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A Classification of Transitive Sofic Systems

Motosige Osikawa

1. Introduction.

We consider an infinite direct product space W7 of copies of a finite set W equipped with the direct
product topology of the discrete topology on W. Here Z is the set of all integers. We denote by w; the j-th
coordinate of an element @ in W% for i € Z. A shift ¢ is a homeomorphism from the compact space W?
onto itself defined by (0w); = w j4; forj € Z and a point w in W?. A o-invariant closed subset of WZ is
called a subshift. By a directed graph G = (W, V, 1, t) we mean that W and V are finite sets and ¢ and ¢ are
mappings from W onto V. We call W an arc set, V a vertex set, 7 an initial map and ¢ a terminal map. For a
directed graph G = (W, V, 4, t) an element @ of WZ is called a G-admissible path if ¢ (w;) = i (w},,) for allj
€ Z, and we denote by X (G) the set of all G-admissible paths. By a labeled graph £'=(G, S, 1) we mean
that G = (W, V, i, ¢) is a directed graph, S is a finite set and A is a mapping from W onto S. We call S a
label set and A a label map. For a labeled graph Z=(G, S, 1) let A be a mapping from X (G) into S?
defined by (Aw); =A (@;) forj € Zand @ = (w)) in £ (G). We denote by Q (Z) the image set A (X
(G)). Ttis easy to see that £ (G) and Q (=) are subshifts. A subshift Q2 is called an arc-Markov subshift
and a sofic system if Q=X (G) for a directed graph G and Q= (Z') for a labeled graph =, respectively.
An arc Markov subshift is a Markoy subshift in the usual sense, but the converse is not true. Here we
adopt the above definition of a sofic system though there are several equivalent definitions.

For a directed graph G = (W, V, 4, t) a finite sequence (w:, w,, **, w,) of elements of W is called a
G-admissible route if ¢ (w;) = i (w;,,) forj = 1, 2, -, n-1. We say that a directed graph G = (W, V, i, t) is
irreducible if for any two vertices v and v’ there exist a G-admissible route (w,, w,, ***, w,) such that 7 (w,)
= p and t(w,) = v". A labeled graph &= (G, S, A ) is said to be irreducible if G is irreducible. A labeled
graph Z= (W, V, i, t, S, 2) is said to be right resolving if 1 (w)=i(w’) and 2 (w) =2 W), w, w € W
imply w = w’. A labeled graph £ is said to be right reduced if L(=Z), = L(Z),, v, v’ € V implies v = v’,
where L(Z), is the set of all sequences (2 (wy), A (wy), **-, A (w,)) for a G-admissible route (w-, w,,
=+, w,) with i(w,) = v. A labeled graph = is called a right Fischer graph if it is right resolving, right
reduced and irreducible. A subshift Q is said to be transitive if for any pair of non-empty open subsets A,

and A, of Q there exists an integer # such that A; N o” A, @. For a transitive sofic system Q there
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exists a unique right Fischer graph = with Q=Q (&) (Fischer[3]).

For a labeled graph = we denote by @, (Z') the set of all G-admissible paths @ such that the inverse
image A"'(Aw) is a one point set {w} itself and we denote by @,(Z) the difference set = (G)\ @,
(&). If a transitive sofic system Q=0 (&) is conjugate to a transitive sofic system Q'=Q (Z’) by a
conjugécy map & then there exists a conjugacy map & from X (G) onto X (G’) such that A =A"&
(Nasu[6]). Therefore the following ¥y, ¥, ¥, and ¥; are subclasses of the all conjugate classes ¥ of

transitive sofic systems;

Vy: @,(F) is empty
¥, : @,(F) is at most finite.
¥, : @,(F) is at most countable

V,: @,(Z) is not dense in 2 (G).

Here are inclusions ¥, C¥; C¥, C V¥, C¥. V¥,is nothing but the subclass of all subshifts of finite
type, ¥, is the subclass of all near Markov subshifts ([2]) and V5 is the subclass of all subshifts almost

of finite type ([1]). In this paper we give characterizations of such subclasses by Fischer graphs.

2. Theorem and proof.

Let G be a directed graph. A G-admissible path @ is called a G-cycle path if there is a positive integer
p such that w;,y=w; for allj € Z. A G-admissible path @ is said to go forward (backward) into a cycle if
there is a positive integer p and an integer N such that w;,, =, forj 2 NG = N). For a labeled graph
Z=(G, S, 1) G-admissible paths @ and «’ are called E-admissible pair paths if 2 (w;) =2 (@’;) forallj
€ Z and w, # @’ for some k. F-admissible pair paths @ and @’ are said to cross each other if ¢ (w;)

= t(w’,) for some k.

Lemma 1. Let £=(G, S, A) be a right resolving labeled graph, and let @ and @’ Z-admissible pair paths.
Then

(1) If w isa G-cycle path then @’ is also G-cycle path.

(2) If w goes forward into a cycle then @’ also goes forward into a cycle.

(3) If w goes backward into a cycle then @’ also goes backward into a cycle.

Proof. We may only to prove (2). If w goes forward into a cycle, that is, w;, =w; j = N for a
positive integer p and an integer N, then, A (wj,,) = A (w;) forj = N, and hence 2 (@’ 1) = A (@’;) for

7= N. Since aset {t(c’j,):jp = N} of vertices is finite there exists integers m and & (m < k) such that ¢
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(@ pp) = 1 (@) = (W mps —mp) - Since = is right resolving @’ s g—myp =@’ ;jfor j = mp. This means that

@’ goes forward into a cycle.

From Lemma 1 we see that for a right resolving labeled graph = any =-admissible pair paths @ and

@’ take one of the following seven cases :

P-1 : Both are cycle paths and they do not cross each other.

P-2 : They go both forward and backward into cycles, but they do not ;:ross each other.

P-3 : They go backward into cycles and cross each other. v

P-4 : They go backward into cycles, but they do not go forward into cycles nor cross each other.
P-5 : They go forward into cycles, but they do not backward into cycles nor cross each other.
P-6 : They go neither backward nor forward into cycles and they do not cross each other.

P-7 : They cross each other but they do not go backward into cycles.

For a labeled graph Z=(G, S, 2) G-admissible routes (w., ws, -, w,) and W'y, w’y, ==+, w’,) are
called Z-admissible pair routes if A (w;)=A (w’;) and w; #+ w’; for allj = 1, 2, ---, n. For a right resolving
labeled graph = we consider the following four kinds of Z-admissible pair routes (w., w,, ***, w,) and (w'y,

w’Zy T w’n):

C-1:i(wy) = tlw,) and i (w’) = t(w,).

C-2: (w1, we, =, w,) and (w'y, w's, =+, w’) are of type C-1 and (w,, wys1, ***, w,) and (W, w1, -,
w’,) are of type C-1 for some p and ¢ (1 < p g =), and 2 (wy41) F 2 (w,).

C-3: (wy, wy, -, w,) and W'y, w’s, **, w’,) are of type C-1 for some p (1 = p<n) and t(w,) = tw’,).

C-4 : (w1, ws, -, wy) and (w’;, w’, -, w)) are of type C-1, and (Wps1, Wpsz, ***, Wy) and (W1,

We2, ", W) are of type C-1, and A (wpsy) + 2 (wy).

It is easy to see that an existence of =-admissible pair routes of type C—4 implies one of type C-2, and

that an existence of =-admissible pair routes of type C-2 or type C-3 implies one of type C-1.

Lemma 2. Let = be a right resolving labeled graph.
(1) There exist =-admissible pair paths of type P~1 if and only if there exist Z-admissible pair routes
or type C-1.
(2) There exist =-admissible pair paths of type P-2 if and only if there exist Z-admissible pair routes
of type C-2.

(3) There exist Z-admissible pair paths of type P-3 if and only if there exist Z-admissible pair routes
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of type C-3.
(4) If there exist =-admissible pair paths of type P-7 there exist =-admissible pair routes of type C-3.

(5) If there exist Z-admissible pair paths of type P-4 or P-5 or P-6 or P-7, there exist Z-admissible

pair routes of type C—4.

(6) If there exist infinjte number of Z-admissible pair routes of type C-1 there exist Z-admissible pair

routes of type C—4.

Proof. (1), (2) and (3) of Lemma 2 follow from Lemma 1.
(4) :Let @ and @’ be Z-admissible pair paths such that ¢ (w;) = t(@’;) for some integer k and w;#
@’;for allj < k. Since a subset {(G(w,), i{w’;)):j = k} of VXV is finite there exist integers # and
m (n <m = k) suchthati(w,) =i(w,) andi(w’,) =i(@w’,). Then (w,, Wye1, -, @, and (@,

@yry, 7, @) are of type C-3.

(5) :Let w and @' be E-admissible pair paths which do not go backward into cycles. From the similar

reason as above there exists a decreasing sequence of integers # (1), m(1), n(2), m(2), ---,n(k), m
(&), -+ such that i (w,g) = ({(Wnw), i (@ ) = (@ nw) and 2 (Wue) F A (@) forall k
= 1, 2, ---. Furthermore from the similar reason there exist positive integers k2 and 2’ (¢ < k’) such
that i (@) = i (@aw)) and i (@’ra) = 1(@'wer). Then (@uw), Wueey+1, 5 @ugpy-1) and (@ neey,
@D ugy+1, 7y @ wy—1) are of type C—4. By the same way we can find =-admissible pair routes of type
C-4 from E-admissible pair paths which do not go forward into cycles and do not cross each other.
6) : Let ™, wy™, =+, wyen™) and W™, w2®, -+, Wy ™), n=1, 2, -+ be infinite sequence of
different Z-admissible pair routes of type C-1. Since a subset {(G(w:“), i(w'\*): n=1, 2, -} is
finite there exist positive integers # and #n’(# < »’) such that ¢ w,*) = {(w,*") and i’ @)=

(n) @) A o)

i@ ). Then ™, ws™, =, wyen ™, w1™, W™, -+, Wy ™) and W' ®, W™, -, Wyen ,

W', W'y ) are of type C—4.

From the following theorem we obtain characterizations of each subclasses ¥, ¥, ¥, and ¥; by

{ Fischer graphs. -

Theorem. Let ='=(G, S, 1) be a Fischer graph.
(1) @,(&) is uncountable and dense in X (G).
(2) @,(Z) is empty if and only if there do not exist =Z-admissible pair route of type C-1.
(3) @,(Z) is at most finite if and only if there do not exist Z-admissible pair routes of type C-2 nor
C-3.
(4) @,(Z) is at most countable if and only if there do not exist Z-admissible pair routes of type C-3

% or C—4.
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(5) @,(%) is dense in X (G) if and only if there exist Z-admissible pair routes of type C-3.

Proof. We need to assume only right resolvingness of = to prove (2), (3) and (4), but right
resolvingness and irreducibility of = to prove (5). Though (2) and (5) have been proved in [5] we prove
them here again for the completeness.

(1) : For a right Fischer graph = there exists a magic word (see[4]). G-admissible paths which go
through a magic word are in @; (Z) and dense in X (G).

(2) :If @,(Z) is not empty, by (2), (3), (4) and (5) of Lemma 2 there exist =Z-admissible pair routes
of type C-1. Conversely, if there exist Z-admissible pair routes of type C-1, by (1) of Lemma 2,
@,(E) is not empty.

(3) :If there do not exist Z-admissible pair routes of type C-2 nor C-3, by (2), (3) and (4) of Lemma 2
there exist = -admissible pair paths only of type P~1. By (5) of Lemma 2 there exist at most finite
number of Z-admissible pair routes of type C-1, and hence @,(=) is infinite. Conversely, if there
exist Z-admissible pair routes of type C-2 or C-3 there exist infinite number of Z-admissible pair
paths of type P-2 or P-3, and hence, ®,(=) is infinite.

(4) : If there do not exist Z-admissible pair routes of type C-3 nor C—4 there exist Z-admissible pair
paths only of type P-1 or P-2 by (3) and (5) of Lemma 2. Because there exist a finite number of
Z-admissible pair routes of type C-1 by (6) of Lemma 2 @;(Z) is at most countable. The converse
follows from that there exist uncountably many =-admissible pair paths each of which comes from
Z-admissible pair routes of type C-3 and that there exist uncountably many =-admissible pair paths
each of which moves in Z-admissible pair routes of type C—4.

(5) :If @,(%) is dense in T (G) then for an arc w in W there exist Z-admissible pair paths which go
through w, and they must be of type P-3 or P-7. By (3) and (4) of Lemma 2 there exist Z-admissible
pair routes of type C-3. Conversely if there exist Z-admissible pair routes of type C-3 then from the
irreducibility of G there exist Z-admissible pair paths which come from the Z'-admissible pair routes

of type C—3 and go through any given G-admissible route. This means that @,(5) is dense in X (G).
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