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Tsuneshi Obata∗ and Shunsuke Shiraishi†

Abstract

Pairwise comparison matrix (PCM) and its maximum eigenvalue play key roles
in analytic hierarchy process (AHP). We shed light on the characteristic polynomial
of a PCM of 4th order. By computational simulation, we can confirm that the value
of the characteristic polynomial for 4 is non-positive in case which Saaty’s discrete
scale will be used. Thus we can show the real-number solution of the characteristic
equation exists and is greater than 4 in the practical use of AHP.

Key Words and Phrases: analytic hierarchy process, pairwise comparison matrix, remainder

theorem, exhaustive enumeration.

1. Introduction

Analytic hierarchy process (AHP) established its wide popularity by employing
the maximum eigenvalue λmax of pairwise comparison matrix (PCM) as consistency
index. See Saaty (1980), Tone (1986), Brunelli (2015), Ku lakowski (2021). The consis-

tency index is defined by C.I. =
λmax − n

n− 1
where n is the order of PCM. To calculate

the maximum eigenvalue, one usually utilizes power method1. For the 3rd order PCM,
Newton’s method can be utilized to calculate the maximum eigenvalue. We have the-
oretically proven that a sequence generated by Newton’s method from the initial value
of 3 converges to the maximum eigenvalue (Shiraishi and Obata (2021a)). The result
relies on one of the most favorable properties of the 3rd order matrix; uniqueness of the
solution of the characteristic equation.

When we attempt to generalize the result for the 4th order matrix, we face a the-
oretical difficulty. Let A be 4th order PCM and PA(λ) be its characteristic polynomial.
By the remainder theorem, the remainder of PA(λ) divided by λ− 4 is equal to PA(4).
If we can verify PA(4) ≤ 0, we easily obtain that the maximum eigenvalue λmax exists
and is greater than or equal to 4.

This article verifies this fact by computational simulations in R2. The simulations
are performed in two ways. To get started simulations, we generate 1, 000 random
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1 https://encyclopediaofmath.org/wiki/Iteration_methods
2 R is a language and environment for statistical computing and graphics. https://www.r-project.org.
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samples in which elements of matrices are applied to Saaty’s discrete scale of all 17 cases
from 1 to 9 and their reciprocals. We also attempt to try exhaustive enumeration of
Saaty’s scale allocated to the upper six triangular elements of PCMs. The simulation
shows PA(4) ≤ 0 holds for all cases. This counts 176 = 24, 137, 569 cases. We can say
that the assertion is true in the practical use of AHP.

As a byproduct, we count the number of appearance of consistency matrices under
using Saaty’s scale. It is 73 = 343. The ratio of the appearance is 0.001421%. We
should not expect that decision maker’s pairwise comparison becomes to be completely
consistent. On the other hand, the near consistent cases in which C.I. ≤ 0.1 counts
942, 065. The ratio of appearance is 3.902899%. According to Saaty (1980) p.51, if C.I.
is less than 0.1, we may be satisfied with our judgments.

2. Characteristic polynomial of 4th order matrix

In AHP, the consistency index of n-th order PCM is defined by

C.I. =
λmax − n

n− 1
,

where λmax is the maximum eigenvalue of the matrix. PCM has the following form:

A =


1 a12 · · · a1n

1/a12 1 · · · a2n
...

...
. . .

...
1/a1n 1/a2n · · · 1

 ,

where aij > 0. One says that A is consistent if aijajk = aik for all i, j, k. In general,
C.I. ≥ 0 and the consistency of A and C.I. = 0 are equivalent (Saaty (1980), Tone (1986),
Brunelli (2015), Ku lakowski (2021)).

From the general theory of characteristic polynomial3, we have

PA(λ) = λn − trAλn−1 + c2λ
n−2 + c3λ

n−3 + · · · + (−1)n detA.

For PCM, trA = n and the following results are widely known now.

Theorem 2.1 Shiraishi et al. (1998).

C.I. = 0 ⇐⇒ PA(λ) = λn − nλn−1,

c2 = 0,

c3 =
∑

1≤i<j<k≤n

(
2 −

(aijajk
aik

+
aik

aijajk

))
. (1)

By the well known relationships between the arithmetic mean and the geometric
mean, we have c3 ≤ 0 and the equivalency of C.I. = 0 ⇔ c3 = 0. We now have the
following representation formula of the characteristic polynomial of the 4th order PCM:

PA(λ) = λ4 − 4λ3 + c3λ + detA. (2)

3 https://encyclopediaofmath.org/wiki/Characteristic_polynomial
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Figure 1: Graph of a characteristic polynomial

Let us demonstrate an example of 4th order PCM. If we set

A =


1 8 1

8 8
1
8 1 7 8
8 1

7 1 2
1
8

1
8

1
2 1

 ,

we have PA(λ) ≈ λ4−4λ3−482.4799λ+162.3867 and PA(4) ≈ −1767.533. Figure 1 shows
the graph of PA(λ). For this matrix, the characteristic equation has two real-number
solutions λ ≈ 0.3362 and 9.3359, and two complex-number solutions λ ≈ −2.8361 ±
6.6091i. For this matrix, the consistency index C.I. = 1.77863 is far away from Saaty’s
desirable criteria C.I. ≤ 0.1. This inconsistency is a consequence of the existence of
a contradictory triad of the objectives. Objective 1 is highly preferred to objective 2
(a12 = 8) and objective 2 is highly preferred to objective 3 (a23 = 7), but objective 3 is
highly preferred to objective 1 (a31 = 8).

From the general discussion of the polynomial equation with real-number coeffi-
cient, the number of the real-number solution of the characteristic equation of the 4th
order PCM must be even.

In this paper, we prove the the following fact on PA(λ) by computational simulation
in Section 3.

(A) PA(4) ≤ 0.

PA(4) = 4c3 + detA is the remainder of PA(λ) dividing by λ− 4. Indeed,

PA(λ) = λ4 − 4λ3 + c3λ + detA

= (λ− 4)(λ3 + c3) + 4c3 + detA. (3)
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Since limλ→∞ PA(λ) = ∞, under the fact (A), from the intermediate value theorem,
we can say that there exists a real-number solution of the equation PA(λmax) = 0 with
λmax ≥ 44. In addition, we can state the following result.

Proposition 2.2. Under the fact (A), the number of distinct real-number solutions
of the characteristic equation of the 4th order PCM is two.

Proof. Assume that there exist 4 real-number solutions λ1 ≤ λ2 ≤ λ3 ≤ λ4.
Since we have

PA(λ) = λ4 − 4λ3 + c3λ + detA

= (λ− λ1)(λ− λ2)(λ− λ3)(λ− λ4),

the relationship between the coefficients and the roots states that

4 = λ1 + λ2 + λ3 + λ4,

0 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4.

Thus we have

16 = (λ1 + λ2 + λ3 + λ4)2

= λ2
1 + λ2

2 + λ2
3 + λ2

4 + 2(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)

= λ2
1 + λ2

2 + λ2
3 + λ2

4.

Under the fact (A), λ4 ≥ 4 holds. This occurs only when λ1 = λ2 = λ3 = 0, λ4 = 4.
This is a special case where the matrix is consistent. When the matrix is inconsistent,
the equation has two real-number solutions and two complex-number solutions.

Since c3 ≤ 0, it follows from (3) that (A) holds if detA ≤ 0. We showed the
existence of A such that detA > 0 in Shiraishi and Obata (2021b). So the possibility of
the case where PA(4) = 4c3+detA > 0 still remains. In the next section, we verify (A) by
computer simulation in R. In addition, we will also observe that PA(4) = 4c3+detA = 0
implies c3 = 0 (hence A is consistent) in the simulation.

3. Verification by computational simulation

3.1. Random samples

We execute Listing 3 below in Section 5.2. by R. We generate 1, 000 random matrices
in which the integer from 1 to 9 and their reciprocals are allocated to the upper six
triangular elements. Then we obtain the maximum eigenvalues and the graph of the
characteristic polynomial. With one trial of random sampling, the maximum value of
4c3 + detA, detA and c3 become nearly equal to −3.4666, 377.0421, and −0.8666,
respectively. The maximum value of 4c3 + detA is attained by the following matrix:

A =


1 9 5 1

2
1
9 1 1 1

9
1
5 1 1 1

9
2 9 9 1

 .

4 In the context of AHP, the existence of the solution is assured by Perron-Frobenius theorem, see
Saaty (1980).
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Figure 2: −c3 vs λmax when detA = 0

This is an example in which detA = 0, but c3 = −7
8 < 0. When detA = 0, we generally

have c3 = −3C.I.(3C.I. + 4)2, see Shiraishi and Obata (2021b) and Figure 2.
On the other hand, we could not observe any sample in which c3 = 0 in this

trial. Our exhaustive enumeration in the next section shows the number of consistency
matrices is very scarce. It is 343 = 73, although the number of possibilities on the whole
is 176 = 24, 137, 569. It is only 0.001421% of the total. As long as one uses Saaty’s scale,
one should not expect C.I. = 0. On the other hand, C.I. ≤ 0.1 occurs 942, 065 cases
which is equal to 3.902899% of the total.

3.2. Exhaustive enumeration

We execute Listing 4 below in Section 5.3. by R. We generate all matrices in which
the integer from 1 to 9 and their reciprocals are allocated to the upper six triangular
elements. The number of all cases counts 176 = 24, 137, 569. We found 343 = 73

examples in which both 4c3 + detA and c3 become 0 simultaneously. We list up three
such examples.

1 8 2 8
1
8 1 1

4 1
1
2 4 1 4
1
8 1 1

4 1

 ,


1 1

2 1 1
6

2 1 2 1
3

1 1
2 1 1

6
6 3 6 1

 ,


1 1

2 3 1
2

2 1 6 1
1
3

1
6 1 1

6
2 1 6 1

 .

Although it seems to be meaningful that the number of consistent matrices is 343 = 73,
the reason is not apparent.

On the other hand, the number of cases in which detA = 0 is not few. It counts



6 T. Obata and S. Shiraishi

at least 471, 648 within Saaty’s scale. It is because PCM, which has the following form,
becomes detA = 0, see Shiraishi and Obata (2021b).

A =


1 a12 a13 a12a24
1

a12
1 a23 a24

1
a13

1
a23

1 a34
1

a12a24

1
a24

1
a34

1

 .

4. Concluding remarks

As a byproduct of our computer simulation, we confirm that it is very rare case
in which the pairwise comparison becomes completely consistent as long as the decision
maker uses Saaty’s discrete scale. It is also confirmed that the number of near consistent
case is not few. So the decision maker’s pairwise comparison is expected to be near
consistent.

The theoretical issues to prove the followings are left to future research.

• 4c3 + detA ≤ 0

• 4c3 + detA = 0 ⇒ c3 = 0

In general, the convergence of Newton’s method depends on the initial value of the
iteration. As we noted in introduction, for the 3rd order PCM, Newton’s method always
converges to the maximum eigenvalue from the initial value of 3 which is equal to the
order of the matrix. For the 4th order PCM, Newton’s method sometimes converges to
the minimum eigenvalue from the initial value of 4, see Shiraishi and Obata (2021c). So
the choice of the initial value is interesting to study.

5. Appendices

5.1. Consistency index

Listing 1 is used to calculate c3. We used this function both in the random sampling
and the exhaustive enumeration.

Listing 1: consistency indices.R

### calculate -c3 of pcm A
c3.minus <- function(A) {

if (nrow(A) != ncol(A)) stop("not␣square␣matrix")
n <- nrow(A)
s <- 0
k <- 1
while (k <= n) {
j <- 1
while (j < k) {

i <- 1
while (i < j) {

s <- s + A[i,j] * A[j,k] / A[i,k] + A[i,k] / (A[i,j] * A[j,k]) - 2
i <- i+1

}
j <- j+1

}
k <- k+1

}
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return(s)
}

5.2. Random sampling

We used Listing 2 and Listing 3 to obtain Figure 1. Listing 2 generate randomly
1, 000 discrete number of integer from 1 to 9 and their reciprocals to the upper-triangular
six elements of the matrix. Listing 3 gives the eigenvalues of PCM and the graphs of
their characteristic polynomials. We used MacBook Air 2020, 1.2GHz i7, 16GB. The
running time was 39 seconds.

Listing 2: generate matrix.R

### generate random pcm of degree n
generate.random.matrix <- function(n) {

a <- c(1/(9:2), 1, 2:9)
A <- matrix(nrow = n, ncol = n)
m <- n * (n-1) / 2
x <- sample(a, size = m, replace = TRUE)
k <- 1
i <- 1
while (i < n) {
j <- i+1
while (j <= n) {

A[i,j] <- x[k]
A[j,i] <- 1/x[k]
j <- j+1
k <- k+1

}
i <- i+1

}
for (i in 1:n) {
A[i,i] <- 1

}

return(A)
}

Listing 3: pcm4rand.R

### generage random pcm of degree 4
### calculate c3, det A, PA(4)
### plot graph of characteristic polynomial

source("generate_matrix.R")
source("consistency_indices.R")

elems <- function(A) {
if (nrow(A) != ncol(A)) stop("not␣square␣matrix")
n <- nrow(A)
st <- ""
for (i in 1:(n-1)) {
for (j in (i+1):n) {

st <- paste(st, A[i,j], sep = "_")
}

}
return(substr(st,2,nchar(st)))

}
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char.poly4 <- function(x, A) {
return(x^4 - 4*x^3 - c3.minus(A)*x + det(A))

}

save.dir <- paste("results/",
format(Sys.time(), "%Y%m%d%H%M%S"),
"/", sep = "")

if (!file.exists(save.dir)) {
dir.create(save.dir, recursive = TRUE)

}

sink(file = paste(save.dir, "log.txt", sep = ""), split = TRUE)

starttime <- Sys.time()

N <- 1000
digits <- log10(N) + 1
elements <- character(N)
c3s <- numeric(N)
determinants <- numeric(N)
eigenvalues1 <- complex(N)
eigenvalues2 <- complex(N)
eigenvalues3 <- complex(N)
eigenvalues4 <- complex(N)
charpoly4s <- numeric(N)
gtzeros <- character(N)

for (k in 1:N) {
A <- generate.random.matrix(4)

elements[k] <- elems(A)
c3s[k] <- -1 * c3.minus(A)
determinants[k] <- det(A)
eigenvalues1[k] <- as.complex(eigen(A, symmetric = FALSE)$values[1])
eigenvalues2[k] <- as.complex(eigen(A, symmetric = FALSE)$values[2])
eigenvalues3[k] <- as.complex(eigen(A, symmetric = FALSE)$values[3])
eigenvalues4[k] <- as.complex(eigen(A, symmetric = FALSE)$values[4])
cp4 <- char.poly4(4, A)
charpoly4s[k] <- cp4
if (cp4 >= 0) {
gtzeros[k] <- "GT_0"

} else if (cp4 >= -0.0001) {
gtzeros[k] <- "NR_0"

} else {
gtzeros[k] <- ""

}

filename <- paste(save.dir,
formatC(k, width = digits, flag = "0"),
"_", elems(A), ".png", sep = "")

png(filename = filename, width = 720, height = 720)
par(family = "Helvetica", mar = c(5,6,1,1))
curve(char.poly4(x,A),

xlim = c(-10,10),
cex = 2, lwd = 2,
xlab = parse(text = "lambda"),
ylab = parse(text = "P[A](lambda)"),
main = "",
bty = "l",
cex.main = 2, cex.lab = 2, cex.axis = 2)

abline(h = 0)
points(4, char.poly4(4,A), pch = 20, lwd = 5)
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dev.off()

}

endtime <- Sys.time()
print(starttime)
print(endtime)
print(endtime - starttime)

df.values <- data.frame(
elem = elements,
c3 = c3s,
det = determinants,
eig1 = eigenvalues1,
eig2 = eigenvalues2,
eig3 = eigenvalues3,
eig4 = eigenvalues4,
cp4 = charpoly4s,
pos = gtzeros)

write.csv(df.values, file = paste(save.dir, "values.csv", sep = ""))

sink()

5.3. Exhaustive enumeration

Listing 4 allocates the integer from 1 to 9 and their reciprocals to the upper six
triangular elements of the matrix in all cases, which counts 176 = 24, 137, 569. We used
MacBook Air 2020, 1.2GHz i7, 16GB. The running time was 2 hours 25 minutes 40
seconds.

Listing 4: pcm4all.R

### calculate c3, det A, PA(4) of all pcm of degree 4

source("consistency_indices.R")

pcm4 <- function(a12, a13, a14, a23, a24, a34) {
A <- matrix(1, nrow = 4, ncol = 4)
A[1, 2] <- a12
A[2, 1] <- 1 / a12
A[1, 3] <- a13
A[3, 1] <- 1 / a13
A[1, 4] <- a14
A[4, 1] <- 1 / a14
A[2, 3] <- a23
A[3, 2] <- 1 / a23
A[2, 4] <- a24
A[4, 2] <- 1 / a24
A[3, 4] <- a34
A[4, 3] <- 1 / a34
return(A)

}

arr1 <- 2:9
arr2 <- 1 / arr1
values <- c(1, arr1, arr2)

elems <- function(A) {
if (nrow(A) != ncol(A))
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stop("not␣square␣matrix")
n <- nrow(A)
st <- ""
for (i in 1:(n - 1)) {
for (j in (i + 1):n) {

st <- paste(st, round(A[i, j], 3), sep = "_")
}

}
return(substr(st, 2, nchar(st)))

}

char.poly4 <- function(x, A) {
return(x ^ 4 - 4 * x ^ 3 - c3.minus(A) * x + det(A))

}

save.dir <- paste("results/",
format(Sys.time(), "%Y%m%d%H%M%S"),
"/", sep = "")

if (!file.exists(save.dir)) {
dir.create(save.dir, recursive = TRUE)

}

sink(file = paste(save.dir, "log.txt", sep = ""), split = TRUE)

starttime <- Sys.time()

df.zero <- data.frame()

k <- as.integer(1)
for (a12 in values) {

for (a13 in values) {
for (a14 in values) {

k0 <- k
iterations <- integer()
elements <- character()
c3s <- numeric()
determinants <- numeric()
eigenvalues1 <- complex()
eigenvalues2 <- complex()
eigenvalues3 <- complex()
eigenvalues4 <- complex()
charpoly4s <- numeric()
gtzeros <- character()

for (a23 in values) {
for (a24 in values) {
for (a34 in values) {

A <- pcm4(a12, a13, a14, a23, a24, a34)

iterations[length(iterations)+1] <- k
elements[length(elements)+1] <- elems(A)
c3s[length(c3s)+1] <- -1 * c3.minus(A)
determinants[length(determinants)+1] <- det(A)
eigenvalues1[length(eigenvalues1)+1] <-
as.complex(eigen(A, symmetric = FALSE)$values[1])

eigenvalues2[length(eigenvalues2)+1] <-
as.complex(eigen(A, symmetric = FALSE)$values[2])

eigenvalues3[length(eigenvalues3)+1] <-
as.complex(eigen(A, symmetric = FALSE)$values[3])

eigenvalues4[length(eigenvalues4)+1] <-
as.complex(eigen(A, symmetric = FALSE)$values[4])
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cp4 <- char.poly4(4, A)
charpoly4s[length(charpoly4s)+1] <- cp4
if (cp4 > 0) {
gtzeros[length(gtzeros)+1] <- "GT_0"

} else if (cp4 == 0) {
gtzeros[length(gtzeros)+1] <- "EQ_0"

} else if (cp4 >= -0.0001) {
gtzeros[length(gtzeros)+1] <- "NR_0"

} else {
gtzeros[length(gtzeros)+1] <- ""

}

k <- k + 1
}

}
}

toStr <- formatC(k, width = 10, flag = "0")
df.values <- data.frame(

iter = iterations,
elem = elements,
c3 = c3s,
det = determinants,
eig1 = eigenvalues1,
eig2 = eigenvalues2,
eig3 = eigenvalues3,
eig4 = eigenvalues4,
cp4 = charpoly4s,
pos = gtzeros

)
write.csv(df.values,

file = paste(save.dir,
"values_",
k0,
".csv", sep = ""))

df.zero <- rbind(df.zero,
df.values[df.values$pos != "",])

}
}

}

endtime <- Sys.time()
print(starttime)
print(endtime)
print(endtime - starttime)

write.csv(df.zero,
file = paste(save.dir, "zero.csv", sep = ""))

sink()
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