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Abstract A dynamic network introduced by Ford and Fulkerson is a directed
graph with capacities and transit times on its arcs. The quickest transshipment
problem is one of the most fundamental problems in dynamic networks. In this
problem, we are given sources and sinks. Then the goal of this problem is to
find a minimum time limit such that we can send the right amount of flow from
sources to sinks. In this paper, we introduce a variant of this problem called
the mixed evacuation problem. This problem models an emergent situation
in which people can evacuate on foot or by car. The goal is to organize such
a mixed evacuation so that an efficient evacuation can be achieved. In this
paper, we study this problem from the theoretical and practical viewpoints.
In the first part, we prove the polynomial-time solvability of this problem in
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the case where the number of sources and sinks is not large, and also prove the
polynomial-time solvability and computational hardness of its variants with
integer constraints. In the second part, we apply our model to the case study
of Minabe town in Wakayama prefecture, Japan.

Keywords dynamic network flow - evacuation problem

1 Introduction

The coastal area facing the Pacific Ocean in Japan ranging from Shizuoka
prefecture to Miyazaki prefecture has a high risk of a tsunami. In particular,
it is predicted that Nankai Trough Earthquake will occur with 70% probabil-
ity within thirty years, and it will trigger a tsunami of the huge size which
will quickly arrive at the coast (see, e.g., [18]). Based on several assumptions
and estimated data, Wakayama prefecture recently designated several areas
in which it is difficult for all people in the area to evacuate to safety places
such as tsunami evacuation buildings before a tsunami arrives when Nankai
Trough Earthquake occurs. For example, it is predicted that in Kushimoto
town located at the south end of the main land of Japan, a tsunami arrives
at earliest within ten minutes. One of assumptions the prefecture used is that
the evacuation is done only by walking. In principle, it used to be not allowed
to use cars for evacuation because the usage of cars in such an emergent sit-
uation may block evacuation of pedestrians which was observed at the time
of Tohoku-Pacific Ocean Earthquake. However, if it is allowed to use cars and
the smooth evacuation by car is organized, then the evacuation completion
time may be shortened. The aim of this paper is to propose a mathematical
model for making such a good “mixed” evacuation plan.

In this paper, we use a dynamic network flow introduced by Ford and
Fulkerson [3,4] for modeling such a mixed evacuation. A dynamic network is
a directed graph with capacities and transit times on its arcs (see, e.g., [1,12,
14,15]). The quickest transshipment problem is one of the most fundamental
problems in dynamic networks. In this problem, we are given a dynamic net-
work with several sources and sinks. Furthermore, we are given a supply for
each source and a demand for each sink. Then the goal of this problem is to
find the minimum time limit such that we can send the right amount of flow
from sources to sinks. Hoppe and Tardos [8] proved that this problem can be
solved in polynomial time. In this paper, we introduce a variant of the quick-
est transshipment problem called the mixed evacuation problem. This problem
models an emergent situation in which people can evacuate on foot or by car.
The goal of this problem is to organize such a mixed evacuation so that an
efficient evacuation can be achieved. In the first part of this paper, we study
the mixed evacuation problem from the theoretical viewpoint. First we prove
that if the number of sources and sinks is at most C'log, n (n is the number of
vertices) for some constant C, then mixed evacuation problem can be solved
in polynomial time (Section 3). In addition, we consider variants of the mixed
evacuation problem with integer constraints (Section 4). In the second part of
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this paper, we study the mixed evacuation problem from the practical view-
point. In this part, we apply our model to the case study in Japan (Section 5).
More precisely, we apply our model for Minabe town in Wakayama prefecture,
which was designated as a city in which safe evacuation from a tsunami is
difficult when Nankai Trough Earthquake occurs.

2 Preliminaries

Let R, Ry, Z, Z, and Z_ be the sets of reals, non-negative reals, integers,
non-negative integers, and non-positive integers, respectively.

For each finite set U, each vector z in RY, and each subset W of U, we
define (W) := > -y (u). Furthermore, for each finite set U and each pair
of vectors z,y in R”, we define (z,y) := > .y z(w)y(u).

The MIXED EVACUATION problem is defined as follows. In this problem,
we are given a finite directed graph D = (V| A) and two disjoint subsets S, T
of V. Define n := |V|. The subset S (resp., T) is the set of source vertices
(resp., sink vertices) in V. We assume that no arc in A enters (resp., leaves) a
vertex in S (resp., T'). In addition, we are given an arc capacity vector ¢ in Zf,
a supply vector b in Zi, a sink capacity vector u in Z”, transit time vectors
Ty, Ty in Z_‘ﬂ, and fluid coefficients ¢, g2 in Z . In our application, 7 represents
the time required to pass through each arc by walking, and ¢ represents the
number of people that can walk in the one unit of the arc capacity. The values
Ta, @2 represent the information for cars. Lastly, we are given a time limit ©
in Z. Define [©] := {0,1,...,0}.

For each integer ¢ in {1,2}, each function f: A x [0] — R, each vertex v
in V, and each integer 6 in [©], we define

0 0—7i(a)
0f(,0):= > D flat)= > > flad),
a€d(v;A) t=0 a€o(v;A) t=0

where §(v; A) (resp., o(v; A)) represents the set of arcs in A leaving (resp., en-
tering) v. That is, 9; f (v, §) represents the difference between the total amount
of flow leaving v by the time step 6 and the total amount of flow entering v
by the time step 6. A vector d in RSV is called an allocation, if d(v) > 0 for
every vertex v in S and d(v) < 0 for every vertex v in T. For each integer
i in {1,2}, each allocation d in RSYT | and each vector w in Rﬁ, d is said to
be (i, w)-feasible, if there exists a function f: A x [©] — R, satisfying the
following conditions.

(D1) Let a and 6 be an arc in A and an integer in [0)], respectively.
— If 0 <O — 7;(a), then f(a,0) < g; - w(a).
— If 6 > © — 7y(a), then f(a,0) =0.
(D2) Let v and 6 be a vertex in V and an integer in [O], respectively.
—IfoeV\(SUT), then 0;f(v,0) <0.
— If v e S (resp., T), then 9, f(v,8) < d(v) (resp., 0;f(v,0) > d(v)).
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(D3) Let v be a vertex in V.
—IfveV\(SUT), then 9, f(v,0) =0.
— Ifv e S, then 0;f(v,0) = d(v).

For each integer i in {1,2} and each vector w in R%, let JF;(w) be the set
of (i, w)-feasible allocations in RSYT. An assignment is a tuple (dy, da, w1, wy)
such that dy,ds are allocations in R5YT and wy, Wy € Rﬁ. Furthermore, an
assignment (di,ds, w1, ws) is said to be feasible, if it satisfies the following
conditions.

(F1) For every vertex v in S (resp., T), di(v) + d2(v) = b(v) (resp., > u(v)).
(F2) For every arc a in A, we have w;(a) + wa(a) < ¢(a).
(F3) We have dy € Fi(w) and dg € Fa(wz).

The goal of MIXED EVACUATION (ME for short) is to decide whether there
exists a feasible assignment. Notice that we can straightforwardly formulate
ME as a linear programming problem (in Section 5, we use an algorithm based
on the linear programming). However, since the input size of O is log, ©, its
size is not bounded by a polynomial in the input size of ME.

3 Mixed Evacuation with Few Sources and Sinks

In this section, we prove that if |S U T| < C'log, n for some constant C, then
ME can be solved in polynomial time. Assume that we are given an integer i
in {1,2}, a vector w in R%, and a subset X of SUT. Define D¥(X) as the set
of functions f: A x [0] — R satisfying (D1) and the following conditions.

(D4) Let v and 6 be a vertex in V and an integer in [O], respectively.
— IfveV\X, then 0, f(v,0) <0.
— If v € X, then 0;f(v,0) > 0.

(D5) For every vertex v in V' \ (SUT), we have 0;f(v,0) = 0.

Recall that no arc in A enters (resp., leaves) a vertex in S (resp., T'). Thus, for
every function f in D (X) and every vertex v in (S\ X) U (T'N X), we have
0;f(v,0) = 0. Intuitively speaking, an element in D¥(X) is a dynamic flow
from SN X to T\ X without supplies and demands. Furthermore, we define
the function o : 2597 — R, by

o¥(X) = max{ 30/ (v.0) ] fe D;U(X)}.

veX

Intuitively speaking, 0% (X) is the maximum flow value of a dynamic flow from
SNX toT\ X.

Theorem 1 (Klinz [8, Theorem 5.1]) Assume that we are given an integer
i in {1,2}, an allocation d in RSYT, and a vector w in RY. Then d € F;(w)
if and only if d(X) < 0¥ (X) for every subset X of SUT.!

1 This result was cited by Hoppe and Tardos [8] as personal communication.
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For each pair of vertices s in S and ¢ in T, we denote by a(t,s) an arc
from ¢ to s. Define E := AU {a(t,s) | s € S,t € T}. Furthermore, we define
H as the directed graph with the vertex set V' and the arc set E. Then for
each integer 4 in {1, 2}, each vector w in Rﬁ, each subset X of SUT, and each
vector £ in RJEr, £ is called a feasible static flow with respect to ¢, w, and X, if
it satisfies the following conditions (S1), (S2), and (S3).

(S1) For every arc a in A, we have £(a) < ¢; - w(a).

(S2) For every pair of vertices s in S and ¢ in T, if at least one of s € S\ X
and t € X holds, then &(a(t,s)) = 0.

(S3) For every vertex v in V, we have £(6(v; E)) = £(o(v; E)).

For each integer ¢ in {1, 2}, each vector w in Rﬁ, and each subset X of SUT,
we denote by S¥(X) the set of feasible static flows with respect to i, w, and
X. In addition, for each integer i in {1,2}, we define the vector k; in RE as
follows. For each arc @ in E'\ A (resp., A), we define k;(a) := © + 1 (resp.,

—7i(a))-

Theorem 2 (Ford and Fulkerson [3,4]) For every integeri in {1,2}, every
vector w in R_,A_, and every subset X of SUT, o (X) is equal to the optimal
objective value of the problem of mazimizing (k;,&) such that £ € S¥(X).

Define P as the set of assignments (d1, da, w1, w2) such that it satisfies (F2)
and (F3), and the following condition.

(F17) For every vertex v in S (resp., T), d1(v) +da2(v) < b(v) (resp., > u(v)).

Let P1 be the problem of maximizing d; (S)+d2(S) such that (dy, da, w1, ws) €
P. If the optimal objective value of P1 is equal to b(.5), then we can conclude
that there exists a feasible assignment. Otherwise, we can conclude that there
exists no feasible assignment. This observation implies that if we can formulate
P1 by a linear programming problem whose size is bounded by a polynomial
in the size of ME, then the polynomial-time solvability of ME follows from
the polynomial-time solvability of the linear programming problem [10]. The-
orems 1, 2 imply that P1 can be formulated as follows. Define the vector b° in
RSYT by b°(v) := b(v) for each vertex v in S and b°(v) := 0 for each vertex v
in T. Define the vector u° in RSYT by u°(v) := 0 for each vertex v in S and
u®(v) := u(v) for each vertex v in T

Maximize  dq(S) 4 da(5)
subject to  dq(v (ves)

(veT)

dy(v) + da(v) <b°(v) (veSUT)
(ki &ix) > di(X) (1e{1,2},X CSUT)
&ix €SP(X) (ie{l,2},XCSUT)
wi(a) +waa) <cla) (a€A)

di,dy € RSYT i, wy € Rﬁ.
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If [SUT| < Clogyn for some constant C, then it is not difficult to see that
the size of this linear programming problem is bounded by a polynomial of
the input size of ME. This completes the proof.

4 Mixed Evacuation with Integer Constraints
4.1 Integral arc capacities, supplies, and sink capacities

Here we consider INTEGRAL MIXED EVACUATION (IME for short). This prob-
lem is a variant of ME in which a feasible assignment (dy, da, w1, wy) must sat-
isfy that di,dy € Z5YT and wy,ws € Z_‘?. We prove the NP-completeness of
IME by reduction from DISJOINT PATHS WITH DIFFERENT COSTS [11] (DPDC
for short) defined as follows. In what follows, we do not distinguish a simple
directed path in a directed graph and the set of arcs contained in this directed
path. We are given a directed graph G = (N, L), a source vertex v in N,
and a sink vertex v~ in N. Furthermore, we are given cost vectors £, {5 in ZJLr
and a non-negative integer h in Z,. The goal of DPDC is to decide whether
there exist arc-disjoint simple directed paths Py, P; from v™ to v~ such that
0 (Py) + Lo(Ps) < h.

Theorem 3 (Li, McCormick, and Simchi-Levi [11]) The problem DPDC
is NP-complete even if h = 0 and ¢;(a) € {0,1} for every integer i in {1,2}
and every arc a in L.

In [11, Theorem 1], although the condition that h = 0 and ¢;(a) € {0,1}
for every integer 4 in {1,2} and every arc a in L is not explicitly stated, the
reduction in their proof satisfies this condition. For proving the fact that IME is
in NP, we need the following theorems. For each finite set U and each function
g: 2V = R, g is said to be submodular, if g(X)+g(Y) > g(XUY)+g(XNY)
for every pair of subsets X,Y of U.

Theorem 4 (E.g., [16,9]) Assume that we are given a finite set U and a
submodular function g: 2V — R. Then we can find a subset X of U minimizing
9(X) among all subsets of U in time bounded by a polynomial in |U| and EO,
where EO is the time required to compute g(X) for a subset X of U.

Theorem 5 (Hoppe and Tardos [8]) For every integer i in {1,2} and
every vector w in Rﬁ, the function o}’ is a submodular function.

Theorem 6 (E.g., [13]) For every integer i in {1,2} and every subset X of
SUT, we can compute 0;" (X) in polynomial time.

Assume that we are given an integer i in {1,2}, an allocation d in RSY7T,

and a vector w in R#. Then Theorem 1 implies that d € F;(w) if and only if
o¥(X)—d(X) > 0 for a subset X of SUT minimizing o} (X)—d(X) among all
subsets of S UT'. Thus, since Theorems 5 implies that o}” — d is submodular,
Theorems 4, 6 imply that we can check whether d € F;(w) in polynomial time.
This proof is the same as the proof of the polynomial-time solvability of the

decision version of the quickest transshipment problem in [8].
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Theorem 7 The problem IME is NP-complete.

Proof Theorems 1, 4, 5, and 6 imply that IME is in NP. We prove that IME is
NP-complete by reduction from DPDC. Assume that we are given an instance
of DPDC such that h = 0 and ¢;(a) € {0,1} for every integer ¢ in {1,2} and
every arc a in L. Then we construct an instance of IME as follows. Define
V := N U {s*}, where s* is a new vertex. Define A := L U {ay,as}, where a;
and ay are new arcs from s* to v*. Define S := {s*} and T := {v™ }. Define
¢(a) :=1 for each arc a in A. For each arc a in A, we define

li(a) faelL ly(a) ifaelL
71(a) :=< 0 ifa=a To(a) =<1 ifa=a;
1 if a =as 0 if a = as.

Define b(s*) := 2 and u(v~) := —2. Define ¢; :=1, g2 := 1, and © := 0.

Assume that there are arc-disjoint simple directed paths P;, P> in G from
vT to v~ such that ¢1(Py) + £2(P2) < 0. Since ¢;(a) > 0 for every integer i in
{1,2} and every arc a in L, we have £1(P;) = ¢3(P2) = 0. For each integer i in
{1,2}, we define the directed path P;" in D as the directed path obtained by
adding a; to P;. Since P; and P, are arc-disjoint, Pf and P; are arc-disjoint.
Furthermore, for every integer ¢ in {1,2}, since ¢;(P;) = 0 and 7;(a;) = 0,
we have 7;(P;") = 0. For each integer i in {1,2}, we define d;(s*) := 1 and
d;(v™) := —1. In addition, for each integer ¢ in {1, 2}, we define the vector w;
in Z4 as follows. If a € P;", then we define w;(a) := 1. Otherwise, we define
w;(a) := 0. Since P;" and P; are arc-disjoint, wy(a) + wa(a) < 1 = ¢(a) for
every arc a in A. Thus, (dq,ds, w1, ws) is a feasible assignment.

Next we assume that there exists a feasible assignment (d, da, w1, w2) such
that di,dy € Z5YT and wq,wy € Zf. Since 71(az) = m(a1) = 1, c(ay) =
c(az) = 1, and © = 0, we have d;(s*) = da(s*) = 1. Since ¢(a) = 1 for every
arc a in A, we have wy(a), wz(a) € {0,1} and at most one of wy(a) and wa(a)
is equal to 1 for every arc a in A. For each integer i in {1,2}, we denote by
L; the sets of arcs a in A such that w;(a) = 1. Then L; and Lo are disjoint.
For every integer ¢ in {1, 2}, since d;(s*) = 1 and © = 0, L; contains a simple
directed path L} from s* to v~ such that 7;(L;) = 0 as a subset. Furthermore,
for every integer ¢ in {1,2}, the definition of 7;, we have a; € L}. For each
integer ¢ in {1,2}, let P; be the directed path obtained by removing a; from
L}. Then for every integer i in {1,2}, we have ¢;(P;) = 0. This completes the
proof. a

4.2 Integral supplies and sink capacities

Here we consider problems of finding an integral allocation of supplies and
sink capacities. We consider INTEGRAL MIXED EVACUATION WITH ARC CA-
PACITIES (IMEAC for short) defined as follows. In this problem, we are given
vectors wy, ws € Z4 such that wi(a)+ws(a) < c(a) for every arc a in A. Then
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the goal is to decide whether there exists a feasible assignment (dy, da, w1, we)
such that dyi,dy € Z%“T. We prove that IMEAC can be solved in polynomial
time. In the rest of this section, we define o; := o}’ for each integer ¢ in {1, 2}.
For each finite set U, each function g: 2V — R, and each pair of subsets Py, P,
of RY, we define

P(g) :={z € RY | 2(X) < g(X) for every subset X of U}
Pi+P={x+ylaxechP,yc P}

Then Theorem 1 implies that IMEAC can be formulated as the following prob-
lem P2.

Maximize  dy(S) + dz2(S5)
subject to  dy(v) >0, da2(v) >0 (veS)
di(v) <0, do(v) <0 (veT)
u®(v) <di(v) +da(v) <b°(w) (veSUT)

1
dy, € P(Ol), dy € P(Og), dy,ds € VARES

If the optimal objective value is equal to b(S), then we can conclude that there
exists a desired assignment. Otherwise, there exists no such an assignment.

Assume that we are given an integer ¢ in {1,2}. It is not difficult to see
that o;({v}) = 0 for every vertex v in T. This implies that for every vector
d; in RSYT if d; € P(o;), then d;(v) < 0 for every vertex v in 7. Thus, P2 is
equivalent to the following problem.

Maximize  di(S) + da(S)

subject to  dy(v) >0, d2(v) >0 (veES)
u®(v) < di(v) +da(v) <bB°(v) (veSUT)
dy € P(oy), dy € P(03), dy,dy € Z5VT,

We consider the following problem P3.

Maximize  d1(S) + da(S)
subject to  u°(v) < dy(v) +da(v) <b°(v) (veSUT)
di € P(Ol), doy € P(Og)7 dl,dQ < ZSUT.

Lemma 1 The optimal objective values of P2 and P3 are equal.

Proof For each optimal solution (dy, d2) of P3, we define v(d;, d2) as the num-
ber of pairs (i, v) of an integer ¢ in {1, 2} and a vertex v in .S such that d;(v) < 0.
Let (dy,d2) be an optimal solution of P3 minimizing ~y(d;,ds) among all op-
timal solutions of P3. If v(d1,d2) = 0, then since P3 is a relaxation problem
of P2, (d1,d2) is clearly an optimal solution of P2, and thus the proof is done.
Assume that v(d;,d2) > 1. Let (i,v) be a pair of an integer ¢ in {1,2} and
a vertex v in S such that d;(v) < 0. We assume that ¢ = 1 (we can treat
the case of ¢ = 2 in the same way). For proving this lemma by contradic-
tion, we prove that there exists an optimal solution (d},d5) of P3 such that
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~v(dy,da) > y(d}, d}). This contradicts the definition of (dy, dz), and thus this
completes the proof.

Define the vectors dj,d} in Z5YT as follows. Define d}(v') := d;(v') and
dy(v") = da(v") for each vertex v/ in (S UT) \ {v}. Define d(v) := 0 and
dy(v) := min{dy(v),b(v)}. We first prove that d;(v) + da(v) < dj(v) + db(v).
If d5(v) = da(v), then since dy(v) < 0, this clearly holds. If d2(v) = b(v), then
since dy (v) + da(v) < b(v), this clearly holds. This implies that the objective
value of (dj,d}) is no less than that of (dy,ds2). Thus, what remains is to
prove that (d,d}) is a feasible solution of P3. The above inequality implies
that (df,d}) satisfies the first constraint of P3. In addition, dj clearly belongs
to P(02). Thus, it suffices to prove that d} € P(o1). Assume that this does
not hold. Then there exists a subset of X of S UT such that v € X and
01(X) — di(X) < —dy(v). It is not difficult to see that 01(X \ {v}) < 01(X).
Thus, 01(X \ {v}) < di(X \ {v}), which contradicts that d; € P(o1). This
completes the proof. O

Lemma 2 For every integer ¢ in {1,2} and every subset X of SUT, we have
0; (X) €.

Proof This lemma follows from Theorem 2 and [17, Theorem 12.8]. O
Theorem 8 (E.g., [17, Corollary 46.2c]) Assume that we are given a finite

set U and submodular functions o, 7: 2V — Z such that o(0)) = 7(0)) = 0. Then
we have (P(0) NZY) + (P(r) NZY) = (P(o) + P(m)) NZY.

Precisely speaking, [17, Corollary 46.2c] considers P(c) N RY. However, the
similar result holds for P(o) (see the paragraph after the proof of [17, Theo-
rem 44.6]). Thus, Lemmas 1, 2 and Theorem 8 imply that P2 is equivalent to
the following problem with respect to the optimal objective value.

Maximize  d(S5)
subject to  u®(v) <d(v) <b°(v) (veSUT)
d € P(o1) + P(02), d € Z5VT.
Theorem 9 (E.g., [17, Theorem 44.6]) Assume that we are given a finite

set U and submodular functions o,7: 2V — Z such that o(0) = =(0) = 0.
Then we have P(o) + P(n) = P(o + 7).

In [17, Theorem 44.6], the monotonicity of functions is assumed. However, even
if functions are not monotone, this theorem holds. See also [5, Equation (3.32)].
Theorem 9 implies that P2 is equivalent to the following problem.

Maximize  d(S)
subject to  u°(v) <d(v) <b°(v) (veSUT)
d € P(o1 + 02), d € Z°VT.
We consider the following relaxation problem LP2 of P2.
Maximize  d(S5)
subject to  u®(v) <d(v) <b°(v) (veSUT)
d € P(o1 + 02).
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Lemma 3 The optimal objective values of P2 and LP2 are equal.

Proof Since 01, 02 are submodular functions, 01 + 05 is a submodular function.
Furthermore, Lemma 2 implies that 01(X) + 02(X) € Z for every subset X of
S UT. Thus, this lemma follows from [17, Corollary 44.3¢| (i.e., the box-total
dual integrality of the constraints corresponding to P(o1 + 02)). O

Theorem 10 The problem IMEAC can be solved in polynomial time.

Proof In the same way as the algorithm described after Theorem 6, we can
check in polynomial time whether d € P(o; + 02) for a given vector d in R9YT
by minimizing the submodular function 01 +0; —d. In addition, we can check in
polynomial time whether a given vector d in R°Y7 satisfies the first constraint
of LP2. Thus, we can solve the separation problem for LP2 by using Theorem 4
in polynomial time (if d ¢ P(o; + 02), then a separating hyperplane can be
obtained from a minimizer of 01 +02 —d). This implies that we can solve IMEAC
in polynomial time by using the results of [7] (see also [2, Theorem 6.36]). O

4.3 Unsplittable supplies and sink capacities

Here we consider the following variant of IMEAC called UNSPLITTABLE MIXED
EVACUATION WITH ARC CAPACITIES (UMEAC for short). In this problem,
we are given vectors wy,ws € Z4 such that wy(a) + wa(a) < c(a) for every
arc a in A. The goal is to decide whether there exists a feasible assignment
(dq,da, w1, we) such that di(v),d2(v) € {0,b(v)} for every vertex v in S and
dy(v),da(v) € {0,u(v)} for every vertex v in T'. In what follows, we prove that
UMEAC is NP-complete. Notice that if |S U T| < Clog,n for some constant
C, then it follows from Theorems 1, 4, 5, and 6 that UMEAC can be solved in
polynomial time by enumerating all subsets of S UT. We will prove the NP-
completeness of UMEAC by reduction from PARTITION. In this problem, we are
given a finite set I and a vector 7 in Zi such that 7(I) is even. Then the goal
is to decide whether there exists a subset J of I such that 7(J) =n(I'\ J). It
is well known [6] that PARTITION is NP-complete.

Theorem 11 The problem UMEAC is NP-complete.

Proof In the same ways as the proof of Theorem 7, we can prove that UMEAC
is in NP. We prove that the NP-completeness of UMEAC by reduction from
PARTITION. Assume that we are given an instance of PARTITION, and then we
construct an instance of UMEAC as follows. Define

Vi=A{v | i eI} U{v® v 0], v5}
A= {(Uiavo)a (Uivv.) | i€ I} U {(anUT% (U.,U;)}.
Define S := {v; | i € I'} and T := {v],v3}. Define c(a) := 1, 11(a) := 0, and

To(a) := 0 for each arc a in A. Define b(v;) := m(i) for each element ¢ in I.
Define u(vy) := —n(I) and u(vy) := —m(I). Define ¢; := 1 and ¢z := 1. Define
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© := (m(I)/2) — 1. Lastly, we define the vectors wy,ws in Z% as follows. For
each arc a = (z,y) in A, we define

1 ifx=v°ory=n1° 1 ifz=v"ory=n0°
wi(a) == . wa(a) = .
0 otherwise 0 otherwise.

Assume that there exists a subset J of I such that «(J) = n(I\ J). Then
we define the vectors di, do in Z5YT by

7(i) (resp., 0) if v = v; for some ¢ € J

0 (resp., 7(3)) if v = v, for some ¢ € I'\ J
—m(I) (resp., 0) if v =07

0 (resp., —n(I)) if v =v3.

dy(v) (resp., d2(v)) :=

Since w(J) = w(I\ J) =7(I)/2, (d1,d2, w1, w2) is a feasible assignment.
Conversely, we assume that there exists a feasible assignment (dy, da, w1, w2)
such that d;(v),dz2(v) € {0,b(v)} for every vertex v in S and di(v),d2(v) €
{0,u(v)} for every vertex v in T. Since © = (mw(I)/2) — 1, we have d;(S5) =
w(I)/2 and da(S) = 7(I)/2. Thus, if we define J as the set of elements i in [
such that dy(v;) = b(v;), then w(J) = (I \ J). This completes the proof. 0O

5 Case Study

Here we apply our model to the case study of Minabe town in Wakayama pre-
fecture, which was designated as those in which safe evacuation from tsunami
is difficult when Nankai Trough Earthquake occurs. The population of Minabe
town is about 12000. According to the census data of 2013, the number of peo-
ple living in the tsunami inundation area of this town is 4745. The left figure
of Figure 1 shows the map of this area and the expected height of the tsunami
caused by Nankai Trough Earthquake. The town is surrounded by mountains
of height ranging from 100 to 200 meters.

It is predicted that in twelve minutes after that earthquake occurs, the
first tsunami of height 1m arrives, and then that of height 5m (and of 10m,
respectively) will arrive after 15 minutes (and 24 minutes, respectively). Since
people usually start evacuation five minutes after the earthquake occurs, the
actual time remaining for evacuation is from five to fifteen minutes depending
on where they live. Since there are not enough evacuation buildings in the
center of the town, most of the people will have to go to the outside of the
tsunami inundation area, and thus some of them may not succeed to evacuate
to a safety place.

Under this circumstance, we consider the following experiments. Our com-
putational experiment aims at the inundation area of Minabe town whose
population is 4745. We prepare two scenarios. The first one is that people
should have to evacuate to the outside of the inundation area. The second is
that people should have to evacuate to the outside of the inundation area or
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expected depth of
inundation by tsunami

Fig. 1 (Left) The target area and its inundation depth. (Right) The road network in the
target areas and evacuation sites.

to tsunami evacuation buildings located inside of the inundation area. There
exist six evacuation buildings inside the inundation area (numbered from 1
through 6 in the right figure of Figure 1) whose sizes (i.e., the maximum num-
ber of evacuees that can be accommodated) are 1472, 2000, 1128, 3014, 654
and 454, respectively. We constructed a model of a dynamic network by using
the GIS databases: the fundamental map information (1,/2500, the Geospatial
Information Authority of Japan), the population census (2010, the Ministry
of Internal Affairs and Communications of Japan), and the Japan digital road
map (Japan Digital Road Map Association). The road network has 860 nodes
and 1,106 arcs.

We assign to a sink vertex the capacity of the evacuation site located at the
vertex, i.e., the maximum number of evacuees that the site accommodates. In
our experiment, the capacity of a building was computed based on the avail-
able floor space, assuming that two persons per m? can be accommodated. The
capacity of an evacuation site which is outside the tsunami inundation area is
assumed to be infinity. However, since a hill top may have an upper limit on
the number of evacuees that can be accommodated, its capacity is estimated
based on an aerial photograph. Evacuation by cars is only possible to the out-
side of the tsunami inundation area, and thus is assumed to be not allowed to
tsunami evacuation buildings or hill tops. Since there are not enough tsunami
evacuation buildings, the delay of evacuation is predicted. In our experiment,
we solve ME by using a linear programming solver, CPLEX. Recall that as
discussed in Section 2 (in particular the last paragraph of the section), ME is
to decide whether there exists a feasible assignment (d1, ds, w1, ws) for a given
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O, and that the problem is formulated as a linear programming problem. Fur-
thermore, the minimum evacuation completion time (minimum ©* for which
ME is feasible) can be computed by the binary search.

5.1 Computational Results

We use Gurobi Optimizer (see http://www.gurobi.com/) as the solver to
solve linear programs corresponding to our experimental data.

As seen from Table 1, in each scenario, the result for the case where cars are
allowed to use is much better in the minimum evacuation completion time than
the one where they are not allowed. Comparing the scenario 2 with the scenario
1, the number of evacuees who walked to the evacuation site increased since
evacuation buildings located in the town center can be used in the scenario 2.

Table 1 Computational results of each scenario.

scenario | evacuation time | percentage of car usage | pedestrians only
1 9m40s 68.1% 18m00s
2 9mO05s 31.4% 17m30s

Now let us look at Figure 2 that shows how the number of evacuees that
have completed evacuation increases as time proceeds since the evacuation
starts. It is observed that in the latter half for the whole time period, the num-
ber of evacuees that completed evacuation rapidly increases in both scenarios.
Ideally, it is desired that the number of evacuees that completed evacuation is
large in the early stage. This point should be taken into account in order to
improve the current model.

pedestrian evacuees vehicle evacuees total

pedestrian evacuees vehicle evacuees total

elapsed time (sec)

elapsed time

Fig. 2 (Left) The transition of the accumulated number of evacuees that completed evacu-
ation in the scenario 1. (Right) The transition of the accumulated number of evacuees that
completed evacuation in the scenario 2.

Let us look at the way of evacuation (by walking or a car) at each vertex.
In Figure 3, if the color at each vertex is close to blue, it means that a majority
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Percentage of vehicle evacuation

Percentage of vehicle evacuation &
0% 1005 Y 0% 100t

Fig. 3 (Left) Distribution of evacuees that used cars in the scenario 1. (Right) Distribution
of evacuees that used cars in the scenario 2.

of people used cars for evacuation while on the other hand, if it is close to red,
a majority of people walked for evacuation. Comparing the scenarios 1 and
2, the car usage significantly decreased in the scenario 2 near the coast since
there are evacuation buildings nearby.

Figure 4 shows the number of evacuees that arrived at each evacuation
site, and the ratio of evacuees who arrived at the site by walking and those
who arrived there by a car. In the scenario 1, for most of evacuation sites, the
number of evacuees who arrived by cars exceeds that of evacuees who arrived
by walking. On the other hand in the scenario 1, many evacuees living near
the town center evacuated to evacuation buildings inside the inundation area.

6 Conclusion

In this paper, we introduce the mixed evacuation problem that is motivated
by making a evacuation plan in an emergent situation in which people can
evacuation on foot or by car. We study this problem from the theoretical and
practical viewpoints. An apparent future work from the theoretical viewpoint
is to reveal the computational complexity of the mixed evacuation problem in
the general case. From the practical viewpoint, it is a future work to apply our
model to areas other than Minabe town. There exist many small towns on the
coastal area facing the Pacific Ocean whose local governments are faced with
a serious problem that they have to spend a significant percentage of their
budget for building a tsunami evacuation buildings in order to reduce the loss
of human lives from tsunami triggered by Nankai Trough Earthquake that are
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‘‘‘‘‘‘
izerss

uees by walking are dominant iees by walking are dominant

iees by vehicles iare dominant

uees by vehicles iare dominant

Fig. 4 (Left) The number of evacuees that arrived at each evacuation site, and the ratio
of evacuees who arrived at the site by walking and those who arrived there by a car in the
scenario 1 (Right) The number of evacuees that arrived at each evacuation site, and the
ratio of evacuees who arrived at the site by walking and those who arrived there by a car in
the scenario 2.

expected to occur with 70% within the coming 30 years [18]. In this respect,
we hope that the methods developed for facility location problems will help to
reduce the budget to be used for such disaster prevention.
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