
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Parallel Computation for Shift-Add Algorithm

Baba, Kensuke
Faculty of Information Science and Electrical Engineering, Kyushu University and System LSI
Research Center, Kyushu University

E, Hanmei
Graduate School of Information Science and Electrical Engineering, Kyushu University

Yu, Yunqing
Computing and Communications Center, Kyushu University

https://hdl.handle.net/2324/4289

出版情報：DOI Technical Report. 230, 2007-05-08. Department of Informatics, Kyushu University
バージョン：
権利関係：

DOI-TR-230

DOI Technical Report

A Parallel Computation for Shift-Add Algorithm

by

K. Baba, H. E, and Y. Yu

May 8, 2007

Department of Informatics
Kyushu University

Fukuoka 819-0395, Japan

Email: baba@i.kyushu-u.ac.jp Phone: +81-92-802-3787

A Parallel Computation for Shift-Add Algorithm

Kensuke Baba∗† Hanmei E‡ Yunqing Yu§

Abstract

The approximate string matching is useful in a wide area of applications
such as biology. A practically significant speedup for solving this problem is
obtained by representing strings as bit sequences and computing the compar-
isons of plural characters simultaneously by bit operations. In this method, a
practical run-time depends on the word size of a computer. In this paper, as
another parameter of the performance of a computer, the number of processors
is considered. An efficient algorithm based on the previous speedup method
is modified into a parallel algorithm. In the concrete, an O(mn log m/w) algo-
rithm for a problem of approximate string matching is modified to an O(mn/w)
algorithm for a computer with m processors.

1 Introduction

The problem of string matching [3, 4] is to find all occurrences of a string (called

a ”pattern”) in another string (called a ”text”). The approximate string matching

is defined as the string matching with some errors allowed. The approximate string

matching is more useful in a wide area of applications, and its most general form (for

example, the problem of weighted edit distance [9] and its extension [8]) is the essence

of some interesting systems [7] for homology search in biology.

One of the most active areas for string processing is bit-parallelism [6]. The main

idea of this approach is to represent strings as numbers (or bit sequences) and per-

form plural comparisons of characters simultaneously by arithmetic (or bit opera-

tions). Therefore, a practical run-time depends on the performance of a computer,

and this idea can be found essentially in the Rabin-Karp algorithm [2]. As for the

approximate string matching, we consider the match-count problem [5] in this paper.

For this problem, a simple and efficient method based on bit-parallelism is introduced

by Baeza-Yate and Gonnet [1], and it is called the ”Shift-Add” method. While a

naive algorithm based on character comparison requires O(mn) comparisons for in-

put strings of lengths m and n, an algorithm based on the Shift-Add method requires

∗Faculty of Information Science and Electrical Engineering, Kyushu University
†System LSI Research Center, Kyushu University
‡Graduate School of Information Science and Electrical Engineering, Kyushu University
§Computing and Communications Center, Kyushu University

2 K. Baba, H. E, and Y. Yu

O(mn log m/w) bit operations, for the word size w of a computer. In this sense, the

speedup by this approach depends on the performance of a computer.

In this paper, as another parameter of the performance of a computer, we consider

the number of processors (or cores) of a computer. A simple method to solve the

match-count problem for a computer with plural cores is to part a text or a pattern.

However, in algorithms on the method, a text or a pattern have to be given completely

before the computation, and hence the method cannot be applied to inputs as a

streaming data. Then, we consider modifying the Shift-Add algorithm which processes

a text on line into a parallel algorithm. The main idea of the modification is to convert

each character in input strings into a single bit character rather than a bit sequence.

Then, a straightforward parallelism with respect to the characters can be applied.

As the result, we have an O(m2n/w) algorithm which is constructed from m distinct

processes. Therefore, if we consider an ideal computer with a k-core processor for

k ≥ m, the computing time of the algorithm is bounded by O(mn/w).

2 Preliminaries

2.1 The Match-count Problem

Let Σ be a finite set of characters. For an integer n > 0, Σn denotes the set of the

strings of length n over Σ. For a string s, |s| denotes the length of s and si denotes

the ith element of s for 1 ≤ i ≤ |s|. The string sisi+1 · · · sj is a substring of s, denoted

by s[i : j]. In particular, it is called a suffix if j = |s|.
The score vector C(t, p) between a text string t ∈ Σn and a pattern string p ∈ Σm

(we assume m < n) is the vector whose ith element ci is the number of matches

between the substring t[i : i+m−1] of the text and the pattern p for 1 ≤ i ≤ n−m+1.

Let δ be a function from Σ × Σ to {0, 1} such that, for a, b ∈ Σ, δ(a, b) is 1 if a = b,

and 0 otherwise. Then, the ith element is

ci =
m∑

j=1

δ(ti+j−1, pj) (1)

for 1 ≤ i ≤ n − m + 1. The match-count problem is to compute the score vector

between two given strings.

2.2 A Computational Model

In the strict sense, the time complexity of an algorithm should be considered for a

computer, therefore it is not correct that a performance of a computer is used as a

parameter for the notation such as O(mn/w) in the previous section. This problem

can be solved straightforwardly, for example, by considering an abstract computer

which has the following operations as a computer we use.

A Parallel Computation for Shift-Add Algorithm 3

In this paper, we consider a computational model with a parameter w such that

the following operations are computed respectively in an unit time:

• k sift-left operations to u ∈ {0, 1}w for k ≤ w,

• k sift-right operations to u ∈ {0, 1}w for k ≤ w,

• an and operation to u, v ∈ {0, 1}w,

• an add operation to u, v ∈ {0, 1}w,

• a comparison of u, v ∈ {0, 1}w,

• a reference with a parameter u ∈ {0, 1}w.

The previous operations are defined as the following functions.

• The shift-left operation and the shift-right operation are respectively the func-

tions Sl, Sr : {0, 1}w → {0, 1}w such that Sl(u) = u2u3 · · ·uw0 and Sr(u) =

0u1u2 · · ·uw−1. The k shift-left (-right) operation is denoted by Sk
l (Sk

r).

• The and operation is the function A : {0, 1}w × {0, 1}w → {0, 1}w such that

A(u, v) = w1w2 · · ·wm and, for 1 ≤ i ≤ w, wi is 1 if and only if ui = 1 and

vi = 1.

• The add operation is the function P : {0, 1}w × {0, 1}w → {0, 1}w such that

P (u, v) is the suffix of length w of the sum of binary digits u and v.

• The comparison is the function M : {0, 1}w×{0, 1}w → {0, 1} such that M(u, v)

is 1 if and only if for 1 ≤ i ≤ w ui = vi.

• The reference is the function R : {0, 1}w → {0, 1}w.

3 Standard Algorithms

3.1 Comparison-based Method

A naive method for the match-count problem is to compare the m×n pairs of charac-

ters in two given strings, that is, to compute the matrix D(t, p) whose (i, j)-element

Di,j is δ(pi, tj) for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then, the element ck of the score vector

is
∑m

i=1 Di,i+k−1 for 1 ≤ k ≤ n − m + 1. For example, the score vector between two

strings acbabbaccb and abbac is obtained by the 5×10 matrix in the following table.

The list of Di,i+k−1 for 1 ≤ k ≤ n − m + 1 is on a diagonal line.

4 K. Baba, H. E, and Y. Yu

a c b a b b a c c b

a 1 0 0 1 0 0 1 0 0 0
b 0 0 1 0 1 1 0 0 0 1
b 0 0 1 0 1 1 0 0 0 1
a 1 0 0 1 0 0 1 0 0 0
c 0 1 0 0 0 0 0 1 1 0
ci 3 1 1 5 2 0

Therefore, if any character in the given strings is represented in b place for b ≤ w and

log (m + 1) ≤ w, the score vector C(t, p) is obtained by m× (n−m + 1) comparisons

and (m− 1)× (n−m + 1) add operations. Therefore, the time complexity is O(mn).

3.2 Bit-operation-based Method

Baeza-Yate and Gonnet introduced a simple and efficient method for some problems

of string matching. The main idea of the method is to represent each state of the

search as a bit sequence, and compute plural states simultaneously by some logical

operations. In this method, plural elements of D(t, p) are considered as a single bit

sequence, then the sum with respect to a diagonal line is computed by shift operations

and add operations.

D(t, p) is computed by preparing the vectors E(a) of bit characters for a ∈ Σ whose

ith element is δ(pi, a) for 1 ≤ i ≤ m. Since any element of C(t, p) is at most m, each

element of D(t, p) is represented in �log (m + 1)� place. For example, the E(a)’s in

case where p = abbac are given by the following table, where x ∈ Σ is not appear in

p.

a b b a c

E(a) 001 000 000 001 000
E(b) 000 001 001 000 000
E(c) 000 000 000 000 001
E(x) 000 000 000 000 000

Since we have only to consider at most m + n characters in Σ and the number of the

distinct characters in p is at most m, computing the E(a)’s requires O(n + m2) time.

The score vector is computed from the E(a)’s as Fig. 1. In this method, we can

compute simultaneously at most 	w/�log (m + 1)�
 elements of D(t, p). Therefore,

the time complexity is bounded by O(mn log m/w). The outline of an algorithm

based on this method is shown in Fig. 2. A single step of the computation of D in

the last for-sentence requires �m log (m + 1)/w�.

A Parallel Computation for Shift-Add Algorithm 5

ci−4

D := 0 000 000 000 000 000
E := E(a) 001 000 000 001 000
D := P (D, E) 001 000 000 001 000 → 000
D := S3

r (D) 000 001 000 000 001
E := E(c) 000 000 000 000 001
D := P (D, E) 000 001 000 000 010 → 010
...

...
...

Figure 1: A computation in an algorithm based on the bit-operation-based method.

Procedure Shift-Add
Input: t = t1t2 · · · tn, p = p1p2 · · · pm

Output: C(t, p) = (c1, c2, . . . , cn−m+1)

b := �log (m + 1)� ;

for 1 ≤ i ≤ n do E[ti] := 0 ;
for 1 ≤ i ≤ m do {

E[pi] := 0 ;
for 1 ≤ j ≤ m do E[pi] := P (Sb

l (E[pi]), M(pi, pj)) ;
}

D := 0 ;
for 1 ≤ i ≤ n do {

D := P (Sb
r(D), E[ti]) ;

ci−m+1 := A(D, 1b) ;
}
Figure 2: The Shift-Add algorithm for the match-count problem, where 1b is the string
constructed by b unities.

4 Parallel Algorithm

4.1 A Simple Parallel Computation

The most straightforward methods of parallel computation for the match-count prob-

lem is to part t or p into substrings. Intuitively, in this method, using k computers

(processors, or cores) yields k times speedup.

Clearly, from t[i : j] and p, we obtain from the ith element to the (j − m + 1)th

element of C(t, p). Therefore, by parting t into k substrings with overlaps of length

m − 1 and combining the results, C(t, p) is obtained by k distinct computations. If

we part p, the following is clear in general. Let cp
i be the ith element of the score

vector C(t, p) and cq
i the ith element of C(t, q). Then, the ith element of C(t, pq) is

6 K. Baba, H. E, and Y. Yu

cp
i + cq

m+i, where m is the length of p. Therefore, we can also expect straightforward

speedup except for the overhead.

4.2 Modification of the Shift-Add Algorithm

The parallel computation in the previous subsection is simple and efficient, however

algorithms on the method require some overheads. Moreover, we cannot part t if

t is not given completely before the computation. The Shift-Add algorithm allows

that t is a streaming data. Then, we consider modifying the algorithm to a parallel

algorithm with preserving the previous property.

The essential idea of this modification is to convert t and p into bit sequences with

respect to each character in Σ. In this method, using k computers yields 	log k
 times

speedup. We consider the function f : Σn ×Σ → {0, 1}n for n > 0 such that f(s, a) =

δ(s1, a)δ(s2, a) · · · δ(sn, a). By Eq. 1, clearly we have ci =
∑m

j=1

∑
a∈Σ f(ti+j−1, a) ·

f(pj, a) for 1 ≤ i ≤ n − m + 1. Moreover, we can avoid some computations, since

f(ti+j−1, a) · f(pj, a) = 0 for any a which is not appear in p. Let Σp be the set of the

characters in p. Then, we have the following equation. The ith element of the score

vector between t and p is

ci =
∑

a∈Σp

m∑

j=1

f(ti+j−1, a) · f(pj, a) (2)

for 1 ≤ i ≤ n − m + 1.

Let R be the function from {0, 1}w to {1, 2, . . . , w} such that R(u) is the number

of 1 in u. Then, the outline of the modified algorithm is shown in Fig. 3.

Theorem 1 The Parallel Shift-Add algorithm solves the match-count problem for t ∈
Σn and p ∈ Σm in O(m2n/w) time, where w is a parameter for the computer we use.

By Eq. 2, it is clear that the Parallel Shift-Add algorithm solves the match-count

problem. Since the length of ft and fp is m, each computation of ft, fp, and ci

requires m/w time. The cardinality of Σp is at most m. Therefore, the time complexity

is O(n−m+1)+O(m)× (O(m×m/w)+O((n−m+1)×m/w)) = O(m2n/w). Since

this algorithm can be operated simultaneously by m computers, the computation time

is expected to be bounded by O(mn/w).

5 Conclusion

We modified the Shift-Add algorithm which processes a text on line into a parallel

algorithm. The main idea of the modification is to convert each character in input

strings into a single bit character. Then, a straightforward parallelism with respect

to the characters can be applied. As the result, we obtained an O(m2n/w) algorithm

A Parallel Computation for Shift-Add Algorithm 7

Procedure Parallel Shift-Add
Input: t = t1t2 · · · tn, p = p1p2 · · · pm

Output: C(t, p) = (c1, c2, . . . , cn−m+1)

for 1 ≤ i ≤ n − m + 1 do ci := 0 ;
for a ∈ Σp do {

ft := 0, fp := 0 ;
for 1 ≤ i ≤ m do {

ft := P (Sl(ft), M(ti, a)) ;
fp := P (Sl(fp), M(pi, a)) ;

}

for 1 ≤ i ≤ n − m + 1 do {
ci := P (ci, R(A(ft, fp))) ;
ft := P (Sl(ft), M(tm+i, a)) ;

}
}

Figure 3: The Parallel Shift-Add algorithm for the match-count problem.

which is constructed from m distinct processes. If we consider an ideal computer with

a k-core processor for k ≥ m, the computing time of the algorithm is bounded by

O(mn/w).

Acknowledgment

This work has been supported by the Grant-in-Aid for Scientific Research No. 17700020

of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) from

2005 to 2007.

References

[1] R. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Commun.

ACM, 35(10):74–82, 1992.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms,

Second Edition. MIT Press, 2001.

[3] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

[4] M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2003.

[5] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, 1997.

8 K. Baba, H. E, and Y. Yu

[6] G. Navarro. A guided tuor to approximate string matching. ACM Comput. Surv.,

33(1):31–88, March 2001.

[7] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence compar-

ison. In Proc. Natl. Acad. Sci. USA, volume 85, pages 2444–2448, April 1988.

[8] T. F. Smith and M. S. Waterman. Identification of common molecular subseqences.

J. Mol. Biol., 147:195–197, 1981.

[9] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. J. ACM,

21(1):168–173, January 1974.

