surface 403 K 
Beam current per hole 1.31×10−1 mA 
Propellant utilization efficiency 0.85 
Sputtering model Williams 

3. Genetic Algorithm

3.1.  Introduction of GA 
  In this research, GA is used to optimize the parameters of 
the grid. GA was proposed by John Holland in 1975. It is an 
optimization method modeled on the mechanism of natural 
selection.5) In nature, each species, or even individuals in the 
same species, compete with each other for food, water, and 
habitat. Through these competitions, the winners thrive, and 
the losers become extinct. In other words, the species that is 
most suitable for the environment survives. GA searches for 
an optimum solution via a similar mechanism.6) The process is 
explained in the next section. GA was chosen for the 
optimization of grid parameters because it is necessary to have 
a learning ability rather than just an optimization method. GA 
can be used for the optimization of the parameters only if the 
fitness function is decided. Therefore, it can be applied to 
optimization under different conditions simply by changing 
the fitness function.  
3.2.  Advantages 

The advantages of GA are as follows. 
1. It can search for optimal values even on a multimodal

function by a multi-point search. 
2. It is a direct search by a fitness function.
3. It can find multiple optimal values simultaneously in a

single search.
A multi-point search makes it possible to easily escape from 
local solutions. Thanks to direct search, it can be used for 
complex problems that are difficult to solve analytically, and 
problems whose properties have not yet been clarified, as long 
as the problem is evaluated by a fitness function. Because GA 
has high robustness to search domain, it is effective in 
problems that would challenge conventional search algorithms 
such as random search and hill climbing methods.7) Moreover, 
it is compatible with parallelization, maximizing computer 
performance. 
3.3.  Process 

Figure 3 shows a flowchart illustrating the GA procedure. 
The GA can be divided into six steps, each of which is 
described below briefly. 
1. Initial population: Generation of individuals with random

parameters (usually called genes). The relationship
between individuals and genes is showed in Fig. 4
graphically.

2. Fitness evaluation: Evaluation of each individual. Each
individual is given a fitness score.

3. Selection: Selecting parents based on fitness score.
4. Crossover: Producing child individuals in the next

generation from parent individuals.
5. Mutation: Addition of small changes to individuals

generated in crossover with low probability.
6. Convergence judgment: Convergence of the optimization

is evaluated depending on the predetermined convergence
conditions, and the optimal parameters are determined. If
the convergence condition is not satisfied, the steps 2-5
are repeated.8)

By repeating the process of generating the next generation 
from individuals with high score evaluated by fitness function, 
individuals approach the one with desirable characteristics 
(genes). Each process is described in detail in the following 
sections. Table 2 summarizes the methods of each process and 
the conditions used in the present study. 

Fig. 3.  GA procedure. 
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Table 2.  Summary of methods and conditions for GA. 

The size of population 8 
The number of genes 6 

Encoding Real encode 
Selection Roulette and elitism 

Crossover Expanded intermediate 
crossover 

Mutation BGA mutation 

Convergence condition 90% of the genes become 
equivalent to those of elite 

Fig. 4.  The relationship between the individuals and genes. The genes 
are expressed in binary for simplicity, but they are actually expressed in 
real value.  

3.4. Fitness function 
The fitness score represents an evaluation for each 

individual. The larger score the individual has, the higher the 
possibility that it will be selected and its genes continue to the 
next generation. In this research, the lifetime calculated by the 
JIEDI tool is directly used as fitness score in order to design a 
long-life grid. The end of the grid's lifetime is defined as the 
time when electrons begins to flow backward. 
3.5. Selection 

The selection process converges the population and 
eliminates individuals with low fitness score. There are 
various methods, but only the two methods used in this 
research are explained below.9)  
3.5.1. Roulette wheel selection 

This method was proposed by John Holland.5) According to 
Eq. (1), the probability of each individual being selected is 
proportional to its fitness score. An example is shown in Table 
3 and Fig. 5. 

𝑃𝑃! =	
"!
#"!	

. (1) 

Parents are selected at random by the probability calculated by 
Eq. (1). This means that individuals with higher fitness score 
are more likely to be selected. In addition, there is some small 
probability that individuals with lower fitness score will be 
selected.  

Table 3.  Example of Roulette wheel selection. 
Fitness score fi Probability Pi [%] 

1 110 48 
2 55 24 
3 60 26 
4 5 2 

Fig. 5.  Example of Roulette wheel selection. 

3.5.2. Elitism selection 
This is the simplest method. A predetermined number of 

individuals with the highest fitness score is left for the next 
generation. This method has the advantage that the maximum 
value of the fitness score does not decrease. However, the 
diversity of solutions is lost if an elite gene affects the next 
generation too much. In order to avoid this, the elite is usually 
added to the population if the elite has not been selected after 
other selection methods.10) In this research, one elite 
individual is left for the next generation. 
3.6. Crossover 

Extended intermediate crossover, one of methods to 
generate an offspring by a linear combination of the parents, is 
used. Each parameter of each individual in the next generation 
is generated randomly from the extended range, which is 
(1+2α) times larger than the range where the parent 
individuals are maximum and minimum, as shown in Fig. 6. α 
is set to 0.25 in the present study. 

Fig. 6.  Extended intermediate crossover. 

3.7. Mutation 
Mutation maintains the diversity of the population by 

expanding the search space. This is an important process 
because it prevents the search from falling into local solutions. 
In this research, BGA mutation is used as a mutation 
operator.11) The parameter after the mutation 𝑥𝑥!%	is calculated 
according to  

𝑥𝑥!% = 𝑥𝑥! ± 0.05 ∙ 2&'(	, (2) 

where xi is the parameter before the mutation, 0 ≤ u ≤ 1 
and k=8. In this method, it does not need to manually adjust 
the mutation range even if the range of parameter is changed. 
Thus, this method is robust.
3.8. Convergence condition 

Convergence is judged based on predetermined conditions. 
Examples of conditions could include:  
1. An average or maximum of fitness score exceeds a

predetermined criterion.

1
48%

2
24%

3
26%

4
2%
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2. Maximum fitness score does not increase during a set
number of generations.

3. A predetermined number of iterations is executed.12)
In the first case, the maximum value of the fitness score must
be defined in advance. If this estimated maximum value is too
large, the calculation will not converge, and if it is too small, a
better value cannot be found. The calculation in the second
case ends when the maximum of the fitness score ceases to
update even once. In the third case, the calculation cost can
increase in some cases. In the present research, η is defined as
the proportion of the number of parameters equivalent to those
in the elite individual in the total number of parameters in the
generation, and the convergence condition is satisfied when η
exceeds 90%.

4. Results

Six parameters are optimized within the ranges shown in
Table 4. These ranges are determined based on the values of 
an ion thruster used in the laboratory (experimental model).13) 
In the selection, one individual is selected with Elitism and the 
parent individuals are selected with roulette wheel selection. 
After that, the seven individuals are generated from parent 
individuals in the crossover and the mutation applied to these 
individuals. The next generation consists of these seven 
individuals and elite individuals. As shown in Fig. 7, η reaches 
91.7%, and the convergence condition is satisfied in the 10th 
generation. The numerical cost of this process was 48 hours. 
The result of optimization is shown in the Table 5. The result 
of evaluation of the experimental model by the JIEDI tool is 
also shown. 

Table 4.  The ranges of six parameters. 
Parameter Symbol Range Unit 
Screen grid 
thickness ts 0.10 - 0.50 [mm] 

Screen grid 
hole diameter ds 1.00 - 1.40 [mm] 

Grid gap l1 0.10 - 0.50 [mm] 

Accel grid 
thickness ta 0.10 - 0.50 [mm] 

Accel grid 
hole diameter da 0.50 - 0.90 [mm] 

Accel grid 
potential Va −170 - −130 [V] 

Fig. 7.  The proportion η of each generation. 

Table 5.  Parameters of experimental model and GA model. 

Parameter Experimental 
model 

GA 
model Unit 

Screen grid 
thickness 0.30 0.38 [mm] 

Screen grid 
hole diameter 1.20 1.16 [mm] 

Grid gap 0.20 0.21 [mm] 

Accel grid 
thickness 0.30 0.37 [mm] 

Accel grid 
hole diameter 0.70 0.53 [mm] 

Accel grid 
potential −150 −136 [V] 

Lifetime 35055 228162 [hour] 

5. Discussion

The grid shapes before and after operation are estimated for
the experimental model using the JIEDI tool, as shown in Fig. 
8, and for the GA-designed model as shown in Fig. 10. The 
highly eroded area is represented in red, while the low-erosion 
area is shown in blue. Figures 8 and 10 show that the accel 
grids in both models are eroded and hole diameters widen 
towards the end after operation. According to Table 5, the 
lifetime of the GA model is about 6.5 times longer than that of 
the experimental model. This means that the optimization of 
the parameters by GA is successful.  

The accel grid hole diameter and the accel grid potential 
show large differences between the two models. Because of 
the higher accel grid potential, the energy of the charge 
exchange ions from downstream is reduced when they collide 
with the accel grid. Figure 8(c) shows that the downstream 
surface of the accel grid in the experimental model is eroded 
into a specific shape pattern called “pits and grooves” by the 
charge exchange ions, while no such pattern is seen in the GA 
model in Fig. 10(c).14) This demonstrates that the higher 
potential has an effect on how the accel grid are eroded. In 
addition, the grid shape transition is different between the two 
models due to the smaller hole diameter of the accel grid. The 
beam goes through the grid hole from the beginning with 
experimental model. On the other hand, the accel grid with 
GA model is severely eroded due to the small grid hole 
initially. However, the shape of the hole with GA model is 
eroded according to the ion beam trajectory 
three-dimensionally. Therefore, the ion beam gradually stops 
colliding with the grid during the operation time although the 
initial spatter amount is large. This difference of the erosion 
process is shown in Fig. 12. A method of machining the grid 
hole into an optimum shape by the irradiation with ion beam 
has been studied, and high propellant utilization efficiency can 
be achieved after machining.15) In this research, because only 
the lifetime is used for the evaluation, GA found the grid 
model close to the one designed by this method. Furthermore, 
the shape of the potential is maintained even when the grid 
hole diameter gets larger because the accel grid thickness with 
GA model becomes thicker than with experimental model. 
This is the main factor in achieving a longer grid lifetime. 
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Fig. 9.  Potential distribution (top) and ion beam trajectory (bottom) at 
the end of life with experimental model. 

  

(a) Overview of the grid after operation. 
 

     
Upstream surface of 

screen grid 
Side surface 

Downstream surface of 
accel grid 

(b) Each grid before operation. 
 

   

Upstream surface of 
screen grid 

Side surface 
Downstream surface of 

accel grid 
(c) Each grid after operation. 

Fig. 10.  Erosion rate with GA model. 
 

 
Fig. 11.  Potential distribution (top) and ion beam trajectory (bottom) at 
the end of life with GA model. 
 

 
 

(a) Overview of the grid after operation. 
 

   
Upstream surface of screen 

grid 
Side surface 

Downstream surface of 
accel grid 

(b) Each grid before operation. 
 

   
Upstream surface of screen 

grid 
Side surface 

Downstream surface of 
accel grid 

(c) Each grid after operation. 
Fig. 8.  Erosion rate of experimental model. 
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Fig. 12.  The ratio of the remaining accel grid volume as a function of 
time. 

 
The potential distribution and the ion beam trajectory at the 

end of life with the experimental and GA models are shown in 
Figs. 9 and 11, respectively. The potential distributions are 
almost identical in the two models. On the other hand, the ion 
beam forms a wider stream in the GA model than in the 
experimental model. As shown in the Table 6, however, the 
specific impulse is almost same in the two models. 
 

 Table 6.  Specific impulse calculated using JIEDI tool. 
 Experimental 

model 
GA 

model 
Specific impulse [s] 3356 3352 

 
6. Conclusion 
 

This research establishes a method of grid design in ion 
thrusters using a genetic algorithm to optimize grid parameters 
for a two-grid thruster for maximum lifetime. Six parameters - 
grid gap, screen grid thickness, screen grid hole diameter, 
accel grid thickness, accel grid hole diameter, and accel grid 
voltage - are optimized. The optimized parameters were 
compared with those of the ion thruster actually used in the 
laboratory. The accel grid thickness is larger, the accel grid 
hole diameter is smaller, and the accel grid potential is higher 
than those of the experimental model. These changes make it 
possible to maintain the potential shape properly for a long 
time, and to improve the durability of the grids. As a result, 
the lifetime of the grid is predicted to be 6.5 times longer than 
that of the experimental model as calculated using the JAXA 
JIEDI tool. This result establishes that the optimization of grid 
parameters by numerical simulation with GA is useful and 

suggests an efficient method for ion thruster design. 
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