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Abstract

We discuss nonparametric estimation of the linear multiplier in a trend coeffi-
cient in models governed by a stochastic differential equation driven by a fractional
Lévy process with small noise.
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1. Introduction

Statistical inference for fractional diffusion processes satisfying stochastic differen-
tial equations driven by a fractional Brownian motion (fBm) has been studied earlier
and a comprehensive survey of various methods is given in Mishura [9] and Prakasa Rao
[12]. There has been a recent interest to study similar problems for stochastic processes
driven by α-stable noises and by fractional Lévy processes.

Prakasa Rao [11] investigated minimum L1-norm estimation for fractional Ornstein-
Uhlenbeck type process driven by a fractional Brownian motion. Diop and Yode [3] stud-
ied minimum distance parameter estimation for Ornstein-Uhlenbeck processes driven by
a Lévy process. Parametric estimation for Ornstein-Uhlenbeck process driven by frac-
tional Lévy process is discussed in Shen et al. [16].

In modeling processes with possible long range dependence, it is possible that no
special functional form is available for modeling the trend a priori and it is necessary to
estimate the trend function based on the observed process over an interval. This prob-
lem of estimation is known as nonparametric function estimation in classical statistical
inference (cf. Prakasa Rao [10]).

Nonparametric estimation of the trend for stochastic differential equations driven
by fractional Brownian motion is investigated in Mishra and Prakasa Rao [8]. Following
techniques in Mishra and Prakasa Rao [8], Zhang et al. [17] studied a similar problem
when the driving force is a small α-stable noise. Nonparametric estimation of trend for
stochastic differential equations driven by a fractional Lévy process is investigated in
Prakasa Rao [13].
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2 B. Prakasa Rao

Our aim im this paper is to study nonparametric estimation of the linear multiplier
in the trend function when the process is governed by a stochastic differential equation
driven by a fractional Lévy process following the ideas of density function estimation
and regression function estimation in classical statistical inference. Several methods are
present for nonparametric function estimation as described in Prakasa Rao [10]. The
method of kernels is widely used for the estimation of a density function or a regression
function and it is known the properties of such an estimator do not depend on the
choice of the kernel in general but on the choice of the bandwidth. Properties of the
estimators of a density function and a regression function, using the method of kernels,
are described in Prakasa Rao [10]. Our aim is to propose a kernel type estimator for the
linear multiplier in the trend function and study its properties. We will show that the
kernel type estimator is uniformly consistent over a class of trend functions and obtain
the asymptotic distribution of the estimator in the presence of small noise. We will
also obtain the optimum rate of convergence of the kernel type estimators for the trend
function. Results derived in this paper will be useful when there is no information on
the functional form of the trend coefficient and the trend has to be estimated from the
observed path of the underlying process.

We define a fractional Lévy process (fLp) in Section 2 and describe its properties.
Section 3 contains a preliminary description of processes driven by a fLp with small
noise. Estimation of the trend function by the kernel method is suggested and results
on its rate of convergence is investigated in Section 4. Proofs of these results are given
in Section 5. An alternate estimator of the linear multiplier based on a modified or
a second stage sampling process via kernel method is described and its properties are
discussed in Section 6.

2. Fractional Lévy Process

We will now describe some properties of a fractional Lévy process (fLp) and prop-
erties of processes driven by a fractional Lévy process. A fractional Lévy process is
a generalization of the integral representation of fractional Brownian motion. For any
t ∈ R, define t+ = max(t, 0) and t− = max(−t, 0).

Definition: (Marquardt [7]) Let {L1(t), t ≥ 0} and {L2(t), t ≥ 0} be two independent
copies of a one-sided zero mean Lévy process . Let L(t) = L1(t), t ≥ 0 and L(t) =
−L2(−t−), t < 0. Further suppose that E([L(1)]2) < ∞ and the process {L(t), t ∈ R}
has no Brownian component. For d ∈ (0, 1

2 ), define the stochastic process

Ld
t =

1

Γ(d+ 1)

∫ ∞

−∞
[(t− s)d+ − (−s)d+]L(ds), t ∈ R. (2.1)

This process is called a fractional Lévy process .

Suppose the process L1 is a Lévy process with E[L1(1)] = 0 without Brownian com-
ponent. Further suppose that E[L1(1)]

2 < ∞. This in turn implies that E[L1(t)]
2 < ∞

since V ar(L1(t)) = tV ar(L1(1) (cf. Sato [15], Example 25.12; Marquardt [7], Equation
(2.6)). The following two results are due to Marquardt [7].

Theorem 2.1: Let the function g ∈ H where H is the completion of L1(R) ∩ L2(R)
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with respect to the norm ||g||2H = E([L(1)]2)∫
R
(Id

g )
2(u)du

. Then

∫
R

g(s)dLd
s =

∫
R

(Idg )(u)dL(u) (2.2)

where the equality holds in the L2-sense and Idg denotes the Riemann-Liouville fractional
integral defined by

(Idg )(x) =
1

Γ(d)

∫ ∞

x

g(t)(t− x)d−1dt. (2.3)

Theorem 2.1 gives a representation of the integral with respect to a fractional Lévy
process (fLp) as an integral with respect to a transformed function with respect to a
Lévy process. The next result gives a formula for the product moment of two integrals
with respect to fractional Lévy process.

Theorem 2.2: Let |f |, |g| ∈ H. Then

E(

∫
R

f(s)dLd
s) = 0 (2.4)

and

E[

∫
R

f(s)dLd
s

∫
R

g(s)dLd
s ] =

Γ(1− 2d)E([L(1)]2)

Γ(d)Γ(1− d)

∫
R

∫
R

f(t)g(s)|t− s|2d−1dsdt. (2.5)

Bender et al. [1] presented a maximal inequality for a fractional Lévy process.

Theorem 2.3: Let {Ld
t , t ∈ R} be a fractional Lévy process. Then, for every p ≥ 2

and δ > 0 such that d + δ < 1
2 , there exists a constant Cp,δ,d independent of the Lévy

process L such that for every T ≥ 1,

E( sup
0≤t≤T

|Ld
t |p) ≤ Cp,δ,dE(|L(1)|p)T p(d+ 1

2+δ). (2.6)

Remarks : It is known that a fractional Lévy process (fLp) is not a semimartingale in
general for a broad class of Lévy processes and hence it is not possible to extend the
notion of the Ito stochastic integral for stochastic integrals with respect to a fractional
Lévy process. However it is possible to extend the notion of a Wiener integral with
respect to a fLp when the integrand is a non-random function using the ideas from
fractional calculus. The covariance structure of fLp is almost the same as that of a
fractional Brownian motion. In fact,

Cov(Ld
t , L

d
s) =

E[L(1)2]

2Γ(2d+ 2)sin(π(d+ 1
2 ))

[|t|2d+1 − |t− s|2d+1 + |s|2d+1]. (2.7)

Furthermore the increments of a fLp are stationary and exhibit long memory. Its sample
paths are Hölder continuous of order β < d and the fLp is not self-similar. For details,
see Marquardt [7]. For additional properties of fractional Lévy processes, see Bender et
al. [2], Fink and Kluppelberg [5], and Engelke [4].
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3. Preliminaries

Let us consider the stochastic differential equation

dXt = θ(t) Xt dt+ ϵ dLd
t , X0 = x0, 0 ≤ t ≤ T (3.1)

where the linear multiplier θ(.) is an unknown function and the constant d is known with
0 < d < 1

2 . We assume that T ≥ 1 hereafter. Suppose {xt, 0 ≤ t ≤ T} is the solution of
the differential equation

dxt

dt
= θ(t)xt, x0, 0 ≤ t ≤ T. (3.2)

We would like to estimate the trend θ(t)xt based on the observation {Xt, 0 ≤ t ≤ T}.

(A1) We assume that the linear multiplier θ(.) is bounded by a constant L.

Lemma 3.1: Let Xt and xt be the solutions of the equation (3.1) and (3.2) respectively.
Let δ > 0 such that d+ δ < 1

2 and T ≥ 1. Then, with probability one,

(a)|Xt − xt| < eLtϵ sup
0≤s≤t

|Ld
s | (3.3)

and, for T ≥ 1, there exists a constant C2,δ,d such that

(b) sup
0≤t≤T

E|Xt − xt|2 ≤ C2,δ,dE[(L(1))2]e2LT ϵ2T 2(d+ 1
2+δ). (3.4)

Proof of (a) : Let ut = |Xt − xt|. Then

ut ≤
∫ t

0

|θ(v)(Xv − xv)|dv + ϵ |Ld
t | (3.5)

≤ L

∫ t

0

uvdv + ϵ sup
0≤s≤t

|Ld
s |.

Applying the Gronwall’s lemma, it follows that

ut ≤ ϵ sup
0≤s≤t

|Ld
s |eLt. (3.6)

Proof of (b) : Let T ≥ 1. Applying Theorem 2.3, it follows that

sup
0≤t≤T

E|Xt − xt|2 ≤ e2LT ϵ2E[( sup
0≤s≤T

|Ld
s |)2] (3.7)

≤ C2,δ,dE[(L(1))2]e2LT ϵ2T 2(d+ 1
2+δ).
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4. Main Results

Let Θ0(L) denote the class of all functions θ(.) with the same bound L. Let Θk(L)
denote the class of all functions θ(.) which are uniformly bounded by the same constant
L and which are k-times differentiable with respect to t satisfying the condition

|θ(k)(x)− θ(k)(y)| ≤ L1|x− y|, x, y ∈ R

for some constant L1 > 0. Here g(k)(x) denotes the k-th derivative of g(.) at x for k ≥ 0.
If k = 0, we interpret g(0) as g.

Let G(u) be a bounded function with compact support [A,B] with A < 0 < B
satisfying the condition

(A2)
∫ B

A
G(u)du = 1.

It is obvious that the following conditions are satisfied by the function G(.) :

(i)
∫∞
−∞ |G(u)|2du < ∞;

(ii)
∫∞
−∞ |uk+1G(u)|2du < ∞.

We define a kernel type estimator θ̂t of the function θ(t) by the relation

θ̂tXt =
1

φϵ

∫ T

0

G

(
τ − t

φϵ

)
dXτ (4.1)

where the normalizing function φϵ → 0 as ϵ → 0. Let Eθ(.) denote the expectation
when the function θ(.) is the linear multiplier.

Theorem 4.1: Suppose that the linear multiplier θ(.) ∈ Θ0(L) and the function φϵ → 0
and ϵ2φ2d−1

ϵ → 0 as ϵ → 0. Let T ≥ 1. Suppose the conditions (A1) − (A2) hold.Then,

for any 0 < a ≤ b < T, the estimator θ̂t is uniformly consistent, that is,

lim
ϵ→0

sup
θ(.)∈Θ0(L)

sup
a≤t≤b

Eθ(|θ̂tXt − θ(t)xt|2) = 0. (4.2)

In addition to the conditions (A1) and (A2), suppose the following condition holds.

(A3)
∫∞
−∞ ujG(u)du = 0 for j = 1, 2, ...k.

Theorem 4.2: Suppose that the function θ(.) ∈ Θk+1(L) and the conditions (A1)−(A3)

hold. Further suppose that φϵ = ϵ
2

2k−2d+3 . Then,

lim sup
ϵ→0

sup
θ(.)∈Θk+1(L)

sup
a≤t≤b

Eθ(|θ̂tXt − θ(t)xt|2)ϵ−
4(k+1)

2k−2d+3 < ∞. (4.3)

Theorem 4.3: Suppose that the function θ(.) ∈ Θk+1(L) for some k > 1 and the

conditions (A1) − (A3) hold. Further suppose that φϵ = ϵ
1

k+2−(d+1
2
) . Let J(t) = θ(t)xt.
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Then, as ϵ → 0, the asymptotic distribution of

ϵ
−(k+1)

k+2−(d+1
2
) (θ̂tXt − J(t)− J (k+1)(t)

(k + 1)!

∫ ∞

−∞
G(u)uk+1 du)

has mean zero and variance

σ2 =

∫ ∞

−∞

∫ ∞

−∞
G(u)G(v)|u− v|2d−1 dudv

and the asymptotic distribution is that of the family of random variables

φ
−(d+ 1

2 )
ϵ

∫ ∞

−∞
G(

τ − t

φϵ
)dLd

τ

as ϵ → 0.

5. Proofs of Theorems

Proof of Theorem 4.1 : From the inequality

(a+ b+ c)2 ≤ 3(a2 + b2 + c2), a, b, c ∈ R,

it follows that

(5.1)

Eθ[|θ̂(t)xt − θ(t)xt|2] = Eθ[|
1

φϵ

∫ T

0

G

(
τ − t

φϵ

)
(θ(τ)Xτ − θ(τ)xτ ) dτ

+
1

φϵ

∫ T

0

G

(
τ − t

φϵ

)
θ(τ)xτdτ − θ(t)xt +

ϵ

φϵ

∫ T

0

G

(
τ − t

φϵ

)
dLd

τ |2]

≤ 3Eθ[|
1

φϵ

∫ T

0

G

(
τ − t

φϵ

)
(θ(τ)Xτ − θ(τ)xτ )dτ |2]

+3Eθ[|
1

φϵ

∫ T

0

G

(
τ − t

φϵ

)
θ(τ)xτdτ − θ(t)xt|2]

+3
ϵ2

φ2
ϵ

Eθ

[
|
∫ T

0

G

(
τ − t

φϵ

)
dLd

τ |2
]

= I1 + I2 + I3 (say).

By the boundedness condition on the function θ(.), the inequality (3.3) in Lemma 3.1
and the condition (A2), and applying the Hölder inequality, it follows that

(5.2)

I1 = 3Eθ

∣∣∣∣∣ 1φϵ

∫ T

0

G

(
τ − t

φϵ

)
(θ(τ)Xτ − θ(τ)xτ )dτ

∣∣∣∣∣
2

= 3Eθ

∣∣∣∣∫ ∞

−∞
G(u) (θ(t+ φϵu)Xt+φϵu − θ(t+ φϵu)xt+φϵu) du

∣∣∣∣2



Nonparametric estimation of linear multiplier for fractional SDE with small noise 7

≤ 3(B −A)

∫ ∞

−∞
|G(u)|2L2E |Xt+φϵu − xt+φϵu|

2
du (by using the condition (A1))

≤ 3(B −A)

∫ ∞

−∞
|G(u)|2 L2 sup

0≤t+φϵu≤T
Eθ |Xt+φϵu − xt+φϵu|

2
du

≤ 3(B −A)L2C2,δ,dE[(L(1))2]e2LT ϵ2T 2(d+ 1
2+δ)

∫ ∞

−∞
|G(u)|2du (by using (3.4))

which tends to zero as ϵ → 0. For the term I2, by the boundedness condition on the
function θ(.), the condition (A2) and the Hölder inequality, it follows that

(5.3)

I2 = 3Eθ

∣∣∣∣∣ 1φϵ

∫ T

0

G

(
τ − t

φϵ

)
θ(τ)xτdτ − θ(t)xt

∣∣∣∣∣
2

= 3

∣∣∣∣∫ ∞

−∞
G(u) (θ(t+ φϵu)xt+φϵu − θ(t)xt) du

∣∣∣∣2
≤ 3(B −A)L2φ2

ϵ

∫ ∞

−∞
|uG(u)|2du (by (A2)).

The last term tends to zero as ϵ → 0. We will now get an upper bound on the term I3.
Note that

(5.4)

I3 = 3
ϵ2

φ2
ϵ

Eθ

∣∣∣∣∣
∫ T

0

G

(
τ − t

φϵ

)
dLd

τ

∣∣∣∣∣
2

= 3
ϵ2

φ2
ϵ

Γ(1− 2d)E[L(1)2]

Γ(d)Γ(1− d)

∫ T

0

∫ T

0

G

(
τ − t

φϵ

)
G

(
τ − s

φϵ

)
|t− s|2d−1dsdt

≤ C1
ϵ2

φ2
ϵ

φ2d+1
ϵ

∫
R

∫
R

G(u)G(v)|u− v|2d−1dudv

for some positive constant C1. Theorem 4.1 is now proved by using the equations (5.1)
to (5.4).

Proof of Theorem 4.2 : Let J(t) = θ(t)xt. By the Taylor’s formula, for any x ∈ R,

J(y) = J(x) +

k∑
j=1

J (j)(x)
(y − x)j

j!
+ [J (k)(z)− J (k)(x)]

(y − x)k

k!

for some z such that |z − x| ≤ |y − x|. Using this expansion, the equation (3.2) and the
condition (A3) in the expression for I2 defined in the proof of Theorem 4.1, it follows
that
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I2 = 3

[∫ ∞

−∞
G(u) (J(t+ φϵu)− J(t)) du

]2
= 3[

k∑
j=1

J (j)(t)(

∫ ∞

−∞
G(u)ujdu)φj

ϵ(j!)
−1

+(

∫ ∞

−∞
G(u)uk(J (k)(zu)− J (k)(xt))du φk

ϵ (k!)
−1]2

for some zu such that |xt − zu| ≤ |xt+φϵu − xt| ≤ C|φϵu|. Hence

I2 ≤ 3L2

[∫ ∞

−∞
|G(u)uk+1|φk+1

ϵ (k!)−1du

]2
(5.5)

≤ 3L2(B −A)(k!)−2φ2(k+1)
ϵ

∫ ∞

−∞
G2(u)u2(k+1) du

≤ C2φ
2(k+1)
ϵ

for some positive constant C2. Combining the equations (5.2)- (5.5), we get that there
exists a positive constant C3 such that

sup
a≤t≤b

Eθ|θ̂tXt − θ(t)xt|2 ≤ C3(ϵ
2 + φ2(k+1)

ϵ + ϵ2φ2d−1
ϵ ).

Choosing φϵ = ϵ
2

2k−2d+3 , we get that

lim sup
ϵ→0

sup
θ(.)∈Θk+1(L)

sup
a≤t≤b

Eθ|θ(t)Xt − θ(t)xt|2ϵ−
4(k+1)

2k−2d+3 < ∞.

This completes the proof of Theorem 4.2.

Proof of Theorem 4.3: Let α = 2k−2
2k−2d+1 . Observe that 0 < α < 1. From (3.1), we

obtain that

ϵ−α(θ̂(t)Xt − θ(t)xt) (5.6)

= ϵ−α[
1

φϵ

∫ T

0

G

(
τ − t

φϵ

)
(θ(τ)Xτ − θ(τ)xτ ) dτ

+
1

φϵ

∫ T

0

G

(
τ − t

φϵ

)
θ(τ)xτdτ − θ(t)xt +

ϵ

φϵ

∫ T

0

G

(
τ − t

φϵ

)
dLd

τ ]

= ϵ−α[

∫ ∞

−∞
G(u)(θ(t+ φϵu)Xt+φϵu − θ(t+ φϵu)xt+φϵu) du

+

∫ ∞

−∞
G(u)(θ(t+ φϵu)xt+φϵu − θ(t)xt) du

+
ϵ

φϵ

∫ T

0

G

(
τ − t

φϵ

)
dLd

τ ].

= R1 +R2 +R3 (say)



Nonparametric estimation of linear multiplier for fractional SDE with small noise 9

By the boundedness condition on the function θ(.) and part (a) of Lemma 3.1, it follows
that

R1 ≤ ϵ−α|
∫ ∞

−∞
G(u)(θ(t+ φϵu)Xt+φϵu − θ(t+ φϵu)xt+φϵu) du| (5.7)

≤ ϵ−αϵL

∫ ∞

−∞
|G(u)|(Xt+φϵu − xt+φϵu)|du

≤ LeLT ϵ1−α

∫ ∞

−∞
|G(u)| sup

0≤t+φϵu≤T
|Ld

t+φϵu|du.

Applying the Markov’s inequality and Theorem 2.3, for any η > 0,

P (|R1| > η) ≤ ϵ1−αη−1LeLT

∫ ∞

−∞
|G(u)|Eθ( sup

0≤t+φϵu≤T
|Ld

t+φϵu|)du (5.8)

≤ ϵ1−αη−1LeLT

∫ ∞

−∞
|G(u)||Eθ[( sup

0≤t+φϵu≤T
(Ld

t+φϵu)
2]|1/2du

≤ ϵ1−αη−1LeLTC
1/2
2,δ,d[Eθ(|L(1)|2)]1/2T (d+ 1

2+δ)

∫ ∞

−∞
|G(u)|du.

and the last term tends to zero as ϵ → 0. Let Jt = θ(t)xt. By the Taylor’s formula, for
any t ∈ [0, T ],

Jt = Jt0 +

k+1∑
j=1

J
(j)
t0

(t− t0)
j

j!
+ [J

(k+1)
t0+γ(t−t0)

− J
(k+1)
t0 ]

(t− t0)
k+1

(k + 1)!

where 0 < γ < 1 and t0 ∈ (0, T ). Applying the Condition (A3) and the Taylor’s expan-
sion, it follows that

R2 = ϵ−α[

k+1∑
j=1

J
(j)
t (

∫ ∞

−∞
G(u)uj du)φj

ϵ(j!)
−1 (5.9)

+
φk+1
ϵ

(k + 1)!

∫ ∞

−∞
G(u)uk+1(J

(k+1)
t+γφϵu − J

(k+1)
t ) du]

= ϵ−α J
(k+1)
t

(k + 1)!

∫ ∞

−∞
G(u)uk+1 du

+φk+1
ϵ ϵ−α 1

(k + 1)!

∫ ∞

−∞
G(u)uk+1(J

(k+1)
t+γφϵu − J

(k+1)
t ) du.

.

Observing that θ(t) ∈ Θk+1(L), we obtain that

1

(k + 1)!

∫ ∞

−∞
G(u)uk+1(J

(k+1)
t+γφϵu − J

(k+1)
t )du (5.10)

≤ 1

(k + 1)!

∫ ∞

−∞
|G(u)uk+1(J

(k+1)
t+γφϵu − J

(k+1)
t )|du

≤ Lφϵ

(k + 1)!

∫ ∞

−∞
|G(u)uk+2|du.
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Combining the equations given above, it follows that

ϵ
−(k+1)

k+2−(d+1
2
) (θ̂tXt − J(t)− J

(k+1)
t

(k + 1)!

∫ ∞

−∞
G(u)uk+1 du) (5.11)

= Op(ϵ
1−α) +Op(ϵ

−αφk+2
ϵ ) + ϵ1−αφ−1

ϵ

∫ T

0

G(
τ − t

φϵ
)dLd

t .

From the choice of φϵ and α, it follows that

ϵ1−αφ−1
ϵ = φ

−(d+ 1
2 )

ϵ

and, by Theorem 2.2,

V ar[φ
−(d+ 1

2 )
ϵ

∫ T

0

G

(
τ − t

φϵ

)
dLd

τ ] (5.12)

= φ−(2d+1)
ϵ

∫ T

0

∫ T

0

G

(
τ − s

φϵ

)
G

(
τ − t

φϵ

)
|t− s|2d−1dsdt

=

∫
R

∫
R

G(u)G(v)|u− v|2d−1dudv.

Applying the Slutsky’s theorem and the equations derived above, it can be checked that
the random variable

ϵ
−(k+1)

k+2−(d+1
2
) (θ̂tXt − Jt −

J
(k+1)
t

(k + 1)!

∫ ∞

−∞
G(u)uk+1 du)

has a limiting distribution as ϵ → 0 as that of the family of random variables

φ
−(d+ 1

2 )
ϵ

∫ ∞

−∞
G

(
τ − t

φϵ

)
dLd

τ

as ϵ → 0. This completes the proof of Theorem 4.3.

Remarks: Let Y =
∫
R
(IdG)(u)dL(u). Following the results in Rajput and Rosinskii

[14] and Marquardt [7], it follows that the distribution of Y is infinitely divisible with
characteristic function

E[eiuY ] = exp[

∫
R

∫
R

eiu (Id
G)(s) x − 1− iu (IdG)(s) ν(dx)ds] (5.13)

where ν(.) is the Lévy measure corresponding to the process L. Furthermore E(Y ) = 0
and E(Y 2) = E[L(1)2]|

∫
R
|(IdG)(s)|2 ds.

6. Alternate Estimator for the Multiplier θ(.)

Let Θρ(Lγ) be a class of functions θ(t) uniformly bounded by a known constant L
and k-times continuously differentiable for some integer k ≥ 1 with the k-th derivative
satisfying the Hölder condition of the order γ ∈ (0, 1) :

|θ(k)(t)− θ(k)(s)| ≤ Lγ |t− s|γ , ρ = k + γ.
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Suppose the process {Xt, 0 ≤ t ≤ T} satisfies the stochastic differential equation given
by the equation (3.1) where the linear multiplier is an unknown function in the class
Θρ(Lγ) and further suppose that x0 > 0 and is known. From the Lemma 3.1, it follows
that

|Xt − xt| ≤ ϵeLt sup
0≤s≤T

|Ld
s |.

Let

At = {ω : inf
0≤s≤t

Xs(ω) ≥
1

2
x0e

−Lt}

and let A = AT . Following the technique suggested in Kutoyants [6], p. 156, we define
another process Y with the differential

dYt = θ(t)I(At)dt+ ϵ2x−1
0 eLT I(At) dL

d
t , 0 ≤ t ≤ T.

We will now construct an alternate estimator of the linear multiplier θ(.) based on the
process Y over the interval [0, T ]. Define the estimator

θ̃(t) = I(A)
1

φϵ

∫ T

0

G(
t− s

φϵ
)dYs

where the kernel function G(.) satisfies the conditions (A1)− (A3). Observe that

E|θ̃(t)− θ(t)|2 = Eθ|I(A)
1

φϵ

∫ T

0

G(
t− s

φϵ
)(θ(s)− θ(t))ds

+I(Ac)θ(t) + I(A)
ϵ

φϵ

∫ T

0

G(
t− s

φϵ
)2x−1

0 eLT dLd
s |2

≤ 3Eθ|I(A)

∫
R

G(u)[θ(t+ uφϵ)− θ(t)]du|2 + 3|θ(t)|2[P (Ac)]2

+3
ϵ2

φ2
ϵ

|E[I(A)

∫ T

0

G(
t− s

φϵ
)2x−1

0 eLT dLd
s ]|2

= D1 +D2 +D3. (say).

Applying the Taylor’s theorem and using the fact that the function θ(t) ∈ Θρ(Lγ), it
follows that

D1 ≤ C1
1

(k + 1)!
φ2ρ
ϵ

∫
R

|G2(u)u2ρ|du.

Note that, by Lemma 3.1,

P (Ac) = P ( inf
0≤t≤T

Xt <
1

2
x0e

−LT )

≤ P ( inf
0≤t≤T

|Xt − xt|+ inf
0≤t≤T

xt <
1

2
x0e

−LT )

≤ P ( inf
0≤t≤T

|Xt − xt| < −1

2
x0e

−LT )
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≤ P ( sup
0≤t≤T

|Xt − xt| >
1

2
x0e

−LT )

≤ P (ϵeLT sup
0≤t≤T

|Ld
t | >

1

2
x0e

−LT )

= P ( sup
0≤t≤T

|Ld
t | >

x0

2ϵ
e−2LT )

≤ (
x0

2ϵ
e−2LT )−2E[ sup

0≤t≤T
|Ld

t |2]

≤ (
x0

2ϵ
e−2LT )−2C2,δ,dE(|L(1)2)T 2(d+ 1

2+δ)

by Theorem 2.3 for some positive constant C2,δ,d. The upper bound obtained above and
the fact that |θ(s)| ≤ L, 0 ≤ s ≤ T leads an upper bound for the term D2. We have used
the inequality

xt = x0 exp(

∫ t

0

θ(s)ds) ≥ x0e
−Lt

in the computations given above. Applying Theorem 2.1, it follows that

E[|I(A)

∫ T

0

G(
t− s

φϵ
)2x−1

0 eLT dLd
s |2]

≤ CE[|
∫ T

0

G(
t− s

φϵ
)dLd

s |2]

= C V ar[

∫ T

0

G(
t− s

φϵ
)dLd

s ]

= Cφ2d+1
ϵ

∫
R

∫
R

G(u)G(v)|u− v|2d−1dudv

for some positive constant C which leads to an upper bound on the term D3. Combining
the above estimates, it follows that

E|θ̃(t)− θ(t)|2 ≤ C1φ
2ρ
ϵ + C2ϵ

4 + C3ϵ
2φ2d−1

ϵ

for some positive constants Ci, i = 1, 2, 3. Choosing φϵ = ϵ
2

2ρ−2d+1 , we obtain that

E|θ̃(t)− θ(t)|2 ≤ C4ϵ
4ρ

2ρ−2d+1 + C5ϵ
4

for some positive constants C4 and C5. It easy to see that 0 < 4ρ
2ρ−2d+1 < 4 for ρ > 2d−1

since 0 < d < 1
2 . Hence we obtain the following result implying the uniform consistency

of the estimator θ̃(t) as an estimator of θ(t) as ϵ → 0.

Theorem 6.1: Let θ ∈ Θρ(L) where ρ > 2. Let φϵ = ϵ2/(2ρ−2d+1). Suppose the condi-
tions (A1)− (A3) hold. Then, for any interval [a, b] ⊂ [0, T ],

lim sup
ϵ→0

sup
θ(.)∈Θρ(L)

sup
a≤t≤b

E|θ̃(t)− θ(t)|2ϵ−
4ρ

2ρ−2d+1 < ∞.
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