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Abstract

We consider a variable selection problem for functional linear models where
both multiple predictors and a response are functions. We assume that these
variables are given as functions of time and then construct the historical functional
linear model which takes the dependence of time between multiple predictors and
a response into consideration. Unknown parameters included in the model are
estimated by the maximum penalized likelihood method with the L1-type penalty.
We can simultaneously estimate and select variables given as functions owing to the
sparsity penalty. A regularization parameter involved in the regularization method
is decided by a model selection criterion. The effectiveness of the proposed method
is investigated by simulation studies and real data analysis.

Key Words and Phrases: Functional data analysis, Longitudinal data; Model selection; Sparse

regularization.

1. Introduction

Functional data analysis (FDA) has received considerable attention in several fields
such as meteorology, ergonomics and medicine, and there have been many studies on
both its theory and applications (see, e.g., Ramsay and Silverman, 2002, 2005; Kokoszka
and Reimherr, 2017). The basic concept behind FDA is to represent repeated measure-
ment data for individuals as smooth functions and then treat the individuals as if they
themselves were the observed data.

There has been much work on regression modelings where both or either predictors
and/or a response are given as functions. When the predictors are functions while
the response is a scalar, such functional regression models have been discussed in several
frameworks, such as the generalized linear models (James, 2002; Müller and Stadtmüller,
2005), the additive models (Müller and Yao, 2008; Fan et al., 2015), and the adaptive
models (James and Silverman, 2005). On the other hand, when both the predictors
and the response are functions, the modeling strategy is further divided into two types.
One is that the arguments of the functions are common (respectively denoted by X(t)
and Y (t)), and in the other case, they are functions of different arguments (X(s) and
Y (t)). The former case is so called the functional concurrent model and for this case
the varying coefficient model (Hastie and Tibshirani, 1993) can be also applied to model
the relationship between X and Y . In the latter case, the functional predictors affect
the response over the domain and it is a more general model than the former case.
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2 H. Matsui

We consider the latter case throughout this paper. Ramsay and Dalzell (1991) first
constructed the linear model for a functional predictor and a functional response as
follows. Let X(s) and Y (t) be a predictor and a response, respectively, and functions in
general Hilbert spaces with s ∈ [0, S] and t ∈ [0, T ]. Then the functional linear model
that represents the relationship between X(s) and Y (t) is

Y (t) = α(t) +

∫ T

0

X(s)β(s, t)ds+ ε(t), (1)

where α(t) is the intercept function, β(s, t) is the coefficient function, and ε(t) is the er-
ror function. Matsui et al. (2009) proposed estimating the model by the basis expansion
techniques and the maximum penalized likelihood method and then derived a model
selection criterion for evaluating the fitted model. On the other hand, Yao et al. (2005)
approached this problem by the functional principal component analysis and showed
that their approach is effective for the situation where the longitudinal data are densely
or sparsely observed. Furthermore, the comprehensive functional regression model in-
cluding (1) is developed by Ivanescu et al. (2015); Scheipl et al. (2015, 2016), and they
also estimated the model as the mixed effect model framework.

If the arguments s and t in model (1) represent times, and the response depends on
future information on the predictor, then it leads to mathematically intractable results.
In other words, the integration interval in (1) should be constrained by s < t. Malfait and
Ramsay (2003) approached this problem by taking the dependence on time betweenX(s)
and Y (t) into consideration and proposed a historical functional linear model (HFLM)
as a special case of (1), and they also investigated how to estimate the parameters of
the HFLM. Furthermore, Harezlak et al. (2007) estimated the parameters in the HFLM
with the penalized least-squares method with the L2- or the L1-type penalties. Şentürk
and Müller (2008) and Şentürk and Müller (2010) also discussed similar situations for
the frameworks of varying-coefficient models. These studies considered functional linear
models with a single predictor, while Brockhaus et al. (2017) considered the model with
multiple predictors and estimated it by the boosting method.

In this paper, we consider a variable selection problem for multiple functional pre-
dictors in the HFLM using sparse regularization. Sparse regularization is one of the
most useful tools for variable selection problems and has come to be used in various
situations. It can simultaneously estimate parameters and select variables by imposing
L1-type penalties (Bühlmann and van de Geer, 2011; Hastie et al., 2015). For functional
linear models with a scalar response, functional predictors are selected using the sparse
regularization in Matsui and Konishi (2011), Zhao et al. (2012), Mingotti et al. (2013),
and Matsui (2014). We propose a strategy for the problem of variable selection in the
historical functional linear model. The functional predictors and the functional response
are represented by basis expansions. Since it is difficult to analytically evaluate func-
tions in the model, we apply the finite element method (FEM) introduced by Malfait
and Ramsay (2003). Then, the parameters to be included in the model are estimated by
the maximum penalized likelihood method with the sparse regularization such as SCAD
(Fan and Li, 2001), elastic net (Zou and Hastie, 2005), and MCP (Zhang, 2010). Fur-
thermore, we apply the idea of the group lasso (Yuan and Lin, 2006) to these penalties
and then shrink each set of parameters that is relevant to the functional variable. In
order to decide the degrees of regularization, we apply a model selection criterion (Kon-
ishi and Kitagawa, 2008) obtained for evaluating the functional linear model. Monte
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Carlo simulations are conducted to assess the effectiveness of the proposed modeling
strategy. Then, we apply the proposed method to the analysis of typhoon data to select
the functional variables which can explain the trajectories of typhoons.

This paper is organized as follows. Section 2 introduces a HFLM that models the
relationship between multiple predictors and a response, both of which are functions of
time. Section 3 provides a method for estimating the model parameters using numerical
approximation and penalized likelihood method, and then shows a model selection cri-
terion for evaluating the model. Numerical examples are investigated in Section 4 and
an example using real data is presented in Section 5. Finally, we summarize the main
points in Section 6.

2. Historical functional linear model

Suppose we have n sets of p functional predictors and a functional response {(xij(s),
yi(t)); s, t ∈ [0, T ], i = 1, . . . , n, j = 1, . . . , p} where s and t represent times. Both
functional data xij(s) and yi(t) are supposed to be obtained by basis expansions from
observed longitudinal data. In order to model the relationship between the predictors
and the response, we consider the following historical functional linear model (HFLM,
Malfait and Ramsay, 2003; Ramsay and Silverman, 2005):

yi(t) = α(t) +

p∑
j=1

∫ t

sj(t)

xij(s)βj(s, t)ds+ ei(t), (2)

where α(t) is an intercept function, βj(s, t) is a bivariate coefficient function which
imposes varying weights on xim(s) at s ∈ [sj(t), t] rather than s ∈ [0, T ], sj(t) =
max{0, t− δj} with lag parameter δj > 0, which determines the lag time up until which
variables are included in the model, and ei(t) are error functions. The HFLM relates to
other functional regression models as follows. If intervals of the integration with respect
to s are shrunk to sj(t) = t, that is, the arguments of the predictors and the response
are the same, the HFLM (2) corresponds to the functional concurrent model:

yi(t) = α(t) +

p∑
j=1

xij(t)βj(t) + ei(t).

On the other hand, if [sj(t), t] is discretized to tl, l = 1, . . . , Rj so that tl = t and
tl−(Rj−1) = sj(t) for fixed t, then it corresponds to the generalized varying-coefficient
model by Şentürk and Müller (2008) with multiple predictors:

yi(tl) = α(tl) +

p∑
j=1

Rj∑
r=1

xij(tl−(r−1))βjr(tl) + ei(tl).

Focusing the HFLM (2), from the normal equation, the intercept function is given
by

α(t) = ȳ(t)−
p∑

j=1

∫ t

sj(t)

x̄j(s)βj(s, t)ds+ ē(t),
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with x̄j(s) =
∑

i xij(s)/n, ȳ(t) =
∑

i yi(t)/n and ē(t) =
∑

i ei(t)/n. Therefore, the
HFLM (2) becomes

yci (t) =

p∑
j=1

∫ t

s0(t)

xcij(s)βj(s, t)ds+ eci (t), (3)

where xcij(s) = xij(s)− x̄j(s), y
c
i (t) = yi(t)− ȳ(t) and eci (t) = ei(t)− ē(t). For the rest

of this paper we consider the model (3) and we drop the suffix c for simplicity.

Suppose that the coefficient functions βj(s, t) are approximated by basis expansions:

β̃j(s, t) =

Kj∑
k=1

bjkϕjk(s, t), (4)

where bjk are unknown coefficient parameters and βj(s, t) are two-dimensional ba-
sis functions. Radial basis functions, or thin-plate splines, are widely used for two-
dimensional basis functions, but here we use another basis whose details are given in
the next section. Denoting the residual between β(s, t) and its approximation (4) as
ε̃(j)(s, t) = βj(s, t)− β̃j(s, t), the HFLM (3) is expressed by

yi(t) =

p∑
j=1

∫ t

sj(t)

xij(s)


Kj∑
k=1

bjkϕjk(s, t) + ε̃(j)(s, t)

 ds+ ei(t)

=

p∑
j=1

Kj∑
k=1

bjk

∫ t

sj(t)

xij(s)ϕjk(s, t)ds+ εi(t)

=

p∑
j=1

Kj∑
k=1

bjkψijk(t) + εi(t),

where

ψijk(t) =

∫ t

sj(t)

xij(s)ϕjk(s, t)ds

and we write the residual
∑

j

∫
xij(s)ε̃(j)(t)ds + ei(t) as εi(t) in the last line. Using

vector and matrix notations y(t) = (y1(t), . . . , yn(t))
′, ε(t) = (ε1(t), . . . , εn(t))

′, Ψj(t) =
(ψijk(t))ik, Ψ(t) = (Ψ1(t), . . . ,Ψp(t)), b = (b′1, . . . , b

′
p)

′, and bj = (bj1, . . . , bjKj
)′, the

model (3) takes the form

y(t) =

p∑
j=1

Ψj(t)bj + ε(t)

= Ψ(t)b+ ε(t), (5)

which is similar to the standard linear model with a design matrix Ψ(t), a response
vector y(t), and coefficients b, except that some of the vectors are functions of t.
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Figure 1: Illustration of the region of the integral of the HFLM (left) and its triangulation
(right) for the time lag parameter δj ∈ (0, T ).

3. Estimation and evaluation

We consider the estimation of the functional linear model described in the previous
section. As a natural approach for this problem, Ramsay and Silverman (2005), Chapter

16 considered minimizing the integrated sum of squared errors
∫ T

0

∑n
i=1 ε

2
i (t)dt. How-

ever, it is difficult to obtain estimates of b in (5) directly, since it is difficult to calculate
ψijk analytically due to the complexity of the integral. To solve this problem, we ap-
proximate the integral numerically by applying the FEM. In addition, we apply sparse
regularization to select the functional predictors and obtain stable estimates.

3.1. Finite element method

In order to calculate ψijk numerically, here we apply the FEM to estimate the
coefficient vector b. Malfait and Ramsay (2003) used the FEM for the HFLM and
described the relevant details.

Consider a two-dimensional coordinate system (s, t) which includes the domain of
integration in (2), as displayed in Figure 1, left. First we divide the intervals [0, T ] for
s and t directions into N equally spaced intervals with length µ, and then construct
triangular elements by further dividing each square grid into two triangles, as shown in
Figure 1, right. The value of δj can be approximated by Mjµ (0 ≤ Mj ≤ N) for each
j. When Mj = N , the domain becomes a triangle and 0 < Mj < N corresponds to a
trapezoid (as depicted in Figure 1 left), and when Mj = 0, the domain is s = t, which
corresponds to the functional concurrent model. As a result, there are Tj =Mj(2N−Mj)
triangular elements and Vj = (Mj + 1)(N + 1−Mj/2) nodes on the domain of βj(s, t).
Each node is assigned by one basis function which has the shape of a hexagonal pyramid
and has a value of 1 at the node and 0 at the adjacent nodes, and therefore Kj = Vj .
These bases correspond to ϕjk(t) (j = 1, . . . , p, k = 1, . . . ,Kj) in equation (4). We used
Matlab functions to calculate the triangulation, available from the website of Ramsay
and Silverman (2002).

We consequently discretize the time t intoQ finite time points . Malfait and Ramsay
(2003) showed that Q = 4N gives sufficient accuracy for the approximation. Using
this discretization, the vector forms of yi(t), ψijk(t), and εi(t) are yi = (yi1, . . . , yiQ)

′,
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ψijk = (ψi1jk, . . . , ψiQjk)
′, and εi = (εi1, . . . , εiQ)

′. Then, using the notation

y =

 y1
...
yn

 ,Ψ =

 ψ111 · · · ψ11K1
· · · ψ1p1 · · · ψ1pKp

...
. . .

...
. . .

...
. . .

...
ψn11 · · · ψn1K1

· · · ψnp1 · · · ψnpKp

 , ε =

 ε1
...
εn

 ,

we can represent the discretized version of HFLM as

y = Ψb+ ε. (6)

An advantage of applying the FEM is that we can approximate the HFLM (3) with
(6), the same form as the traditional linear model. Then we can use several estimation
procedures which are applied to the linear model.

3.2. Penalized likelihood method via sparse regularization

We assume that the error vectors εi are identically and independently normally
distributed with mean vector 0 and variance-covariance matrix Σ0, and that Σ0 has
an autocorrelation structure, since εi1, . . . , εiQ are discretized realizations of the error
function over time. That is, we assume that Σ0 has the form

Σ0 =
σ2

1− ρ2


1 ρ · · · ρQ−1

ρ 1 · · · ρQ−2

...
...

. . .
...

ρQ−1 ρQ−2 · · · 1

 , (7)

where σ2 and ρ ∈ [−1, 1] are variance and correlation parameters, respectively. Here we
referred to Fahrmeir et al. (2013) for the covariance structure. The variance-covariance
matrix of ε is given by Σ = In ⊗ Σ0, and hence we have probability density function

f(y,θ) =
1

(2π)nQ/2|Σ|1/2
exp

{
−1

2
(y −Ψb)′Σ−1(y −Ψb)

}
, (8)

where θ = (b′, σ2, ρ)′ is a vector of the parameters. The log-likelihood function is given
by

ℓ(θ) = −nQ
2

log(2π)− 1

2
log |Σ| − 1

2
(y −Ψb)

′
Σ−1 (y −Ψb) .

We estimate parameters b, σ2, and ρ by maximizing the following penalized likeli-
hood function

ℓλ(θ) = ℓ(θ)− nQ

p∑
j=1

Pλ(∥bj∥Ωj
), (9)

where Pλ(·) is a penalty function which is controlled by a regularization parameter λ > 0

and ∥bj∥Ωj
=

√
b′jΩjbj with positive semi-definite matrix Ωj . We used Pλ(∥bj∥Ωj

)

rather than Pλ(|bjk|) as the penalty for the penalized likelihood method by applying
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the idea of the group lasso, as we can shrink all of the parameters relevant to the j-th
predictor toward zero simultaneously. In particular, here, we consider SCAD, elastic
net and the MCP for the panlty function Pλ(·). Furthermore, Harezlak et al. (2007)
penalized fluctuations of the coefficient function in three directions: parallel to the s-
axis (horizontal), t-axis (vertical), and s = t (parallel), which respectively corresponds to
penalizing coefficients for neighboring basis functions for fixed t, s, and s− t (Figure 2).
We used the first differences of the coefficients of the neighboring bases by constructing
penalty matrices for the horizontal, vertical, and parallel directions for the j-th variable,

respectively denoted by D
(H)
j , D

(V )
j , and D

(P )
j . For example, the elements of D

(H)
j are

given by 
(
D

(H)
j

)
lv

= 1(
D

(H)
j

)
lv′

= −1(
D

(H)
j

)
lv′′

= 0

 s(v) − s(v′) = 1,
if t(v) − t(v′) = 0,

v′′ ̸= v, v′

 , (10)

where s(v) and t(v) are the s and t coordinate values of the v-th node, respectively,
v = 1, . . . , Vj , and l = 1, . . . , L, with L being the number of combinations where the

condition in (10) is satisfied. The matrices D
(V )
j and D

(P )
j are given in similar ways.

Then the matrices Ωj are given by

Ωj = γ
(H)
j (D

(H)
j )′D

(H)
j + γ

(V )
j (D

(V )
j )′D

(V )
j + γ

(P )
j (D

(P )
j )′D

(P )
j

with tuning parameters γ
(H)
j , γ

(V )
j , and γ

(P )
j that control the degrees of regularization for

each direction. Although we can select all of these parameters by some model selection
criteria, this can be computationally expensive. Instead, we decide these values with
the following rule, using the idea of Fan and Li (2004). First, we obtain the maximum

likelihood estimator of b, denoted by b̂
(ML)

, by maximizing (9) with λ = 0, and then

γ
(H)
j is given as standard deviations of D

(H)
j b̂

(ML)

j . The other parameters γ
(V )
j and

γ
(P )
j are obtained in the same way, and then λ is selected using the model selection

criteria introduced in the next subsection. When it is difficult to derive b̂
(ML)

(e.g.
the dimension of b exceeds the sample size n), we instead use the maximum likelihood
estimator with generalized inverse or penalized maximum likelihood estimator with small
regularization parameter.

The parameters to be included in the model are estimated by the local quadratic
approximation, which iteratively updates the parameter estimates and has been applied
for the nonconcave penalties such as SCAD and MCP. For the concave penalty including
the elastic net, several other optimization algorithms are proposed such as coordinate
descent algorithm and the augmented Lagrangian method, but the quadratic approxi-
mation can be also applied. Denoting the initial value of b in the updated estimate as
b(0), we approximated the penalty function Pλ(∥bj∥Ωj

) by

Pλ(∥bj∥Ωj
) ≈ Pλ(∥b(0)j ∥Ωj

) +
1

2

P ′
λ(∥b

(0)
j ∥Ωj

)

∥b(0)j ∥Ωj

{
b′jbj −

(
b
(0)
j

)′
b
(0)
j

}
.
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Figure 2: Directions for penalizations about D
(H)
j (left), D

(V )
j (center) and D

(P )
j (right).

Using this approximation and assuming that σ2 and ρ are fixed, the penalized log-
likelihood function (9) is approximated by the Taylor expansion:

ℓλ(b) ≈ ℓ(b(0)) +
∂ℓ(b(0))

∂b′
(b− b(0)) + 1

2
(b− b(0))′ ∂ℓ(b

(0))

∂b∂b′
(b− b(0)) + nQ

2
b′Ωλ(b)b,

where Ωλ(b) = blockdiag{P ′
λ(∥b1∥Ω1

)/∥b1∥Ω1
, . . . , P ′

λ(∥bp∥Ωp
)/∥bp∥Ωp

}. Then if the k-

th updated values of b and Σ, denoted by b(k) and Σ(k), respectively, are obtained, the
(m+ 1)-th updated value of b is given by

b(m+1) =

{
Ψ′

(
Σ(k)

)−1

Ψ+ nQΩλ(b
(k))

}−1

Ψ′
(
Σ(k)

)−1

y, (11)

and subsequently the correlation and variance parameters in (7) are updated by

ρ(m+1) =
s
(m+1)
q1

s
(m+1)
q

,
(
σ2

)(m+1)
=

1

nQ

(
y −Ψb(m+1)

)′ (
y −Ψb̂

(m+1)
)
, (12)

respectively, where

s
(m+1)
q1 =

1

nQ

n∑
i=1

Q∑
q=2

yiq − p∑
j=1

Kj∑
k=1

ψiqjkb
(m+1)
jk

yi(q−1) −
p∑

j=1

Kj∑
k=1

ψi(q−1)jkb
(m+1)
jk

 ,

s(m+1)
q =

1

nQ

n∑
i=1

Q∑
q=1

yiq − p∑
j=1

Kj∑
k=1

ψiqjkb
(m+1)
jk

2

.

The updated variance-covariance matrix Σ(m+1) is obtained by substituting ρ(m+1) and
(σ2)(m+1) into (7). This algorithm is summarized as follows:

1. Choose initial values of parameters b(0), ρ(0), and (σ2)(0).

2. Update the coefficients b by (11).

3. Update the parameters ρ and σ2 in the variance-covariance matrix Σ by (12).
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4. Repeat steps 2 and 3 until convergence.

Substituting the estimates θ̂ = (b̂
′
, σ̂2, ρ̂)′ into (8), we obtain the following model:

f(y, θ̂) =
1

(2π)nQ/2|Σ̂|1/2
exp

{
−1

2

(
y −Ψb̂

)′
Σ̂−1

(
y −Ψb̂

)}
. (13)

3.3. Model selection criterion

As described in the previous section, the model defined in (13) depends on the
regularization parameter λ, and therefore we need to select an appropriate value of
it. Although cross-validation is widely used for the selection of tuning parameters, it
tends to be computationally expensive. Furthermore, Leng et al. (2006) showed that
criteria based on the minimum prediction error, such as cross-validation or generalized
cross-validation, are not consistent. On the other hand, Wang et al. (2007) and Zhang
et al. (2010) showed that the Bayesian information criterion (BIC) with the effective
degrees of freedom is consistent for the SCAD regularization. We used a BIC-type model
selection criterion for evaluating the historical functional linear model (2) estimated by
the maximum penalized likelihood method with the sparse regularization. The BIC is
given by

BIC = −2ℓ(θ̂) + df log(nQ),

where

df = tr

{
Ψ
(
Ψ′Σ̂−1Ψ+ nQΩ(b̂)

)−1

Ψ′Σ̂−1

}
is an effective degrees of freedom derived using the idea of Hastie and Tibshirani (1990).
Note that the part of the formula of the effective degrees of freedom is the same as (11)
in the LQA algorithm, and therefore the BIC can be easily calculated. We select the
regularization parameter λ so as to minimize the BIC and then consider this to be an
optimal model.

4. Simulation study

We conducted Monte Carlo simulations to show the effectiveness of the proposed
method. We simulated predictors Xj(s) (j = 1, . . . , 5) and a response Y (t) with s, t ∈
[0, 1] in the HFLM. First, we generated functional predictors and coefficients by

xij(s) =

K∑
k=1

(ujk + wijk)ξjk(s), βj(s, t) =

K2∑
k=1

vjkξjk(s)ξjk(t),

where K = 7 and ξjk(s) are the basis functions. Here, we applied the Gaussian radial
basis functions (Bishop, 1995) for ξjk(s). An advantage with respect to the use of
Gaussian bases is that it is straightforward to simulate the true response function (Matsui
and Konishi, 2011). Furthermore, coefficients ujk and wijk in xij(s) are given by

u1k = k, u2k = sin(3πk), u3k = cos(3πk), u4k = sin(5πk), u5k = cos(5πk),

wij ∼ NK(0,Σw), wij = (wij1, . . . , wijK)′, Σw = (σwρ
|k−l|
w )kl,
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respectively, where σw = 0.3 and ρw = 0.5, and vjk in βj(s, t) are set as

v1k = 0.5(a−4)2+(b−4)2/10, v2k = 0.1a, v3k = − sin((a− b)2), v4k = 0, v5k = 0,

where a = 1, . . . ,K and b = 1, . . . ,K are given so that k = (a − 1)K + b. This setting
means that the variables X4 and X5 are unnecessary for the model. Furthermore,
the error function in the HFLM was generated by the basis expansion with random
coefficients:

εi(t) =

K∑
k=1

εkξk(t), εk ∼ N(0, σ2
eR

e2
i ),

where ξk(t) are the same basis functions as ξjk(t), σe = 0.05, 0.1 and Re
i = sd(yi(t))

with standard deviation sd(·). The response is given by

yi(t) =

5∑
j=1

∫ t

sj(t)

xij(s)βj(s, t)ds+ εi(t),

where we set the true lag parameter δj included in sj(t) to be δj = 0.5 for all j. Since
the observed data contain noise, we added noise to the above predictors and responses
as follows:

xijl = xij(sl) + ε
(x)
ijl , yil = yi(tl) + ε

(y)
il ,

where l = 1, . . . , 51, and ε
(x)
ijl and ε

(y)
il follow N(0, σ2

xR
x2
i ) and N(0, σ2

yR
y2
i ), respectively,

with σx = σy = 0.3, Rx
i = sd(xij(s)), and R

y
i = sd(yi(t)).

We treated xijl and yil as observations, then smoothed them into functional data
with B-splines with 8 basis functions using the Matlab functions provided in Ramsay and
Silverman (2002). Next we constructed a design matrix and a response vector in (6) using
the FEM. There are several tuning parameters involved in the FEM, described in Section
3.1. We set the parameters to N = 13 and µ = 4, and Mj is defined such that δj =
0.25, 0.50, 0.75 for all j (while the true value is δj = 0.50). Then the parameters included
in the model were estimated by the maximum likelihood method and the penalized
likelihood method with SCAD, elastic net and the MCP. Regularization parameter λ
is then selected by the BIC. We conducted this strategy for 100 repetitions and for
all combinations of n = 50, 100, σe = 0.05, 0.1, and δj = 0.25, 0.50, 0.75, and then
investigated averaged values of the 100 mean squared errors (MSE) for the response
yi(t) defined by

MSEy =
1

51n

n∑
i=1

51∑
l=1

{gi(tl)− ŷi(tl)}2 ,

where gi(t) = yi(t)− εi(t) and ŷi(t) is an estimated response function. We also investi-
gated the rates of selected variables.

Tables 1 and 2 show the results of the simulation study. Values in the parentheses
in these tables are standard deviations of the 100 MSEs and X1, . . . , X5 indicate the
rates of the selected variables. These results demonstrate that, if the lag parameter δ is



Variable selection for historical functional linear model 11

smaller than the true value (i.e. δ = 0.25) the MLE minimizes the MSEs, but if δ is equal
or larger than the true value (i.e. δ = 0.50, 0.75) the MCP gives smaller or competitive
MSEs. SCAD gives similar results with MCP, while the elastic net gives larger MSEs
for all cases. SCAD and MCP tend to select relatively correct variables, especially for
larger n and true δ, but when δ = 0.75 they tend to select unnecessary variables. On
the other hand, the elastic net tends to shrink unnecessary variables but it also shrink
X1, the necessary variable. The elastic net selected smaller λs than SCAD and MCP,
whereas it gives smaller models than the others. This is probably because the elastic net
uniformly imposes penalty to the coefficients, while SCAD and MCP imposes smaller
penalties to the larger coefficients due to their nonconcavity. In addition, a possible
reason why the elastic net gives worse result is that the BIC with the elastic net does
not have consistency for variable selection, which is proved under the oracle property
(Wang et al., 2007).

5. Application to real data

We applied the proposed method to the analysis of typhoon data. We investigated
which sets of variables in the data influence the path of the typhoons, using the historical
functional linear model.

The data are available on the website “Digital Typhoon.1”We analyzed 88 typhoons
which passed around Japan (30 and 50◦ N and 130 and 150◦ E) between 2001 and 2012.
The data contain the positions (latitude Y1 and longitude Y2), the central atmospheric
pressure (X1), the velocity of the wind around the center (X2), the radii of major and
minor storm axes (areas where the velocities of the winds are higher than 25 m/s; X3 and
X4, respectively) and those of the major and minor gale axes (areas where the velocities
of the winds are higher than 15 m/s; X5 and X6, respectively) of the typhoons. These
variables were observed every six hours from the formation to the dissipation of the
typhoons. Since the survival periods of them differ, we grouped all of the formation and
dissipation times of the typhoons as 0 and 1, respectively, by scaling the time points.
Figure 3 shows 10 examples of the typhoon data. Since the positions of the time points
differ for each subject, it is difficult to apply the traditional linear model directly. On
the other hand, we can easily analyze them with functional data analysis. The objective
of this analysis is to examine which combination of variables, such as pressure and wind
velocity, relate to the location of the typhoon. In order to do this we treated the positions
as responses and the other variables as predictors in the functional linear model.

We applied the smoothing method with basis expansions to the observed data
and then obtained the functions. Examples of the functions are depicted in Figure
4. After centering the data, we constructed the HFLM (2) by treating the longitude
or the latitude of the typhoons as a functional response and the remaining data as
functional predictors. Since the model (2) contains only one response, whereas there
are two response variables for the position (latitude and longitude), we constructed
two HFLMs, one for each of the spatial dimensions. The unknown parameters in the
model were estimated by the maximum penalized likelihood method with MCP, and
regularization parameter λ in the penalized log-likelihood function was selected with
BIC. Here the value of δj was fixed at 0.50 for all j. We then investigated the selected
variables.

1 http://agora.ex.nii.ac.jp/digital-typhoon/index.html.en
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Figure 6 shows the estimated coefficient functions when the responses are Y1 and
Y2, respectively. From these figures, we can see that some of the coefficient surfaces
were estimated to be zero functions, which leads to the exclusion of the corresponding
variables from the model. When the response is the latitude, the coefficient function
for the velocity of the wind (X2) is estimated to be a zero function; that is, only this
variable does not affect the latitudinal direction. When the response is the longitude,
on the other hand, the predictors about the major and minor storm axes (X3, X4) are
selected. Therefore, only the storm axes relate to the trajectories of the longitude of the
typhoon among the variables.

6. Concluding remarks

We have proposed a method for variable selection in functional linear models where
the predictors and the response are functions. When the data are functions of time
we need to take into account the dependence in time between the predictors and the
response, and therefore we applied the historical functional linear model. Unknown
parameters included in the model are estimated by the maximum penalized likelihood
method with sparsity inducing penalties, and the regularization parameter was selected
by a BIC-type model selection criterion. Simulation results revealed that the proposed
method tends to correctly select the predictors under the condition that the lag param-
eter is equal or smaller than true value. We also applied our method to typhoon data,
to determine the combination of variables that best explained the path of the typhoon.

The proposed method can be applied to the dataset with even more variables
than that we have applied in this paper. The investigation of the behavior for the
case when the number of variables increases remains as a future work. More recently,
several numerical algorithms are proposed for nonconcave penalties, such as local linear
approximation (Zou and Li, 2008) and alternating direction method of multipliers (Wang
et al., 2019). We need more investigations about the application of these algorithms.
In addition, we assumed that several tuning parameters, not including regularization
parameter λ, were fixed. In particular, we think that it is crucial to select the value
of the lag parameter δj objectively, since it determines until what time variables are
included in the model. However, we cannot directly apply the model selection criteria
since the “sample size” in model (6) changes as δj changes. Therefore, the selection of δj
is also the future work. Furthermore, we can consider extending the HFLM to multiple
response variables. For example, the longitudes and latitudes in the typhoon data in
Section 5 can be modeled simultaneously by taking the correlation among responses into
consideration.
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Table 1: Results on 100 repetitions in simulation studies for n = 50.
σe = 0.05, δ = 0.25

MSE λ X1 X2 X3 X4 X5

MLE 2.97 (0.14) 0 1.00 1.00 1.00 1.00 1.00
SCAD 3.02 (0.18) 1.00× 10−2 0.91 1.00 1.00 0.26 0.31

Elastic net 11.12 (0.95) 3.13× 10−5 0.04 1.00 1.00 0.00 0.00
MCP 3.16 (0.30) 6.44× 10−3 0.60 1.00 1.00 0.43 0.44

σe = 0.1, δ = 0.25
MSE λ X1 X2 X3 X4 X5

MLE 3.18 (0.14) 0 1.00 1.00 1.00 1.00 1.00
SCAD 3.19 (0.22) 1.02× 10−2 0.92 1.00 1.00 0.43 0.43

Elastic net 11.15 (1.14) 3.63× 10−5 0.02 1.00 1.00 0.02 0.02
MCP 3.48 (0.34) 8.22× 10−3 0.42 1.00 1.00 0.27 0.28

σe = 0.05, δ = 0.50
MSE λ X1 X2 X3 X4 X5

MLE 2.14 (0.12) 0 1.00 1.00 1.00 1.00 1.00
SCAD 2.07 (0.16) 6.31× 10−3 0.96 1.00 1.00 0.37 0.45

Elastic net 11.16 (1.05) 3.16× 10−5 0.07 1.00 1.00 0.00 0.03
MCP 2.07 (0.17) 3.09× 10−3 0.94 1.00 1.00 0.27 0.33

σe = 0.1, δ = 0.50
MSE λ X1 X2 X3 X4 X5

MLE 2.51 (0.15) 0 1.00 1.00 1.00 1.00 1.00
SCAD 2.55 (0.20) 4.46× 10−3 0.89 1.00 1.00 0.44 0.45

Elastic net 11.10 (0.92) 3.06× 10−5 0.03 1.00 1.00 0.00 0.01
MCP 2.43 (0.19) 3.56× 10−2 0.43 1.00 1.00 0.29 0.27

σe = 0.05, δ = 0.75
MSE λ X1 X2 X3 X4 X5

MLE 2.21 (0.13) 0 1.00 1.00 1.00 1.00 1.00
SCAD 2.19 (0.14) 5.01× 10−3 1.00 1.00 1.00 0.88 0.86

Elastic net 11.15 (1.04) 2.76× 10−5 0.04 1.00 1.00 0.02 0.05
MCP 2.16 (0.20) 3.29× 10−3 0.95 1.00 1.00 0.52 0.50

σe = 0.1, δ = 0.75
MSE λ X1 X2 X3 X4 X5

MLE 2.63 (0.18) 0 1.00 1.00 1.00 1.00 1.00
SCAD 2.63 (0.19) 3.30× 10−3 0.85 1.00 1.00 0.82 0.81

Elastic net 10.89 (0.97) 3.16× 10−5 0.06 1.00 1.00 0.03 0.01
MCP 2.52 (0.22) 3.26× 10−3 0.99 1.00 1.00 0.62 0.58
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Table 2: Results on 100 repetitions in simulation studies for n = 100.
σe = 0.05, δ = 0.25

MSE λ X1 X2 X3 X4 X5

MLE 3.03 (0.12) 0 1.00 1.00 1.00 1.00 1.00
SCAD 3.68 (0.20) 1.02× 10−2 0.00 1.00 1.00 0.00 0.00

Elastic net 11.28 (0.64) 3.54× 10−5 0.00 1.00 1.00 0.00 0.00
MCP 3.06 (0.12) 3.10× 10−3 0.99 1.00 1.00 0.17 0.09

σe = 0.1, δ = 0.25
MSE λ X1 X2 X3 X4 X5

MLE 3.12 (0.11) 0 1.00 1.00 1.00 1.00 1.00
SCAD 3.24 (0.25) 6.31× 10−2 0.74 1.00 1.00 0.09 0.02

Elastic net 11.32 (0.65) 3.24× 10−5 0.00 1.00 1.00 0.00 0.00
MCP 3.13 (0.13) 3.19× 10−3 0.97 1.00 1.00 0.22 0.11

σe = 0.05, δ = 0.50
MSE λ X1 X2 X3 X4 X5

MLE 1.97 (0.09) 0 1.00 1.00 1.00 1.00 1.00
SCAD 1.93 (0.12) 3.16× 10−3 0.99 1.00 1.00 0.29 0.31

Elastic net 11.18 (0.69) 3.24× 10−5 0.00 1.00 1.00 0.00 0.00
MCP 1.92 (0.10) 1.58× 10−3 1.00 1.00 1.00 0.23 0.26

σe = 0.1, δ = 0.50
MSE λ X1 X2 X3 X4 X5

MLE 2.18 (0.08) 0 1.00 1.00 1.00 1.00 1.00
SCAD 2.15 (0.09) 3.14× 10−3 0.78 1.00 1.00 0.73 0.75

Elastic net 11.22 (0.72) 3.16× 10−5 0.00 1.00 1.00 0.00 0.00
MCP 2.22 (0.18) 1.37× 10−3 0.96 1.00 1.00 0.23 0.10

σe = 0.05, δ = 0.75
MSE λ X1 X2 X3 X4 X5

MLE 1.99 (0.09) 0 1.00 1.00 1.00 1.00 1.00
SCAD 2.80 (1.83) 3.64× 10−3 0.94 1.00 0.83 0.33 0.31

Elastic net 11.09 (0.64) 3.32× 10−5 0.00 1.00 1.00 0.00 0.00
MCP 1.99 (0.09) 1.12× 10−3 1.00 1.00 1.00 0.92 0.93

σe = 0.1, δ = 0.75
MSE λ X1 X2 X3 X4 X5

MLE 2.17 (0.13) 0 1.00 1.00 1.00 1.00 1.00
SCAD 3.18 (2.13) 3.33× 10−3 1.00 1.00 0.90 0.60 0.70

Elastic net 11.99 (0.52) 5.44× 10−5 0.00 1.00 1.00 0.00 0.00
MCP 2.13 (0.09) 1.58× 10−3 1.00 1.00 1.00 1.00 1.00
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Figure 3: Examples of typhoon data. Two plots in the top left (north latitude and east
longitude) are responses and the remaining data are predictors. The square brackets
indicates units of measurement, where ”nm” represents the nautical mile.

Figure 4: Functional data sets obtained by smoothing the data given in Figure 3.
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Figure 5: Estimated coefficient functions when the response is the north latitude (Y1).

Figure 6: Estimated coefficient functions when the response is the east longitude (Y2).


