A Classification of Transitive Sofic Systems

Osikawa, Motosige Center for Higher Education, Kyushu University : Professor

https://doi.org/10.15017/4362955

出版情報:經濟學研究. 66(1), pp.1-5, 1999-06-30. 九州大学経済学会 バージョン: 権利関係:

A Classification of Transitive Sofic Systems

Motosige Osikawa

1. Introduction.

We consider an infinite direct product space W^Z of copies of a finite set W equipped with the direct product topology of the discrete topology on W. Here Z is the set of all integers. We denote by ω_j the *j*-th coordinate of an element ω in W^Z for $i \in Z$. A shift σ is a homeomorphism from the compact space W^Z onto itself defined by $(\sigma \omega)_j = \omega_{j+1}$ for $j \in Z$ and a point ω in W^Z . A σ -invariant closed subset of W^Z is called a subshift. By a directed graph G = (W, V, i, t) we mean that W and V are finite sets and *i* and *t* are mappings from W onto V. We call W an arc set, V a vertex set, *i* an initial map and *t* a terminal map. For a directed graph G = (W, V, i, t) an element ω of W^Z is called a G-admissible path if $t(\omega_j) = i(\omega_{j+1})$ for all $j \in Z$, and we denote by $\Sigma(G)$ the set of all G-admissible paths. By a labeled graph $\Xi = (G, S, \lambda)$ we mean that G = (W, V, i, t) is a directed graph, S is a finite set and λ is a mapping from W onto S. We call S a label set and λ a label map. For a labeled graph $\Xi = (G, S, \lambda)$ let Λ be a mapping from $\Sigma(G)$ into S^Z defined by $(\Lambda \omega)_j = \lambda(\omega_j)$ for $j \in Z$ and $\omega = (\omega_j)$ in $\Sigma(G)$. We denote by $\Omega(\Xi)$ the image set $\Lambda(\Sigma(G))$. It is easy to see that $\Sigma(G)$ and $\Omega(\Xi)$ are subshifts. A subshift Ω is called an arc-Markov subshift and a sofic system if $\Omega = \Sigma(G)$ for a directed graph G and $\Omega = \Omega(\Xi)$ for a labeled graph Ξ , respectively. An arc Markov subshift is a Markov subshift in the usual sense, but the converse is not true. Here we adopt the above definition of a sofic system though there are several equivalent definitions.

For a directed graph G = (W, V, i, t) a finite sequence (w_1, w_2, \dots, w_n) of elements of W is called a *G*-admissible route if $t(w_j) = i(w_{j+1})$ for $j = 1, 2, \dots, n-1$. We say that a directed graph G = (W, V, i, t) is irreducible if for any two vertices v and v' there exist a *G*-admissible route (w_1, w_2, \dots, w_n) such that $i(w_1)$ = v and $t(w_n) = v'$. A labeled graph $\Xi = (G, S, \lambda)$ is said to be irreducible if *G* is irreducible. A labeled graph $\Xi = (W, V, i, t, S, \lambda)$ is said to be right resolving if i(w) = i(w') and $\lambda(w) = \lambda(w'), w, w' \in W$ imply w = w'. A labeled graph Ξ is said to be right reduced if $L(\Xi)_v = L(\Xi)_v$; $v, v' \in V$ implies v = v', where $L(\Xi)_v$ is the set of all sequences $(\lambda(w_1), \lambda(w_2), \dots, \lambda(w_n))$ for a *G*-admissible route (w_1, w_2, \dots, w_n) with $i(w_1) = v$. A labeled graph Ξ is called a right Fischer graph if it is right resolving, right reduced and irreducible. A subshift Ω is said to be transitive if for any pair of non-empty open subsets A_1 and A_2 of Ω there exists an integer n such that $A_1 \cap \sigma^n A_2 \neq \phi$. For a transitive sofic system Ω there exists a unique right Fischer graph Ξ with $\Omega = \Omega(\Xi)$ (Fischer[3]).

For a labeled graph Ξ we denote by $\Phi_1(\Xi)$ the set of all *G*-admissible paths ω such that the inverse image $\Lambda^{-1}(\Lambda\omega)$ is a one point set $\{\omega\}$ itself and we denote by $\Phi_2(\Xi)$ the difference set $\Sigma(G) \setminus \Phi_1$ (Ξ) . If a transitive sofic system $\Omega = \Omega(\Xi)$ is conjugate to a transitive sofic system $\Omega' = \Omega(\Xi')$ by a conjugacy map θ then there exists a conjugacy map ξ from $\Sigma(G)$ onto $\Sigma(G')$ such that $\theta\Lambda = \Lambda' \xi$ (Nasu[6]). Therefore the following Ψ_0 , Ψ_1 , Ψ_2 and Ψ_3 are subclasses of the all conjugate classes Ψ of transitive sofic systems;

 $\Psi_0: \Phi_2(\Xi)$ is empty

 $\Psi_1: \Phi_2(\Xi)$ is at most finite.

 $\Psi_2: \Phi_2(\Xi)$ is at most countable

 $\Psi_3: \Phi_2(\Xi)$ is not dense in $\Sigma(G)$.

Here are inclusions $\Psi_0 \subset \Psi_1 \subset \Psi_2 \subset \Psi_3 \subset \Psi$. Ψ_0 is nothing but the subclass of all subshifts of finite type, Ψ_1 is the subclass of all near Markov subshifts ([2]) and Ψ_3 is the subclass of all subshifts almost of finite type ([1]). In this paper we give characterizations of such subclasses by Fischer graphs.

2. Theorem and proof.

Let G be a directed graph. A G-admissible path ω is called a G-cycle path if there is a positive integer p such that $\omega_{j+p} = \omega_j$ for all $j \in Z$. A G-admissible path ω is said to go forward (backward) into a cycle if there is a positive integer p and an integer N such that $\omega_{j+p} = \omega_j$ for $j \ge N(j \le N)$. For a labeled graph $\Xi = (G, S, \lambda)$ G-admissible paths ω and ω ' are called Ξ -admissible paths if λ (ω_j) = λ (ω'_j) for all $j \in Z$ and $\omega_k \neq \omega'_k$ for some k. Ξ -admissible pair paths ω and ω' are said to cross each other if $t(\omega_k) = t(\omega'_k)$ for some k.

Lemma 1. Let $\Xi = (G, S, \lambda)$ be a right resolving labeled graph, and let ω and $\omega' \Xi$ -admissible pair paths. Then

- (1) If ω is a G-cycle path then ω ' is also G-cycle path.
- (2) If ω goes forward into a cycle then ω ' also goes forward into a cycle.
- (3) If ω goes backward into a cycle then ω ' also goes backward into a cycle.

Proof. We may only to prove (2). If ω goes forward into a cycle, that is, $\omega_{j+p} = \omega_p \ j \ge N$ for a positive integer p and an integer N, then, $\lambda \ (\omega_{j+p}) = \lambda \ (\omega_j)$ for $j \ge N$, and hence $\lambda \ (\omega'_{j+p}) = \lambda \ (\omega'_j)$ for $j \ge N$. Since a set $\{t(\omega'_{jp}): jp \ge N\}$ of vertices is finite there exists integers m and $k \ (m < k)$ such that t

- 2 -

 $(\omega'_{mp}) = t(\omega'_{kp}) = t(\omega'_{mp+(k-m)p})$. Since Ξ is right resolving $\omega'_{j+(k-m)p} = \omega'_j$ for $j \ge mp$. This means that ω' goes forward into a cycle.

From Lemma 1 we see that for a right resolving labeled graph Ξ any Ξ -admissible pair paths ω and ω ' take one of the following seven cases :

P-1 : Both are cycle paths and they do not cross each other.

P-2: They go both forward and backward into cycles, but they do not cross each other.

P-3 : They go backward into cycles and cross each other.

P-4 : They go backward into cycles, but they do not go forward into cycles nor cross each other.

P-5: They go forward into cycles, but they do not backward into cycles nor cross each other.

P-6: They go neither backward nor forward into cycles and they do not cross each other.

P-7: They cross each other but they do not go backward into cycles.

For a labeled graph $\Xi = (G, S, \lambda)$ G-admissible routes (w_1, w_2, \dots, w_n) and $(w'_1, w'_2, \dots, w'_n)$ are called Ξ -admissible pair routes if λ $(w_j) = \lambda$ (w'_j) and $w_j \neq w'_j$ for all $j = 1, 2, \dots, n$. For a right resolving labeled graph Ξ we consider the following four kinds of Ξ -admissible pair routes (w_1, w_2, \dots, w_n) and $(w'_1, w'_2, \dots, w'_n)$ and $(w'_1, w'_2, \dots, w'_n)$.

 $C-1: i(w_1) = t(w_n)$ and $i(w'_1) = t(w_n)$.

C-2: (w_1, w_2, \dots, w_p) and $(w'_1, w'_2, \dots, w'_p)$ are of type C-1 and $(w_q, w_{q+1}, \dots, w_n)$ and $(w'_q, w'_{q+1}, \dots, w'_n)$ are of type C-1 for some p and q $(1 \le p < q \le n)$, and $\lambda (w_{p+1}) \ne \lambda (w_1)$.

C-3: (w_1, w_2, \dots, w_p) and $(w'_1, w'_2, \dots, w'_p)$ are of type C-1 for some $p(1 \le p < n)$ and $t(w_n) = t(w'_n)$. C-4: (w_1, w_2, \dots, w_p) and $(w'_1, w'_2, \dots, w'_p)$ are of type C-1, and $(w_{p+1}, w_{p+2}, \dots, w_n)$ and $(w'_{p+1}, w'_{p+2}, \dots, w'_n)$ are of type C-1, and $\lambda (w_{p+1}) \ne \lambda (w_1)$.

It is easy to see that an existence of Ξ -admissible pair routes of type C-4 implies one of type C-2, and that an existence of Ξ -admissible pair routes of type C-2 or type C-3 implies one of type C-1.

Lemma 2. Let Ξ be a right resolving labeled graph.

- There exist *Ξ*-admissible pair paths of type P-1 if and only if there exist *Ξ*-admissible pair routes or type C-1.
- (2) There exist Ξ-admissible pair paths of type P-2 if and only if there exist Ξ-admissible pair routes of type C-2.
- (3) There exist Ξ -admissible pair paths of type P-3 if and only if there exist Ξ -admissible pair routes

of type C-3.

- (4) If there exist Ξ -admissible pair paths of type P-7 there exist Ξ -admissible pair routes of type C-3.
- (5) If there exist *Ξ*-admissible pair paths of type P-4 or P-5 or P-6 or P-7, there exist *Ξ*-admissible pair routes of type C-4.
- (6) If there exist infinite number of *Ξ*-admissible pair routes of type C-1 there exist *Ξ*-admissible pair routes of type C-4.
- Proof. (1), (2) and (3) of Lemma 2 follow from Lemma 1.
 - (4) : Let ω and ω' be Ξ -admissible pair paths such that $t(\omega_k) = t(\omega'_k)$ for some integer k and $\omega_j \neq \omega'_j$ for all $j \leq k$. Since a subset $\{(i(\omega_j), i(\omega'_j)) : j \leq k\}$ of $V \times V$ is finite there exist integers n and m $(n < m \leq k)$ such that $i(\omega_n) = i(\omega_m)$ and $i(\omega'_n) = i(\omega'_m)$. Then $(\omega_n, \omega_{n+1}, \dots, \omega_m)$ and $(\omega'_n, \omega'_{n+1}, \dots, \omega'_m)$ are of type C-3.
 - (5) : Let ω and ω' be Ξ-admissible pair paths which do not go backward into cycles. From the similar reason as above there exists a decreasing sequence of integers n(1), m(1), n(2), m(2), ..., n(k), m(k), ..., w(k), ...,

From the following theorem we obtain characterizations of each subclasses Ψ_0 , Ψ_1 , Ψ_2 and Ψ_3 by Fischer graphs.

Theorem. Let $\Xi = (G, S, \lambda)$ be a Fischer graph.

- (1) $\Phi_1(\Xi)$ is uncountable and dense in $\Sigma(G)$.
- (2) $\Phi_2(\Xi)$ is empty if and only if there do not exist Ξ -admissible pair route of type C-1.
- (3) Φ₂(Ξ) is at most finite if and only if there do not exist Ξ-admissible pair routes of type C-2 nor C-3.
- (4) Φ₂(Ξ) is at most countable if and only if there do not exist Ξ-admissible pair routes of type C-3 or C-4.

- 4 -

(5) $\Phi_2(\Xi)$ is dense in $\Sigma(G)$ if and only if there exist Ξ -admissible pair routes of type C-3.

Proof. We need to assume only right resolvingness of Ξ to prove (2), (3) and (4), but right resolvingness and irreducibility of Ξ to prove (5). Though (2) and (5) have been proved in [5] we prove them here again for the completeness.

- (1): For a right Fischer graph Ξ there exists a magic word (see[4]). G-admissible paths which go through a magic word are in Φ₁(Ξ) and dense in Σ(G).
- (2) : If Φ₂(Ξ) is not empty, by (2), (3), (4) and (5) of Lemma 2 there exist Ξ-admissible pair routes of type C-1. Conversely, if there exist Ξ-admissible pair routes of type C-1, by (1) of Lemma 2, Φ₂(Ξ) is not empty.
- (3) : If there do not exist Ξ-admissible pair routes of type C-2 nor C-3, by (2), (3) and (4) of Lemma 2 there exist Ξ-admissible pair paths only of type P-1. By (5) of Lemma 2 there exist at most finite number of Ξ-admissible pair routes of type C-1, and hence Φ₂(Ξ) is infinite. Conversely, if there exist Ξ-admissible pair routes of type C-2 or C-3 there exist infinite number of Ξ-admissible pair paths of type P-2 or P-3, and hence, Φ₂(Ξ) is infinite.
- (4) : If there do not exist Ξ-admissible pair routes of type C-3 nor C-4 there exist Ξ-admissible pair paths only of type P-1 or P-2 by (3) and (5) of Lemma 2. Because there exist a finite number of Ξ-admissible pair routes of type C-1 by (6) of Lemma 2 Φ₂(Ξ) is at most countable. The converse follows from that there exist uncountably many Ξ-admissible pair paths each of which comes from Ξ-admissible pair routes of type C-3 and that there exist uncountably many Ξ-admissible pair paths each of which moves in Ξ-admissible pair routes of type C-4.
- (5) : If Φ₂(Ξ) is dense in Σ(G) then for an arc w in W there exist Ξ-admissible pair paths which go through w, and they must be of type P-3 or P-7. By (3) and (4) of Lemma 2 there exist Ξ-admissible pair routes of type C-3. Conversely if there exist Ξ-admissible pair routes of type C-3 then from the irreducibility of G there exist Ξ-admissible pair paths which come from the Ξ-admissible pair routes of type C-3 and go through any given G-admissible route. This means that Φ₂(Ξ) is dense in Σ(G).

References

- M. Boyle, B. Kitchens and B.H. Murcus, A note on minimal covers for sofic systems, Proc. Amer. Math. Soc. 95 (1985), 403-411.
- [2] M. Boyle and W. Krieger, Periodic points and automorphisms of the shifts, Trans. Amer. Math. Soc. 302(1987), 125-149.
- [3] R. Fischer, Graphs and symbolic dynamics, In Colloq. Math. Soc. János Bolyai 16, Topics in Information Theory, Keszthely. Hungary 1975.
- [4] R. Fischer, Sofic systems and graphs, Monatsh. Math. 80(1975), 179-186.
- [5] M. Fujiwara and M. Osikawa, Sofic systems and flow equivalence, Math. Rep. Coll. Gen. Ed. Kyushu Univ. 16(1987), 17-27.
- [6] M. Nasu, Topological conjugacy for sofic systems, Ergod. Th. and Dynam. Sys. 6 (1986), 265-280.

(Professor of Research Center for Higher Education, Kyushu University)

- 5 -