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Abstract. Consider a graph such that each vertex has a nonnegative integer capacity and each edge15

has a positive integer weight. Then, a b-matching in the graph is a multi-set of edges (represented16

by an integer vector on edges) such that the total number of edges incident to each vertex is at most17

the capacity of the vertex. In this paper, we study a reconfiguration variant for maximum-weight18

b-matchings: For two given maximum-weight b-matchings in a graph, we are asked to determine19

whether there exists a sequence of maximum-weight b-matchings in the graph between them, with20

subsequent b-matchings obtained by removing one edge and adding another. We show that this21

reconfiguration problem is solvable in polynomial time for instances with no integrality gap. Such22

instances include bipartite graphs with any capacity function on vertices, and 2-matchings in general23

graphs. Thus, our result implies that the reconfiguration problem for maximum-weight matchings24

can be solved in polynomial time for bipartite graphs.25

keywords: combinatorial reconfiguration, graph algorithm, b-matching26

1 Introduction27

Recently, reconfiguration problems [11] have attracted much attention in the field of theoretical computer28

science. These problems arise when we wish to find a step-by-step transformation between two feasible29

solutions of a combinatorial problem such that all intermediate results are also feasible and each step30

conforms to a fixed reconfiguration rule (i.e., an adjacency relation defined on feasible solutions of the31

original combinatorial problem). For example, in the (cardinality) matching reconfiguration prob-32

lem, feasible solutions are matchings in a graph having the same cardinality and one of the studied33

reconfiguration rules is to exchange an edge in the current matching with an edge which is not contained34

? A preliminary version of this paper has been presented at COCOON 2017 [12].
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Fig. 1. (a) Graph G with vertex-capacities and edge-weights, and (b)–(g) a sequence 〈xs = x0, x1, . . . , x5 = xt〉
of maximum-weight b-matchings in G, where each xi(e), 0 ≤ i ≤ 5, is represented as the number of parallel edges
between the endpoints of the edge e.

in the matching. This kind of reconfiguration problems has been studied extensively for several well-1

known combinatorial problems, including satisfiability [6, 17, 19], independent set [4, 5, 15], vertex2

cover [13, 20], clique [14], dominating set [7, 8], vertex-coloring [1, 3, 9], and so on. (See also a3

survey [10].)4

1.1 Our problem5

In this paper, we generalize (cardinality) matching reconfiguration, and study a reconfiguration6

problem for maximum-weight b-matching defined as follows.7

For a graph G, we denote by V (G) and E(G) the vertex set and edge set of G, respectively. Let8

b : V (G)→ Z≥0 be a capacity function on vertices, where Z≥0 is the set of all nonnegative integers. Then,9

a vector x ∈ ZE(G)
≥0 is called a b-matching in G if

∑
e∈δ(v) x(e) ≤ b(v) holds for each vertex v ∈ V (G),10

where δ(v) denotes the set of all edges incident to the vertex v. For example, Fig. 1(b)–(g) illustrate six11

b-matchings in the graph G of Fig. 1(a). Note that an ordinary matching in a graph G is a b-matching12

in G such that b : V (G) → {1}. The cardinality of a b-matching x in G is defined as
∑
e∈E(G) x(e). Let13

w : E(G) → Z+ be a weight function on edges, where Z+ is the set of all positive integers. Then, the14

weight of a b-matching x in G is defined as
∑
e∈E(G) w(e)x(e).15

For two b-matchings x and x′ in a graph G, we write x ↔ x′ if there exists a pair of edges e and16

f in G such that x(e) − x′(e) = x′(f) − x(f) = 1 and x(g) = x(g) for all edges g ∈ E(G) \ {e, f}.17

Thus, both x and x′ have the same cardinality. (See any two consecutive b-matchings in Fig. 1(b)–(g)18

as examples.) For two maximum-weight b-matchings x and x′ in G, we write x
w
! x′ if there exists a19

sequence 〈x0, x1, . . . , x`〉 of b-matchings in G such that20

(i) x0 = x and x` = x′;21

(ii) all b-matchings x0, x1, . . . , x` have the maximum weight in G; and22

(iii) xi−1 ↔ xi holds for each i ∈ {1, 2, . . . , `}.23

Then, the maximum-weight b-matching reconfiguration problem is defined as follows:24

Input: A graph G, a capacity function b : V (G) → Z≥0 on vertices, a weight function
w : E(G)→ Z+ on edges, and two maximum-weight b-matchings xs and xt in G

Question: Determine whether xs
w
! xt or not.

25

We denote by a 5-tuple (G, b, w, xs, xt) an instance of maximum-weight b-matching reconfigura-26

tion. Note that this is a decision problem and hence it does not ask for an actual sequence of maximum-27
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weight b-matchings. For the particular instance of Fig. 1, it has a desired sequence 〈xs = x0, x1, . . . , x5 =1

xt〉 as illustrated in the figure, and hence the answer is yes.2

1.2 Known and related results3

Ito et al. [11, Proposition 2] studied (cardinality) matching reconfiguration, and gave a polynomial-4

time algorithm to solve the problem for any graph. Mühlenthaler [21] generalized matching recon-5

figuration to the reconfiguration problem for degree-constrained subgraphs in a graph G, where a6

degree-constrained subgraph is a subgraph of G such that the degree of each vertex satisfies both lower7

and upper bounds of the vertex. This generalized reconfiguration problem is also solvable in polynomial8

time for any graph [21].79

In the reconfiguration problem of Mühlenthaler [21], each edge can be chosen at most once in a10

degree-constrained subgraph. However, the algorithm of [21] can be easily extended so that it works11

correctly and runs in polynomial time even if multiplicities on edges are allowed. By setting the lower12

bound equal to zero and the upper bound equal to b(v) for each vertex v in a graph G, b-matchings (and13

hence ordinary matchings) in G can be seen as degree-constrained subgraphs of G. Consider maximum-14

weight b-matching reconfiguration when restricted to identical edge-weight. Then, each maximum-15

weight b-matching in a graph G is simply a maximum-cardinality b-matching in G. Thus, the result by16

Mühlenthaler [21] implies the following proposition.17

Proposition 1 ([21]). Maximum-weight b-matching reconfiguration is solvable in polynomial18

time when restricted to identical edge-weight.19

As far as we know, reconfiguration problems have been studied mostly for unweighted instances. Note20

that shortest path reconfiguration [2] and Steiner tree reconfiguration [18] are defined on21

unweighted graphs, and hence they are cardinality variants. Matroid reconfiguration [11, Proposi-22

tion 1] is the only example in the reconfiguration framework which admits a polynomial-time algorithm23

for weighted instances. However, matchings do not form matroid bases.24

1.3 Our contribution25

In this paper, we show that maximum-weight b-matching reconfiguration is solvable in polynomial26

time for instances with no integrality gap. Such instances include bipartite graphs with any capacity27

function b on vertices, and general graphs G with the capacity function b : V (G) → {2}. Thus, our28

result yields that the reconfiguration problem for maximum-weight (ordinary) matchings can be solved29

in polynomial time for bipartite graphs.30

Our idea is to use the structure of maximum-weight b-matchings in a graph with no integrality gap.31

As an intuitive example, the edge e′ in Fig. 1 would be “useless” if w(e′) ≤ 2 because edges in two given32

maximum-weight b-matchings have weights at least three; indeed, it becomes a no-instance if w(e′) ≤ 2.33

In Section 2, we formulate the problem of finding a maximum-weight b-matching in a graph as an integer34

program, and show that the complementary slackness condition gives a characterization of b-matchings35

that have the maximum weight (Lemma 1). Then, in Section 3, we will make use of Lemma 1, and36

reduce the problem of asking the existence of a desired sequence of maximum-weight b-matchings to the37

problem of asking that of maximum-cardinality b-matchings; recall that the cardinality variant is solvable38

in polynomial time (Proposition 1).39

2 Maximum-Weight b-Matchings40

In this section, we give a characterization of maximum-weight b-matchings which will play an important41

role in our algorithm in Section 3.42

7 Properly speaking, both Ito et al. [11] and Mühlenthaler [21] studied their reconfiguration problems under a
more generalized reconfiguration rule, called the TAR (Token Addition and Removal) rule. Their results hold
also under the reconfiguration rule of this paper, which is called the TJ (Token Jumping) rule.
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Let G be a simple graph, and let b : V (G) → Z≥0 and w : E(G) → Z+ be capacity and weight
functions, respectively. We can formulate the problem of finding a maximum-weight b-matching in G as
the following integer program IP:

max.
∑

e∈E(G)

w(e)x(e)

s.t.
∑
e∈δ(v)

x(e) ≤ b(v) (∀v ∈ V (G))

x(e) ∈ Z≥0 (∀e ∈ E(G)).

We denote by a triple (G, b, w) an input to IP. Let LP be the following linear programming relaxation
of IP:

max.
∑

e∈E(G)

w(e)x(e)

s.t.
∑
e∈δ(v)

x(e) ≤ b(v) (∀v ∈ V (G))

x(e) ≥ 0 (∀e ∈ E(G)).

The dual program DP of LP can be described as follows:

min.
∑

v∈V (G)

b(v)y(v)

s.t. y(u) + y(v) ≥ w(e) (∀e = {u, v} ∈ E(G))

y(v) ≥ 0 (∀v ∈ V (G)).

The complementary slackness condition (see, e.g., [16, Corollary 3.23]) implies the following theorem.1

Theorem 1. Suppose that x and y are feasible solutions of LP and DP, respectively. Then, the following2

two statements (1) and (2) are equivalent.3

(1) x and y are optimal solutions of LP and DP, respectively.4

(2) x and y satisfy the following (i) and (ii):5

(i) y(u) + y(v) = w(e) for every edge e = {u, v} ∈ E(G) with x(e) > 0; and6

(ii)
∑
e∈δ(v)

x(e) = b(v) for every vertex v ∈ V (G) with y(v) > 0.7

For each feasible solution y of DP, let Vy = {v ∈ V (G) | y(v) > 0} and Ey = {e = {u, v} ∈ E(G) |8

y(u) + y(v) = w(e)}. Then, Theorem 1 implies the following corollary.9

Corollary 1. Assume that the optimal value of IP for (G, b, w) is equal to that of LP. Let y be an10

optimal solution of DP. Then, a b-matching x ∈ ZE(G)
≥0 in G has the maximum weight if and only if11

{e ∈ E(G) | x(e) > 0} ⊆ Ey and
∑
e∈δ(v) x(e) = b(v) for every vertex v ∈ Vy.12

Proof. We first prove the only-if direction. Suppose that x is a maximum-weight b-matching in G. Then,13

because the optimal value of LP is assumed to be equal to that of IP, x is an optimal solution of LP. Since14

y is an optimal solution of DP, x and y satisfy Theorem 1(2). Therefore, {e ∈ E(G) | x(e) > 0} ⊆ Ey15

holds. For every vertex v ∈ Vy, we have y(v) > 0 and hence Theorem 1(2)-(ii) yields
∑
e∈δ(v) x(e) = b(v).16

We then prove the if direction. Suppose that a b-matching x in G satisfies {e ∈ E(G) | x(e) > 0} ⊆ Ey
and

∑
e∈δ(v) x(e) = b(v) for every vertex v ∈ Vy. Since each edge e = {u, v} ∈ E(G) with x(e) > 0 is

contained in Ey, we have y(u) + y(v) = w(e). Therefore, Theorem 1(2)-(i) holds. We then claim that
x and y satisfy Theorem 1(2)-(ii). Consider any vertex v ∈ V (G) such that y(v) > 0. Then, we have
v ∈ Vy, and hence

∑
e∈δ(v) x(e) = b(v) holds; thus, Theorem 1(2)-(ii) holds. In this way, x and y satisfy

Theorem 1(2). Then, Theorem 1(1) yields that x is an optimal solution of LP. Since the optimal value
of IP is assumed to be equal to that of LP, x is a maximum-weight b-matching in G. ut
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We now rephrase Corollary 1 so that it can be easily applied to our algorithm in the next section. For1

a graph G and its edge subset E′ ⊆ E(G), we denote by G[E′] the subgraph of G induced by E′, that is,2

the vertex set of G[E′] is {u, v ∈ V (G) | {u, v} ∈ E′} and the edge set of G[E′] is E′. For a vertex subset3

C ⊆ V (G), we say that a b-matching x ∈ ZE(G)
≥0 in G is C-saturated if

∑
e∈δ(v) x(e) = b(v) holds for every4

vertex v ∈ C. Then, Corollary 1 can be rephrased as the following lemma; recall that a vertex cover of a5

graph G is a vertex subset of G which contains at least one of the endpoints of every edge in G.6

Lemma 1. Assume that the optimal value of IP for (G, b, w) is equal to that of LP. Then, there exist a7

vertex subset C ⊆ V (G) and an edge subset E′ ⊆ E(G) such that8

(a) C is a vertex cover of G[E′]; and9

(b) a b-matching x ∈ ZE(G)
≥0 in G has the maximum weight if and only if {e ∈ E(G) | x(e) > 0} ⊆ E′10

and x is C-saturated.11

Furthermore, such a pair of C and E′ can be found in polynomial time.12

Proof. Because an optimal solution y of DP can be computed in polynomial time, we can obtain Vy13

and Ey in polynomial time. Let C = Vy and E′ = Ey. Then, Condition (b) follows immediately from14

Corollary 1.15

We now verify Condition (a). Consider any edge e = {u, v} ∈ E′ = Ey. Then, y(u) + y(v) = w(e)
holds. Since w(e) > 0, we have y(u) > 0 or y(v) > 0. Therefore, u ∈ Vy or v ∈ Vy, that is, at least one of
the endpoints of e is contained in Vy. In this way, C = Vy forms a vertex cover of G[E′]. ut

Note that we use the assumption of (nonzero) positive edge-weights only in the proof of Lemma 1(a).16

Theorem 1 and Corollary 1 hold even for nonnegative edge-weights, that is, w(e) ≥ 0 for all edges17

e ∈ E(G).18

3 Algorithm19

In this section, we give the main result of the paper as the following theorem.20

Theorem 2. Maximum-weight b-matching reconfiguration can be solved in polynomial time for21

any instance (G, b, w, xs, xt) such that the optimal value of IP for (G, b, w) is equal to that of LP.22

It is known that the optimal value of IP for (G, b, w) is equal to that of LP if G is bipartite [22,23

Theorem 21.2], or b : V (G)→ {2} [22, Corollary 30.2a]. Then, we have the following corollary.24

Corollary 2. Maximum-weight b-matching reconfiguration can be solved in polynomial time for25

bipartite graphs, or b : V (G)→ {2}.26

In the remainder of this section, we prove Theorem 2 by giving such an algorithm. As we mentioned27

in Introduction, we will reduce the problem of asking the existence of a desired sequence of maximum-28

weight b-matchings to the problem of asking that of maximum-cardinality b-matchings, by using the29

characterization of maximum-weight b-matchings (Lemma 1).30

Let (G, b, w, xs, xt) be an instance of maximum-weight b-matching reconfiguration such that31

the optimal value of IP for (G, b, w) is equal to that of LP. Let C ⊆ V (G) and E′ ⊆ E(G) be the32

pair obtained by Lemma 1. By Lemma 1(b), any maximum-weight b-matching x ∈ ZE(G)
≥0 in G satisfies33

x(e) = 0 for all edges e ∈ E(G) \ E′. Therefore, it suffices to consider only C-saturated b-matchings in34

the induced subgraph G[E′]. Note that both xs and xt are C-saturated b-matchings in G[E′], because35

they are maximum-weight b-matchings in G.36

For two C-saturated b-matchings x, x′ ∈ ZE′≥0 in G[E′], we write x
C,E′
! x′ if there exists a sequence37

〈x0, x1, . . . , x`〉 of b-matchings in G[E′] such that38

(i) x0 = x and x` = x′;39

(ii) all b-matchings x0, x1, . . . , x` are C-saturated; and40

(iii) xi−1 ↔ xi holds for each i ∈ {1, 2, . . . , `}.41

By Lemma 1(b) we then have the following proposition.42
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Algorithm 1 Polynomial-time algorithm for maximum-weight b-matching reconfiguration

Input: An instance (G, b, w, xs, xt) of maximum-weight b-matching reconfiguration such that the op-
timal value of IP for (G, b, w) is equal to that of LP

Output: yes/no

Step 1. Obtain a vertex subset C ⊆ V (G) and an edge subset E′ ⊆ E(G) satisfying Conditions (a) and (b)
of Lemma 1. Let EC be the set of all edges e in G[E′] such that both endpoints of e belong to C.

Step 2. If there exists an edge e ∈ EC such that xs(e) 6= xt(e), then return no.

Step 3. Let b′(v) = b(v) −
∑
e∈δ(v)∩EC

xs(e) for each vertex v in G[E′]. Delete all edges in EC from G[E′];

let G′ be the resulting graph. Let x′
s and x′

t be two b′-matchings in G′ such that x′
s(e) = xs(e) and

x′
t(e) = xt(e), respectively, for all edges e in G′.

Step 4. Apply Proposition 1 to the instance (G′, b′, wid, x
′
s, x

′
t) where wid : E(G′)→ {1}, and return its answer.

Proposition 2. xs
C,E′
! xt if and only if xs

w
! xt.1

Therefore, for proving Theorem 2, it suffices to determine whether xs
C,E′
! xt or not, in polynomial2

time. Our algorithm can be outlined as Algorithm 1. By Lemma 1 and Proposition 1, Algorithm 1 runs3

in polynomial time. Thus, we will prove its correctness in the remainder of this section.4

We first show the correctness of Step 2 of Algorithm 1. To show this, we note that no edge in EC can5

be touched by any transformation of C-saturated b-matchings, as in the following lemma.6

Lemma 2. Let x and x′ be C-saturated b-matchings in G[E′] such that x
C,E′
! x′. Then, x(e) = x′(e)7

holds for each edge e ∈ EC .8

Proof. Suppose for a contradiction that there exists a C-saturated b-matching x′ in G[E′] such that9

x
C,E′
! x′ and x′(e∗) 6= x(e∗) for some edge e∗ ∈ EC . Since x

C,E′
! x′ holds, there exists a sequence10

〈x = x0, x1, . . . , x` = x′〉 of C-saturated b-matchings in G[E′]. Let i ∈ {1, 2, . . . , `} be an index such that11

xi−1(e∗) 6= xi(e
∗); such an index i exists because x(e∗) 6= x′(e∗) holds. Since |xi(e∗) − xi−1(e∗)| = 1,12

by changing the roles of x and x′ if necessary, we may assume that xi(e
∗) = xi−1(e∗) − 1. Then, since13

xi−1 ↔ xi, there is exactly one edge e+ in E′ \ {e∗} such that xi(e
+) = xi−1(e+) + 1. Since e+ 6= e∗, the14

edge e+ is not incident to at least one endpoint of e∗, say v∗. This implies that15 ∑
e∈δ(v∗)

xi(e) =
∑

e∈δ(v∗)

xi−1(e)− 1 = b(v∗)− 1,

which contradicts that xi is C-saturated, because e∗ ∈ EC and hence v∗ is in C. ut

We then show that the graph G′ obtained by Step 3 of Algorithm 1 satisfies the following lemma.16

Lemma 3. The graph G′ obtained by Algorithm 1 is a bipartite graph with bipartition C and V (G′) \C.17

Proof. Since all edges in EC have been deleted, there is no edge joining two vertices in C. On the other
hand, by Lemma 1(a) at least one of the endpoints of each edge in G[E′] is contained in C. Thus, there
is no edge joining two vertices in V (G′) \ C = V (G[E′]) \ C. Therefore, G′ is a bipartite graph with
bipartition C and V (G′) \ C. ut

Finally, the correctness of Step 4 of Algorithm 1 can be verified by combining the following lemma18

with Lemma 2.19

Lemma 4. A b′-matching x in G′ is C-saturated if and only if x has the maximum cardinality in G′.20

Proof. We first prove the only-if direction. Suppose that a b′-matching x in G′ is C-saturated. Then,21 ∑
e∈E(G′) x(e) ≥

∑
v∈C b

′(v) holds. Since G′ is a bipartite graph whose one side of the bipartition is22

6



C, any b′-matching in G′ is of cardinality at most
∑
v∈C b

′(v). Therefore, x is a maximum-cardinality1

b′-matching in G′.2

We then prove the if direction. Suppose that a b′-matching x in G′ has the maximum cardinality in3

G′. It suffices to prove4 ∑
e∈E(G′)

x(e) ≥
∑

e∈E(G′)

x′s(e) ≥
∑
v∈C

b′(v);

then, all vertices in C must be saturated by x, because G′ is a bipartite graph with bipartition C and5

V (G′) \ C. The first inequality holds because x is a maximum-cardinality b′-matching in G′. We thus6

prove the second inequality, as follows. Since xs is a maximum-weight b-matching in G, by Lemma 1(b)7

it satisfies {e ∈ E(G) | xs(e) > 0} ⊆ E′ and is C-saturated. Therefore, we have8 ∑
e∈E(G′)

x′s(e) =
∑

e∈E′\EC

xs(e) =
∑

e∈E(G)\EC

xs(e) ≥
∑
v∈C

b(v)−
∑
e∈EC

xs(e) ≥
∑
v∈C

b′(v),

as claimed. ut

In this way, Algorithm 1 correctly solves maximum-weight b-matching reconfiguration in poly-9

nomial time. This completes our proof of Theorem 2.10

4 Concluding Remarks11

In this paper, we have shown that maximum-weight b-matching reconfiguration is solvable in12

polynomial time for instances with no integrality gap. We emphasize again that such instances include13

b-matchings (and hence ordinary matchings) in bipartite graphs and 2-matchings in general graphs.14

As we have mentioned in Section 2, we use the assumption of (nonzero) positive edge-weights only15

in the proof of Lemma 1(a). Indeed, Theorem 1 and Corollary 1 hold even for nonnegative edge-weights,16

that is, w(e) ≥ 0 for all edges e ∈ E(G). The complexity status of maximum-weight b-matching17

reconfiguration remains open for nonnegative edges-weights.18

As another (more general) open question, we recall that both Ito et al. [11] and Mühlenthaler [21]19

studied their reconfiguration problems under a more generalized reconfiguration rule, called the TAR20

rule. In the weighted b-matching reconfiguration problem under the TAR rule, we are given two21

b-matchings (which do not necessarily have the maximum weight) together with an integer threshold22

k ∈ Z≥0, and asked the existence of a sequence of b-matchings between them, obtained by either adding or23

deleting one edge at a time, with keeping weights at least k. It remains open to clarify the complexity status24

for weighted b-matching reconfiguration under the TAR rule; this open question was originally25

posed by Ito et al. [11] for weighted matching reconfiguration.26
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