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Abstract: Breast cancer has become the most common malignant tumor with the highest incidence of death
in women. The MIBCAD (Medical Image Based Computer-Aided Diagnosis) system currently in use has a
low diagnostic accuracy rate of only 85%. Furthermore, this system has major limitations for image processing
of mammogram. To address these issues, this paper proposed a breast cancer diagnosis method based on an
improved CNN (Convolutional Neural Networks). To avoid the image overfitting problem, transfer learning and
data augmentation methods were used. The image classification accuracy was improved by using different CNN
structures and changing the classifier type. Our results showed that the classification accuracy of the model
reached 91.4%, which was significantly improved compared with the existing MIBCAD system.
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1. Introduction

According to the Japan National Cancer Center, breast can-
cer is the most common cancer among women and the fifth
most common cause of death from cancer. Therefore, the
early diagnosis of breast tumors has become an important
issue. Early diagnosis of breast cancer has higher require-
ments for doctors’ professional standards. Mammography
is the most common method of performing early screening
for breast cancer. This method is inexpensive and causes
less pain to the patient and clearly shows the breast tissue
structure. Doctors use the images of the breast to determine
if a lesion is present. However, the accuracy of this method
of diagnosis depends on the doctor’s prior experience, and
due to the differences in the level of diagnosis and prior ex-
perience between doctors, misdiagnosis and omission can
easily occur. Another major reason for misdiagnosis is the
fatigue of the doctor who has to read the mammography for
a long time, which affects his or her own judgment. Recent
studies have shown that MIBCAD (Medical Image Based
Computer-Aided Diagnosis) system is widely used to detect
and diagnose breast cancer to improve doctors’ efficiency.

Recent studies have shown that MIBCAD (Medical Im-
age Based Computer-Aided Diagnosis) system is widely
used to detect and diagnose breast cancer to improve doc-
tors’ efficiency. Studies have shown that the use of MIB-
CAD can help inexperienced doctors diagnose breast le-
sions with sensitivity from 62% to 85% and help experi-
enced physicians diagnose breast lesions with sensitivity
from 77% to 85% [1]. This shows that MIBCAD can in-
deed assist doctors in diagnosing lesions in the field of im-
age diagnosis.
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In a previous study, it was found that methods of im-
age classification of mammogram based on computer-aided
diagnosis were mainly based on the traditional classifica-
tion methods of artificial feature extraction (e.g., Zhang et
al. [2]). In the past few years, with the development of
deep learning, CNN (convolutional neural networks) have
achieved excellent achievements in computer vision such
as face recognition and handwritten character recognition,
(e.g., Wang et al. [3] and Maitra et al. [4]). Recently, CNN
have also been gradually used for medical image classifi-
cation. Araújo et al. [5] used a CNN to classify H&E-
stained breast cancer pathology images into benign and ma-
lignant tumors on the mammography dataset provided by
the Israel Institute of Technology, achieving an accuracy
rate of 88.3%. In an earlier study (Bayramoglu et al. [6]),
it was verified that they achieved an accuracy rate of 83%
in classifying mammogram images using magnification-
independent deep learning based on the dataset published
by Spanhol et al [7]. Taken together, these studies suggest
that their mammogram image classification models have a
good performance on the non-public datasets. Furthermore,
the accuracy of their model is not satisfactory.

In the present study, we investigated how to improve
the performance of CNN models on the publicly available
dataset. By introducing transfer learning on the basis of
deep learning and by adjusting the network structure and
parameters on the basis of AlexNet, in the present study we
achieved high accuracy on the target dataset.

The rest of this paper is organized as follows. Section 2
proposes a breast cancer diagnosis method based on CNN.
Section 3 shows experimental results, where the proposed
method is compared with the state-of-the-art method for
breast cancer diagnosis. Section 4 discusses the results and
related future studies. Finally, Section 5 concludes this pa-
per.
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Figure 1: Architecture of LeNet-5 [8]

Figure 2: Architecture of AlexNet [9]

Figure 3: Architecture of the proposed model

2. Method
In this section, we propose a CNN model for breast cancer
diagnosis.

2.1 Convolutional Neural Networks Recently, CNN
have become a hot topic in the research field because of the
high accuracy achieved in the field of image recognition,
which is why we chose CNN.

In 1998, Y. LeCun [8] and others published a paper that
established the modern structure of CNN, and later CNNs
were perfected on its basis. They designed a multi-layered
artificial neural network, named LeNet-5, which can clas-
sify handwritten numbers. Figure 1 shows the architecture
of LeNet-5, which includes convolutional layers, pooling
layers, and fully connected layers.

2.2 AlexNet network model Because of the good
performance of AlexNet in Figure 2 by Krizhevsky et al.
[9], in the present study we used the AlexNet neural net-
work model to do image classification of mammogram. A
typical CNN consists of an input layer, convolutional layers,
pooling layers, fully connected layers, and an output layer.
The AlexNet network model used in this paper consists of
six convolutional layers and two fully connected layers as
shown in Figure 3. The activation functions ReLU (Recti-
fied Linear Unit) and LRN (Local Response Normalization)
are included in each convolutional layer.
2.2.1 Input layer The input layer is responsible for
loading the images and generating an output vector as input
to the convolutional layer. The input to this model is a 227 ×
227 × 3 block, and all three channels of image information
are used as inputs.
2.2.2 Convolutional layer In CNN, the convolutional
kernel is the core of the network. The convolutional kernels

are translated on a two-dimensional plane, and each element
of the kernel is multiplied by the corresponding position
of the convolved image, and then summed. By constantly
moving the convolution kernel, we have a new image that
consists entirely of the result of summing the products of
the convolution kernels at each position. An important fea-
ture of the convolution algorithm is that the original signal
features can be enhanced and the noise reduced by the con-
volution algorithm. Different convolution kernels can be
used to extract different features of the image. In this study,
I varied the size of the convolutional kernels in the convo-
lutional layer for the purpose of improving the network per-
formance. In the first convolutional layer, 96 convolutional
kernels of size 7 × 7 with a step size of 2 were used. In the
second convolutional layer, 96 convolutional kernels of size
5 × 5, step size 2, and padding =1 were used. In the third
convolutional layer, 256 convolutional kernels of size 5 ×
5 with a step size of 1 were used. For the fourth, fifth and
sixth convolutional layers, 384 kernels of 3 × 3 with a step
of 1 were used. Although changing the size and ordering
of the convolution kernels increased the running time of the
program, the advantage is that it improved the accuracy of
image classification.

2.2.3 Pooling layer The pooling layer is usually fol-
lowed by the convolutional layer, and the feature map
is downsampled according to certain downsampling rules.
The function of downsampling mainly has two points: 1)
Reduce the dimensionality of the feature map; 2) Maintain
the scale-invariant characteristics of the feature to a cer-
tain extent, and improve the performance and robustness
of the algorithm. There are two common downsampling
rules: mean-pooling and max-pooling. In this paper, a Max-
pooling approach was used. The pooling size of the second,
third and sixth pooling layers were all 3 × 3, and the step
size was 2.

2.2.4 Fully connected layer Each neuron in the fully
connected layer is connected to all neurons in the preceding
layer. The model has 2 fully connected layers. The first
fully connected layer used 4096 neurons in the 256 (6 ×
6) feature maps obtained through convolution and down-
sampling to perform a full connection, and the number of
output feature map units was 4096. For the second fully
connected layer, the number of input feature map units was
4096 and the number of output feature map units was 4096.

2.2.5 Output layer In the present study, the output
layer used the SVM (Support Vector Machine) classifier
function instead of Softmax classifier function to classify
the input images.

SVM is a commonly used classifier for binary classifi-
cation of data based on supervised learning, widely used
in data analysis, pattern recognition, and data regression.
Since the dataset in this study had limited samples, SVM
was used to classify the data. The classification principle
used is to find the best hyperplane to divide the dataset.
Good classification results can be achieved with a limited
sample by this way. In the process of finding the best hy-
perplane, slack variables and penalty factors are added to
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improve the generalization of the model and to reduce the
possibility of overfitting. The slack variables allow the clas-
sification hyperplane to misclassify a portion of the sam-
ple. The penalty factor, on the other hand, acts as a reg-
ularization to control the complexity of the model. The
above methods are used to improve the generalization of
the model.

SVM can be broadly classified into linearly separable
SVMs and linearly inseparable SVMs. Among them, the
linearly inseparable SVM treats a linearly inseparable prob-
lem by mapping a low-dimensional linearly inseparable
problem to a high-dimensional space using a kernel func-
tion, thus turning it into a linearly separable problem. This
study replaced the Softmax classifier function in the original
output layer with an SVM classifier function. The specific
operation was mainly to replace the cross entropy loss func-
tion used by the Softmax classifier function with a loss func-
tion in the form of hinge loss of the SVM classifier function.

The SVM classifier eventually finds the N-dimensional
space of the segmentation hyperplane H as the following
function:

H : g(x) = ωT x + b = 0, (1)

In Eq.(1), the ω represents the weights and b represents the
bias values. The partition hyperplane H that separates the
positive and negative samples is the optimal hyperplane that
the SVM looks for. The best hyperplane is the hyperplane
that is the farthest away from both positive and negative
samples and has a strong ability to generalize to unknown
samples. In the binary classification problem, two hyper-
planes will be assumed, which are the hyperplane H1 pass-
ing through the support vector of the positive samples and
parallel to the hyperplane H as shown in Eq.(2), and the hy-
perplane H2 passing through the support vector of the neg-
ative samples and parallel to the hyperplane H as shown in
Eq.(3).

H1 : g(x) = ωT x + b = 1, (2)

H2 : g(x) = ωT x + b = −1. (3)

According to Eq.(2) and Eq.(3), the distance between the
support vector and the optimal hyperplane should be 1

|ω| . So
to find the maximum distance is to find the minimum value
of |ω| and to find

min
(

1
2
ωTω

)
. (4)

At the same time, in order to prevent overfitting, a small
part of the samples are allowed to be classified incorrectly.
It is not only allowed that the predicted labels of some
points are inconsistent with the true labels, but also the
amount of inconsistent data is minimized. It can be ex-
pressed as

min

c N∑
n=1

εn

 . (5)

Among them, N represents the number of samples that
are classified incorrectly, and εn represents the distance be-
tween the incorrectly classified point on the hyperplane and
the correct classification. The function of the parameter c
is to limit the number of samples with incorrect classifica-
tion. Adjusting the parameter c can determine whether the
model pays more attention to the margin or the number of
samples with incorrect classification, so that the accuracy
of the model is kept within a certain range. When c is in-
creased, the penalty for misclassification will increase, and
εn will become smaller, which means that the classification
is more stringent. When c is decreased, the penalty for mis-
classification will be reduced, and εn will become larger,
which means greater fault tolerance. Combining Eq.(4)
with Eq.(5), we get the Loss function of the SVM:

min

1
2
ωTω + c

N∑
n=1

εn

 s.t. ωT xntn ≥ 1 − εn ∀n (6)

where xn is the sample being classified and tn is the expected
output corresponding to that sample. Hinge Loss function
is a loss function used to train the classifier. For a two-class
classifier, the formula of Hinge Loss function is

loss = max
(
1 − ωT xntn, 0

)
. (7)

For the fixedω and b, the εn in Eq.(6) is also a fixed value,
which is the result of the Hinge Loss function. Because
the zero area of the Hinge loss function corresponds to the
normal samples of non-support vectors, all normal samples
do not participate in the determination of the optimal hy-
perplane. In this way, the dependence on the number of
training samples is greatly reduced, and training efficiency
is improved. Through Eq.(6) and Eq.(7), the Hinge Loss
function form of the SVM was defined by Eq.(8).

min

1
2
ωTω + c

N∑
n=1

max
(
1 − ωT xntn, 0

) . (8)

Based on the three formulas above, the loss function of
the SVM used in this paper can be viewed as the sum of the
L2-normalization and hinge loss function.

2.3 Transfer learning The training of CNN’s param-
eters requires large labeled datasets. Since medical images
contain a lot of private information about individual pa-
tients, the disclosure of medical images requires the per-
mission of each patient. Therefore, it is a challenge to col-
lect large-scale datasets that are publicly available with the
permission of the patient. On the other hand, due to the
uneven level of doctors, high-quality labeled medical im-
ages are also scarce. Till now, for breast cancer diagno-
sis, large labeled datasets are lacking. Therefore, this paper
adopted a transfer learning approach to address this issue.
The basic idea of transfer learning is to pre-train a CNN
on an existing large dataset and then transfer to the target
dataset for training and fine-tuning using the weights of that
pre-trained CNN as initialization weights. The reason why
transfer learning is feasible is that the first few layers of
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(a) (b) (c)

Figure 4: (a) cropped image, (b) denoised image, (c) en-
hanced image

CNN learn generic features of the datasets, such as points,
lines, colors, and other underlying features, and the last few
layers learn specific features of the datasets. In this paper,
we pre-trained on an ImageNet dataset (consisting of more
than 1.2 million natural images and 1000 different classes),
and the resulting model’s parameters were used as initializa-
tion parameters for the model, which were then transferred
to the target dataset for training. Furthermore, we used a
global fine-tuning strategy to optimize the model.

2.4 Dataset and Data augmentation In this paper,
we just verified and tested the performance of the proposed
model on existing mini mammogram dataset from MIAS
(mammography image analysis society). The resolution of
all mammograms in this dataset was 1024 × 1024, with 208
normal images and 114 abnormal images (63 benign tumors
and 51 malignant tumors). Therefore, there were 322 mam-
mograms in total. These mammograms were used directly
by doctors so that our image classification program was also
run directly on this dataset.

The left and right sides of each image in the mini mam-
mogram dataset have black areas that do not affect image
recognition, so their resolution was cropped to 1024 × 512.
The image was denoised by median filtering, in order to
improve the signal-to-noise ratio of the image. The image
was then enhanced by histogram equalization. This was to
highlight the desired features of the image. The results were
shown in Figure 4. In order to enhance the robustness of the
neural network and avoid overfitting, an adequate amount
of data input was required. Therefore, the rotation method
was used to expand the dataset. Each image was rotated
by -90◦, 90◦ and 180◦ around the origin, which made the
existing dataset three times the original dataset.

2.5 Training method We randomly selected 70% of
the dataset as a training set to train the neural network
model, while the remaining 30% of the dataset was used
as a test set to evaluate the performance of the neural net-
work model. The number of epoch was 1000, and the batch
size was the size of the training set.

Figure 5: Comparison of the classification accuracy of dif-
ferent models

Table 1: Comparison of accuracy between different models

Training model Final mean accuracy

Our model with transfer learning 91.4%
Model by Aresta et al. [5] 87.9%

Our model without transfer learning 84.3%

Table 2: Comparison between SVM classifier and Softmax
classifier

Classifier Mean accuracy Training time in every batch

SVM 91.4% 958s
Softmax 88.9% 973s

3. Results
The Image classification program was run on a desktop
computer (Intel CPU Core i7-8700; NVIDIA GeForce RTX
2080Ti; VENGEANCE LPX Series memory module). The
CPU frequency was 3.2 GHz. The video memory was
GDDR6 11 GB and the size of the memory module was
24 GB (one 8 GB and one 16 GB). The experimental model
in this study was based on the Tensorflow framework.

First in this study, the classification model was compared
before and after the introduction of transfer learning. At
the same time, the performance of the breast cancer clas-
sification model of Araújo et al. [5] on the dataset in this
study was used as a benchmark to compare and verify the
performance of our classification model. The results of the
experiments are shown in Figure 5 and Table 1. The mean
accuracy of the experimental results was the mean of ten
random assignment dataset experiments.

It is obvious from Figure 5 and Table 1 that after the in-
troduction of transfer learning, the classification accuracy
of our classification model was greatly improved and com-
pared to that of Araújo et al. [5].

We then compared the training time and accuracy of the
model using the SVM classifier and the Softmax classifier.
The result of comparison is shown in Table 2.

This experiment shows that the training time using the
SVM classifier is shorter than that using the Softmax classi-
fier. This is because for the SVM classifier, when the prob-
ability of a class is greater than 0.9, it means that the classi-
fication is correct and the classifier no longer processes the
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samples that are already classified correctly, thus drastically
reducing the training time and increasing the generalization
capacity of the network. For Softmax classifier, however,
the loss function continues to compute until the probability
of correct classification is close to 1, resulting in an increase
in training time.

4. Discussion
The results showed that the mammography classification
system based on the AlexNet network model proposed ob-
tained an accuracy of 91.4% on the test set, which improved
the accuracy by 3.10% compared to the study by Araújo et
al. [5]. The best explanation for the high accuracy from
our models was that we used AlexNet network to classify.
Certainly, the accuracy of our model was also significantly
improved by introducing transfer learning. Taken together,
this paper established a mammography classification sys-
tem based on the AlexNet network model on the basis of
transfer learning. This effectively improved the classifica-
tion performance of the system and provided experience for
other medical small data image classification systems.

In future studies, we will work to improve the following
issues. Since the dataset in the paper has not considered
the effect of the imbalance of positive and negative sam-
ples on the convolutional neural network, this suggests that
we should have verified our convolutional neural network
model on more datasets. In addition, our model can only
distinguish whether it is breast cancer or not. In the future,
the classification system must be able to accurately classify
specific types of breast cancer and not just be able to clas-
sify whether it is breast cancer or not.

5. Conclusion
In this study, we proposed a CNN-based classification
model for mammogram image classification. We adopted
the AlexNet network model and modified the size of the
convolution kernel. At the same time, in the output layer,
we replaced the Softmax classifier with the SVM classi-
fier, because the SVM classifier greatly shortens the train-
ing time. At the same time, the SVM classifier can quickly
converge to the optimal value, which improves the classifi-
cation accuracy of the classification model. By introducing
transfer learning and data augmentation, overfitting is effec-
tively prevented and classification accuracy is significantly
improved. Experiments show that the CNN classification
model proposed in this paper achieves an average accuracy
of 91.4% on the target data set, which achieves a high aver-
age classification accuracy.
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[5] T. Araújo, G. Aresta, E. Castro and R. José, “Classification
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