九州大学学術情報リポジトリ Kyushu University Institutional Repository

M4 IS REGULAR-CLOSED

HIMEKI, YUTARO
Department of Mathematics, Kyushu University

Ishii, Yutaka Department of Mathematics, Faculty of Mathematics, Kyushu University

https://hdl.handle.net/2324/4123944

出版情報: Ergodic Theory and Dynamical Systems. 40 (1), pp.213-220, 2020-01-01. Cambridge

University Press バージョン:

権利関係:(c)Authors.

\mathcal{M}_4 IS REGULAR-CLOSED

YUTARO HIMEKI AND YUTAKA ISHII

ABSTRACT. For each $n \geq 2$, we investigate a family of iterated function systems which is parameterized by a common contraction ratio $s \in \mathbb{D}^{\times} \equiv \{s \in \mathbb{C} : 0 < |s| < 1\}$ and possesses a rotational symmetry of order n. Let \mathcal{M}_n be the locus of contraction ratio s for which the corresponding self-similar set is connected. The purpose of this paper is to show that \mathcal{M}_n is regular-closed, i.e. $\overline{\operatorname{int} \mathcal{M}_n} = \mathcal{M}_n$ holds for $n \geq 4$. This gives a new result for n = 4 and a simple geometric proof of the previously known result by [BanHu] for $n \geq 5$.

1. Introduction

Below we fix $n \geq 2$. Let $\{\varphi_k\}_{k=0}^{n-1}$ be the family of similitudes $\varphi_k : \mathbb{C} \to \mathbb{C}$ with a common contraction ratio $s \in \mathbb{D}^{\times} \equiv \{s \in \mathbb{C} : 0 < |s| < 1\}$ where the fixed points p_k of φ_k form the vertices of a regular n-gon in the anti-clockwise order. Without loss of generality, we may assume $p_0 = 0$ and $p_1 = 1$ so that $\varphi_0(z) = sz$ and $\varphi_1(z) = sz + (1 - s)$. It then follows that $\varphi_{k+1}(z) - \varphi_k(z) = \xi^k(1 - s)$ and $p_{k+1} - p_k = \xi^k$, where $\xi = e^{2\pi i/n}$. Let Λ_s be the self-similar set associated to $\{\varphi_k\}_{k=0}^{n-1}$, i.e. Λ_s is the unique non-empty compact set satisfying $\Lambda_s = \Phi(\Lambda_s)$, where $\Phi(A) \equiv \bigcup_{k=0}^{n-1} \varphi_k(A)$ (see, e.g., [F]). Note that Λ_s has a rotational symmetry of order n. We also define X_s to be the union of Λ_s and the bounded components of $\mathbb{C} \setminus \Lambda_s$.

Let $\mathcal{M}_n \subset \mathbb{D}^{\times}$ be the connectedness locus for the family $\{\varphi_k\}_{k=0}^{n-1}$, i.e.

$$\mathcal{M}_n \equiv \{ s \in \mathbb{D}^\times : \Lambda_s \text{ is connected} \}.$$

The locus \mathcal{M}_2 was first introduced in 1985 by [BarHa], and since then it has been investigated by several authors (see [Bo1, Bo2, Ban, CKW] for n = 2 and [BanHu] for general $n \geq 2$).

A subset $A \subset \mathbb{C}$ is called regular-closed if $A = \overline{\text{int } A}$. The purpose of this paper is to show

Theorem 1.1. \mathcal{M}_n is regular-closed for $n \geq 4$.

The case n=4 of Theorem 1.1 is a new result (see Remark 6 in [BanHu] for a partial result) and the case $n \geq 5$ gives a simple and geometric proof of a previous result in [BanHu]. Note that \mathcal{M}_3 is known to be regular-closed [BanHu] (see also Remark 2.11 of this article). On the other hand, it was shown in [BarHa] that there is a neighborhood of $s=\pm 1/2$ in which \mathcal{M}_2 is contained in \mathbb{R} . Moreover, in the remarkable paper [CKW] Calegari et al solved a conjecture of Bandt [Ban]; the interior of \mathcal{M}_2 is dense away from $\mathcal{M}_2 \cap \mathbb{R}$, i.e. $\mathcal{M}_2 = \overline{\operatorname{int} \mathcal{M}_2} \cup (\mathcal{M}_2 \cap \mathbb{R})$. Their method is to decompose the locus \mathcal{M}_2 into two parts depending on the convexity of X_s , and investigate their structures separately. The proof of Theorem 1.1 follows this idea and is obtained by extending some arguments in [CKW] to general $n \geq 2$ in an appropriate way.

2. Proof of Theorem 1.1

2.1. Case X_s is convex. We first treat the case X_s is convex. The following proposition is an adaptation of Lemma 7.2.3 in [CKW] to general case $n \ge 2$.

Proposition 2.1. Assume that X_s is convex. Then, there exist $q \in \mathbb{N}$ and $0 \le k \le n-1$ so that $\xi^k s^q > 0$ and $2|s|^q \ge 1$ hold. In particular, we have $|s| \ge 1/2$.

A supporting line to X_s is a line $\ell \subset \mathbb{C}$ so that $X_s \cap \ell \neq \emptyset$ and $X_s \setminus \ell$ is contained in one connected component of $\mathbb{C} \setminus \ell$. An edge of X_s is a maximal segment in ∂X_s with positive length. The direction of a supporting line to X_s (resp. a segment in ∂X_s) is defined by a complex number up to a positive constant multiple so that X_s is on the left-hand side of the line (resp. the segment in ∂X_s) with respect to the direction. Note that a supporting line to X_s of a given direction always exists uniquely due to the compactness of X_s . When we write $\sigma = \sigma'$ or $\sigma \supset \sigma'$ for two segments σ and σ' in ∂X_s , we require that their directions are the same.

Lemma 2.2. Assume that X_s is convex. Then, X_s contains an edge whose direction is $\xi^k(1-s)$ for every $0 \le k \le n-1$.

Proof. Let ℓ be the supporting line to X_s with direction $\xi^k(1-s)/s$. Since $\varphi_{k+1}(z) - \varphi_k(z) = \xi^k(1-s)$ holds, we have $L \equiv \varphi_k(\ell) = \varphi_{k+1}(\ell)$. Moreover, since φ_k is orientation preserving, $\varphi_k(X_s)$ and $\varphi_{k+1}(X_s)$ are on the left-hand side of L. It is easy to see from the formula of φ_i that $\varphi_i(X_s)$ is also contained in the left-hand side of L for $i \neq k, k+1$. This shows that L is the supporting line of X_s with the direction $\xi^k(1-s)$.

Let p be a point in the intersection of X_s and ℓ . Since $\varphi_k(p) \neq \varphi_{k+1}(p)$, the segment $[\varphi_k(p), \varphi_{k+1}(p)]$ has strictly positive length. Moreover, the segment is contained in L and in ∂X_s by the convexity of X_s , hence it is contained in an edge of X_s with its direction $\xi^k(1-s)$. \square

We remark that the edges of X_s with directions $\xi^k(1-s)$ $(0 \le k \le n-1)$ also possess rotational symmetry of order n.

Lemma 2.3. Assume that X_s is convex and let σ be an edge of X_s whose direction is $\xi^k(1-s)$ for some $0 \le k \le n-1$. Then, there exists a unique edge σ' of X_s so that $\sigma = \varphi_k(\sigma') \cup \varphi_{k+1}(\sigma')$.

Proof. Since the edge with direction $\xi^k(1-s)$ which we found in Lemma 2.2 has positive length, there exists an edge σ' with direction $\xi^k(1-s)/s$ so that $\sigma \supset \varphi_k(\sigma')$. Since $\varphi_{k+1}(z) - \varphi_k(z) = \xi^k(1-s)$, it yields that $\sigma \supset \varphi_k(\sigma') \cup \varphi_{k+1}(\sigma')$.

We next show $\sigma = \varphi_k(\sigma') \cup \varphi_{k+1}(\sigma')$. If σ'' is an edge of X_s whose direction is different from $\xi^k(1-s)/s$, the direction of $\varphi_i(\sigma'')$ is different from $\xi^k(1-s)$ for any $0 \le i \le n-1$. Since there is at most one edge with a given direction, we conclude that σ' is the only edge satisfying the property $\sigma \supset \varphi_i(\sigma')$ for some $0 \le i \le n-1$ and i should be equal to k. The uniqueness of σ' then implies $\sigma = \varphi_k(\sigma') \cup \varphi_{k+1}(\sigma')$.

Lemma 2.4. Assume that X_s is convex and let σ be an edge of X_s whose direction is not $\xi^k(1-s)$ for any $0 \le k \le n-1$. Then, there exist a unique edge σ' of X_s and a unique 0 < i < n-1 so that $\sigma = \varphi_i(\sigma')$.

Proof. Since σ has positive length, there exists an edge σ' of X_s and $0 \le i \le n-1$ so that $\sigma \supset \varphi_i(\sigma')$. Suppose that there exists another edge σ'' and $0 \le j \le n-1$ so that $\sigma \supset \varphi_j(\sigma'')$ and $\varphi_i(\sigma') \ne \varphi_j(\sigma')$ hold. Since the contraction ratio s of φ_k is independent of k, the direction of σ' and σ'' should be the same. It then follows from the uniqueness of an edge of X_s with a given direction that $\sigma' = \sigma''$. Since we assume $\varphi_i(\sigma') \ne \varphi_j(\sigma')$ belong to the same edge σ , it follows that $\{i, j\} = \{k, k+1\}$ and the direction of σ should be equal to $\xi^k(1-s)$, which contradicts to the assumption. Therefore, we conclude that an edge σ' of X_s and a number $0 \le i \le n-1$ satisfying $\sigma \supset \varphi_i(\sigma')$ are unique, hence $\sigma = \varphi_i(\sigma')$.

Proof of Proposition 2.1. Let σ_0 be an edge with direction 1-s found in Lemma 2.2. By Lemma 2.3, there exists an edge σ_1 with direction (1-s)/s so that $\sigma_0 = \varphi_0(\sigma_1) \cup \varphi_1(\sigma_1)$. If the direction (1-s)/s is not $\xi^k(1-s)$ for any $0 \le k \le n-1$, there exist unique edge σ_2 of X_s and $0 \le i \le n-1$ so that $\sigma_1 = \varphi_i(\sigma_2)$. Note that the direction of σ_2 is $(1-s)/s^2$, and $|s||\sigma_2| = |\sigma_1|$ holds. When we repeat this procedure, it stops at finitely many times due to the boundedness of X_s . Therefore, there exist $q \in \mathbb{N}$ and $0 \le k \le n-1$ so that the direction $(1-s)/s^q$ of σ_q

coincides with $\xi^k(1-s)$ for some $0 \le k \le n-1$. This in particular implies $\xi^k s^q > 0$. Moreover, since σ_q coincides with σ_0 or its rotationally symmetric images, we have $|\sigma_q| = |\sigma_0|$. Lemma 2.3 implies $\sigma_0 = \varphi_0(\sigma_1) \cup \varphi_1(\sigma_1)$, hence by using $|s|^{q-1}|\sigma_q| = |\sigma_1|$, we obtain

$$2|s|^{q}|\sigma_{0}| = 2|s|^{q}|\sigma_{q}| = 2|s||\sigma_{1}| = |\varphi_{0}(\sigma_{1})| + |\varphi_{1}(\sigma_{1})| \ge |\sigma_{0}|,$$

which finishes the proof.

Remark 2.5. The coefficient 2 appearing in Proposition 2.1 does not depend on the number of similitudes.

2.2. Case X_s is non-convex. We next treat a non-convex X_s .

Proposition 2.6. Assume that X_s is connected but not convex. Then, $s \in \overline{\text{int } \mathcal{M}_n}$.

This proposition is also obtained by modifying some arguments in [CKW]. To clarify the points of modifications, let us recall some constructions from [CKW].

Let $\Sigma \equiv \{0, \ldots, n-1\}$. For a word $u = u_1 \cdots u_m \in \Sigma^m$ of length m, we write $\varphi_u(z) \equiv \varphi_{u_1} \circ \cdots \circ \varphi_{u_m}(z)$. Let $\pi_m : \Sigma^m \times \mathbb{D}^\times \times \mathbb{C} \to \mathbb{C}$ be the map defined by $\pi_m(u, s, z) \equiv \varphi_u(z)$. Given an infinite sequence $\underline{u} = u_1 u_2 \cdots \in \Sigma^{\mathbb{N}}$, it is easy to see that the limit $\lim_{m \to \infty} \pi_m(u_1 \cdots u_m, s, z)$ exists and is independent of the choice of $z \in \mathbb{C}$. Therefore, this defines a map $\pi : \Sigma^{\mathbb{N}} \times \mathbb{D}^\times \to \mathbb{C}$ given by $\pi(\underline{u}, s) = \lim_{m \to \infty} \pi_m(u_1 \cdots u_m, s, z)$. We also have $\pi(\Sigma^{\mathbb{N}}, s) = \Lambda_s$.

For $p, q \in \Lambda_s$, a constant $\varepsilon > 0$ and a disk D containing p and q, an (ε, D) -short hop path from p to q is a sequence $\underline{e}^0, \ldots, \underline{e}^m \in \Sigma^{\mathbb{N}}$ with $p = \pi(\underline{e}^0, s)$ and $q = \pi(\underline{e}^m, s)$ so that $d(\pi(\underline{e}^i, s), \pi(\underline{e}^{i+1}, s)) < \varepsilon$ holds for $0 \le i \le m-1$ and $\pi(\underline{e}^j, s) \in D$ holds for $0 \le j \le m$.

The key idea to prove Proposition 2.6 is the notion of a *trap* (see Definition 7.1.3 in [CKW]). Here we adapt the original definition to our setting as follows.

Definition 2.7. Let u (resp v) be a word over Σ starting with 0 (resp. with 1). Let D be a closed disk so that int $D \supset \Lambda_s$. The pair u and v is called a trap for (s, D) if

- (1) there are points $p^{\pm} \in \varphi_u(\Lambda_s) \setminus \varphi_v(D)$ and $q^{\pm} \in \varphi_v(\Lambda_s) \setminus \varphi_u(D)$ so that for some paths $\alpha \subset \varphi_u(D)$ with endpoints p^{\pm} and $\beta \subset \varphi_v(D)$ with endpoints q^{\pm} their algebraic intersection number is non-zero,
- (2) $d(\varphi_0(\Lambda_s), \varphi_1(\Lambda_s)) \leq \varepsilon$ holds, whenever the $\varepsilon/2$ -neighborhood of Λ_s is contained in D.

With this notion we obtain the following claim which is a modification of Proposition 7.1.6 in [CKW]. The crucial difference in the argument is that the non-empty intersection of particular two pieces $\varphi_0(\Lambda_s)$ and $\varphi_1(\Lambda_s)$ implies the connectivity of the whole Λ_s in our setting.

Lemma 2.8. If there exists a trap u and v for (s, D), then $s \in \text{int } \mathcal{M}_n$.

Proof. In the proof of Proposition 7.1.6 in [CKW] we replace f by φ_0 and g by φ_1 . Then, the proof implies that $\varphi_0(\Lambda_{s'}) \cap \varphi_1(\Lambda_{s'}) \neq \emptyset$ for $s' \in \mathbb{D}^{\times}$ sufficiently close to s. By the rotational symmetry of $\varphi_k(\Lambda_{s'})$, this yields that $\varphi_k(\Lambda_{s'}) \cap \varphi_{k+1}(\Lambda_{s'}) \neq \emptyset$ for all $0 \leq k \leq n-1$ (where we set $\varphi_n(z) \equiv \varphi_0(z)$). It then follows from a result of Hata [H] that $\Lambda_{s'}$ is connected for s' sufficiently close to s. Hence $s \in \text{int } \mathcal{M}_n$.

To finish the proof of Proposition 2.6 we need one more notion.

Definition 2.9. Let $X \subset \mathbb{C}$ be full. A vector $w \in \mathbb{C}$ is called trap-like for X if

- (1) $X \cup (X + w)$ is connected,
- (2) there are 4 points in the outer-most boundary of $X \cup (X + w)$ that alternate between points in $X \setminus (X + w)$ and points in $(X + w) \setminus X$.

Proof of Proposition 2.6. Let $s_0 \in \mathcal{M}_n$ and assume that X_{s_0} is not convex. Then, by Lemma 7.2.2 of [CKW] there is a vector w which is trap-like for X_{s_0} , i.e. one can find points $p_1, p_2 \in X_{s_0}$

and $q_1, q_2 \in X_{s_0}$ so that (2) of Definition 2.9 holds. Since $\partial X_{s_0} \subset \Lambda_{s_0}$, the points p_1, p_2 and q_1, q_2 lie in Λ_{s_0} . There exists $\varepsilon > 0$ so that $p_1, p_2 \in \Lambda_{s_0} \setminus \overline{N_{\varepsilon}(X_{s_0} + w)}$ and $q_1, q_2 \in (\Lambda_{s_0} + w) \setminus \overline{N_{\varepsilon}(X_{s_0})}$, where $N_{\varepsilon}(A)$ is the ε -neighborhood of $A \subset \mathbb{C}$. Since these conditions are open and since $\pi(\cdot, s) : \Sigma^{\mathbb{N}} \to \Lambda_s$ is a surjection, there exists $\delta > 0$ so that they hold for s with $|s - s_0| < \delta$.

Since $s_0 \in \mathcal{M}_n$ there exist $\underline{u} = u_1 u_2 \cdots, \underline{v} = v_1 v_2 \cdots \in \Sigma^{\mathbb{N}}$ so that $\pi(\underline{u}, s_0) = \pi(\underline{v}, s_0)$. Again, thanks to the rotational symmetry of $\varphi_k(\Lambda_s)$ and a theorem of [H], we may assume that $u_1 = 0$ and $v_1 = 1$. By Corollary 7.2.6 of [CKW], for any $\delta' > 0$ with $\delta \geq \delta'$ one can find $m \geq 1$ and s_1 with $|s_1 - s_0| < \delta'$ so that $s_1^{-m}(\pi_m(u, s_1, c) - \pi_m(v, s_1, c)) = w$, where $u = u_1 \cdots u_m$ and $v = v_1 \cdots v_m$ and v = v

2.3. End of the proof. To complete the proof of Theorem 1.1, we need the following a priori bound for \mathcal{M}_n .

Lemma 2.10. If $1 > |s| > 1/\sqrt{n}$, then $s \in \mathcal{M}_n$. In particular, if $1 > |s| \ge 1/\sqrt{n}$, then $s \in \overline{\operatorname{int} \mathcal{M}_n}$.

Proof. The first statement was proved in [Bo1] for n=2 and later in [BanHu] for general case. This obviously implies $s \in \text{int } \mathcal{M}_n$ for $1 > |s| > 1/\sqrt{n}$, hence the second conclusion follows. \square

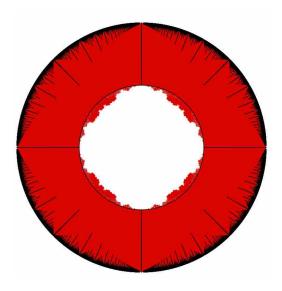


FIGURE 1. \mathcal{M}_4 (red), its "spikes" and the inner circle $|s| = 1/\sqrt{4}$ (black).

Now we are ready to prove our main result.

Proof of Theorem 1.1. Since \mathcal{M}_n is closed [Bo1, BanHu], the inclusion $\mathcal{M}_n \supset \overline{\operatorname{int} \mathcal{M}_n}$ is obvious. Take $s \in \mathcal{M}_n$. If X_s is not convex, Proposition 2.6 yields $s \in \overline{\operatorname{int} \mathcal{M}_n}$. Therefore, we may assume that X_s is convex. Let us consider the condition:

$$\frac{1}{\sqrt[q]{2}} \ge \frac{1}{\sqrt{n}}.$$

This condition holds for all $q \ge 1$ if $n \ge 4$. It follows from Proposition 2.1 that $1 > |s| \ge 1/\sqrt{n}$, hence $s \in \overline{\operatorname{int} \mathcal{M}_n}$ by Lemma 2.10 (see Figure 1 where we observe that all "spikes" described in Proposition 2.1 for n = 4 are contained in the annulus $1 > |s| \ge 1/\sqrt{4}$). This shows that $\mathcal{M}_n \subset \overline{\operatorname{int} \mathcal{M}_n}$ and finishes the proof of Theorem 1.1.

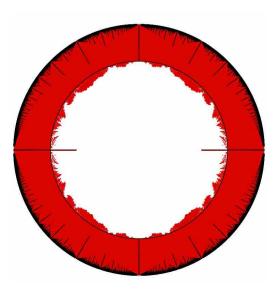


FIGURE 2. \mathcal{M}_2 (red), its "spikes" and the inner circle $|s| = 1/\sqrt{2}$ (black).

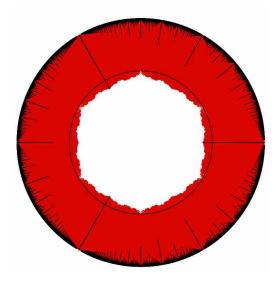


FIGURE 3. \mathcal{M}_3 (red), its "spikes" and the inner circle $|s| = 1/\sqrt{3}$ (black).

Compare Figure 2 where we observe that \mathcal{M}_2 is not regular-closed; there are some portions of two "spikes" which are not contained in $\overline{\operatorname{int} \mathcal{M}_2}$.

Remark 2.11. The condition (2.1) is satisfied for $q \ge 2$ in the case n = 3 as well. Therefore, to prove regular-closedness of \mathcal{M}_3 along a similar line to Theorem 1.1, the only remaining case is n = 3 and q = 1. Proposition 2.1 tells that the parameters which violate the condition (2.1) are of the form $s = r, re^{2\pi i/3}, re^{4\pi i/3}$ and $1/2 \le r < 1/\sqrt{3}$. See Figure 3 where we observe that some portions of three "spikes" are contained in $\overline{\operatorname{int}}\,\mathcal{M}_3$ but not contained in the annulus $1 > |s| \ge 1/\sqrt{3}$. Therefore, if we are only able to prove that these particular parameters belong to $\overline{\operatorname{int}}\,\mathcal{M}_3$, it would give a relatively short proof of the regular-closedness of \mathcal{M}_3 compared to the one in [BanHu]. See Figures 4, 5 and 6 which describe the self-similar sets Λ_s for s = 0.5, 0.51 and 0.51 + 0.01i, respectively. These figures suggest that the parameter s = 0.51, which is one of the particular parameters mentioned above, belongs to $\overline{\operatorname{int}}\,\mathcal{M}_3$.

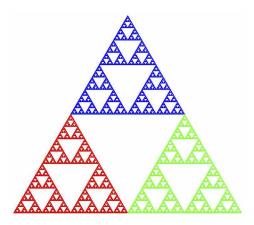


Figure 4. The self-similar set Λ_s for n=3 and s=0.5.

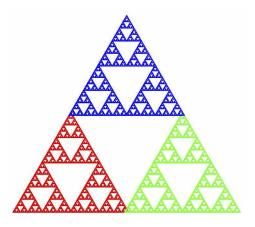


Figure 5. The self-similar set Λ_s for n=3 and s=0.51.

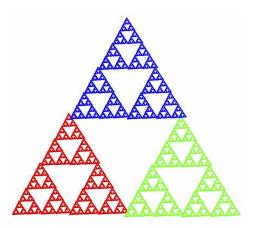


FIGURE 6. The self-similar set Λ_s for n=3 and s=0.51+0.01i.

References

[BarHa] M. Barnsley, A. Harrington, A Mandelbrot set for pairs of linear maps. Phys. D. 15 (1985), no. 3, 421-432.

[Ban] C. Bandt, On the Mandelbrot set for pairs of linear maps. Nonlinearity 15 (2002), no. 4, 1127–1147. [BanHu] C. Bandt, N. V. Hung, Fractal n-gons and their Mandelbrot sets. Nonlinearity 21 (2008), 2653–2670.

- [Bo1] T. Bousch, Paires de similitudes $z \to sz + 1$, $z \to sz 1$. Preprint (1988).
- [Bo2] T. Bousch, Connexité locale et par chemins hölderiens pour les systèmes itérés de fonctions. Preprint (1992).
- [CKW] D. Calegari, S. Koch, A. Walker, Roots, Schottky semigroups, and a proof of Bandt's conjecture. Ergod. Th. & Dynam. Sys. 37 (2017), no. 8, 2487–2555.
- [F] K. Falconer, Fractal geometry. Mathematical foundations and applications. John Wiley & Sons, Ltd., Chichester, xxii+288 pp. (1990).
- [H] M. Hata, On the structure of self-similar sets. Japan J. Appl. Math. 2 (1985), no. 2, 381–414.

DEPARTMENT OF MATHEMATICS, KYUSHU UNIVERSITY, MOTOOKA, FUKUOKA 819-0395, JAPAN. EMAILS: YUTARO.HIMEKI@GMAIL.COM, YUTAKA@MATH.KYUSHU-U.AC.JP