九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Classification of Transitive Sofic Systems

Osikawa，Motosige
Center for Higher Education，Kyushu University ：Professor
https：／／doi．org／10．15017／4362955

出版情報：經濟學研究．66（1），pp．1－5，1999－06－30．九州大学経済学会 バージョン：
権利関係：

A Classification of Transitive Sofic Systems

Motosige Osikawa

1. Introduction.

We consider an infinite direct product space W^{Z} of copies of a finite set W equipped with the direct product topology of the discrete topology on W. Here Z is the set of all integers. We denote by ω_{j} the j-th coordinate of an element ω in W^{Z} for $i \in Z$. A shift σ is a homeomorphism from the compact space W^{Z} onto itself defined by $(\sigma \omega)_{j}=\omega_{j+1}$ for $j \in Z$ and a point ω in W^{Z}. A σ-invariant closed subset of W^{Z} is called a subshift. By a directed graph $G=(W, V, i, t)$ we mean that W and V are finite sets and i and t are mappings from W onto V. We call W an arc set, V a vertex set, i an initial map and t a terminal map. For a directed graph $G=(W, V, i, t)$ an element ω of W^{z} is called a G-admissible path if $t\left(\omega_{j}\right)=i\left(\omega_{j+1}\right)$ for all j $\in Z$, and we denote by $\Sigma(G)$ the set of all G-admissible paths. By a labeled graph $\Xi=(G, S, \lambda)$ we mean that $G=(W, V, i, t)$ is a directed graph, S is a finite set and λ is a mapping from W onto S. We call S a label set and λ a label map. For a labeled graph $\Xi=(G, S, \lambda)$ let Λ be a mapping from $\Sigma(G)$ into S^{Z} defined by $(\Lambda \omega)_{\mathrm{j}}=\lambda\left(\omega_{j}\right)$ for $j \in Z$ and $\omega=\left(\omega_{\mathrm{j}}\right)$ in $\Sigma(G)$. We denote by $\Omega(\Xi)$ the image set Λ (Σ (G)). It is easy to see that $\Sigma(G)$ and $\Omega(\Xi)$ are subshifts. A subshift Ω is called an arc-Markov subshift and a sofic system if $\Omega=\Sigma(G)$ for a directed graph G and $\Omega=\Omega(\Xi)$ for a labeled graph Ξ, respectively. An arc Markov subshift is a Markoy subshift in the usual sense, but the converse is not true. Here we adopt the above definition of a sofic system though there are several equivalent definitions.

For a directed graph $G=(W, V, i, t)$ a finite sequence $\left(w_{1}, w_{2}, \cdots, w_{n}\right)$ of elements of W is called a G-admissible route if $t\left(w_{j}\right)=i\left(w_{j+1}\right)$ for $j=1,2, \cdots, n$-1. We say that a directed graph $G=(W, V, \mathrm{i}, \mathrm{t})$ is irreducible if for any two vertices v and v^{\prime} there exist a G-admissible route ($w_{1}, w_{2}, \cdots, w_{n}$) such that $i\left(w_{1}\right)$ $=v$ and $t\left(w_{n}\right)=v^{\prime}$. A labeled graph $\Xi=(G, S, \lambda)$ is said to be irreducible if G is irreducible. A labeled graph $\Xi=(W, V, i, t, S, \lambda)$ is said to be right resolving if $i(w)=i\left(w^{\prime}\right)$ and $\lambda(w)=\lambda\left(w^{\prime}\right), w, w^{\prime} \in W$ imply $w=w^{\prime}$. A labeled graph Ξ is said to be right reduced if $L(\Xi)_{v}=L(\Xi)_{v^{\prime}}, v, v^{\prime} \in V$ implies $v=v^{\prime}$, where $L(\Xi)_{v}$ is the set of all sequences $\left(\lambda\left(w_{1}\right), \lambda\left(w_{2}\right), \cdots, \lambda\left(w_{n}\right)\right.$) for a G-admissible route (w_{1}, w_{2}, $\left.\cdots ; w_{n}\right)$ with $i\left(w_{1}\right)=v$. A labeled graph Ξ is called a right Fischer graph if it is right resolving, right reduced and irreducible. A subshift Ω is said to be transitive if for any pair of non-empty open subsets A_{1} and A_{2} of Ω there exists an integer n such that $A_{1} \cap \sigma^{n} A_{2} \neq \phi$. For a transitive sofic system Ω there
exists a unique right Fischer graph Ξ with $\Omega=\Omega(\Xi)$（Fischer［3］）．
For a labeled graph Ξ we denote by $\Phi_{1}(\Xi)$ the set of all G－admissible paths ω such that the inverse image $\Lambda^{-1}(\Lambda \omega)$ is a one point set $\{\omega\}$ itself and we denote by $\Phi_{2}(\Xi)$ the difference set $\Sigma(G) \backslash \Phi_{1}$ （ Ξ ）．If a transitive sofic system $\Omega=\Omega(\Xi)$ is conjugate to a transitive sofic system $\Omega^{\prime}=\Omega$（ Ξ^{\prime} ）by a conjugacy map θ then there exists a conjugacy map ξ from $\Sigma(G)$ onto $\Sigma\left(G^{\prime}\right)$ such that $\theta \Lambda=\Lambda^{\prime} \xi$ （Nasu［6］）．Therefore the following $\Psi_{0}, \Psi_{1}, \Psi_{2}$ and Ψ_{3} are subclasses of the all conjugate classes Ψ of transitive sofic systems；

$$
\begin{aligned}
& \Psi_{0}: \Phi_{2}(\Xi) \text { is empty } \\
& \Psi_{1}: \Phi_{2}(\Xi) \text { is at most finite. } \\
& \Psi_{2}: \Phi_{2}(\Xi) \text { is at most countable } \\
& \Psi_{3}: \Phi_{2}(\Xi) \text { is not dense in } \Sigma(G) .
\end{aligned}
$$

Here are inclusions $\Psi_{0} \subset \Psi_{1} \subset \Psi_{2} \subset \Psi_{3} \subset \Psi . \Psi_{0}$ is nothing but the subclass of all subshifts of finite type，Ψ_{1} is the subclass of all near Markov subshifts（［2］）and Ψ_{3} is the subclass of all subshifts almost of finite type（［1］）．In this paper we give characterizations of such subclasses by Fischer graphs．

2．Theorem and proof．

Let G be a directed graph．A G－admissible path ω is called a G－cycle path if there is a positive integer p such that $\omega_{j+p}=\omega_{j}$ for all $j \in Z$ ．A G－admissible path ω is said to go forward（backward）into a cycle if there is a positive integer p and an integer N such that $\omega_{j+\mathrm{p}}=\omega_{j}$ for $j \geqq N(j \leqq N)$ ．For a labeled graph $\Xi=(G, S, \lambda) G$－admissible paths ω and ω^{\prime} are called Ξ－admissible pair paths if $\lambda\left(\omega_{j}\right)=\lambda\left(\omega_{j}^{\prime}\right)$ for all j $\in Z$ and $\omega_{k} \neq \omega^{\prime}{ }_{k}$ for some k ．Ξ－admissible pair paths ω and ω^{\prime} are said to cross each other if $t\left(\omega_{k}\right)$ $=t\left(\omega^{\prime}{ }_{k}\right)$ for some k ．

Lemma 1．Let $\Xi=(G, S, \lambda)$ be a right resolving labeled graph，and let ω and $\omega^{\prime} \Xi$－admissible pair paths． Then
（1）If ω is a G－cycle path then ω^{\prime} is also G－cycle path．
（2）If ω goes forward into a cycle then ω^{\prime} also goes forward into a cycle．
（3）If ω goes backward into a cycle then ω^{\prime} also goes backward into a cycle．

Proof．We may only to prove（2）．If ω goes forward into a cycle，that is，$\omega_{j+p}=\omega_{j} j \geqq N$ for a positive integer p and an integer N ，then，$\lambda\left(\omega_{j+p}\right)=\lambda\left(\omega_{j}\right)$ for $j \geqq N$ ，and hence $\lambda\left(\omega_{j+p}^{\prime}\right)=\lambda\left(\omega_{j}^{\prime}\right)$ for $j \geqq N$ ．Since a set $\left\{t\left(\omega_{j p}^{\prime}\right): j p \geqq \dot{N}\right\}$ of vertices is finite there exists integers m and k（ $m<k$ ）such that t
$\left(\omega_{m p}^{\prime}\right)=t\left(\omega_{k p}^{\prime}\right)=t\left(\omega_{m p+(k-m) p}^{\prime}\right)$. Since Ξ is right resolving $\omega_{j+(k-m) p}^{\prime}=\omega_{j}^{\prime}{ }_{j}$ for $j \geqq m p$. This means that ω^{\prime} goes forward into a cycle.

From Lemma 1 we see that for a right resolving labeled graph Ξ any Ξ-admissible pair paths ω and ω ' take one of the following seven cases :

P-1 : Both are cycle paths and they do not cross each other.
P-2 : They go both forward and backward into cycles, but they do not cross each other.
P-3: They go backward into cycles and cross each other.
P-4 : They go backward into cycles, but they do not go forward into cycles nor cross each other.
P-5 : They go forward into cycles, but they do not backward into cycles nor cross each other.
P-6 : They go neither backward nor forward into cycles and they do not cross each other.
P-7 : They cross each other but they do not go backward into cycles.

For a labeled graph $\Xi=(G, S, \lambda) G$-admissible routes ($w_{1}, w_{2}, \cdots, w_{n}$) and ($w_{1}^{\prime}, w_{2}^{\prime}, \cdots, w_{n}^{\prime}$) are called Ξ-admissible pair routes if $\lambda\left(w_{j}\right)=\lambda\left(w_{j}^{\prime}\right)$ and $w_{j} \neq w_{j}^{\prime}$ for all $j=1,2, \cdots, n$. For a right resolving labeled graph Ξ we consider the following four kinds of Ξ-admissible pair routes ($w_{1}, w_{2}, \cdots, w_{n}$) and (w_{1}, $\left.w_{2}^{\prime}, \cdots, w_{n}^{\prime}\right)$:
$\mathrm{C}-1: i\left(w_{1}\right)=t\left(w_{n}\right)$ and $i\left(w_{1}^{\prime}\right)=t\left(w_{n}\right)$.
C-2 : ($w_{1}, w_{2}, \cdots, w_{p}$) and ($w_{1}^{\prime}, w_{2}^{\prime}, \cdots, w_{p}^{\prime}$) are of type C-1 and ($w_{q}, w_{q+1}, \cdots, w_{n}$) and ($w_{q}^{\prime}, w_{q+1}^{\prime}, \cdots$, $\left.w_{n}^{\prime}\right)$ are of type $\mathrm{C}-1$ for some p and $q(1 \leqq p<q \leqq n)$, and $\lambda\left(w_{p+1}\right) \neq \lambda\left(w_{1}\right)$.
C-3: $\left(w_{1}, w_{2}, \cdots, w_{p}\right)$ and ($\left.w_{1}^{\prime}, w_{2}^{\prime}, \cdots, w_{p}^{\prime}\right)$ are of type $\mathrm{C}-1$ for some $p(1 \leqq p<n)$ and $t\left(w_{n}\right)=t\left(w_{n}^{\prime}\right)$.
$\mathrm{C}-4:\left(w_{1}, w_{2}, \cdots, w_{p}\right)$ and ($w_{1}^{\prime}, w_{2}^{\prime}, \cdots, w_{p}^{\prime}$) are of type $\mathrm{C}-1$, and ($w_{p+1}, w_{p+2}, \cdots, w_{n}$) and (w_{p+1}^{\prime}, $\left.w_{p+2}^{\prime}, \cdots, w_{n}^{\prime}\right)$ are of type $\mathrm{C}-1$, and $\lambda\left(w_{p+1}\right) \neq \lambda\left(w_{1}\right)$.

It is easy to see that an existence of Ξ-admissible pair routes of type $\mathrm{C}-4$ implies one of type $\mathrm{C}-2$, and that an existence of Ξ-admissible pair routes of type $\mathrm{C}-2$ or type $\mathrm{C}-3$ implies one of type $\mathrm{C}-1$.

Lemma 2. Let Ξ be a right resolving labeled graph.
(1) There exist Ξ-admissible pair paths of type $P-1$ if and only if there exist Ξ-admissible pair routes or type $\mathrm{C}-1$.
(2) There exist Ξ-admissible pair paths of type P-2 if and only if there exist Ξ-admissible pair routes of type $\mathrm{C}-2$.
(3) There exist Ξ-admissible pair paths of type P-3 if and only if there exist Ξ-admissible pair routes
of type $\mathrm{C}-3$ ．
（4）If there exist Ξ－admissible pair paths of type $P-7$ there exist Ξ－admissible pair routes of type $\mathrm{C}-3$ ．
（5）If there exist Ξ－admissible pair paths of type $\mathrm{P}-4$ or $\mathrm{P}-5$ or $\mathrm{P}-6$ or $\mathrm{P}-7$ ，there exist Ξ－admissible pair routes of type C－4．
（6）If there exist infinite number of Ξ－admissible pair routes of type $C-1$ there exist Ξ－admissible pair routes of type $\mathrm{C}-4$ ．

Proof．（1），（2）and（3）of Lemma 2 follow from Lemma 1.
（4）：Let ω and ω^{\prime} be Ξ－admissible pair paths such that $t\left(\omega_{k}\right)=t\left(\omega^{\prime}{ }_{k}\right)$ for some integer k and $\omega_{j} \neq$ $\omega^{\prime}{ }_{j}$ for all $j \leqq k$ ．Since a subset $\left\{\left(i\left(\omega_{j}\right), i\left(\omega_{j}^{\prime}\right)\right): j \leqq k\right\}$ of $V \times V$ is finite there exist integers n and $m(n<m \leqq k)$ such that $i\left(\omega_{n}\right)=i\left(\omega_{m}\right)$ and $i\left(\omega_{\mathrm{n}}^{\prime}\right)=i\left(\omega_{m}^{\prime}\right)$ ．Then（ $\omega_{n}, \omega_{n+1}, \cdots, \omega_{m}$ ）and（ ω_{n}^{\prime} ， $\omega^{\prime}{ }_{n+1}, \cdots, \omega_{m}^{\prime}$ ）are of type $\mathrm{C}-3$ ．
（5）：Let ω and ω^{\prime} be Ξ－admissible pair paths which do not go backward into cycles．From the similar reason as above there exists a decreasing sequence of integers $n(1), m(1), n(2), m(2), \cdots, n(k), \mathrm{m}$ $(k), \cdots$ such that $i\left(\omega_{n(k)}\right)=i\left(\omega_{m(k)}\right), i\left(\omega_{n(k)}^{\prime}\right)=i\left(\omega_{m(k)}^{\prime}\right)$ and $\lambda\left(\omega_{n(k)}\right) \neq \lambda\left(\omega_{m(k)}\right)$ for all k $=1,2, \cdots$ ．Furthermore from the similar reason there exist positive integers k and $k^{\prime}\left(k<k^{\prime}\right)$ such that $i\left(\omega_{n(k)}\right)=i\left(\omega_{n\left(k^{\prime}\right)}\right)$ and $i\left(\omega_{n(k)}^{\prime}\right)=i\left(\omega_{n\left(k^{\prime}\right)}^{\prime}\right)$ ．Then $\left(\omega_{n\left(k^{\prime}\right)}, \omega_{n\left(k^{\prime}\right)+1}, \cdots, \omega_{n(k)-1}\right)$ and $\left(\omega_{n\left(k^{\prime}\right)}^{\prime}\right.$ ， $\left.\omega_{n\left(k^{\prime}+1\right.}^{\prime}, \cdots, \omega_{n(k)-1}^{\prime}\right)$ are of type $\mathrm{C}-4$ ．By the same way we can find Ξ－admissible pair routes of type C－4 from E－admissible pair paths which do not go forward into cycles and do not cross each other．
（6）：Let $\left(w_{1}^{(n)}, w_{2}^{(n)}, \cdots, w_{p(n)}^{(n)}\right)$ and $\left(w_{1}^{\prime}{ }^{(n)}, w_{2}^{\prime(n)}, \cdots, w_{p(n)}^{\prime}{ }^{(n)}\right), n=1,2, \cdots$ be infinite sequence of different Ξ－admissible pair routes of type C－1．Since a subset $\left\{\left(i\left(w_{1}{ }^{(n)}\right), i\left(w_{1}^{\prime}{ }^{(n)}\right): n=1,2, \cdots\right\}\right.$ is finite there exist positive integers n and $n^{\prime}\left(n<n^{\prime}\right)$ such that $i\left(w_{1}^{(n)}\right)=i\left(w_{1}^{\left(n^{\prime}\right)}\right)$ and $i\left(w_{1}^{\prime}{ }^{(n)}\right)=$ $i\left(w_{1}^{\prime}{ }^{\left(n^{\prime}\right)}\right)$ ．Then $\left(w_{1}^{(n)}, w_{2}^{(n)}, \cdots, w_{p(n)^{(n)}}, w_{1}^{\left(n^{\prime}\right)}, w_{2}^{\left(n^{\prime}\right)}, \cdots, w_{p\left(n^{\prime}\right)}^{\left(n^{\prime}\right)}\right)$ and $\left(w_{1}^{\prime}{ }^{(n)}, w_{2}^{\prime(n)}, \cdots, w_{p(n)}^{\prime}{ }^{(n)}, w_{1}^{\prime}{ }^{\left(n^{\prime}\right)}\right.$ ， $w_{2}^{\prime}\left(n^{\prime}\right), w_{p\left(n^{\prime}\right)}^{\prime}\left(n^{\prime}\right)$ are of type C－4．

From the following theorem we obtain characterizations of each subclasses $\Psi_{0}, \Psi_{1}, \Psi_{2}$ and Ψ_{3} by Fischer graphs．

Theorem．Let $\Xi=(G, S, \lambda)$ be a Fischer graph．
（1）$\Phi_{1}(\Xi)$ is uncountable and dense in $\Sigma(G)$ ．
（2）$\Phi_{2}(\Xi)$ is empty if and only if there do not exist Ξ－admissible pair route of type C－1．
（3）$\Phi_{2}(\Xi)$ is at most finite if and only if there do not exist Ξ－admissible pair routes of type C－2 nor C－3．
（4）$\Phi_{2}(\Xi)$ is at most countable if and only if there do not exist Ξ－admissible pair routes of type C－3 or C－4．
(5) $\Phi_{2}(\Xi)$ is dense in $\Sigma(G)$ if and only if there exist Ξ-admissible pair routes of type C-3.

Proof. We need to assume only right resolvingness of Ξ to prove (2), (3) and (4), but right resolvingness and irreducibility of Ξ to prove (5). Though (2) and (5) have been proved in [5] we prove them here again for the completeness.
(1) : For a right Fischer graph Ξ there exists a magic word (see[4]). G-admissible paths which go through a magic word are in $\Phi_{1}(\Xi)$ and dense in $\Sigma(G)$.
(2) : If $\Phi_{2}(\Xi)$ is not empty, by (2), (3), (4) and (5) of Lemma 2 there exist Ξ-admissible pair routes of type $C-1$. Conversely, if there exist Ξ-admissible pair routes of type $C-1$, by (1) of Lemma 2, $\Phi_{2}(\Xi)$ is not empty
(3) : If there do not exist Ξ-admissible pair routes of type $\mathrm{C}-2$ nor $\mathrm{C}-3$, by (2), (3) and (4) of Lemma 2 there exist Ξ-admissible pair paths only of type $\mathrm{P}-1$. By (5) of Lemma 2 there exist at most finite number of Ξ-admissible pair routes of type C-1, and hence $\Phi_{2}(\Xi)$ is infinite. Conversely, if there exist Ξ-admissible pair routes of type $\mathrm{C}-2$ or $\mathrm{C}-3$ there exist infinite number of Ξ-admissible pair paths of type P-2 or P-3, and hence, $\Phi_{2}(\Xi)$ is infinite.
(4) : If there do not exist Ξ-admissible pair routes of type $C-3$ nor $C-4$ there exist Ξ-admissible pair paths only of type $\mathrm{P}-1$ or $\mathrm{P}-2$ by (3) and (5) of Lemma 2. Because there exist a finite number of Ξ-admissible pair routes of type C-1 by (6) of Lemma $2 \Phi_{2}(\Xi)$ is at most countable. The converse follows from that there exist uncountably many Ξ-admissible pair paths each of which comes from Ξ-admissible pair routes of type $C-3$ and that there exist uncountably many Ξ-admissible pair paths each of which moves in Ξ-admissible pair routes of type C-4.
(5) : If $\Phi_{2}(\Xi)$ is dense in $\Sigma(G)$ then for an $\operatorname{arc} w$ in W there exist Ξ-admissible pair paths which go through w, and they must be of type $\mathrm{P}-3$ or $\mathrm{P}-7$. By (3) and (4) of Lemma 2 there exist Ξ-admissible pair routes of type $C-3$. Conversely if there exist Ξ-admissible pair routes of type $C-3$ then from the irreducibility of G there exist Ξ-admissible pair paths which come from the Ξ-admissible pair routes of type $\mathrm{C}-3$ and go through any given G-admissible route. This means that $\Phi_{2}(\Xi)$ is dense in $\Sigma(G)$.

References

[1] M. Boyle, B. Kitchens and B.H. Murcus, A note on minimal covers for sofic systems, Proc. Amer. Math. Soc. 95(1985), 403-411.
[2] M. Boyle and W. Krieger, Periodic points and automorphisms of the shifts, Trans. Amer. Math. Soc. 302(1987), 125-149.
[3] R. Fischer, Graphs and symbolic dynamics, In Colloq. Math. Soc. János Bolyai 16, Topics in Information Theory, Keszthely. Hungary 1975.
[4] R. Fischer, Sofic systems and graphs, Monatsh. Math. 80 (1975), 179-186.
[5] M. Fujiwara and M. Osikawa, Sofic systems and flow equivalence, Math. Rep. Coll. Gen. Ed. Kyushu Univ. 16(1987), 17-27.
[6] M. Nasu, Topological conjugacy for sofic systems, Ergod. Th. and Dynam. Sys. 6(1986), 265-280.
〔Professor of Research Center for Higher Education, Kyushu University〕

