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A Classification of Transitive Sofic Systems 

Motosige Osikawa 

1. Introduction. 

We consider an infinite direct product space wz of copies of a finite set W equipped with the direct 

product topology of the discrete topology on W. Here Z is the set of all integers. We denote by Wj thej-th 

coordinate of an element w in wz for i E Z. A shift {l is a homeomorphism from the compact space wz 
onto itself defined by ( {l{JJ \ = w j+l for j E Zand a point w in wz. A {!-invariant closed subset of wz is 
called a subshift. By a directed graph G = (W, V, i, t) we mean that Wand V are finite sets and i and tare 

mappings from W onto V. We call Wan arc set, Va vertex set, i an initial map and ta terminal map. For a 

directed graph G = (W, V, i, t) an element w of wz is called a G-admissible path if t(wj) = i (Wj+1 ) for allj 

E Z, and we denote by .I; (G) the set of all G-admissible paths. By a labeled graph S = (G, S, A) we mean 

that G = (W, V, i, t) is a directed graph, Sis a finite set and A is a mapping from W onto S. We call Sa 

label set and A a label map. For a labeled graph S = (G, S, A) let A be a mapping from .I; (G) into sz 
defined by (Aw )i = A (wj) for j E Zand w = (wi) in .I; (G). We denote by Q (S) the image set A (.I; 

(G)). It is easy to see that .I; (G) and Q (S) are subshifts. A subshift Q is called an arc-Markov subshift 

and a sofic system if Q = .I; ( G) for a directed graph G and Q = Q ( S) for a la be led graph S, respectively. 

An arc Markov subshift is a Markoy subshift in the usual sense, but the converse is not true. Here we 

adopt the above definition of a sofic system though there are several equivalent definitions. 

For a directed graph G = (W, V, i, t) a finite sequence (w1, w2, ... , Wn) of elements of W is called a 

G-admissible route if t (wj) = i (wj+ 1 ) for j = 1, 2, ... , n-1. We say that a directed graph G = (W, V, i, t) is 

irreducible if for any two vertices v and v' there exist a G-admissible route (w1, w 2, ... , Wn) such that i (w1) 

= v and t(wn) = v'. A labeled graph S = (G, S, A) is said to be irreducible if G is irreducible. A labeled 

graph S = (W, V, i, t, S, A) is said to be right resolving if i (w) = i (w') and A (w) = A (w'), w, w' E W 

imply w = w '. A labeled graph S is said to be right reduced if L ( S) v = L ( S) v', v, v' E V implies v = v ', 

where L ( S) v is the set of all sequences ( A (w1), A (wz), · · ·, A (wn)) for a G-admissible route (w1, w 2, 

... , wn) with i (w1) = v. A labeled graph S is called a right Fischer graph if it is right resolving, right 

reduced and irreducible. A subshift Q is said to be transitive if for any pair of non-empty open subsets A1 

and A2 of Q there exists an integer n such that A1 n {Jn A2 * </>. For a transitive sofic system Q there 
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exists a unique right Fischer graph S with Q = Q ( S) (Fischer[3]). 

For a labeled graph S we denote by <P1 ( S) the set of all G-admissible paths CtJ such that the inverse 

image A-1 (ACtJ) is a one point set {CtJ} itself and we denote by <P2 (E) the difference set .E (G) ""<P1 

( S) . If a transitive sofic system Q = Q ( S) is conjugate to a transitive sofic system Q' = Q ( S ') by a 

conjugacy map 0 then there exists a conjugacy map t from .E (G) onto .E (G') such that &A =A'~ 

(Nasu [6]). Therefore the following lfl'o, lfl'1, lfl'2 and 1f/'3 are subclasses of the all conjugate classes 1f/' of 

transitive sofic systems; 

1fl' o : <P 2 ( S) is empty 

1f/' 1 : <P 2 ( S) is at most finite. 

1f/' 2 : <P 2 ( S ) is at most countable 

1fi'3 : <P 2 (S) is not dense in .E (G). 

Here are inclusions lfl'0 C lfl'1 C lfl'2 C 1f/'3 C lfl'. lfl'0 is nothing but the subclass of all subshifts of finite 

type, 1fl' 1 is the subclass of all near Markov sub shifts ( [2] ) and 1f/' 3 is the subclass of all subshifts almost 

of finite type ( [ 1] ) . In this paper we give characterizations of such subclasses by Fischer graphs. 

2. Theorem and proof. 

Let G be a directed graph. A G-admissible path CtJ is called a G-cycle path if there is a positive integer 

p such that CtJj+p = CtJj for all j E Z. A G-admissible path CtJ is said to go forward (backward) into a cycle if 

there is a positive integer P and an integer N such that CtJ J+p = CtJ j for j ~ N (j ~ N). For a labeled graph 

S = (G, S, A) G-admissible paths CtJ and CtJ' are called S-admissible pair paths if A (CtJj) = A (CtJ' j) for allj 

E Zand CtJk -=l=-CtJ' k for some k. S-admissible pair paths CtJ and CtJ' are said to cross each other if t(CtJk) 

= t(CtJ' k) for some k. 

Lemma 1. Let S = (G, S, A) be a right resolving labeled graph, and let CtJ and CtJ' S-admissible pair paths. 

Then 

(1) If CtJ is a G-cycle path then CtJ' is also G-cycle path. 

(2) If CtJ goes forward into a cycle then CtJ' also goes forward into a cycle. 

(3) If CtJ goes backward into a cycle then CtJ' also goes backward into a cycle. 

Proof. We may only to prove (2) . If CtJ goes forward into a cycle, that is, CtJ j+p = CtJ1; j ~ N for a 

positive integer p and an integer N, then, A ( CtJ i+P) = A ( CtJ j) for j ~ N, and hence A ( CtJ' j+p) = A ( CtJ' i) for 

j ~ N. Since a set {t ( CtJ' jp) : jp ~ N} of vertices is finite there exists integers m and k (m < k) such that t 
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(w' mp) = t(w'kp) = t(w' mp+ <k-mJp). Since 2 is right resolving w' j+ (k-m)p= w' j for j ~ mp. This means that 

uJ' goes forward into a cycle. 

From Lemma 1 we see that for a right resolving labeled graph 2 any 2-admissible pair paths uJ and 

uJ' take one of the following seven cases : 

P-1 : Both are cycle paths and they do not cross each other. 

P-2 : They go both forward and backward into cycles, but they do not cross each other. 

P-3 : They go backward into cycles and cross each other. 

P-4 : They go backward into cycles, but they do not go forward into cycles nor cross each other. 

P-5 : They go forward into cycles, but they do not backward into cycles nor cross each other. 

P-6 : They go neither backward nor forward into cycles and they do not cross each other. 

P-7 : They cross each other but they do not go backward into cycles. 

For a labeled graph 2 = ( G, S, J.. ) G-admissible routes (w1, w2, · · ·, Wn) and (w'i, w' 2, • • ·, w' n) are 

called 2-admissible pair routes if J.. (wj) = J.. (w1) and Wj=I=- w; for allj = 1, 2, ···, n. For a right resolving 

labeled graph 2 we consider the following four kinds of 2 -admissible pair routes (w1, w2, · · ·, Wn) and (w' 1, 

W
1
2, ..• , w'n): 

C-1 : i(w1) = t(wn) and i(w'i) = t(wn). 

C-2: (w1, W2, ···, wp) and (w'i, w'2, ···, w'p) are of type C-1 and (wq, Wq+l, ···, Wn) and (w'q, w'q+l, ···, 

w'n) are of type C-1 for some p and q (I ~ p < q ~ n), and J.. (wp+1) =I=- A (w1). 

C-3: (w1, w2, ···, wp) and (w'i, w'2, ···, w'p) are of type C-1 for somep(I ~P<n) and t(wn) = t(w'J. 

C-4 : (w1, W2, ·· ·, wp) and (w'1, w'2, ···, w'p) are of type C-1, and (wp+1, Wp+2, ·· ·, Wn) and (w'p+i, 

w'p+2, ···, w'n) are of type C-1, and A (wp+1) =I=- J.. (w1 ). 

It is easy to see that an existence of 2-admissible pair routes of type C-4 implies one of type C-2, and 

that an existence of 2-admissible pair routes of type C-2 or type C-3 implies one of type C-1. 

Lemma 2. Let 2 be a right resolving labeled graph. 

( 1) There exist 2 -admissible pair paths of type P-1 if and only if there exist 2-admissible pair routes 

or type C-1. 

(2) There exist 2-admissible pair paths of type P-2 if and only if there exist 2-admissible pair routes 

of type C-2. 

(3) There exist 2-admissible pair paths of type P-3 if and only if there exist 2-admissible pairroutes 
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of type C-3. 

(4) If there exist S-admissible pair paths of type P-7 there exist S-admissible pair routes of type C-3. 

(5) If there exist S-admissible pair paths of type P-4 or P-5 or P-6 or P-7, there exist S-admissible 

pair routes of type C-4. 

(6) If there exist infinite number of S-admissible pair routes of type C-1 there exist 3-admissible pair 

routes of type C-4. 

Proof. (1), (2) and (3) of Lemma 2 follow from Lemma 1. 

( 4) : Let eu and eu' be S -admissible pair paths such that t ( eu k) = t ( u./ k) for some integer k and CtJ j =I= 

w' j for allj ~ k. Since a subset { (i (wj), i (w'1-)): j ~ k} of VX Vis finite there exist integers n and 

m (n < m ~ k) such that i (CtJn) = i (CtJm) and i (w' n) = i (w' m). Then (CtJn, CtJn+l, ... ' CtJm) and (CtJ'n, 

w'n+i. ···, w'm) are of type C-3. 

(5) : Let CtJ and eu' be S-admissible pair paths which do not go backward into cycles. From the similar 

reason as above there exists a decreasing sequence of integers n ( 1) , m ( 1) , n (2) , m (2) , · · ·, n (k) , m 

(k), ··· such that i(CtJn(k)) = i(CtJm(k)), i(CtJ'n(k)) = i(CtJ'm(k)) and /t (CtJn(k)) =I= A (Cum(k)) for all k 

= 1, 2, · · ·. Furthermore from the similar reason there exist positive integers k and k' (k < k ') such 

that i(CtJn(k)) = i(CtJn(k')) and i(CtJ'n(k)) = i(CtJ'n(k')). Then (CtJn(k'), CtJn(k')+l, ···, CtJn(k)-1) and (CtJ'n(k'), 

w'w<k'l+i, ···, CtJ 'n<k)-1) are of type C-4. By the same way we can find S-admissible pair routes of type 

C-4 from S-admissible pair paths which do not go forward into cycles and do not cross each other. 

(6) : Let (w/nl, w/nl, ···, Wp(n)(n)) and (w•/nl, w'/nl, ···, W1p(n/nl), n=l, 2, ... be infinite sequence of 

different S-admissible pair routes of type C-1. Since a subset { (i (w/nl), i (w' 1 <nl): n = 1, 2, · · ·} is 

finite there exist positive integers n and n' (n < n ') such that i (w/nl) = i (w1 (n')) and i (w' /nl) = 
i(w'i(n'))_ Then (w1(nl,w/n\ ···,Wp(n)(nl,w1(n'l,w/n'l, ···,wp(n')(n')) and (w'1(nl,w'/nl, ···,w 1p(n)(n),w'i(n'), 

w '2 <n'l, w 'p <n'l <n'l) are of type C-4. 

From the following theorem we obtain characterizations of each subclasses l[I' 0, l[I' 1, l[I' 2 and l[I' 3 by 

Fischer graphs. 

Theorem. Let S = ( G, S, "'- ) be a Fischer graph. 

(1) <P 1 (S) is uncountable and dense in J; (G). 

(2) <P 2 ( S) is empty if and only if there do not exist S -admissible pair route of type C-1. 

(3) <P 2 ( S) is at most finite if and only if there do not exist S-admissible pair routes of type C-2 nor 

C-3. 

( 4) <P 2 ( S) is at most countable if and only if there do not exist S -admissible pair routes of type C-3 

or C-4. 
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(5) <P 2(5') is dense in .E (G) if and only if there exist 5'-admissible pair routes of type C-3. 

Proof. We need to assume only right resolvingness of 5' to prove (2), (3) and (4), but right 

resolvingness and irreducibility of 5' to prove (5). Though (2) and (5) have been proved in [5] we prove 

them here again for the completeness. 

(1) : For a right Fischer graph 5' there exists a magic word (see [ 4]). G-admissible paths which go 

through a magic word are in <P1 ( E) and dense in .E ( G) . 

(2) : If <P2 ( E) is not empty, by (2), (3), (4) and (5) of Lemma 2 there exist E-admissible pair routes 

of type C-1. Conversely, if there exist E-admissible pair routes of type C-1, by (1) of Lemma 2, 

<P 2 ( E) is not empty. 

(3) : Ifthere do not exist E-admissible pair routes of type C-2 nor C-3, by (2), (3) and (4) of Lemma 2 

there exist E -admissible pair paths only of type P-1. By (5) of Lemma 2 there exist at most finite 

number of E-admissible pair routes of type C-1, and hence <P2(E) is infinite. Conversely, if there 

exist 5'-admissible pair routes of type C-2 or C-3 there exist infinite number of E-admissible pair 

paths of type P-2 or P-3, and hence, <P 2 (E) is infinite. 

(4) : If there do not exist E-admissible pair routes of type C-3 nor C-4 there exist E-admissible pair 

paths only of type P-1 or P-2 by (3) and (5) of Lemma 2. Because there exist a finite number of 

E-admissible pair routes of type C-1 by (6) of Lemma 2 <P2 (E) is at most countable. The converse 

follows from that there exist uncountably many E-admissible pair paths each of which comes from 

5'-admissible pair routes of type C-3 and that there exist uncountably many E-cJ.dmissible pair paths 

each of which moves in 5'-admissible pair routes of type C-4. 

(5) : If <P2(E) is dense in .E (G) then for an arc win W there exist E-admissible pair paths which go 

through w, and they must be of type P-3 or P-7. By (3) and (4) of Lemma 2 there exist E-admissible 

pair routes of type C-3. Conversely if there exist E-admissible pair routes of type C-3 then from the 

irreducibility of G there exist E-admissible pair paths which come from the E-admissible pair routes 

of type C-3 and go through any given G-admissible route. This means that <P2 ( E) is dense in .E (G). 
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