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By

Shunsuke Shiraishi∗ and Tsuneshi Obata†

Dedicated to the memory of Shiraishi’s late father, Takuzo Shiraishi.

Abstract

In AHP, a number of consistency indices have been proposed. Saaty’s C.I. is a
pioneer and generally adopted by users of AHP. We also proposed a new consistency
index with the aid of the characteristic polynomial of the pairwise comparison ma-
trix. Surprisingly, 3rd order random matrices make the completely same numerical
order of two consistency indices, i.e. Saaty’s C.I. and our consistency index. In
this short paper, we show this experimental result is theoretically correct.

Key Words and Phrases: AHP, characteristic polynomial, consistency index, Cardano’s method.

1. Introduction

In AHP (Analytic Hierarchy Process), Saaty’s C.I. (Consistency Index) has been
de facto standard of consistency for pairwise comparison matrices. Nevertheless there
exist alternative approaches to measure inconsistency (see Brunelli (2018) and references
therein). In Shiraishi et al. (1998), we also proposed a new consistency index, say, cmod.

1

We think that the existing researches have given attention to the following two research
questions, at least.

1. Are new C.I.’s better than Saaty’s one in some sense?

2. Are new C.I.’s compatible with Saaty’s one?

As for Question 1, from the computational viewpoint, cmod showed best perfor-
mance when one reconstructs an inconsistent matrix to be a better one (see Brunelli et al. (2007)).
From the theoretical viewpoint, Saaty’s C.I. has a more desirable axiomatic feature than
the others (see Brunelli et al. (2015)). Our proposed cmod also has the same axiomatic
feature as Saaty’s one.

As for Question 2, in Brunelli et al. (2013), they have investigated the correla-
tion coefficient computed on 10,000 randomly generated pairwise comparison matrices
of order 6 comparing other several newly proposed indices. The correlation coefficient
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Figure 1: polynomial fitting N=5,000

between C.I. and cmod is 0.952, which reveals the best performance rather than other
consistency indices proposed by several researchers. Hence, we really need a mathemat-
ical foundation of our consistency index. For this purpose, we started by computational
experiment. Recently we found that the case of 3rd order matrices is special. With the
aid of the computational experiment of producing 5, 000 number of 3rd order random
matrices, the cubic regression says C.I. and cmod completely fits. See Fig. 1.

Here we generate a simple example of 5 random 3rd and 4th order pairwise com-
parison matrices, respectively. Then we computed Saaty’s C.I. and cmod. From Table 1,
it is easily seen that the numerical order of C.I. and cmod are completely the same when
matrices are 3rd order. This is not the case when matrices are 4th order (See Table 2).

Table 1: 3rd order matrices

C.I. cmod C.I.’s order cmod’s order
0.2603215 6.4533333 2 2
0.2178446 5.1428571 1 1
1.115187 61.015873 4 4
1.115187 61.015873 4 4
0.2804168 7.1111111 3 3

Table 2: 4th order matrices

C.I. cmod C.I.’s order cmod’s order
0.2489949 16.8324515 1 2
0.9642403 146.2095238 3 3
2.076002 292.075586 4 4
0.2661867 16.7619048 2 1
2.468707 882.923457 5 5

The aim of the present paper is to show the observation from this toy experiment
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is mathematically true. We assert that C.I. is a monotone function of cmod and vise
versa, when the size of matrices is 3. As a consequence, numerical order of the C.I. and
cmod completely coincidence.

As a byproduct of the proof, in Section 3. we can show the representing formula
of C.I. by the element of the matrix A = (aij) (Morris (1979)). Using the result, in
Section 4. we also show the upper and lower bounds of comparison elements according
to C.I. and cmod.

2. The largest eigenvalue of 3rd order pairwise comparison matrix and cmod

In general, the characteristic polynomial PA(λ) of n-th order matrix A has the
following form (Saito (1966)):

PA(λ) = λn − trA λn−1 + c2λ
n−2 + c3λ

n−3 + · · ·+ (−1)n detA. (1)

In pairwise comparison matrix, trA = n. We showed c2 = 0 (Shiraishi et al. (1998)).
We also showed

c3 =
∑

i<j<k

(
2−

(aijajk
aik

+
aik

aijajk

))
. (2)

The well-known relationships between arithmetic mean and geometric mean implies
c3 ≤ 0. In the sequel, we will set cmod = −c3. Computational experiments by several re-
searchers suggest that cmod can be used a new consistency index. See Obata et al. (1999),
Brunelli et al. (2013) and Pelàez and Lamata (2003).

If n = 3,
PA(λ) = λ3 − 3λ2 + c3 = λ3 − 3λ2 − cmod (3)

and cmod = detA. Hence the maximum eigenvalue λmax of A satisfies the following
equation.

λ3
max − 3λ2

max = cmod. (4)

We consider the function f(x) = x3− 3x2 = x2(x− 3). Since f ′(x) = 3x(x− 2), we
see that this function is monotone increasing when x > 2. From the well-known results
of pairwise comparison matrix, λmax varies greater than 3 (see also Remark 2 below).
Hence we have the followings.

Proposition 2.1. cmod is monotone increasing w.r.t. λmax, i.e. C.I.

The formula (4) can be rewritten as follows. Because C.I. =
λmax − 3

2
, we have

λmax = 2C.I.+ 3. By substituting to (4), it is easily seen that

cmod = 2C.I.
(
2C.I.+ 3

)2
= 8C.I.3 + 24C.I.2 + 18C.I. (5)

So we can confirm Proposition 2.1 considering the other function g(x) = 8x3 +
24x2+18x. By differentiating g, we have g′(x) = 24x2+48x+18 = 6

(
4(x+1)2− 1)

)
=

6
(
2(x + 1) − 1)

)(
2(x + 1) + 1)

)
, which shows g(x) takes its local minimum at −1

2 , and
monotone increasing for x ≥ −1

2 .
Next, we represent C.I. by cmod explicitly through Cardano’s method. As for Car-

dano’s method, see Ueno (1996) and Encyclopedia of Mathematics (Hazewinkel (2001)).2

2 https://www.encyclopediaofmath.org/index.php/Cardano formula



4 S. Shiraishi and T. Obata

In the sequel, we denote cmod by c for simplicity. If we set λ = x + 1 in (3), then we
have

PA(λ) = λ3 − 3λ2 + c3

= (x+ 1)3 − 3(x+ 1)2 − c

= x3 − 3x− 2− c. (6)

Let x = u+ v. The equation PA(λ) = 0 is equivalent to

0 = x3 − 3x− 2− c

= (u+ v)3 − 3(u+ v)− 2− c

=
(
u3 + v3 − (c+ 2)

)
+ 3(u+ v)(uv − 1).

Thus we reach the following system of equation.

0 = u3 + v3 − (c+ 2), (7)

0 = (u+ v)(uv − 1). (8)

If u+ v = 0, (7) implies c = −2. It contradicts c = cmod = −c3 ≥ 0. From (8), we

have v =
1

u
. By substituting it to (7), we obtain

0 = u3 +
1

u3
− (c+ 2),

0 = (u3)2 − (c+ 2)u3 + 1. (9)

From (9), we get two solutions, by considering the symmetricity of u and v,

u =
3

√
(c+ 2) +

√
(c+ 2)2 − 4

2
,

v =
3

√
(c+ 2)−

√
(c+ 2)2 − 4

2
.

Indeed,

v =
1

u
= 3

√
2

(c+ 2) +
√
(c+ 2)2 − 4

= 3

√√√√√ 2
(
(c+ 2)−

√
(c+ 2)2 − 4

)
(
(c+ 2) +

√
(c+ 2)2 − 4

)(
(c+ 2)−

√
(c+ 2)2 − 4

)
=

3

√
(c+ 2)−

√
(c+ 2)2 − 4

2
.

Thus, we get

x =
3

√
(c+ 2) +

√
(c+ 2)2 − 4

2
+

3

√
(c+ 2)−

√
(c+ 2)2 − 4

2
. (10)
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Since λ = x+ 1, we finally get the followings.

λ =
3

√
(c+ 2) +

√
(c+ 2)2 − 4

2
+

3

√
(c+ 2)−

√
(c+ 2)2 − 4

2
+ 1. (11)

Remark 1. The equation x3 − 3x− 2− c = 0 has generally three solutions. One is
given in (10) which corresponds to the maximum eigenvalue. The other solutions are,

ω
3

√
(c+ 2) +

√
(c+ 2)2 − 4

2
+ ω2 3

√
(c+ 2)−

√
(c+ 2)2 − 4

2
,

ω2 3

√
(c+ 2) +

√
(c+ 2)2 − 4

2
+ ω

3

√
(c+ 2)−

√
(c+ 2)2 − 4

2
,

where ω is the primitive 3rd root of unity. The direct calculation shows (10) has maxi-
mum norm among the three solutions.

Remark 2. As we noted before

3

√
(c+ 2)−

√
(c+ 2)2 − 4

2
= 3

√
2

(c+ 2) +
√

(c+ 2)2 − 4
,

which leads to

λmax − 1 ≥ 2

√√√√√ 3

√
(c+ 2) +

√
(c+ 2)2 − 4

2
3

√
2

(c+ 2) +
√

(c+ 2)2 − 4

= 2.

Hence λmax ≥ 3.

Proposition 2.2. λmax, hence C.I., is monotone increasing w.r.t. cmod.

Proof. We consider the function

f(x) =
3

√
x+ 2 +

√
(x+ 2)2 − 4 +

3

√
x+ 2−

√
(x+ 2)2 − 4,

and show its monotonicity.
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Case 1 : When x > 0, calculation of the derivative of f(x) shows that for x > 0,

f ′(x) =
1

3

[ 1 +
(x+ 2)√

(x+ 2)2 − 4(
3

√
x+ 2 +

√
(x+ 2)2 − 4

)2 +

1− (x+ 2)√
(x+ 2)2 − 4(

3

√
x+ 2−

√
(x+ 2)2 − 4

)2
]

=
1

3
√
(x+ 2)2 − 4

[
(x+ 2) +

√
(x+ 2)2 − 4(

3

√
(x+ 2) +

√
(x+ 2)2 − 4

)2
−

(x+ 2)−
√
(x+ 2)2 − 4(

3

√
(x+ 2)−

√
(x+ 2)2 − 4

)2
]

=
1

3
√
(x+ 2)2 − 4

[
3

√
(x+ 2) +

√
(x+ 2)2 − 4

− 3

√
(x+ 2)−

√
(x+ 2)2 − 4

]
> 0.

This means f(x) is monotone increasing for x > 0.

Case 2 : When x ≥ 0, the relationship between arithmetic and geometric means shows
that

f(x) =
3

√
x+ 2 +

√
(x+ 2)2 − 4 +

3

√
x−

√
(x+ 2)2 − 4

≥ 2

√
3

√
x+ 2 +

√
(x+ 2)2 − 4

3

√
x+ 2−

√
(x+ 2)2 − 4

= 2
3
√
2 = f(0).

⊓⊔

The following theorem is obvious from Propositions 2.1 and 2.2.

Theorem 2.3. The numerical order of C.I. and that of cmod are completely the
same in all 3rd order pairwise comparison matrices.

3. Byproduct results

Shiraishi et al. (1998) gave c3 = 2−
(a12a23

a13
+

a13
a12a23

)
.
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So c =
(a12a23

a13
+

a13
a12a23

)
− 2. From this, we obtain:

c+ 2 =
a12a23
a13

+
a13

a12a23
,

(c+ 2)2 − 4 =
(a12a23

a13
+

a13
a12a23

)2
− 4

=
(a12a23

a13

)2
+ 2 +

( a13
a12a23

)2
− 4

=
(a12a23

a13
− a13

a12a23

)2
.

Hence, one can transform (11) as follows.

Case 1 : When
a12a23
a13

− a13
a12a23

> 0, one has

λmax = 3

√
1

2

(a12a23
a13

+
a13

a12a23
+

a12a23
a13

− a13
a12a23

)
+ 3

√
1

2

(a12a23
a13

+
a13

a12a23
− a12a23

a13
+

a13
a12a23

)
+ 1

= 3

√
a12a23
a13

+ 3

√
a13

a12a23
+ 1.

Case 2 : When
a12a23
a13

− a13
a12a23

< 0, one has

λmax = 3

√
1

2

(a12a23
a13

+
a13

a12a23
− a12a23

a13
+

a13
a12a23

)
+ 3

√
1

2

(a12a23
a13

+
a13

a12a23
+

a12a23
a13

− a13
a12a23

)
+ 1

= 3

√
a13

a12a23
+ 3

√
a12a23
a13

+ 1.

In any cases, the following result holds.

Proposition 3.1 (Morris (1979), Crowford and Williams (1985)).

λmax = 3

√
a12a23
a13

+ 3

√
a13

a12a23
+ 1. (12)

Corollary 3.2. One has
C.I. ≤ cmod

2
.

The equality holds if and only if a13 = a12a23.

Proof. It is obvious from the inequality a
1
3 + a−

1
3 ≤ a + a−1. As for the proof

of the inequality, see Proposition 6.1. ⊓⊔
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From (12), one has

λmax = 3

√
a12a23
a13

(
1 +

(
3

√( a13
a12a23

)2
+ 3

√
a13

a12a23

)

= 3

√
a12a23
a13

(
1 +

(
3

√( a13
a12a23

)2
+ 2 3

√
a13

a12a23

)
− 1

= 3

√
a12a23
a13

(
3

√
a13

a12a23
+ 1

)2

− 1.

Proposition 3.3. The following formula holds.

λmax + 1 = 3

√
a12a23
a13

(
3

√
a13

a12a23
+ 1

)2

= 3

√
a13

a12a23

(
3

√
a12a23
a13

+ 1

)2

.

4. Range according to the threshold

From (12), one can calculate C.I. as follows.

C.I. =

3

√
a12a23

a13
+ 3

√
a13

a12a23
− 2

2
. (13)

If we set x =
a12a23
a13

, (13) becomes

C.I. =
x

1
3 + x− 1

3 − 2

2
.

So we can find the range of x which makes C.I. be less than Saaty’s standard
criterion value 0.1, by solving the following equation

x
1
3 + x− 1

3 = 2.2.

If we set again x
1
3 = t, we have

t−1 + t = 2.2,

which is equivalent to

t2 − 2.2t+ 1 = 0.

Solve this quadratic equation, we have t = 1.1±
√
(1.1)2 − 1 ≈ 0.64, 1.55. So

x ≈ 0.26, 3.78.

We can easily generalize this observation.
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Proposition 4.1. C.I. ≤ k if and only if

1(
(k + 1) +

√
(k + 1)

2 − 1
)3 ≤ a12a23

a13
≤
(
(k + 1) +

√
(k + 1)

2 − 1
)3

, (14)

or its equivalent

1(
(k + 1) +

√
(k + 1)

2 − 1
)3 ≤ a13

a12a23
≤
(
(k + 1) +

√
(k + 1)

2 − 1
)3

.

Proof. If we set x =
a12a23
a13

, we have

x
1
3 + x− 1

3 − 2

2
≤ k,

which leads to the equation
x

1
3 + x− 1

3 − 2

2
= k. (15)

Thus it is enough to solve the following equations to obtain the range of x
1
3 .

(x
1
3 )2 − 2(k + 1)x

1
3 + 1 = 0. (16)

⊓⊔

Since cmod =
a12a23
a13

+
a13

a12a23
− 2, we can show the same result.

Proposition 4.2. cmod ≤ k if and only if

2

(k + 2) +

√
(k + 2)

2 − 4
≤ a12a23

a13
≤

(k + 2) +

√
(k + 2)

2 − 4

2
, (17)

or its equivalent

2

(k + 2) +

√
(k + 2)

2 − 4
≤ a13

a12a23
≤

(k + 2) +

√
(k + 2)

2 − 4

2
.

Proof. If we set x =
a12a23
a13

, we have

x+ x−1 − 2 ≤ k,

which leads to the equation
x+ x−1 − 2 = k. (18)

Thus it is enough to solve the following equations to obtain the range of x.

x2 − (k + 2)x+ 1 = 0. (19)

⊓⊔
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There exist the relationships between (14) and (17).

Proposition 4.3. We have

1. If C.I. ≤ k, then cmod ≤ k̃, where k̃ = 2k(2k + 3)2,

2. If cmod ≤ k, then C.I. ≤ k̄, where

k̄ =
1

2

(
3

√
(k + 2) +

√
(k + 2)2 − 4

2
+

3

√
(k + 2)−

√
(k + 2)2 − 4

2
− 2

)
.

Proof. Let x be a solution of (15). Then we have 2k ≥ x
1
3 + x− 1

3 − 2. Hence we
have

k̃ = 2k(2k + 3)2 =
(
x

1
3 + x− 1

3 − 2
)(

x
1
3 + x− 1

3 + 1
)2

= x+ x−1 − 2.

This means x is a solution of (18) for k = k̃.
Conversely let x be a solution of (18). Then we have,

k̄ =
1

2

(
3

√
(k + 2) +

√
(k + 2)2 − 4

2
+

3

√
(k + 2)−

√
(k + 2)2 − 4

2
− 2

)

=
1

2

(
3

√
(x+ x−1) +

√
(x+ x−1)2 − 4

2

+
3

√
(x+ x−1)−

√
(x+ x−1)2 − 4

2
− 2

)

=
x

1
3 + x− 1

3 − 2

2
.

This means x is a solution of (16) for k = k̄. ⊓⊔

5. Conclusion

Saaty’s C.I. is de facto standard in AHP. So it is desirable to be harmonized to
it if one wishes to propose a new consistency index. We show, in this paper, C.I.
and cmod are compatible completely when the matrices are 3rd order. By using our
new result, we can determine the relationships between C.I. and cmod exactly. Since

cmod = 2C.I.
(
2C.I. + 3

)2
, one can compute the value of cmod according to C.I. If

C.I. = 0.1, one has cmod = 2.048. So, we can say that if cmod is less than 2.048 , the
pairwise comparison matrix is consistent in Saaty’s sense 3.

The results of the presenting paper are mathematically true only when the size
of the matrices is 3rd order. This is because the characteristic polynomial has very

3 Saaty (1980) says that if this number is less than 0.1, we may be satisfied with our judgements.



Some remarks on the maximum eigenvalue of 3rd order pairwise comparison matrices in AHP 11

treatable form. Thus Crowford and Williams (1985), Morris (1979)’s simple formula of
λmax follows (Proposition 3.1).

As we see in the introduction, in the cases of the sizes of matrices are larger than
4, the numerical order between C.I. and cmod cannot be coincident. However in several
articles, the relationship between them has been investigated (see Brunelli et al. (2013),
Obata et al. (1999)).

Saaty’s C.I. has great advantage. It is easily understandable because thresholds
are allowed to use the value 0.1 regardless of the sizes of matrices. In this sense, cmod

has some shortcomings. First, the value of cmod becomes rather large although C.I. has
an upper limit (see Sekitani and Niina (2010)). In the case of the size is 4, computation
on 500 randomly generated pairwise comparison matrices gives the maximum value of
cmod to be 727.0014. So one may hesitate use of cmod. Some normalization should be
needed.

Second, in general, one can observe cmod gets greater as the size of matrices gets
greater. This also occurs on C.I.4 So one needs a new consistency index whose value is
independent of the size of matrices. Dividing cmod by some cubic polynomial of the size
of matrices may be hopeful. We have proposed a method in Obata and Shiraishi (2016).

We believe that more modification of cmod may solve these shortcomings. If we con-
quer this hurdle, a new useful consistency index comes to be available. The mathematics
nature of 3rd order matrices is the starting point of future research.

6. Appendix

Proposition 6.1. Let a > 0. and n be a natural number. Then,

a
1
n + a−

1
n ≤ a+ a−1.

The equality holds if and only if a = 1.

Proof. Let t = a
1
n . We consider the function f(t) = tn + t−n − (t + t−1). By

differentiate f(t), we have

f ′(t) = ntn−1 − nt−(n+1) − (1− t−2)

= t−(n+1)(nt2n − n− tn+1 + tn−1)

= t−(n+1)
(
n(t2n − 1)− (tn+1 − tn−1)

)
.

Since

t2n − 1 = (t− 1)(t2n−1 + t2n−2 + · · ·+ 1)

tn+1 − tn−1 = (t− 1)(tn + tn−1),

we have

f ′(t) = t−(n+1)(t− 1)
(
nt2n−1 + nt2n−2 + · · ·

+ (n− 1)tn + (n− 1)tn−1 + ntn−2 + · · ·+ n
)
,

which implies f(t) takes its minimum at t = 1 and f(1) = 0. Hence the assertion of the
proposition immediately follows. ⊓⊔
4 To overcome this shortcoming, in AHP, the consistency ratio C.R. is also used. See Brunelli (2015).
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